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We use the many-beam dynamical theory of electron diffraction for the calculation of x-ray photoelectron
diffraction sXPDd patterns of the substrate emission. The reciprocity principle is used to apply a Bloch wave
model for the diffraction of an incoming plane wave by a three-dimensional crystal. In this way, many-beam
dynamical simulations of XPD in the context of Kikuchi-band theory can be carried out. This extends the
results of the two-beam theory used so far and leads to quantitative descriptions of XPD patterns in the picture
of photoelectrons reflected by lattice planes. The effects of forward scattering directions, substrate polarity,
circular structures due to onedimensional diffraction, and emitter specific extinction of Kikuchi lines can be
reproduced by Kikuchi-band theory. The results are compared with single scattering cluster calculations. In this
way, the equivalence of the cluster approach and the Kikuchi-band picture can be demonstrated completely in
both directions
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I. INTRODUCTION

The method of x-ray photoelectron diffractionsXPDd is a
powerful tool for the analysis of crystal surfaces and adsor-
bates. By measuring the angular intensity of photoelectrons
excited by x rays and comparing the experimental data with
simulations, information on the surface crystallography of
the investigated sample can be gained.1

Early observations on single crystal surfaces have inter-
preted the angular distributions as caused by reflection of the
photoelectrons on lattice planes of the three-dimensionally
periodic bulk crystal.2 This is a special case of emission from
point sources inside a crystal for which a general description
was given using dynamical many-beam theory applying a
plane wave expansion of the diffracted electron waves.3,4 A
two-beam dynamical theory was applied to explain the azi-
muthal variations of photoelectron intensities for single crys-
tal copper.5 Using this theory, the intensity variations could
be reproduced by the summation of a number of so-called
Kikuchi bands. These bands show increased intensity in a
region of a width which is twice the Bragg angle of the
corresponding reflecting lattice plane.

Photoelectrons with low kinetic energies of typically less
than 2 keV, however, only sample a finite depth which can
be as small as a few atomic layers. On these length scales,
the properties of the surface become important and photo-
electron diffraction has to be described by a theory which
can handle the possible loss of symmetry.

If long-range order is still present, layer-by-layer methods
can make efficient use of the two-dimensional translation
symmetry of surfaces. These methods apply theoretical prin-
ciples which originated in the context of low-energy electron
diffraction (LEED)6–9 and reflection high-energy diffraction
sRHEEDd.10

One of the most successful computational schemes is the
cluster approach which allows the description of almost

arbitrary surface structures in a very natural way. This is
made possible by the short inelastic mean free path of the
photoelectrons. Only a limited number of scatterers in the
neighborhood of an emitter contribute to the diffraction pro-
cess, which can thus be effectively handled in a real-space
formulation of the theory with no further assumptions about
symmetries. Cluster calculations have been used in a number
of experimental investigations, applying single and multiple
scattering.11–16Fast calculations are possible based on certain
approximations for spherical wave scattering in photoelec-
tron diffraction, especially the separable-propagator method
of Rehr and Albers,17 the concentric-shell algorithm of Sal-
din et al.18 and the reduced angular momentum expansion of
Fritzscheet al.19

Cluster simulations were successful in reproducing the
formation of Kikuchi bands in substrate XPD measured with
high resolution.20,21 It was shown that these bands become
more pronounced the larger the number of scatterers in a
cluster is. This is the case at the high-energy end of the XPD
method with photoelectron kinetic energies of 1 to 2 keV.
Especially in light elements and compounds, the clusters
needed at these energies can contain several thousand atoms
in accordance with the inelastic mean free path. This makes
multiple scattering cluster calculations very time and
memory consuming.

With increasing cluster sizes, the surface properties
should become less and less important, leading to enhanced
bulk characteristics in the diffraction pattern. Therefore it
should also be possible to simulate these high-energy sub-
strate XPD patterns using many-beam dynamical Kikuchi-
band(or electron channeling) theory. These many-beam cal-
culations are made possible by the increase in computer
speed and memory which allows a large number of reflecting
planes to be taken into account simultaneously. Returning to
the earliest interpretation of substrate XPD patterns, we will
show that this theory can not only explain the formation of
Kikuchi bands but also reproduces features such as forward-
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scattering directions and ring-shaped interference maxima
around these directions. Such features can also be explained
in the intuitive forward scattering picture of cluster calcula-
tions. The advantage of Kikuchi-band theory for substrate
XPD lies in the fact that the Kikuchi lines are already part of
the theory and do not emerge as a secondary phenomenon
from a huge number of periodically arranged scatterers.

