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We consider a set of electrostatic problems relevant for determining the real-space structure and the ground-
state energy of a two-dimensional electron liquid subject to smooth external potentials. Three fundamental
geometries are investigated: an elongated metallic island, an antidot, and a constriction. In the first two cases
complete closed-form analytical solutions are obtained, despite the absence of rotational or translational sym-
metries. These solutions govern the shape and size of large quantum dots, and also the size of the depletion
regions and the density profiles around isolated antidots. For the constriction, an exact asymptotical formula for
boundary shape is derived and arguments are given in favor of its universality. For the cases where the full
analytical solution cannot be obtained, an approximate method is proposed as an alternative. Its accuracy is
verified against numerical simulations in a periodic(checkerboard) geometry.
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I. INTRODUCTION

A. Formulation of the problem

Studies of physical phenomena in two-dimensional metals
and thin films often lead to mixed electrostatic boundary-
value problems.1 A prototypical example is the task of deter-
mining the density profilensr d of a two-dimensional(2D)
electron liquid in the proximity of external charges or volt-
age sources. Such charges and sources are used in practical
applications to manipulate the electron liquid into desired
geometrical shapes, e.g., quantum dots, narrow wires, con-
strictions, etc. They are also used to intentionally introduce
defects, such as antidots,2–5 into an otherwise homogeneous
system. In addition to artificial sources of external potentials,
in real materials electrons also experience a random potential
of ubiquitous charged impurities. It appears therefore that
methods that can tackle the corresponding electrostatic prob-
lems could be of considerable value both for applied and for
fundamental research. Unfortunately, the boundary-value
problems are notoriously difficult to solve analytically. The
goal of this paper is to show that either the complete analyti-
cal solutions or their exact asymptotics can be found for a
number of nontrivial basic geometries.

Our most unexpected result concerns the electrostatics of
a constriction. We show in Sec. IV that the long-range Cou-
lomb interaction can cause a significant narrowing of the
region occupied by the 2D electron liquid in the constriction
and that the boundaries of this region are described by an
interesting nonanalytic function[see Eq.(73)].

The present article extends and generalizes the results
available in the literature, e.g., Refs. 1–3 and 6–10, and came
as an outgrowth of our recent work11 on the electrostatics of
disordered 2D systems.

We will consider 2D electron systems that are separated
from grounded electrodes or other screening bodies by dis-
tances much larger than the interelectron spacing. Such con-
ditions are realized in semiconductor heterostructures and in
field-effect transistors with thick insulator layers. In these
systems electrons interact via the 1/r Coulomb law and form
a metallic liquid if their density is not too low.

The results of the present work are obtained within the
approximation that the Thomas-Fermi screening radiusrTF of
the electron liquid metallic is vanishingly small. This is the
correct leading-order approximation if all length scales of
interest exceedrTF.

In typical semiconductor realizations of 2D systems,rTF
is of the order of the interelectron separationae−e=n−1/2, and
so our approach is good for studying variations ofnsr d on
length scales larger thanae−e. Note that this does not neces-
sarily prohibit us from describing some effects that are due to
discreteness of electrons. For example, in Sec. II we will be
able to calculate the energy spacing of the Coulomb block-
ade peaks because in the leading order it is determined by the
classical capacitance. On the other hand, the equations below
cannot be used, e.g., to study quantum dots with just a few
electrons. Also, these equations do not apply too close to the
edges of the metallic regions wherensr d→0 and so, for-
mally, ae−e→`. Still, even in these situations the solution of
the corresponding electrostatic problem should provide a
valuable insight.

In the approximation of vanishingly smallrTF, the elec-
trostatic potentialFsr d in the regions occupied by the elec-
tron liquid is perfectly flat,

Metal: nsr d . 0, eFsr d = me = const, s1d

whereme is the electrochemical potential. The rest of the 2D
plane is occupied by the depletion regions(DRs)—the areas
of exponentially small, effectively zero electron density that
are classically forbidden for the electrons:

DR: nsr d = 0, eFsr d . me. s2d

Our goal is to study the conditions that cause DRs to appear
and their detailed structure.12 To finalize the formulation of
the electrostatic problem we wish to solve for this purpose,
we need an expression forF in terms ofn. We distinguish
two cases.

Case A. If the number of electronsNe in the system is
finite, we use
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Fsr d = Fextsr d +
e

k
E d2r8

nsr 8d
ur − r 8u

, s3d

whereFextsr d is the external electrostatic potential andk is
the dielectric constant of the medium.

Case B. If we deal with an infinite system with a nonzero
average electron concentration, we defineF as follows:

Fsr d =
e

k
E d2r8

nsr 8d − ssr 8d
ur − r 8u

. s4d

Here ssr d represents a spatially nonuniform background of
opposite charge. In this formulation the primary parameter is
the average background densityne=kssr dl, and the electro-
chemical potential in Eqs.(1) and(2) is determined by elec-
troneutrality of the system as a whole, so thatme is a function
of ne. There is no loss in generality in assuming that the
background charge densityssr d is confined to the same 2D
plane as the electrons. Indeed, it is easy to see that an arbi-
trary three-dimensional charge density distributions3sr ,zd
creates essentially the same electrostatic potential in thez
=0 plane as the following effective 2D density:

ssr d =E d2r8E dzuzus3sr 8,zd
2pfsr − r 8d2 + z2g3/2. s5d

The only difference between the two potentials is the
r -independent terme2C0

−1ne, whereC0
−1, given by

C0
−1 =

4p

k

ks3uzul
ks3l

, s6d

is the inverse geometric capacitance per unit area between
the 2D layer and the external sources[k¯l denotes the three-
dimensional(3D) spatial average]. As the name implies,C0

−1

is usually determined by the fixed dimensions of the struc-
ture and the electrodes, and so it is almost independent ofne.
In this situation, a finiteC0

−1 causes only a trivial linear shift
of the electrochemical potentialme, while the interesting
quantity is the deviation

dm ; me − e2C0
−1ne. s7d

This is one of the quantities we will be calculating below. We
will assume thatFextsr d andssr d, whichever is appropriate,
are smooth and bounded functions.

The major difficulty in solving the above equations stems
from the mixed boundary conditions(1) and(2). These con-
ditions do not specify where the boundaries of the DRs re-
side or what the potential inside the DRs is. They merely
state that the DRs may exist and that inside themeFsr d must
exceed a certain constant valueme. It seems that in the gen-
eral case, one can make only the following two trivial state-
ments. First, in the formulation(3) the metallic regions are
located in areas where the potential energyeFextsr d is suffi-
ciently low, the rest of the 2D plane being a DR. Second, in
the formulation(4), DRs surround negative local minima of
ssr d. [If s is non-negative everywhere, then the sought
ground state is simplynsr d=ssr d and the system is free of
DRs.]

As alluded to above, there has been a sizable amount of
work devoted to the electrostatics of disordered electron sys-
tems. Prominent early investigations include those of Efros
and Shklovskii13 on the nonlinear screening in 3D doped
semiconductors and its extensions to 2D.14–16 In disordered
systems DRs typically have some irregular shapes, and so
there is no convenient coordinate system that can be used to
take advantage of the known techniques of solving integral
equations. Thus, the random case seems mathematically in-
tractable. Rigorous results that have been obtained for such
problems are limited to certain scaling laws14–16 and some
asymptotical limits.11,16 There is a hope, however, that in
regular geometries analytical solutions could be easier to de-
rive. This is indeed the case. For example, if the external
potentialFextsx,yd depends only on one coordinate, say,x,
then the problem can be reduced to an equation for just a few
parameters, the positions of the DR edges.17 Once they are
determined, the densitynsxd at all otherx can be found from
simple analytical formulas; see an example below. Similarly,
there is a closed-form solution in quadratures for the axially
symmetric caseFext=Fextsrd, provided there is only one
DR.1 In other words, it is known how to find the density
profile nsrd of a single round droplet or around a circular
depletion hole. Let us give a few examples.

