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In this paper we present results from a molecular dynamics study on the temperature dependence of Lévy-
type stick-slip diffusion of a gold nanoclustersAu245d on graphite. Exponents that characterize the power-law
correlated diffusion dynamics are not universal, but vary with temperature. Although the diffusion dynamics
conflicts with the usual equilibrium Arrhenius jump rate process, diffusion coefficients computed obey an
Arrhenius law.
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I. INTRODUCTION

Surface diffusion of adsorbates in particular with many
internal degrees of freedom has been intensely studied over
the past few years.1–3 This is because they interact with sur-
faces via qualitatively different potential energy from that for
single adatoms and often exhibit novel complex behavior
such as extremely large diffusivity(prefactors) and long
jumps.

One of the most interesting findings is that the experimen-
tally observed fast surface diffusion of gold nanoclusters on
graphite1 is probably a “Lévy-walk”4,5 or, more strictly, a
“ truncatedLévy-walk.”6,7 In the diffusion found with mo-
lecular dynamics(MD) simulations,5,7 sticking durations(pe-
riods of time which a gold cluster as a whole spends in
oscillating before escaping from a potential well) and jump
durations(periods of time between two successive stickings)
both obey power-law distributions. Namely, long-lived long
jumps and short stickings occur very frequently.

Frequent short stickings as well as frequent long-lived
long jumps imply that the cluster is not always well thermal-
ized within a potential well, conflicting with the picture of
equilibrium Arrhenius jump rate processes,8 where jump and
sticking durations are usually very short and long, respec-
tively, and separable in time scale, and jumps that require an
energyE occur, at least except for very high temperatures, in
proportion to,exps−E/kBTd (kB is Boltzmann’s constant).
However, the experiments1 have shown that the temperature
dependence of diffusivity for the cluster surface diffusion is
an Arrhenius-type activated one, which confuses us.

My question is whether the power-law correlated
activation-relaxation(stick-slip) dynamics can be actually
consistent with Arrhenius behavior? Computationally, tem-
perature dependence of the power-law diffusion dynamics as
well as that of diffusion coefficients has not been examined
yet. This is because the absence of characteristic time scales
makes the convergence of diffusivities and statistics remark-
ably slow, requiring extremely longs.msd MD runs.7 Here I
therefore study the temperature dependence in the wide tem-
perature range of 200–670 K by performing extremely long
s10 msd MD simulations with a Langevin-thermostated two-
dimensional (2-D) Frenkel–Kontrova (FK)-type9 cluster-
surface model.7

We will see in the following that the power-law nature is
in itself fairly robust to temperature change, but the expo-
nents of the power-law distributions vary with temperature,
i.e., they are not universal. In contrast to the usual surface
diffusion, in which jumps are almost limited to adjacent
sites, the ratio of long jumps increases significantly with
temperature. Although the diffusion dynamics conflicts with
the usual activation process, diffusion coefficients computed
obey an Arrhenius law.

II. MODEL

Before constructing the model, two things are noted.
A first thing is that Lévy-type diffusion dynamics has

been observed for both a dynamic graphite surface and a
static one.5 This is probably due to the large difference in
mass(or in vibration frequency) between gold and carbon
atoms and the weak cluster–surface interaction, implying the
applicability of a so-called “adiabatic elimination” of car-
bon’s fast degrees of freedom.

The second thing is the presence of power-law nature in
the diffusion dynamics.5,7 As is well known for critical phase
transitions10 and self-organized critical phenomena,11 power-
law nature, which arises in a system where many spatiotem-
poral length scales are important, is insensitive to the details
of the system, such as the interaction between atoms or sub-
systems. Namely, the detailed and realistic engineering-type
modeling of a power-law correlated system can be often
needless, at least, to understand the global(long time) behav-
ior of the system.

In accordance with the two things, the following simpli-
fied Langevin-thermostatted 2-D FK-type9 cluster–surface
model is adopted, which allows us to perform statistically
sufficiently longs.msd simulations very easily without los-
ing essential physics, as demonstrated in Ref. 7.