Comparing dynamical theory with single scattering clus-
ter calculation we provide a “translation” between terms used
in high-energy electron diffraction theory—which operates
in reciprocal space—and the real-space cluster theory. In this
way we show that the electron channeling picture of
Kikuchi-band theory is a valid description of the substrate
photoelectron diffraction process at high energies, a view
which was previously in question.22

II. THEORY

For the description of the photoelectron diffraction pro-
cess by a channeling picture we assume that the electrons
originate isotropically from point sources which are periodi-
cally arranged inside a crystal. The outgoing photoelectrons
are scattered by the crystal and detected as a plane wave at
the detector. By using reciprocity principle one realizes that
this is equivalent to the problem of an incoming electron
beam which is diffracted by the crystal and were the electron
intensity at the emitting atoms is sought.3,4

The diffraction of a parallel electron beam impinging on a
sample is of importance in various methods of electron mi-
croscopy. From a principal point of view, the atom location
by channeling-enhanced microanalysissALCHEMI d
technique23 is closely related to the problem of substrate
XPD. In ALCHEMI, an incoming electron beam excites
characteristic x rays dependent on its tilt relative to the crys-
tal. If the diffraction of the incoming beam concentrates a
larger amount of electrons near atoms, increased ionization
and therefore also increased x-ray fluorescence will result.
Reversing the direction from the ionization process to an
outgoing plane wave, one practically looks at the method of
XPD. This is why ALCHEMI-type of experiments have also
been termed “inverted XPD”.24

The close analogy to incoming-beam channeling effects
allowed us to use existing algorithms for the application to
substrate XPD. A Bloch wave approach is used to describe
the diffraction of incoming electrons with wave vectork0.
The use of this method is described in several reviews.25,26In
the following, we give a short summary of the basic theory
we applied.

The wave function inside the crystal is described as a
superposition of Bloch waves with wave vectorsk s jd

Csr d = o
j

cj expsik s jd · r do
g

Cg
s jd expsig · r d. s1d

One introduces the total(scaled) potentialUsr d:

Usr d = Ucsr d + iU8sr d = o
g

Ug expsig · r d. s2d

The potential is described by complex electron structure fac-
tors Ug

c=2mVg/"2 with Vg being a Fourier coefficient of the
crystal potential in eV and the relativistic electron massm.
Inelastic effects are included by the definition of the imagi-
nary componentsUg8.

Substitution of these expressions for the wavefunction
and the potential into the Schrödinger equation leads to the
standard dispersion relation

fK 2 − sk s jd + gd2gCg
s jd + o

h

Ug−hCh
s jd = 0. s3d

K is the electron wave vector inside the crystal,k0
2=K2−U0

c.
Thenk s jd is written as

k s jd = K + ls jdn, s4d

wheren is a unit vector normal to the surface to transform
Eq. (3) into an eigenvalue problem26 which gives the eigen-
valuesls jd and eigenvectors with elementsCg

s jd. This includes
effects due to the tilt of the outgoing direction up to about
80° relative to the surface27 and is valid for arbitrary recip-
rocal space vectorsg. Only Bloch waves which travel out-
wards in direction to the surface are considered in the case of
XPD, backscattered waves are neglected in this approach.

The boundary conditions at the surface determine the co-
efficients cj in Eq. (1). These quantities are given by the
elements of the first column of the inverse of the matrix
whose elements areCg

s jd.26 After this, the wave function(1) is
known and can be used to calculate the electron probability
density inside the crystal. The wave function is known at all
emitter sites after a single calculation. This is an advantage
of the path-reversed approach7 for the simulations of the sub-
strate emission. In cluster calculations, a separate computa-
tion has to be carried out for each emitter.

Isotropic absorption corresponds to an inelastic mean free
pathLe of the electrons and is described by the constant part
V08 (in eV) of the imaginary part of the total potential5

V08 = − s"2E/2md1/2Le. s5d

Spatially nonisotropic absorption effects(corresponding to
coefficients Vg8 with gÞ0) were not considered5 for the
simulations to be comparable to the cluster calculations
where isotropic absorption corresponding to an inelastic
mean free path is usually assumed. The Fourier coefficients
Vg of the real part of the crystal potential can be calculated
from the contributions of the atoms which constitute the unit
cell

Vg =
1

V
o

i

fessdexps− ig · r id s6d

with the atoms at positionsr i in the unit cell volumeV and
the Fourier coefficientsfessd, s= ugu /2 of the atomic poten-
tials. The fessd are calculated from parameters tabulated in
the literature by Doyle and Turner.28

To compute the probability of electrons to be at the
atomic sites of the emitters one has to calculatecc* from Eq.
(1).27 The interaction of diffracted electrons with the crystal
atoms has been modeled by generalized potentials.29,30In the
case that these potentials have the form of delta functions

WINKELMANN, SCHRÖTER, AND RICHTER PHYSICAL REVIEW B69, 245417(2004)

245417-2



(point sources) which are broadened by thermal vibrations,
Rossouwet al.31 have given the following expression for the
depth integrated intensity at the crystal atoms:

