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Electrostatics of two-dimensional structures: Exact solutions and approximate methods
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We consider a set of electrostatic problems relevant for determining the real-space structure and the ground-
state energy of a two-dimensional electron liquid subject to smooth external potentials. Three fundamental
geometries are investigated: an elongated metallic island, an antidot, and a constriction. In the first two cases
complete closed-form analytical solutions are obtained, despite the absence of rotational or translational sym-
metries. These solutions govern the shape and size of large quantum dots, and also the size of the depletion
regions and the density profiles around isolated antidots. For the constriction, an exact asymptotical formula for
boundary shape is derived and arguments are given in favor of its universality. For the cases where the full
analytical solution cannot be obtained, an approximate method is proposed as an alternative. Its accuracy is
verified against numerical simulations in a periotibeckerboargdgeometry.
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[. INTRODUCTION The results of the present work are obtained within the
approximation that the Thomas-Fermi screening radigef
the electron liquid metallic is vanishingly small. This is the
Studies of physical phenomena in two-dimensional metalgorrect leading-order approximation if all length scales of
and thin films often lead to mixed electrostatic boundary-interest exceed .
value problems3.A prototypical example is the task of deter-  In typical semiconductor realizations of 2D systems,
mining the density profilen(r) of a two-dimensional2D) is of the order of the interelectron separatan,=n*? and
electron liquid in the proximity of external charges or volt- so our approach is good for studying variationsnéf) on
age sources. Such charges and sources are used in practiesigth scales larger tham._.. Note that this does not neces-
applications to manipulate the electron liquid into desiredsarily prohibit us from describing some effects that are due to
geometrical shapes, e.g., quantum dots, narrow wires, comliscreteness of electrons. For example, in Sec. Il we will be
strictions, etc. They are also used to intentionally introduceble to calculate the energy spacing of the Coulomb block-
defects, such as antiddts,into an otherwise homogeneous ade peaks because in the leading order it is determined by the
system. In addition to artificial sources of external potentialsclassical capacitance. On the other hand, the equations below
in real materials electrons also experience a random potentiaknnot be used, e.g., to study quantum dots with just a few
of ubiquitous charged impurities. It appears therefore thatlectrons. Also, these equations do not apply too close to the
methods that can tackle the corresponding electrostatic proledges of the metallic regions when¢r) —0 and so, for-
lems could be of considerable value both for applied and fomally, a,_.— . Still, even in these situations the solution of
fundamental research. Unfortunately, the boundary-valu¢ghe corresponding electrostatic problem should provide a
problems are notoriously difficult to solve analytically. The valuable insight.
goal of this paper is to show that either the complete analyti- In the approximation of vanishingly smaillg, the elec-
cal solutions or their exact asymptotics can be found for arostatic potentiatb(r) in the regions occupied by the elec-

A. Formulation of the problem

number of nontrivial basic geometries. tron liquid is perfectly flat,
Our most unexpected result concerns the electrostatics of
a constriction. We show in Sec. IV that the long-range Cou- Metal: n(r) >0, ed(r)=pue=const, (1)

lomb interaction can cause a significant narrowing of the

region occupied by the 2D electron liquid in the constrictionwherep, is the electrochemical potential. The rest of the 2D
and that the boundaries of this region are described by aplane is occupied by the depletion regidiRs)—the areas
interesting nonanalytic functiofsee Eq(73)]. of exponentially small, effectively zero electron density that

The present article extends and generalizes the resultge classically forbidden for the electrons:
available in the literature, e.g., Refs. 1-3 and 6—10, and came
as an outgrowth of our recent wdtkon the electrostatics of DR: n(r)=0, ed(r)> ue. (2
disordered 2D systems.

We will consider 2D electron systems that are separate@ur goal is to study the conditions that cause DRs to appear
from grounded electrodes or other screening bodies by disand their detailed structufé.To finalize the formulation of
tances much larger than the interelectron spacing. Such cothe electrostatic problem we wish to solve for this purpose,
ditions are realized in semiconductor heterostructures and iwe need an expression fdr in terms ofn. We distinguish
field-effect transistors with thick insulator layers. In thesetwo cases.
systems electrons interact via ther Qoulomb law and form Case A If the number of electrond\, in the system is
a metallic liquid if their density is not too low. finite, we use
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n(r’) As alluded to above, there has been a sizable amount of

I (3)  work devoted to the electrostatics of disordered electron Sys-
tems. Prominent early investigations include those of Efros

where®,(r) is the external electrostatic potential ards ~ and Shklovskit® on the nonlinear screening in 3D doped