The model cluster, illustrated in the upper left-hand inset
of Fig. 1, is a three-dimensional crystalline gold cluster,
Au245, whose lowermost 37 atoms form a compact hexagon.
(The size of the model cluster is close to that of Au250 clus-
ters deposited in the experiments.1) Au–Au interactions are
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described by a Lennard-Jones(LJ) (6-12) potential and re-
stricted to first nearest neighbors. This is based upon the
principle of adoption of as simple a model as possible with-
out losing the characteristic power-law stick-slip diffusion
mechanism. The well depth of the LJ potential is set at
0.609 eV, which was derived from the bulk modulus and
interatomic distance of bulk gold.

The LJ potential may be improper to investigate several
features of a gold nanocrystal quantitatively, but can be em-
ployed to investigate the characteristic power-law correlated
stick-slip diffusion dynamics in the temperature range of
200–670 K sufficiently below the melting point of bulk gold
1337 K. (I confirmed that diffusion dynamics does not
change very much even if a harmonic potential with the
same bulk modulus is used.)

As shown in Ref. 5, a static graphite surface can represent
the greater part of a dynamical graphite surface. However,
the use of a static surface is inappropriate to investigate tem-
perature dependence because it does not entirely enable us to
take account of the thermalization effect according to tem-
perature. Hence, here I use the following static potential sur-
face with Langevin-thermostats.

On graphite surfaces,b-sites, which have no carbon at-
oms sitting beneath them in the adjoining graphite sheet, are
preferential adsorption sites for metal adatoms.12 The static
potential surface,vatom, is therefore defined not on the hon-
eycomb lattice of graphite but on a triangular lattice with the
lattice constant of graphite,a. (a-sites are omitted.) Here in
this work, I express the potential surface by the three shortest
wave vectors’ terms of a 2-D Fourier series:

vatomsx,yd = −
2

9
E0ScosH2p

a Fx +
y
Î3
GJ + cosH4py

Î3a
J

+ cosH2p

a Fx −
y
Î3
GJD .

The amplitude of potential corrugation,E0, is set at 0.06 eV
because it is thought to be a mere fraction of the binding
energy of 0.26 eV/atom for large Au islands on graphite.12

Since the interaction between gold clusters and graphite sur-
faces is weak, the relaxation of the graphite lattice in the
presence of clusters is not taken into account. The Langevin-
thermostats for the lowermost 36 atoms are described in
terms of the under-damped Langevin dynamics,13 which en-
ables us to introduce temperature into the static potential
surface.

According to Ref. 5, there is a correlation between stick-
ing states and changes of thez-coordinate of the cluster’s
center of mass; however, the changes are no more than
0.03 Å at 500 K, which is only a twentieth part of the length
scales,0.6 Åd of thex-y sticking motion of the cluster as a
whole. Furthermore, the time scale(up to a few ns) of the
changes is much larger than thats,20 psd of thex-y sticking
motion. These significant differences in spatiotemporal
scales imply that the effect of thez-component of motion on
the surface diffusion dynamics of the cluster as a whole is
unimportant and separable from that of thex and y compo-
nents. Hence, in accordance with the above principle,
z-component variance in potential is not taken into account,
and all thez interatomic distances of the cluster are always
fixed.

The simplified model exhibits characteristic power-law
correlated stick-slip diffusion dynamics, as shown in Ref. 7,
and meets the purpose. Strictly speaking, however, a possi-
bility that the suppression of thez-component invisibly
causes differences between computational and experimental
observations is not completely nil. As shown by Zhdanov,14

motions along and perpendicular to a surface can be insepa-
rable for single atom surface diffusion. The presence of ef-
fects of thez-component on the diffusion dynamics and dif-
ference in the way the cluster and single atoms interact with
surfaces are worthy of further study.