I ~ o
n,i j

Bijstdo
g,h

Cg
sidCh

s jd* exps− Mg−h
n dexpfisg − hd · r ng

s7d

with atoms atr n, Debye-Waller factors exps−Mg−h
n d and a

depth integrated interference termBijstd of the Bloch wavesi
and j :

Bijstd = cicj
expfisli − l j*dtg − 1

isli − l j*d
. s8d

For the calculation of the Bloch waves, we have applied a
program published by Zuoet al.26,32 We modified this code
to include the channeling effects according to the approach
outlined above. The Debye-Waller factors we took from a
parametrization of Gaoet al.33

Our assumption of simple isotropical photoelectron emis-
sion compared to a more correct description of the ionization
process is made because of simplicity to gain insight into the
fundamental processes of channeling in photoelectron dif-
fraction. Matrix-element effects of thel ±1 channels at the
ionization could be incorporated into the theory in principle
by the use of generalized potentials.29,30 Due to the strong
forward scattering, the influence of these effects should be
reduced at high kinetic energies.

The assumption of a threedimensionally periodic crystal
and the neglect of backscattered waves indicate that the
approach described here is only valid at the high energy end
of the XPD technique. Effects such as surface reconstruc-
tions and surface relaxation as well as increased backscatter-
ing become significant at low energies. These effects are
handled very effectively by the various methods mentioned
above. The approach described here is clearly focussed on
the single crystal substrate emission at relatively high kinetic
energies.

For the comparison of the channeling simulations
with cluster calculations, we have used a single scattering
cluster model described elsewhere.34 It has been shown
that clusters with up to ten emitter layers and up to 20 Å in
radius are necessary for correct simulations of substrate
XPD.34

III. RESULTS

A. Polarity of aluminium nitride {0001}

The determination of the polarity of noncentrosymmetric
crystals is a problem which cannot be solved by two-beam
channeling theory alone. This is why we use this problem as
a first example for the applicability of the dynamical theory.
We have shown previously that SSC calculations can repro-
duce the differences in the XPD patterns of surfaces of dif-
ferent polarity.34 In Fig. 1 we show the Al2p patterns of the

s0001d and s0001̄d faces of aluminum nitridesAlN d. The
Al2p electrons were excited by AlKa radiation. Full experi-
mental details are given elsewhere.35

FIG. 1. XPD patterns of
AlN h0001j, Al2p, Ekin=1413 eV.
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From the dynamical theory it can be deduced that there
should be an asymmetry between the reflections on either
side of a lattice plane. This leads to differences in the shape
of Kikuchi bands from samples of different polarity.27,36 For
the dynamical simulations, 238 reflecting planes with a mini-
mum spacingdhkl of 0.9 Å have been used. The calculated
patterns were drawn in stereographic projection and
smoothed according to the angular resolution of the detector
of about 2°.

There is a clear difference in the measured patterns of the
Al and the N faces. Comparison with the simulated data
shows good agreement in the structures which are seen in the
hemispherical diffraction patterns for both the SSC and the
Bloch wave simulations. Limitations are found in the repro-
duction of the relative intensities and the structures in normal
emission. For the SSC calculations this can be attributed to
multiple scattering effects.34

This shows that the dynamical theory can reproduce the
changes in the diffraction patterns from surfaces of different
polarity. In the single scattering picture this can be explained
by the different scattering strengths of the aluminium and
nitride atoms which reside near the surface.35

B. Reciprocal vs real space interpretation

Comparing the intuitive forward scattering interpretation
of the cluster picture with the reciprocal space channeling
theory one can ask if it is possible to relate different parts of
these theories to each other. In Fig. 2 we show the Si2p XPD
pattern of cubic silicon carbides3C SiCd. The threefold pat-
tern is dominated by three strong forward scattering maxima
at 35° polar angle. In addition, one finds ringlike structures
around the directions at 55° polar angle. These structures can
be explained by the directions of nearest silicon atoms in the
SiC crystal structure. The corresponding SSC calculation
shows a good agreement between theory and experiment,

except for the fact that the strongest maxima are too broad.
This is a well known property of single scattering calcula-
tions.

The measured pattern does not give a typical Kikuchi-
band impression, which is partly due to the angular resolu-
tion of about 2°. Nonetheless, the corresponding Bloch wave
simulation using 280 reflecting planes after accounting for
the limited detector resolution shows a very good agreement
with the experiment. The relative intensities are reproduced
better than in the SSC simulations.

At first sight, it seems astonishing that the Kikuchi-band
picture is able to explain the ringlike structures in the diffrac-
tion pattern. One such ring is marked in Fig. 2 around the
[010] direction. In the forward scattering picture, this ring
can be interpreted as the first order maximum of the diffrac-
tion taking place at the emitter-scatterer pair which is shown
in Fig. 2.