B. Examples of exact solutions

Example 1. Our first example is a metallic droplet con-
fined laterally by a parabolic external potential

eFextsrd =
1

2
Uxxr

2, Uxx . 0. s8d

The density profile of such a droplet is known to be
hemispherical1

nsrd =
2

p2

k

e2Uxx
Îa2 − r2, s9d

with the radiusa of the droplet related to its electrochemical
potential byme=Uxxa

2.
Example 2. Another instructive example is an isolated DR

in the form of a perfect circle. As noted above, such a deple-
tion hole can form whenssr d has an isolated negative mini-
mum, s0,0. Let this minimum be located at the origin,r
=0, and let the radiusa of the induced depletion hole be
small enough so that the expansion

ssr d = s0 +
1

2
sxxr

2 s10d

can be used. Following the formalism of Ref. 1 it is easy to
find that

a2 = − 3s0/sxx, s11d

so thatnsrd=0 at r øa. At r .a, nsrd takes the form11

nsrd =
sxxa

2

p
FÎ r2

a2 − 1 +S r2

a2 −
2

3
Darccos

a

r
G . s12d

Example 3. Our last example is the case of a
y-independent background density
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ssr d = ssxd = s0 +
1

2
sxxx

2, s13d

which gives rise to a DR in the form of a stripe of width 2a
flanked by the density distribution17

nsr d =
1

2
sxxuxuÎx2 − a2, s14d

a2 = − 4s0/sxx s15d

on the two sides. Note that all the presented exact solutions,
Eqs.(9), (12), and(14), agree with the well-known result18

that nsr d has a square-root singularity near the edge of the
DR. Previously, these solutions and their generalizations
have been used to study the edges of 2D electron liquids,7

quantum wires,8,9 quantum dots,9 and antidots.2,3

In a sense, all the aforementioned examples are one di-
mensional becauseFextsr d [or ssr d] depends on a single
variable. To the best of our knowledge, there are no pub-
lished exact solutions for truly 2D cases, i.e., for the geom-
etries whereFextsr d andssr d are smooth functions of posi-
tion and have no translational or rotational symmetries. The
present paper is aimed to fill this gap. The geometries we
consider are as follows. In Sec. II we study a droplet in a
parabolic but not necessarily axially symmetric confining po-
tential. We show that the droplet has an elliptic shape, with
Eq. (9) recovered as a special case. In Sec. III we derive a
formula for the density profile around an elliptic depletion
hole. This formula bridges the limiting cases of Eqs.(12) and
(14). In Sec. IV we treat the nonlinear screening problem for
a saddle point, which is presumably the most interesting ba-
sic geometry. We derive the asymptotical formula for the
width of the constriction, Eq.(73), and give arguments in
favor of its universality. In Sec. V we examine a periodic
(“checkerboard”) external potential, which attains two goals.
First, it enables us to study the interplay of the three funda-
mental geometries(dot, antidot, and saddle point) examined
in Secs. II–IV. Second, it serves as a test ground for an ap-
proximate method of solving electrostatic problems sug-
gested in our previous publication.11

At the end of each of the following sections we briefly
comment on the relevance of the results obtained for various
types of experiments. A detailed comparison with the avail-
able experimental data is deferred for future work.

II. ELLIPTIC ISLAND

In this section we derive the density profile of a metallic
droplet that resides in the external potential

eFextsr d =
1

2
Uxxx

2 +
1

2
Uyyy

2, 0 , Uxx ø Uyy. s16d

If Uxx=Uyy we must recover Eq.(9); otherwise, ifUxx,Uyy,
we expect the droplet to be stretched out in thex direction,
along which the confinement is softer.

The quickest way to obtain the solution for arbitraryUxx
and Uyy is to use a classic theorem of Dyson.20 One of the
corollaries of this theorem concerns the 2D charge density
distribution

nsx,yd = ndÎ1 −
x2

a2 −
y2

b2 , s17d

which defines an elliptically shaped droplet with semiaxesa
andb. The Dyson theorem indicates that such a droplet cre-
ates an in-plane electrostatic potential of the form

Fdsx,yd = se/kdpndE
l

` abdl
Îsa2 + l2dsb2 + l2d

3S1 −
x2

a2 + l2
−

y2

b2 + l2
D , s18d

wherel is equal to zero inside the droplet and is equal to the
largest root of the equation

x2

a2 + l2 +
y2

b2 + l2 = 1 s19d

otherwise. This statement can be proved by expandingFdsr d
in ellipsoidal harmonics;21 see Sec. III and the Appendix.

Performing the integration in Eq.(18) for the casel=0,
we get

Fd =
pebnd

k
FK −

K − E

kd
2

x2

a2 −
E − s1 − kd

2dK
kd

2

y2

b2G . s20d

HereK andE are the complete elliptic integrals of the first
and the second kind, respectively,22 evaluated at

kd = Î1 − sb/ad2. s21d

(As explained above, we expectaùb.) Equations(16) and
(20) indicate that, if we choosea, b, andnd appropriately, we
can satisfy the equilibrium condition(1). Indeed, we have
eF=eFext+eFd=me in the interior of the droplet if the fol-
lowing equations hold:

Uxx

Uyy
=

s1 − kd
2dfKskdd − Eskddg

Eskdd − s1 − kd
2dKskdd

, s22d

a2

me
=

2

Uxx

Kskdd − Eskdd
Kskddkd

2 , s23d

nd
2

me
=

k2

2p2e4

Uxxkd
2

s1 − kd
2dsK − EdK

. s24d

It is easy to see that these equations have a unique solution
for a, b, andnd. Also, from the fact that the integrand in Eq.
(18) is non-negative, we conclude thatFdsr d decreases with
r, which ensures that the inequality(2) is also satisfied. Thus,
Eq. (17) is the desired solution.

Although the parameters of this solution cannot be ex-
pressed in terms of elementary functions, one can work out
the limiting cases, which are as follows. Let us define

zd ; Uyy/Uxx ù 1. s25d

If zd=1−dz, wheredz!1, we have a nearly circular droplet
with the following parameters:

a2 =
me

ÎUxxUyy
F1 +

2

3
dz+ Osdz2dG , s26d
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b2 =
me

ÎUxxUyy
F1 −

2

3
dz+ Osdz2dG , s27d

nd =
2

p2

k

e2sUxxUyyd1/4me
1/2 + Osdz2d. s28d

In the limit dz→0, we indeed recover Eq.(9). In the oppo-
site limit, zd@1, we have a strongly elongated droplet with
parameters

a2 =
2me

Uxx
F1 −

2

L + OS 1

L2DG, L ; lnzd, s29d

b2 =
4me

Uyy
F 1

L + OS 1

L2DG , s30d

nd .
1

2p

k

e2UyybS1 +
1

2zd
D . s31d

Note that by settingzd to infinity andx to zero, we obtain the
solution for another geometry of basic interest: an infinite
wire in the parabolic confining potentialeFextsyd=Uyyy

2/2.
The density distribution in a cross section of such a wire is a
semicircle,6

nsyd =
k

2pe2Uyy
Îb2 − y2; s32d

see Eqs.(17) and (31).
Finally, let us calculate the capacitance of the droplet,

Cd=e2dNe/dme, whereNe total number of electrons in the
droplet. Integratingn in Eq. (17) over the area, we getNe
=s2p /3dndab. Using this result, Eqs.(22)–(24), and some
simple algebra, we find

Cd =
k

Kskdd
a. s33d

As expected, the capacitance scales linearly with the linear
sizea of the droplet.

One application of the derived results is the formula for
the energy separationeDVg of the Coulomb blockade23 peaks
that would be observed if the droplet is weakly connected to
external leads. HereVg has the physical meaning of the volt-
age on a gate that controls the size of the droplet, with con-
version factor appropriate for the particular experimental ge-
ometry included. In the first approximation,23 eDVg.e2/Cd.
The analytical asymptotics of this expression are as follows:

seDVgd3 .5
p2

6

e4

k2

ÎUxxUyy

Ne
, Uyy . Uxx,

1

12

e4

k2

Uxx

Ne
ln2Uyy

Uxx
, Uyy @ Uxx.

s34d

Thus, for the droplet in a parabolic confinement, the separa-
tion between the Coulomb blockade peaks should scale as
Ne

−1/3, with a coefficient of proportionality that depends on
the asymmetry of the confining potential. This can be tested
in experiments where both the size and the shape of the

quantum dots can be controlled to some degree indepen-
dently and extensive statistics of the Coulomb blockade
spacings can be accumulated; see, e.g., Ref. 24. A cautionary
note is that one should study large dots,Ne@1, where effects
of disorder, single-particle level spacing, or subtle features of
the edge structure25 (see also Ref. 26), neglected here, are
minimal.