The dynamics of every atom except the lowermost
Langevin-thermostatted 37 atoms is performed with the Ver-
let algorithm. The time step is 5 fs, and the Langevin
damping-time constant is set to 100 ps.7

III. RESULTS AND DISCUSSION

I performed MD simulations of 10ms for various tem-
peratures in the range of 200–670 K. Figure 1 shows parts
of x-y trajectoriess2 msd for 200, 300, 400, 500, and 600 K.
Although we cannot clearly see from these trajectories, the
cluster repeats stick-slip motion many times. In contrast to
the usual adatom diffusion, jump durations can be longer
than sticking durations, and the cluster diffusion proceeds
mainly by long-lived long jumps which have no apparent
influence of the lattice of the substrate. Stickings and jumps
are both often accompanied by nearly free or oscillatory ro-

FIG. 1. 2ms x-y trajectories of the clusters center of mass po-
sition for T=200, 300, 400, 500, and 600 K. Upper left-hand inset:
Snapshot of the gold nanoclustersAu245d on graphitesnatomd. The
diameter of the cluster is about 20 Å, expressed as the small dot
indicated by the arrow.
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tations of the cluster as a whole.(More details of the diffu-
sion dynamics have been described in the previous works.5,7)

From a cursory visual inspection of the trajectories, we
can see that each trajectory consists of many length scales
and has a characteristic of Lévy-walk,4 and that the ratio of
long jumps increases significantly with temperature. To con-
firm this visual inspection statistically, all jumps and stick-
ings in eachx-y trajectory are distinguished in much the
same way as Ref. 5: distancedstid= uRsti −tc/2d−Rsti
+tc/2du is examined every 2 ps, and whendstid,dc time ti is
classified as a sticking period. Heretc=20 ps is the period of
sticking oscillation, which has no significant temperature de-
pendence as shown later in Fig. 4(b), anddc=0.6 Å.

Jump durations are given as the intervals between two
consecutive sticking durations. In the present work, to avoid
the ambiguity between short stickings and jumps, I reclassi-
fied short sticking durations belowtc as jump periods. Each
jump length,l, is given as the distance between two consecu-
tive sticking points.

Figure 2 shows log–log plots of histograms of(a) sticking
durations,(b) jump durations, and(c) jump lengths forT
=200, 300, 400, 500, and 600 K, which were obtained from
10 ms MD simulations. A first point to observe is that for
each temperature the three histograms exhibit a power-law
nature. We can see from Fig. 2(a) that sticking durations
clearly obey a power-law distribution,t−n over almost two
decadess,101–103 psd. From Figs. 2(b) and 2(c), we can
see that, except for the drop-off(the truncation of power-law
tails6,7) at large scales, jump durations and jump lengths both
follow power-law distributions,,t−m and ,l−m8, respec-
tively. The power-law nature, in particular, of the jump
length distribution indicates that all the trajectories in Fig. 1
basically do share a characteristic of a Lévy-walk4 which has
no typical jump length scale, as indicated in the cursory vi-

sual inspection of them. The drop-off(truncation) at large
scales represents a transition from power-law decay to much
faster(exponential) decay, meaning the suppression of infi-
nitely long jumps. This suppression, which is presumably
deeply related to both nonlinearity inherent in the diffusion
dynamics and thermalization with surroundings, is unavoid-
able.

A second point to observe is that the power-law nature,
which in itself is robust to temperature change, varies with
temperature. We can find that truncation time and truncation
length both increase with temperature(from 2 to 7 ns and
from 30 to 100 Å, respectively), while maximum sticking
duration decreases(from 20 to 2 ns). In addition, we can find
that the power-law exponents,n , m, andm8, defined as the
slopes of the sticking duration, jump duration, and jump
length distributions, respectively, are not universal, but vary
with temperature.

Figure 3(a) shows the temperature dependence of the ex-
ponents. We can see thatm andm8 both decrease with tem-
perature, whilen increases: form from 1.55 to 0.96, form8
from 2.23 to 1.09, and forn from 1.58 to 1.91. The decrease,
in particular, inm8 represents an increase in the ratio of long
jumps, proving the validity of the cursory visual inspection
of the trajectories in Fig. 1. The increase in the ratio of long
jumps, which takes the form of a significant increase in the
root-mean-square jump lengthkl2l1/2 in Fig. 1(b), which con-
trasts markedly with the weak temperature-dependence of
the jump length in the usual activated surface diffusion.

Although longer-lived longer jumps have a tendency to
have larger mean kinetic energy(mean velocity), m8 is al-
ways larger thanm. Probably, this is because, as shown in
Fig. 1, jumps are not always ballistic(straight). Since each
jump length l is defined as the distance between two con-
secutive sticking points,l can be much shorter than the cor-
responding actual migration length.