The opening angle 2u of these rings is determined by the
distancer, the wave numberk of the electron and the scat-
tering phase shiftDf:37

krs1 − cos 2ud + Dfs2ud = 2p. s9d

By measuring the opening angle of the ring, the emitter-
scatterer distance can be inferred. In Fig. 2, there is also
shown a SSC simulation of the emitter-scatterer pair with a
distance of 4.36 Å. This simulation very nicely shows the
zeroth order forward scattering maximum and the ring-
shaped first order maximum.

The Bloch wave simulation in Fig. 2 also shows the maxi-
mum and the ring at about 55° polar angle. This ring is the
envelope of a number of reflecting planes. These reflexes are
strongly excited when the Ewald sphere cuts reciprocal space
points which do not lie at right angles to the zone axis. This
is shown in Fig. 3. The corresponding rings are called “first
order Laue zone”sFOLZd rings.26

FIG. 2. Experimental and
simulated XPD patterns of
3C SiCs111d, Si2p, Ekin

=1387 eV.
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Both the reciprocal space picture with reflecting lattice
planes and the real space cluster picture allow the determi-
nation of crystal lattice parameters from the opening half
angle 2u of the rings.37,38 For simplicity we look at a lattice
with atoms placed in such a way that the distanceH (in Å)
between the atoms corresponds to the reciprocal lattice plane
spacingH−1 in Å−1 (Fig. 3). Also, the scattering factors are
assumed to be real according to the Born approximation,
which is valid at high energies.

From Fig. 3(a) one sees thatH−1=K−K cos 2u, with
the inverse of the electron wavelengthK. In real space
one has to look at the path length differences between
the scattering at the first and the second atom and set
this difference equal to the electron wavelength for the first
order maximum. This requires thatH−H cos 2u=l=K−1

which is seen from Fig. 3(b) and gives the sameH as in
reciprocal space. This shows that at high energies, the ring
like structures can be equally interpreted as FOLZ rings
(in the language of high energy electron diffraction) as
well as first order interference maxima along forward
scattering directions(in the language of cluster photoelectron
diffraction).

C. Site specific extinction of Kikuchi lines

Element specific extinctions of Kikuchi lines have been
observed by Omoriet al.39,40 and explained using two-beam
dynamical theory. The effects have been reproduced by mul-
tiple scattering cluster calculations.20 We use this example to

show how a very effective interpretation is possible using
Kikuchi-band theory.

In Fig. 4 we show the simulated XPD patterns of the
Ca2p and F1s electrons of CaF2s111d. A set of 63 reflecting
planes was selected to match those seen in the experimental
data of Omoriet al.40 Comparing both patterns, the Kikuchi
lines in the F1s pattern are broadened due to the smaller

energy of the photoelectrons. Also, the threeh1̄11j reflections
are missing in the F1s pattern. To explain this behavior, an
element specific extinction rule was applied.40 This rule im-
plies that the extinction of element-specific Kikuchi-bands
depends on a combination of the lattice site of the source

atoms and the structure factor. Thes111̄d reflection is marked
bold in Fig. 4. The effects of the extinction of this band reach
over the whole area of the diffraction pattern. For compari-
son, two regions of interest in the figure are marked with
circles. In the cluster picture, one would have to discuss sev-
eral existing or missing forward scattering and interference
directions to explain the intensity enhancement or decrease.
The Kikuchi-band picture allows one to name a specific re-
flecting plane as the cause for both features(and all other
features related to this plane). The simulated patterns of Fig.
4 complement the cluster simulations of Bardiet al.20 who
demonstrated the formation of Kikuchi bands with large
clusters.

IV. SUMMARY

We applied a many-beam dynamical theory of electron
diffraction to the problem of the calculation of x-ray photo-
electron diffraction patterns of the substrate emission. Many-
beam dynamical simulations of XPD in the context of
Kikuchi-band theory have been carried out for AlN, SiC, and
CaF2. These simulations extend the results of the two-beam
theory used so far and lead to quantitative descriptions of
XPD patterns in the picture of photoelectrons reflected by
lattice planes. The effects of forward scattering directions,
substrate polarity, circular structures due to onedimensional
diffraction and emitter specific extinction of Kikuchi lines
can be reproduced by Kikuchi-band theory. The results have
been compared with single scattering cluster calculations. In
this way, the equivalence of the cluster approach and the
Kikuchi-band picture can be shown in both directions, which
was not explicitely done so far.

FIG. 3. Simulated XPD pat-
terns of Ca2p s1140 eVd and F1s
s801 eVd from CaF2s111d, 63 re-
flecting planes.

FIG. 4. Conditions for the formation of ringlike structures in
reciprocal(a) and real space(b).
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