III. ELLIPTIC HOLE

In this section we consider the depletion hole that forms
in a metallic 2D liquid around an isolated negative minimum
of the background charge densityssr d. This problem is rel-
evant for, e.g., determining the density profile of the electron
liquid around an antidot.

We assume that the minimum ofssr d is located atr =0
and that the depletion hole is small enough so that the ex-
pansion

ssr d = s0 +
1

2
sxxx

2 +
1

2
syyy

2, 0 , sxx ø syy, s36d

can be usedss0,0d. If sxx=syy, then DR is a circle and Eq.
(12) must be recovered; otherwise, ifsxx,syy, we expect
the DR to be elongated in thex direction, along whichssr d
has the slowest growth. Indeed, below we show that the DR
is the ellipse

S:
x2

a2 +
y2

b2 ø 1, a ù b. s37d

Our solution is based on the following series expansion of
the three-dimensional electrostatic potentialFsr ,zd:

Fsr ,zd = o
m=0

`

o
hpj

am
pFm

p sldEm
p smdEm

p snd, s38d

wherel, m, andn are the ellipsoidal coordinates1,27

0 ø n2 ø kh
2 ; 1 −

b2

a2 ø m2 ø 1 ø l2 s39d

that are related to the original Cartesian coordinatesx, y, and
z by

x2 =
a2

kh
2l2m2n2, y2 =

a2

kh
2s1 − kh

2d
sl2 − kh

2dsm2 − kh
2dskh

2 − n2d,

z2 =
a2

1 − kh
2sl2 − 1ds1 − m2ds1 − n2d. s40d

The numerical coefficientsam
p in Eq. (38) are to be deter-

mined,p are certain real numbers(eigenvalues) that depend
on m andkh, andEm

p sjd ,Fm
p sld are the ellipsoidal harmonics

of the first and the second kinds,27 respectively. The defini-
tion and some properties ofEm

p and Fm
p are reviewed in the

Appendix.
Below we show that only the followingEm

p harmonics27

are present in the expansion(38):

E1
p1sjd = Î1 − j2, s41d
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E3
r±sjd = Î1 − j2sj2 − C±d, C± =

1

5
s1 + 2kh

2 7 Î1 − kh
2 + 4kh

4d

s42d

(the actual values ofp1 andr± will not be needed). As for Fm
p ,

the corresponding formulas are rather cumbersome for an
arbitrary 0økh,1. Fortunately, in this section we will need
primarily their asymptotics atl2→1 (cf. the Appendix)

1

3
F1

p1sld .
1

Î1 − kh
2

+ D1
Îl2 − 1, D1 = −

Eskhd
1 − kh

2 , s43d

1

7
F3

r±sld .
s1 − C±d−1

Î1 − kh
2

+ D±
Îl2 − 1,

D± =
s1 − kh

2 + 2C±
2 − 2C±kh

2dEskhd − s1 − C±ds1 − kh
2dKskhd

2s1 − C±dC±skh
2 − C±ds1 − kh

2d
,

s44d

whereK andE are again the complete elliptic integrals.22

The series(38) is designed to satisfy the Laplace equation
s]2/]z2+¹2dFsr ,zd=0 term by term (cf. Ref. 1 or 27).
Therefore, our task is to demonstrate that with a suitable
choice ofam

p , Fsr ,zd also satisfies the boundary conditions
generated by Eqs.(1), (2), (36), and(37):

]

] z
Fsr ,z= ± 0d = 7 2pse/kdssr d, r P S, s45d

Fsr ,z= 0d = 0, r ¹ S. s46d

In the last line we setme to zero, for convenience.
In order to express these boundary conditions in terms of

l, m, andn we note that the points immediately above and
below the ellipseS [Eq. (37)] correspond tol2→1+0. Simi-
larly, points immediately above(below) the rest of the 2D
plane correspond tom2→1−0. The condition(45) will be
satisfied ifF=F1+F2, whereF1 is analytic inl2 at l2=1,
while F2 has a square-root singularity,

F2 ,
l2→1

−
2peas

kÎ1 − kh
2
Îsl2 − 1ds1 − m2ds1 − n2d. s47d

Expressed as a function ofm andn, s takes the form

ssm,nd = s0 +
1

2
syya

2sm2 + n2 − kh
2d +

1

2

a2

kh
2ssxx − syydm2n2.

s48d

Finally, Eq. (46) is equivalent to

Fsl,m = 1,nd = 0. s49d

A quick examination of Eqs.(47) and (48) makes plausible
the above claim that the series(38) involves only the ellip-
soidal harmonics defined by Eqs.(41)–(44). Assuming that
this is true, we conclude that, on the ellipseS, F must fac-
torize as follows:

F = Îs1 − m2ds1 − n2dPsm2,n2d, s50d

whereP is a polynomial of the second degree symmetric in
its two arguments. SinceF must satisfy Eq.(49), it has to be
of the form

F =
F0

s1 − kh
2d3/2s1 − m2d3/2s1 − n2d3/2, l = 1, s51d

whereF0 is some constant. Combined with the expressions
for Fm

p s1d that follow from Eqs.(43) and (44), this fixes the
expansion coefficientsam

p to be

a1
p1 = −

1

5
F0, s52d

a3
r− = − a3

r+ =
3

14

F0

Î1 − kh
2 + 4kh

4
. s53d

After some more algebra one finds that the boundary condi-
tion (47) can indeed be satisfied ifkh is the solution of the
equation

sxx

syy
= s1 − kh

2d
s2kh

2 − 1dEskhd + s1 − kh
2dKskhd

s1 + kh
2dEskhd − s1 − kh

2dKskhd
, s54d

while a is set by

a2 = −
2s0

syy

s1 + kh
2dEskhd − s1 − kh

2dKskhd
kh

2s1 − kh
2dEskhd

. s55d

For the potentialF0 at the center of the DR we get

F0 =
2p

3

e

k

kh
2s1 − kh

2d3/2

s1 + kh
2dE − s1 − kh

2dK
syya

3, s56d

while at other points onS Fsr d takes the form stipulated by
Eq. (51):

Fsr d = F0S1 −
x2

a2 −
y2

b2D3/2

sr P Sd. s57d

At large distances from the origin,Fsr ,zd is dominated by
them=1, p=p1 term in Eq.(38) and behaves similarly to the
potential of an electric dipole,

Fsr ,zd ,
ph

k

uzu
sr2 + z2d3/2, ph =

4p

15

e

E
s0ab2, s58d

except that the apparent dipole moment ±phẑ has the oppo-
site direction at observation points above and below thez
=0 plane. Our formula forph resembles the well-known re-
sult 18,19 for the apparent dipole moment of a round hole in a
metallic sheet.

The sought density distributionnsr d outsideS is given by

nsr d = ssr d +
k

2pe
lim
z→0

F

uzu
, s59d

or, equivalently, by

ELECTROSTATICS OF TWO-DIMENSIONAL… PHYSICAL REVIEW B 69, 245321(2004)

245321-5



n = s +
k

2pea
lim

m2→1

Fsl,m,ndÎ1 − kh
2

Îsl2 − 1ds1 − m2ds1 − n2d
. s60d

At large r we can use Eq.(58) to obtain

nsr d . ssr d +
ph

2pe

1

r3, r @ a, s61d

which elucidates how the approach to the perfect screening,
nsr d→ssr d, takes place away from the DR. As fornsr d near
the DR, it is rather complicated, except in two cases:(1) a
round depletion hole and(2) a slit infinite in thex direction.
In the first case the solution is given by Eq.(12) (see the
Appendix for details); in the second case, realized atsxx=0,
the solution is given by Eq.(14) upon the replacementsx
→y, a→b.