FIG. 2. Log–log plots of histograms of(a) sticking duration,(b) jump duration, and(c) jump length forT=200, 300, 400, 500, and
600 K. The data were obtained from 10ms MD simulations. Duration and length histogram bin widths are 20 ps and 1 Å, respectively. The
broken lines in(b) and(c) show exponential functions that are least-square-fitted to log-linear scaled data at 600 K. It can be clearly seen that
the exponential functions do not fit well to the data, in particular, for short durations and lengths.
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To clarify the temperature dependence of diffusivity, I
measured diffusion coefficients from mean-square-
displacements(MSD’s) kfRst+qd−Rsqdg2lq=kDR2stdl for x
-y trajectories of 10ms, wherek* lq denotes a statistical av-
erage over the timeq. Figure 4 shows(a) the log–log plots of
MSD’s and (b) their slopes,gstd=d log10kDR2stdl /d log10t.
We can see from the figure that, for each temperature, diffu-
sivity crosses over gradually from anomalous onesg.1d to
normal onesg=1d at about a few ns. The superdiffusive
behavior sg.1d for t, ,103 ps is due to the power-law
correlated jump dynamics, which seemingly obeys agenuine
Lévy-distribution having infinite variance.7 The damped os-
cillations of g, which have an identical period of about
20 ps, are due to the oscillatory sticking motion within a
potential,7,15 indicating the validity of the use of constanttc.

The inversion of the 300 and 400 K MSD curves and the
increasing fluctuations ing for t. ,104 ps are statistical
errors due to a decrease in the number of samples for statis-
tical averages overq with t. Hence we cannot use the con-
ventional relationD=limt→`kDR2stdl /4t. To measure long-
time self-diffusion coefficientsD, I therefore fit linear
functions to the MSD’s in the range of 103, t,104 ps by
using the least-squares method and divided the slopes by 4.

Figure 5 shows the Arrhenius plot of the diffusion coeffi-
cients in the broad range of 200–670 K. We can see from the
figure that the diffusion coefficients are expressed, on a log
scale, as a linear function of 1/kBT, clearly obeying an

Arrhenius law: D=D0exps−Ea/kBTd with D0=1.83310−4

cm2/s, andEa=0.103±0.003 eV.
Arrhenius diffusivity is generally believed to be due to

activated jump diffusion dynamics; we therefore can con-
clude that the Lévy-type stick-slip diffusion is also an acti-
vated diffusion. Note, however, that the diffusion dynamics
is far from the usual one. Long-lived long jumps as well as
short stickings do not allow us to image a well-defined single
activation–relaxation process such as adatom diffusion. The
computed activation barrierEa should be due to some com-
plex average of various activation–relaxation processes,
which is probably associated with rotational and many inter-
nal degrees of freedom, as depicted in Ref. 5.

The observation of Arrhenius temperature dependence is
in itself consistent with the experimental results by Bardotti
et al.1 However, the Arrhenius parameters extracted in this
work differ remarkably from the experimental ones:1 Ea
=0.5±0.1 eV andD0=103 cm2/s. In particular, the experi-

FIG. 3. Temperature dependence of(a) the power-law exponents
[n (sticking duration), m (jump duration), andm8 (jump length)] and
(b) the root-mean-square jump lengthkl2l1/2.

FIG. 4. (a) Log–log plots of MSD’sfkDR2stdlg for 200, 300,
400, 500, and 600 K, and (b) their slopes g
=d log10kDR2stdl /d log10t. Inset:g on a linear scale. The periodic
oscillations are due to intra-well sticking motions, Ref. 15, having
almost the same period oft=20 ps.
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mental diffusion prefactorD0 is seven orders of magnitude
larger than the computed one. The adoption of the simple
model, which can cause discrepancies, does not allow us to
compare the results directly to the experimental results.
However, even when the largest possible tolerance is used,
the huge discrepancy inD0 is too large. Here I would like to
comment on the large diffusion prefactorD0.