It is also possible to work out analytically the lowest-
order corrections to these two limiting cases. Thus, a highly
asymmetrics minimum, zh;sxx/syy!1, gives rise to a
strongly elongated DR with parameters

a2 = −
2s0

sxx
f1 +Lzh + oszhdg, L ; lnzh

−1 − 1, s62d

b2 = −
4s0

syy
F1 −

1

2
Lzh + oszhdG , s63d

F0 = −
8p

3

e

k

us0u3/2

syy
1/2 F1 −

1

2
Lzh + oszhdG . s64d

Equation(15) is recovered in the limitzh→0.
On the other hand, if thes minimum is nearly axially

symmetric, dz;1−zh!1, then the corresponding DR is
nearly circular, with the parameters

a2 = −
3s0

Îsxxsyy
F1 +

2

5
dz+ Osdz2dG , s65d

b2 = −
3s0

Îsxxsyy
F1 −

2

5
dz+ Osdz2dG , s66d

F0 = −
8
Î3

e

k

us0u3/2

ssxxsyyd1/4 + Osdz2d. s67d

At dz=0, Eqs.(65) and (66) reduce to Eq.(11).
Let us now discuss the effect of an isolated elliptic DR on

the total energy of the system. It is easy to see that the DR
causes a positive correctionDE to the energy, which can be
estimated as follows. The unscreened electric field that sur-
rounds the DR is of the order ofE,2pse/kds0 and is con-
centrated mainly in a volumeDV,a3b3b. Hence,

DE =
k

8p
E d2r E dzE2sr ,zd ,

e2

k
s0

2ab2. s68d

The exact calculation ofDE is more convenient to perform in
terms of the potentialFsr d and the total charge density
ensr d−essr d,

DE =
1

2
E d2rFsr defnsr d − ssr dg

=
1

2
eF0E

S

d2rssr dS1 −
x2

a2 −
y2

b2D3/2

=
16p2

105

e2

k

s0
2ab2

Eskhd
. s69d

The result is in agreement with the preceding estimate.[Re-
call that 1øEskhdøp /2, and soEskhd does not have a strong
dependence ona/b.] For fixed sxx and syy, we havea,b
~ us0u1/2, so thatDE~ us0u7/2.

The energy correction due to DRs affects a number of
experimentally measurable properties of 2D electron sys-
tems. One example is the magnetization of quantum dots and
quantum wires under the quantum Hall effect conditions. Al-
though the DRs withnsr d=0 do not appear in that context, a
very similar role is played by regions of locally depleted
topmost Landau level.3,9

Another example concerns the DRs induced by random
impurities (see Fig. 1). Such DRs can strongly influence the
energy density of macroscopic 2D systems, especially at low
electron densities. This effect may be important11 for the ac-
tively studied phenomenon of the 2D metal-insulator
transition.28

To show how the obtained formulas can be applied in this
context let us discuss one experimental technique, which is a
particular sensitive probe of DRs. This technique, pioneered
by Eisenstein,29 is the measurement of the electric field pen-
etration. In order to do this type of experiment,29–31one pre-
pares a structure where the 2D layer is sandwiched between
two electrodes that can be considered good metals. Once a

FIG. 1. The geometry of the field-penetration experiment. The
2D layer of interest is sandwiched between the top and the bottom
metallic gates. The sample contains ionized impurities(dopants)
that are shown as randomly scattered plus signs. The case ofd
doping is assumed where all the dopants reside in a plane parallel to
the 2D layer. The impurities create a random electric field that
nucleates the depletion regions(shown as holes in the probed
layer). These depletion regions enhance the penetrating electric field
Ep that can be detected with the help of the bottom gate.
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voltage difference is applied between the 2D layer, and the
top electrode, some electric field leaks through the 2D layer,
and its spatial averagekEpl can be measured by monitoring
the amount of electric charge that has flown into the bottom
layer (see Fig. 1). It is immediately obvious that DRs must
enhancekEpl. Using the results of this section, we are now
able to calculate how this enhancement ofkEpl is related to
the concentration and the linear sizes of the DRs. In this
calculation we will assume that the interlayer distancess1
ands2 (see Fig. 1) are large.

Equation(58) gives one way to calculatekEpl. An alter-
native and a more general way is to work with the energy
correctionDE and the corresponding contributionDC−1 to
the inverse capacitance per unit area of the device.[DC−1 is
the correction to the inverse geometric capacitanceC0

−1

=4ps1/k; cf. Eq. (6).] For a single elliptic DRDE andDC−1

are related by

DC−1 =
A

e2

d2DE

dNe
2 =

1

e2A

d2DE

ds0
2 =

4p2

3kA

ab2

Eskhd
, s70d

whereA is the sample area. If the DRs in the 2D layer are
well separated, their contributions toDC−1 are, in the first
approximation, additive. The total correction to the inverse
capacitance,DCtot

−1, characterizes the nonideal nature of our
capacitor and therefore the amount of field penetration. In-
deed, a simple derivation along the lines of Ref. 29 leads to
the relation

d

dne
kEpl =

e

s2
DCtot

−1 =
4p2

3

e

k

NDR

s2
K ab2

EskhdL , s71d

whereNDR is the DR concentration.
Note that, like all the other results in this paper, Eq.(71)

is derived in the approximation that ignores non-Hartree
terms in the energy(kinetic and exchange-correlation ener-
gies). This is not a serious omission at low electron densities
ne where the DRs dominate the field penetration. However,
at higher densities, the non-Hartree terms must be included.
This may lead to an interesting nonmonotonic behavior of
DCtot

−1sned, discussed theoretically in Refs. 16 and 11.

IV. SADDLE POINT

In this section we examine the structure of the 2D electron
liquid near a saddle point of the external potential,

Fext =
1

2
Uyyy

2 −
1

2
Uxxx

2 + Osr4d, Uxx,Uyy . 0. s72d

This is the most interesting fundamental geometry but also
the most difficult one for analytical study.

It is easy to understand that the electron liquid should be
confined in they direction into a strip that has the smallest
width atx=0 and widens asuxu increases. In other words, this
structure can be thought of as a local constriction in a 2D
electron system. Such structures have been fabricated and
intensively studied in the past. In particular, much attention
has been devoted to quantum point contacts, which are con-
strictions with the bottleneck width comparable to the inter-

electron separation.33 Nevertheless, to the best of our knowl-
edge, an analytic solution for the electron density profile
nsx,yd and the total electrostatic potentialFsx,yd around the
constriction has not been presented.(For recent numerical
work, see Ref. 34.) Instead, the unknown functional forms of
n and F have been approximated by expressions chosen
somewhat arbitrarily. ForFsr d, a parabolic function35,36 [as
in Eq. (72)] or a parabola with a flat insert37 has been used.
The boundary of the 2D electron channel was modeled vari-
ously by combination of wedges,38 circular arcs,40 confocal
hyperbolas, or more complicated curves.41

Let y= ±bsxd be the equation for the boundaries of the
electron liquid in the constriction. Although we have not suc-
ceeded in solving the electrostatics problem for the saddle
point completely, below we show that the correct asymptoti-
cal behavior ofbsxd is given by

bsxd = a0uxuexpS−Î1

2
lnUx0

x
UD, uxu ! x0, s73d

wherea0,x0 are constants determined by the boundary con-
ditions far from the saddle point. This is perhaps the most
interesting theoretical result that we achieve in this work.

The exponential factor in Eq.(73) is a nontrivial effect of
the long-range Coulomb interaction(see below). It is there-
fore interesting to do a quick estimate of this factor for a
typical experimental setup. As explained in Sec. I, pure elec-
trostatics is not adequate at distances shorter than the inter-
particle separationae−e. Therefore, in reality, Eq.(73) applies
only as long asbsxd , uxu@ae−e,1/Însx,0d. On the other
hand,x0 can be large. For example, usingx0,1 mm andx
=ae−e,10 nm, which are reasonable numbers for GaAs-
based point contacts, we obtain lnsx0/xd,4.6, so that the
exponential factor in Eq.(73) is approximately 0.2. Thus, the
long-range interaction can cause a significant narrowing of
the bottleneck of the constriction.

In the purely electrostatic modelsae−e=0d we are allowed
to consider the limitx→0. Then Eq.(73) predicts that the
tangentasxd=bsxd /x of the opening angle of the constriction
becomes vanishingly small, independently ofUyy/Uxx. This
behavior stems from the long-range nature of the Coulomb
interaction between the electrons. With short-range interac-
tions (or without interactions) electrons fill the constriction
up to the equipotential contourFextsx,yd=me; therefore, the
constriction is bounded either by two confocal hyperbolas or,
when bs0d→0, by the two straight lines. In the latter case
a=sUxx/Uyyd1/2, which is finite, in contrast to Eq.(73). The
physical reason for the difference is the ability of the system
with long-range interactions to modify(screen) the external
potential even at pointsr =sx,yd that areoutside the area
occupied by the electrons. The screening flattens out the con-
fining potentialFext, allowing the electron liquid to spread
over a larger area compared to the noninteracting limit. The
nontrivial statement embodied by Eq.(73) is that the screen-
ing is more effective along the longitudinalsxd direction, so
that the extra area occupied by the interacting electrons is
strongly funneled into the constriction center.
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Let us proceed to the derivation of Eq.(73). We distin-
guish two cases, which are treated in two separate subsec-
tions below.

A. Small-opening-angle constriction

First we will treat the limitUxx!Uyy whereFext is a slow
function of x. In this case the constriction can be thought of
as an adiabatically narrowing quantum wire.42 To the lowest
order in the parameterUxx/Uyy, the y dependence ofnsx,yd
at a given fixedx can be found by solving the requisite
electrostatic problem assuming thatFext is x independent.
The solution fornsr d is given by Eq.(32) whereb should
now be understood as a yet to be found function ofx. The
electrostatic potential is also easy to find,

Fsr d = me +
1

2
UyySyÎy2 − b2 − b2cosh−1y

b
D . s74d

Let us define the one-dimensional(1D) electron densityqsxd
along the wire by

qsxd =E
−b

b

dynsx,yd =
1

4

k

e2Uyyx
2a2sxd. s75d

In view of the last equation, the desiredbsxd is directly re-
lated toqsxd. To find the equation forqsxd we substitute Eq.
(32) into the boundary condition(1) and takey=0. This
yields

E
−x0

x0

dx8Gsx,x8dqsx8d =
1

2
Uxxx

2 − me − DFsx0d. s76d

The kernelGsx,x8d can be expressed in terms of elliptic
integrals. Atux−x8u@bsx8d , it reduces to the Coulomb inter-
action potentialGsx,x8d.e2/kux−x8u. The termDFsx0d in
Eq. (76) represents the potential created by electrons located
at pointsuxu.x0. It is determined by the behavior ofFext at
large distances and therefore high energies. On the other
hand, we are interested mainly in the structure of the con-
striction as smallx. Physically, we may expect that minor
changes inme modify bsxd near the origin considerably but
leave DFsx0d virtually the same. Therefore, the role of
DFsx0d is simply to renormalize the electrochemical poten-
tial by a constant:me→me+DFsx0d.

The idea of renormalization proves to be very fruitful in
the present problem. Indeed, since we are interested in the
behavior at small distances, we have a freedom in choosing
the cutoff as long as it exceeds the distance of interest. Then
me should be viewed as a function of the cutoff and as such,
it must satisfy a certain renormalization group(RG) equa-
tion. Similarly, there must be a RG equation forUxx and, in
fact, forUyy. From Eq.(76) one finds that to the lowest order
in the parameterasld!1, these equations are

d

dl
Uxx = − Uyya

2sld,
d

dl
Uyy = −

1

2
Uyya

2sld, s77d

where l =lnux0/xu, x being the running cutoff. The RG flow
persists as long as43 uxu@bsxd. Let us consider the most in-
teresting case,bs0d=0, whereuxu is always larger thanb, so

that the RG is able to reach its fixed point. What is this fixed
point? To the order we are working with,Uyy=Uyysx0d
+fUxx−Uxxsx0dg /2. This implies that forUyysx0d@Uxxsx0d
the renormalization ofUyy can be ignored. Therefore, at the
fixed point, where the right-hand sides of Eq.(77) must van-
ish, asl =`d=asx=0d=0, in agreement with Eq.(73) and
statements above.

Let us now derive the complete form ofasxd. From Eqs.
(75) and (76) we find that

− 2a2sldfln asld + Os1dg +E
0

l

dl8a2sl8d =
Uxxsx0d

Uyy
. s78d

Differentiating both sides with respect tol, we get

d

dl
a .

a

4 ln a
, s79d

which complements Eq.(77) and has Eq.(73) as the solu-
tion.

It is instructive to rewrite Eq.(73) in terms of the renor-
malizedUxx [this can be done by integrating Eq.(77)]:

a2sld =
Uxxsld
Uyy

F1 + ln
Uxxsl0d
Uxxsld

G−1

. s80d

Since Uxxsl =`d=0 [see Eqs.(77) and (78)], Eq. (80) de-
scribes the decrease ofasxd from its noninteracting limit
value atx=x0 to the asymptotical zero atx=0.

The RG fixed point obtained must have a finite basin of
attraction, presumablya&1, for which Eq. (73) must be
valid. The strong evidence that Eq.(73) is the universal as-
ymptotical law independently of the startingasx0d is fur-
nished by the following analysis of the caseasx0d@1, which
is the far departure from the found fixed point.

B. Large-opening-angle constriction

If the starting, i.e., long-distance value ofa is large, it is
no longer convenient to parametrize the saddle point byUxx
and Uyy. Indeed, now the external potentialFext is almost
completely screened, and so it is rather useless in setting up
the problem. Instead, as in Sec. III, we describe the effect of
the external sources by an effective neutralizing charge den-
sity s, so that the total charge density in the system isnsr d
−ssr d; see Sec. I. Near the origin,ssr d should be of a
saddle-point type,

s = s0 +
1

2
sxxx

2 −
1

2
syyy

2, 0 , syy ! sxx. s81d

In fact, working with ssr d instead ofUsr d also brings us
closer to the practical side of fabrication of such a large-
angle constriction. It seems feasible that one can make this
type of a structure by depositing a static surface charge of the
form (81) near the 2D plane but doing it with voltage sources
(thin metallic gates) may be problematic. Although in the
former methodsxx andsyy in Eq. (81) would likely be fixed
once the structure is made,s0 could still be varied by an
additional distant gate on top of the device.

As in the case of the small-angle constriction, the relation
betweens0 andme, i.e., the top-gate voltage in the suggested
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setup, is determined by behavior at large distances. Conse-
quently, in a small interval ofme of interest to us we should
have

s0 = sC/e2dme, s82d

whereC is a constant approximately equal toC0, the geo-
metric capacitance per unit area[cf. Eq. (6)].

We have a situation where the 2D plane is almost com-
pletely covered by the metallic liquid, except a narrow deple-
tion strip that gradually fans out from the origin along they
axis. This problem is adiabatic with respect to coordinatey.
To the lowest order in 1/a1, where

a1 = ssxx/2syyd1/2, s83d

we can solve the system of Eqs.(1), (2), (4), and (81) pre-
tending thats is y independent. The solution is an obvious
modification of Eqs.(14) and (57):

nsx,yd =
1

2
sxxuxuÎx2 − a2syd, s84d

a2syd = − 4ss0,yd/sxx, s85d

Fsx,yd = me +
p

3

e2

k
sxxfa2syd − x2g3/2. s86d

These equations apply whenever they give realn and F;
otherwise,n=0 andF=me. At this level of aproximation, the
boundaries of the constriction are confocal hyperbolas de-
fined by the equationx2=a2syd [see Eq.(85)]. At s0=0
where the constriction just opens up, these hyperbolas be-
come straight lines witha=a1=const, whileF acquires a
cubic dependence ony:

Fs0,yd =
p

24

e2

k
syy

3/2sxx
−1/2uyu3. s87d

Let us now show that in a more careful treatment Eqs.
(84)–(87) become invalid at exponentially smallx andy. It is
convenient to assume that, at largey, ssr d changes from a
decreasing to an increasing function ofy so that the depletion
region terminates at someuyu=y0. In this case the system can
be thought of as a 2D metallic sheet with an elongated
bowtie-shaped hole. Similar to the case of a round hole,44 the
3D electrostatic potential atuxu , uzu@asyd can be sought in the
form

Fsr ,zd − me .
e2

k
E

−y0

y0 dy8psy8duzu
fx2 + z2 + sy − y8d2g3/2, s88d

which is the lowest-order(dipolar) term in the multipole ex-
pansion compatible with Eq.(1). Since the total charge den-
sity Dnsr d=nsr d−ssr d is proportional to the discontinuity in
]F /]z at z=0, Eq.(88) entails

Dnsr d .
1

2p
E

−y0

y0 dy8psy8d
fx2 + sy − y8d2g3/2. s89d

To find psyd we match the near- and far-field asymptotics,
Eqs.(14) and (89). To the lowest order in 1/a1, we get

psyd = − sp/16dsxxa
4syd. s90d

Next, as in the case of a narrow constriction, we must ac-
count for the renormalizations→s+Ds of the bare param-
eters. From Eqs.(89) and (90) we obtain

Dss0,yd =
sxx

32
E

−y0

y0 dy8fa4sy8d − a4sydg
uy − y8u3 + ca3syd

, c , 1. s91d

Evaluating this integral and substitutingDss0,yd into Eq.
(85), we find a divergent log correction toa=y/a. To facili-
tate the comparison with Eq.(73), the final result can be
presented in the form

bsxd = a1uxuS1 −
12

a1
2lnUx0

x
UD . s92d

The most likely behavior consistent with both Eqs.(73) and
(92) is as follows. A constriction that appears very wide,a
=a1@1, at large distances, renormalizes first into ana,1
structure atx=xc,

xc , x0exps− a1
2/12d, s93d

and then into an adiabatically narrowing small-opening-
angle constriction at even smallerx. If so, Eq.(73) is a uni-
versal asymptotic law.

Concomitantly, we expect that Eq.(94) applies only at
uyu@xc; otherwise, it is replaced by

Fs0,yd =
e2

k

syy
3/2

sxx
1/2xcy

2, uyu ! xc, s94d

in nominal agreement with the popular models35,36 for the
electrostatic potential near the constriction.

C. Numerical results

In order to verify the outlined analytical theory we did a
series of numerical simulations. In these simulations the
sought nsx,yd, the external potential in the formFext=
−s1/2dUxxx

2+s1/2dUyyy
2+Ux4, and the Coulomb interaction

kernel were discretized on a real-space square grid. The units
used in the simulations weree=k=1, and the length unit was
the size of the grid cell. In each run, the energy of the system
was minimized numerically for a trialme with the help of the
MATLAB ™ QUADPROG library function. The value ofme at
which the constriction just opens up was then found by mini-
mizing the combinationsF−med2+n2 at the pointr =s0,0d.
To avoid a difficult task of reconstructingbsxd from n data
defined on the discrete grid,nsx,0d was studied instead. Ac-
cording to Eq.(32), nsx,0d~bsxd, so that the scaling form
Eq. (73) should equally apply tonsx,0d. Shown in Fig. 2(a)
is the numerically calculatednsx,0d for Uxx=1, Uyy=4, the
grid size 161381, and the system sizeuxuø1/2, uyuø1/4.
On the same graph we plot the best fit to Eqs.(73) and(32),
which is obtained for45 a0=0.88,x0=1.23. Considering that
for the chosen simulation parameters we are not yet deep
inside the asymptotic regimea!1 [in the interval of x
shown in Fig. 2(a), a calculated according to Eq.(32) ranges
from 0.5 to about 0.2], the quality of the fit is quite accept-
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able. In other words, we think that our computer simulations
do support the validity of Eq.(73).

In Fig. 2(b), Fs0,yd for the caseUxx/Uyy=5 is presented.
In agreement with Eq.(87), it shows a cubicy dependence at
largey and is more consistent with the quadratic law of Eq.
(94) at smally. This again reinforces our case for universal-
ity of Eq. (73).

Concluding this section, we would like to make a few
brief comments on the relevance of the results obtained for
experiments. First, our predictions fornsr d andFsr d can be
directly verified by a number of currently available high-
resolution imaging techniques, e.g., near-field optical
microscopy,46 conductance interferometry,47 electrostatic
force microscopy,48 or local potentiometry.31,32 Second, it is
feasible that the differences between the solution found and
commonly assumed forms ofn andF can also be detected in
transport through a quantum point contact. The signatures of
such deviations and the question of how they could be am-
plified by a suitable design of the point contact warrant fur-
ther study.

V. CHECKERBOARD

As an application of the obtained results to a more com-
plicated geometry, in this section we examine a 2D electron
liquid situated on the periodic charge density background

s = ne +
n1

2
Scos

2px

bx
+ cos

2py

by
D, bx ù by. s95d

We refer to this model as the “checkerboard.” It is interesting
because it allows one to study the interplay of the three basic
building blocks (a droplet, an isolated DR, and a saddle
point) that exist for a generalssr d. The complete analytical
solution of the electrostatic problem for the checkerboard
geometry remains however unknown.49 Instead, we will
present a numerical solution and will discuss how the results

of Secs. II–IV can be used to understand its structure. We
will also derive some exact asymptotics and finally, at the
end of this section, we will discuss a semianalytic ansatz that
reproduces many properties of the numerical solution with a
high accuracy, in particular, its energy as a function ofne.

We start with numerical results, which are shown in Fig.
3. These plots represent the distribution ofnsr d within the
unit cell 0,xøbx, 0,yøby that are computed by a numeri-
cal program similar to that described in Sec. IV. In this par-
ticular simulationbx=by so that the unit cell is a square.

As one can see from Fig. 3(a), at low density,ne!n1, the
electron liquid is broken into isolated nearly circular drop-
lets. The droplets surround the maxima ofssr d that are lo-
cated at the corners of the unit cell. Asne increases at fixed
n1, the droplets grow. Their boundaries progressively deviate
from the circular form as they become funneled toward the
nearest saddle points ofssr d, which are located at the mid-
points of the edges of the unit cell. At some densitynp (per-
colation point) the droplets merge. In the symmetric check-
erboard simulated on a 40340 grid, this occurs at the
average density of

np = 0.22n1, bx = by. s96d

From experiments with different grid sizes, we concluded
that the above value should be close to the percolation
threshold in the continuum limit but no detailed finite-size
scaling was attempted.

Figure 3(b) shows the density profile slightly abovenp
where a continuous path through the electron liquid already
exists. Atnp,ne,n1 the most noticeable change that takes
place asne continues to increase is the contraction of the

FIG. 2. (a) Numerical (dots) and analytical(solid line) results
for nsx,0d at Uxx=1, Uyy=4, U=2. (b) Fs0,yd (dots) at Uxx=1,
Uyy=0.2, U=3.125. The slopes for quadratic and cubic depen-
dences are shown for comparison.

FIG. 3. The ground-state density distribution computed numeri-
cally on a 40340 square grid for the symmetric checkerboardbx

=by=1. Darker areas correspond to highernsr d. The area shown in
each subplot extends beyond the boundary of the unit cell by a half
grid cell in each direction.(a) Low density,ne=0.0873n1. (b) ne

=0.246n1, which is slightly abovenp. (c) ne=0.470n1, about twice
larger thannp. (d) High density,ne=0.836n1. The solid lines aren
=const contours for a set of linearly spaced densities. These densi-
ties are different in each subplot and are chosen to minimize uncer-
tainties in the contour positions that arise due to the discreteness of
the grid.
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depletion hole at the center of the unit cell, see Figs. 3(c) and
3(d). Finally, at neùn1 (not shown) the electron liquid be-
comes free of the DRs and its profile faithfully repeats the
background,nsr d=ssr d.