Experimentally, from measurements of saturation island
densities, Bardottiet al.1 found the mean diffusion timet
which is needed for a gold nanocluster to move in a random
direction by one mean cluster diameterd=20 Å, obtaining
diffusion coefficients for various temperatures using the re-
lation D=d2/4t. Sinced, adopteda priori as the minimum
length scale in the model to analyze their experiments,1

should be larger than the actual length scale of dominant
motion responsible for the diffusion,t should be larger than
the actual time scale in which the dominant motion occurs.
(If it is not so, one cannot obtain correct diffusion coeffi-
cients.) The actual time scale is deeply related to temperature
(thermal velocity) as well as the length scale; hencet should
be larger than the thermally allowable lower bound. Contrary
to this, one can find that, forT.340 K, t becomes smaller
than the lower bound. For example, forT=400 K, the
Arrhenius parameters obtained experimentally give usD
<5310−4 cm2/s, and we obtaint=d2/4D<20310−12 s
=20 ps. This value oft is far less than the time to cross over

d at thermal velocity,tth,dÎM /kBT=240 ps(M is the mass
of Au250), and unacceptable. It is unlikely that a cluster as a
whole violates the law of energy equipartition. I consider that
this is due to that the experimentalD0 is too large in value.
(Generally,Ea affects only the temperature at whicht be-
comes smaller than the thermally allowable lower bound.)

The model used here, which seemingly lacks in quantita-
tive prediction capability because of its simplicity, gives a
result that is fairly consistent with the realistic MD simula-
tions by Lewiset al.16 They performed fully atomistic MD
simulations at 500 K by using many-body interatomic poten-
tials (for Au–Au and C–C), obtainingD=3.71310−5 cm2/s
[its statistical uncertainty was probably large because of
short s,14 nsd MD runs]. This value approximately agrees
with that computed in this work, 1.58310−5 cm2/s, fairly
well convincing us of the validity of the present MD simu-
lations. The success of the present very simple model is pre-
sumably due to the applicability of so-called “adiabatic
elimination” and the presence of power-law nature in the
diffusion dynamics, as mentioned above.

IV. CONCLUSIONS

Long-lived long jumps as well as short stickings in the
power-law correlated Lévy-type stick-slip diffusion5 imply
that the cluster jumps without equilibrating locally with the
surface, conflicting with the usual equilibrium Arrhenius
jump rate processes. To clarify whether the diffusion exhibits
Arrhenius diffusivity, I have computationally studied tem-
perature dependence of the diffusion. To do this, I adopted a
Langevin-thermostatted 2-D FK-type cluster-surface model
to perform extremely longs10 msd MD simulations for vari-
ous temperatures. Here we found that diffusion coefficients
computed from the MSD’s obey an Arrhenius law:D
=D0exps−Ea/kBTd with D0=1.83310−4 cm2/s, and Ea

=0.103 eV. On the other hand, we found that the power-law
correlated stick-slip diffusion dynamics is in itself robust to
temperature change, and that exponents that characterize the
diffusion dynamics are not universal, but vary with tempera-
ture. The decrease in the jump length exponent represents a
significant increase in the ratio of long jumps, contrasting to
a weak temperature-dependence of jump length in the usual
activated(Arrhenius-type) surface diffusion.

The results implies that Arrhenius diffusivity can be ob-
served even if diffusion dynamics is far from the usual equi-
librium Arrhenius jump rate processes. To further clarify the
Arrhenius diffusivity in accord with the power-law correlated
stick-slip diffusion dynamics, we need to investigate, for ex-
ample, temperature-dependence of the mean stick-slip fre-
quency and intra-well temperature of the cluster.
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FIG. 5. Arrhenius plot of diffusion coefficients obtained from
the MSD’s in Fig. 4. Statistical uncertainty in the data is estimated
to be smaller than the size of the dots. The solid line showsD
=D0exps−Ea/kBTd with D0=1.83310−4 cm2/s, andEa=0.103 eV.
The broken line represents the experimental result in Ref. 1:D0

=103 cm2/s, andEa=0.5 eV. The plus represents a diffusion coef-
ficient obtained with fully atomistic but shorts,14 nsd MD simu-
lations by Lewiset al. (Ref. 16).
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