In the asymmetric checkerboard,bx.by, the evolution of
the ground state with increasingne is similar, except that the
transition to the global percolation takes place in two steps.
First, at some densitynpy droplets merge into continuous
metallic chains that run parallel to they axis. Subsequently,
at np.npy, the chains become interconnected. This behavior
is illustrated in Fig. 4 where we display the results of our
simulations forbx/by=2 on the 30360 grid. For this grid
size, the two aforementioned thresholds were found to be

npy = 0.17n1, np = 0.31n1,
bx

by
= 2. s97d

Note that in the asymmetric checkerboard the boundaries of
the DRs are elongated along thex direction. In particular, the
small droplets at lowne and the small DRs at highne are
elliptic in shape.

Our goal in the rest of this section is to develop analytical
approaches that are able to reproduce the above numerical
findings.

A. Exact analytical asymptotics

The structure of the ground state can be determined as-
ymptotically exactly in the two limits, the low densitysne

!n1d and the high densitysn1−ne!n1d.

We start with the low-density case. Let us split the total
charge backgroundssr d into a part with zero mean,ssr d
−ne, and a uniform charge densityne. The former produces
the electrostatic potential

F1sr d = −
en1bx

2k
Scos

2px

bx
+

by

bx
cos

2py

by
D . s98d

The functionF1sr d has minima at the corners of the unit cell
and this is the reason why the metallic droplets that form at
small ne reside there. Each droplet has the electric charge
Q=enebxby. Consider the droplet centered ats0,0d and de-
note byFextsr d the total potential felt by the electrons in that
droplet due to all the others and the uniformne background.
To find Fextsr d we can model the other droplets as point
chargesQ arranged in the rectangular lattice. In the leading-
order approximation in the parameterne/n1, within the small
area covered by the droplet,Fext is related toF1 as follows:

Fextsr d = F1sr d +
Q

kbx
MSbx

by
D . s99d

HereMszd is the Madelung constant of the rectangular lattice
with unit cell of size 13z−1. M can be easily calculated by
Ewald’s method. For example, one finds thatMs1d=
−3.900 264 920 001 955. To determine the size of the drop-
let we further notice thatFext admits an expansion analogous
to that in Eq.(16),

eFext = m0 +
1

2
Uxxx

2 +
1

2
Uyyy

2 + Osr4d, s100d

m0 =
e2neby

k
MSbx

by
D −

e2n1

2k
sbx + byd, s101d

Uxx = 2p2e2n1

kbx
,

Uyy

Uxx
=

by

bx
. s102d

Substituting these equations into the formulas of Sec. II, we
find the semiaxesa andb of the droplet to be

a = bxF 3

2p2

Kskdd − Eskdd
kd

2

by

bx
G1/3Sne

n1
D1/3

, s103d

b = aÎ1 − kd
2, s104d

wherekd is the solution of Eq.(22) for Uxx/Uyy specified by
Eq. (102). The depleted area fractionfDR is related toa and
b as follows:

fDR = 1 −
pab

bxby
. s105d

Using the equations of Sec. II, we can also calculate the
corrections to the electrochemical potential and the inverse
capacitance,dm andDC−1, respectively, in the droplet state:

DC−1 = F2p2

3

bxby
2kd

2

Kskdd − EskddG1/3Sn1

ne
D1/3

, s106d

FIG. 4. Similar to Fig. 3 but forbx=2, by=1. (a) Low density,
ne=0.0549n1. (b) ne=0.269n1, which is betweennpy and np. (c)
ne=0.384n1, which is abovenp. (d) High density,ne=0.897n1.
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dm =
3

2

e2

k
DC−1ne + m0. s107d

Equations(103)–(107) are valid for sbxbyd−1!ne!n1. At
smallerne one expects deviations due to the discreteness of
electrons in each droplet. At largerne there are other kinds of
deviations, from the nonelliptic shape of the droplets and
their strong mutual interaction.

Let us now switch to the opposite limit of of high density,
dn;n1−ne!n1. In this case we deal with small depletion
holes that surround the negative minima ofssr d. Such
minima are located at the centers of the checkerboard cells,
e.g.,sbx/2 ,by/2d. Expandingssr d given by Eq.(95) around
this point and adhering to the notations of Eq.(36), we ob-
tain

s0 = ne − n1 = − dn, s108d

sxx =
2p2n1

bx
2 ,

syy

sxx
=

bx
2

by
2 . s109d

Substituting these expressions into the formulas of Sec. III,
we get the semiaxes of the depletion holesa andb to be

b =
by

p
F s1 + kh

2dE − s1 − kh
2dK

kh
2Eskhd G1/2Sdn

n1
D1/2

, s110d

a =
a

Î1 − kh
2
, s111d

wherekh is the solution of Eq.(54) for sxx/syy specified by
Eq. (109). For the DR area fraction we get

fDR = p
ab

bxby
, s112d

while for dm andDC−1 we find

DC−1 =
4

3p

by
2

bx
2

1 − kh
2

Eskhd
Sdn

n1
D3/2

, s113d

dm = −
2

5

e2

k
DC−1dn. s114d

So far we have neglected the interaction among the depletion
holes. In principle, such an interaction, which is a subleading
correction of a dipole-dipole type, can be included perturba-
tively along the lines of Sec. IV. However, for allbx/by stud-
ied in our numerical simulations, it was estimated to be a
tiny effect at all densitiesne at which the approximation of
DRs by elliptic holes is still adequate. Therefore, we will not
discuss such a refinement.

The comparison between the analytical asymptotics and
the numerical data fordm is shown in Fig. 5 for the case
bx/by=2. As one can see, the droplet picture[Eq. (107), the
left thin line in Fig. 5] remains accurate up tone,0.07n1.
The isolated depletion hole approximation[Eq. (114), the
other thin line in Fig. 5] is accurate atne*0.4n1. We con-

clude that our analytical asymptotics, which are basically the
perturbation theory results, indeed work at low and at high
ne, as expected.

B. Trial ansatz method

It is also apparent from Fig. 5 that the derived analytical
formulas fail at intermediatene. For example, at the percola-
tion thresholdnp<0.31n1, the actual value ofdm is about a
factor of 2 off the nearest analytical asymptote. Going to
higher orders in perturbation theory to reduce the discrep-
ancy appears to be cumbersome and impracticable. It seems
that the quantitatively accurate description of the ground
state of the checkerboard model at intermediatene is cur-
rently beyond the reach of controlled analytical methods.

There is however an alternative approach, the idea of
which was introduced in Ref. 11. Strictly speaking, this ap-
proach is uncontrolled yet it is semianalytical and, as we will
show below, it reproduces the behavior ofdm at all ne re-
markably well, both for the symmetric and for the asymmet-
ric checkerboards. In its simplest implementation, this
method amounts to adopting the following trial ansatz(TA)
for the ground state density distribution:

nasr d = uss − sDRdÎs2sr d − sDR
2 . s115d

Hereusxd is the step function andsDR is a constant that must
obey the condition

E
0

bx

dxE
0

by

dynasx,yd = nebxby. s116d

Clearly,nasr d is entirely fixed byne andssr d with no adjust-
able parameters. Why do we choose the trial state in this
form? Several reasons can be given. First, it is consistent
with the notion thatnsr d is determined primarily by the be-
havior of s at points nearby.(After all, the interactions do
decay with distance.) Second, unless a functionssr d pos-
sesses multiple widely different length scales, the behavior
of s in the vicinity of a given pointr is dictated predomi-
nantly by the value ofssr d at the same point(e.g., smalls
tend to be located near minima and larges near maxima).
Consequently, the purely local ansatznsr d=nafssr dg seems
reasonable. Third, Eq.(115) preserves the two asymptotic
characteristics of the exact solution: a square-root singularity

FIG. 5. The electrochemical potential correctiondm according
to the analytical asymptotics[Eqs. (107) and (114)] (thin lines),
numerical simulations(dots), and the trial ansatz method(thick
solid line) for a checkerboard with unit cell of aspect ratiobx/by

=2.
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at the edges of the metallic regions(cf. Sec. I) and the perfect
screeningn→s at large n (cf. Sec. III). Fourth, one can
verify that Eq.(115) is exact for the DR in the form of an
infinite slit [Eq. (14)] and is also rather accurate for the round
depletion hole[Eq. (12)].

Perhaps the only serious deficiency of the proposed TA is
the omission of the funneling effect of the saddle points.
Indeed, according to Eq.(115) the boundaries of the DRs
coincide with thessr d=sDR=const contour, whereas we
showed in Sec. IV that there are logarithmic deviations from
such a behavior, and these are noticeable in Figs. 3 and 4. At
any rate, the ansatz(115) is probably the simplest form that
one can write down, so it makes sense to examine how it
performs. Having learned its strengths and limitations, one
will be in a better position to apply this kind of method in
situations where brute force numerical simulations are diffi-
cult, such as in models of disordered systems.16

The implementation of the TA method goes as follows.
First one selects a reasonably dense set ofne and determines
the correspondingsDR by solving Eq.(116) on the computer.
In practice, we did it by approximating the integrals in Eq.
(116) by a sum over the grid points. Then, for eachsDR, one
evaluates the total energy of the corresponding trial state
(115). Finally, the electrochemical potentialdm is computed
by a numerical differentiation of the total energy with respect
to ne. The results of such calculations are shown by the thick
lines in Figs. 5 and 6(a). As one can see, the agreement
between the TA method results fordm and the corresponding
numerical data points is very good.

To test the TA method further we can directly compare the
density distributionnasr d with the numerically determined

ground statensr d. Such a comparison is shown in Fig. 6(b)
where we present a scatter plot ofn vs s, for the casebx
=by. The spread of the symbols(numerical data) with respect
to the solid lines indicates that our TA is certainly not exact.
However, this spread is not dramatic, and so Eq.(115) is a
viable approximation, especially at low and at highne.

One more quantity we can do the comparison for is the
DR area fractionfDR. As one can see from Fig. 7, the TA
method performs quite well at allne, while the analytical
asymptotics[Eqs. (105) and (112)] are obeyed in their re-
spective validity domains.

Finally, let us discuss the estimate of the percolation
threshold that follows from the TA. According to the TA, the
boundaries of the DR are defined by the equationssr d
=sDRsned. Therefore, the percolation occurs at the average
densitynp

* that satisfies the relationsDRsnp
* d=np

* . Under this
condition, the DR boundary passes simultaneously through
all the saddle points in the system. For example, within a
single rectangular unit cell, the DR has the shape of a rhom-
bus with vertices at the midpoints of the cell edges. Solving
the above equation numerically, we foundnp

* <0.31n1. This
number is independent ofzcb=by/bx because checkerboards
with differentzcb can be mapped onto each other by rescaling
the coordinate axes. Within the TA, such a rescaling does not
change the topology of the DRs or the average electron den-
sity.

Clearly, the TA is unable to resolve the existence of two
separate thresholdsnpy and np in the asymmetric checker-
board. Within the TA, the percolation occurs simultaneously
in the x andy directions. Still,np

* is remarkably close to the
upper(global) percolation threshold determined numerically
for zcb=2 [see Eq.(97)]. This is also the case at largerzcb,
e.g., at zcb=3, where we foundnp=0.32n1. On the other
hand, at lowerzcb the discrepancy grows and reaches its
largest relative size of about 30% atzcb=1 [see Eq.(96)]. We
believe that these discrepancies(one threshold instead of two
and the value ofnp) originate from the two drawbacks of the
TA method we mentioned earlier. One is its inability to
handle widely separate length scales, which is the case in
checkerboards with largezcb. The other is its weakness in
dealing with the saddle points. The funneling effect of the
saddle points allows the electron droplets to reach them
sooner asne increases. Therefore, the continuity of the elec-
tron liquid is established at a lowerne compared to that pre-
dicted by the TA.

FIG. 6. Comparison between the TA method, analytical asymp-
totics, and numerical simulations for the symmetric checkerboard,
bx=by. (a) The correctiondm [cf. Eq. (7)] to the electrochemical
potential as a function ofne. The meaning of the lines and the dots
is the same as in Fig. 4.(b) A scatter plot ofn vs s. Solid curves are
the predictions of the TA for the same densitiesne as the dots at the
top graph but skipping every otherne point for clarity. The leftmost
curve is for ne=n1, the rightmost one(which degenerates into a
single point) for ne=0. The symbols near each curve are from nu-
merical simulations for the correspondingne.

FIG. 7. Depleted area fraction according to the analytical as-
ymptotics of Eqs.(105) and (112) (thin lines), numerical simula-
tions (dots), and the TA method(thick line) for the symmetric
checkerboard.
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One may wonder why the TA method is able to predictnp
with a much higher accuracy11 s,10%d in the case of a
randomssr d. One possible explanation is as follows. The
funneling effect of the saddle points that is mishandled by
the TA method is especially pronounced in the checkerboard
geometry because all the saddle points have the same value
of s, so that the percolation contour has to pass through all
of them simultaneously. Thus, the inaccuracy of our TA is
maximized precisely atn=np. In contrast, in the case of a
random ssr d the percolation contour passes precisely
through the center of a saddle point very rarely, and so the
TA works very well.

We conclude that the TA method is an excellent and con-
venient tool for determining the ground-state energy and de-
pleted area fraction but it may be less accurate when it comes
to more subtle parameters of the real-space structure, espe-
cially if those are heavily dominated by the saddle points or
a hierarchy of multiple length scales.
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APPENDIX: ELLIPSOIDAL HARMONICS

The ellipsoidal harmonics27 of the first and the second
kinds, Em

p sjd andFm
p sjd, respectively, are defined as the two

linearly independent solutions of the Lamé equation(for L)

fsjd
d2L

dj2 +
1

2

df

dj

dL

dj
= fmsm+ 1dj2 − s1 + kh

2dpgL, fsjd

; sj2 − 1dsj2 − kh
2d. sA1d

For eachm, which has to be a natural number,p can take any
of 2m+1 different values that depend onkh. The functions
Em

p sld andFm
p sld at l2ù1 are related by

Fm
p sld = s2m+ 1duEm

p slduE
l

` dl
ÎfslduEm

p sldu2
. sA2d

At large l, Fm
p sld~1/lm+1. As a rule, theFm

p ’s are not ex-
pressed in terms of elementary functions. For example, for
Em

p given by Eqs.(41) and (42), Eq. (A2) leads to the fol-
lowing Fm

p :

1

3
F1

p1sld =
1

1 − kh
2FÎl2 − kh

2

l
− Îl2 − 1ESarcsin

1

l
,khDG ,

sA3d

1

7
F3

r±sld =
sl2 − C±dÎl2 − kh

2

sC± − 1d2s1 − kh
2d

+ Îl2 − 1sl2 − C±d

3FA±ESarcsin
1

l
,khD − B±FSarcsin

1

l
,khDG ,

sA4d

A± =
1 − kh

2 + 2C±
2 − 2C±kh

2

2C±sC± − 1d2skh
2 − C±ds1 − kh

2d
, B±

=
1

2C±sC± − 1dskh
2 − C±d

, sA5d

whereE and F are the elliptic integrals.22 However, forkh
=0, these formulas simplify to

1

3
F1

p1sld = 1 − arcsins1/ld, sA6d

1

7
F1

r+sld =
5

12
F15l2 − 11 − 15Sl2 −

2

5
DÎl2 − 1arcsins1/ldG ,

sA7d

1

7
F1

r−sld = −
1

4l2 −
5

8
+

15

8
l2 −

15

8
l2Îl2 − 1arcsins1/ld.

sA8d

As an application of these formulas, one can derive the elec-
trostatic potentialFsr ,zd around the elliptic DR discussed in
Sec. III. To do so one needs to substitute Eqs.(A3) and(A4)
for Fm

p , Eqs.(41) and(42) for Em
p , and also Eqs.(52) and(53)

for am
p into the series expansion(38). Combining such an

expression forFsr ,zd with Eq. (60), one can then, in prin-
ciple, deduce the formula for the density profilensr d of the
electron liquid outside the DR. However, this calculation is
not presented here because for a generickh the result is rather
unilluminating. The two notable exceptions arekh=0, where
one obtains a circular DR withnsr d given by Eq.(12), and
kh=1, where the DR is an infinite depletion strip and Eq.(14)
holds.
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