(D(r)zq)ext(r)+gfd2rl ;
K Ir=r’|

the dielectric constant of the medium. semiconductors and its extensions to 2B In disordered
Case B If we deal with an infinite system with a nonzero systems DRs typically have some irregular shapes, and so
average electron concentration, we definas follows: there is no convenient coordinate system that can be used to
take advantage of the known techniques of solving integral
o(r) = e f dzr,n(f') —o(r’) @) equations. Thus, the random case seems mathematically in-
K Ir—r’| tractable. Rigorous results that have been obtained for such

problems are limited to certain scaling la#&s® and some
Here o(r) represents a spatially nonuniform background ofasymptotical limitsi'6 There is a hope, however, that in
opposite charge. In this formulation the primary parameter isegular geometries analytical solutions could be easier to de-
the average background density=(c(r)), and the electro- rive. This is indeed the case. For example, if the external
chemical potential in Eq$1) and(2) is determined by elec- potential ®,(x,y) depends only on one coordinate, say,
troneutrality of the system as a whole, so thais a function  then the problem can be reduced to an equation for just a few
of n.. There is no loss in generality in assuming that theparameters, the positions of the DR ed¢fe@nce they are
background charge density(r) is confined to the same 2D determined, the density(x) at all otherx can be found from
plane as the electrons. Indeed, it is easy to see that an arimple analytical formulas; see an example below. Similarly,
trary three-dimensional charge density distributies(r,z)  there is a closed-form solution in quadratures for the axially
creates essentially the same electrostatic potential inzthe symmetric casedq=P,,(r), provided there is only one

=0 plane as the following effective 2D density: DR. In other words, it is known how to find the density
, profile n(r) of a single round droplet or around a circular
‘T(r):f dzr,f dZZo4(r’,2) _ (5)  depletion hole. Let us give a few examples.
27T[(r -r /)2+ 22]3/2

B. Examples of exact solutions
The only difference between the two potentials is the

r-independent ternezcalne, wherecgl, given by Example 1 Our first example is a metallic droplet con-

fined laterally by a parabolic external potential
-1 - 4_77<0-3|Z|>
0 k (o3 ’

is the inverse geometric capacitance per unit area betweefhe density profile of such a droplet is known to be
the 2D layer and the external sour¢es-) denotes the three-  hemisphericé

dimensional3D) spatial averageAs the name impliesC;*

is usually determined by the fixed dimensions of the struc- n(r) = Eﬁu er 9)
ture and the electrodes, and so it is almost independemt of e ’

In this situation, a finiteC,* causes only a trivial linear shift
of the electrochemical potentigk,, while the interesting
quantity is the deviation

1
(6) eDe(1) = 5Unl?  Upy> 0. (8)

with the radiusa of the droplet related to its electrochemical
potential byu.=U,.a°.
Example 2Another instructive example is an isolated DR
S = e~ ezcalne. (7) in the form of a perfect circle. As noted above, such a deple-
tion hole can form whewr(r) has an isolated negative mini-
This is one of the quantities we will be calculating below. Wemum, o< 0. Let this minimum be located at the origin,
will assume thatbe,(r) ando(r), whichever is appropriate, =0, and let the radius of the induced depletion hole be
are smooth and bounded functions. small enough so that the expansion
The major difficulty in solving the above equations stems
from the mixed boundary conditiorf¢) and(2). These con-
ditions do not specify where the boundaries of the DRs re-
:Itgfe?;avtv?ﬁé g]sspn?;eyngiilsln;%etggf inDsli:Eise 'tiﬁ;?;a )r/mTS?rely?ag bhe used. Following the formalism of Ref. 1 it is easy to
exceed a certain constant valug It seems that in the gen- Ind that
eral case, one can make only the following two trivial state- a?=- 300/ 0y (12)
ments. First, in the formulatio(B) the metallic regions are
located in areas where the potential eneedy,(r) is suffi- SO thatn(r)=0 atr<a. Atr>a, n(r) takes the forr
ciently low, the rest of the 2D plane being a DR. Second, in o Xaz{ [r2 2 2 a
the formulation(4), DRs surround negative local minima of n(r)= === -1+ (—2 - —)arcco& . (12
o(r). [If o is non-negative everywhere, then the sought m a a 3 r
ground state is simply(r)=o(r) and the system is free of Example 3 Our last example is the case of a
DRs] y-independent background density

1
o(r)=op+ EO'XXI'Z (10
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2 2

1
o(1) = 00 = 70+ oo, (13) ey =ngy[1- 25 = 25, (17)
which gives rise to a DR in the form of a stripe of width 2 which defines an elliptically shaped droplet with semiaaes
flanked by the density distributiéh andb. The Dyson theorem indicates that such a droplet cre-
1 ates an in-plane electrostatic potential of the form
— 2 2
n(r)= Eaxx|x| VXo - a?, (14) e abdl
Dy(x,y) = (elk)mn, —
d( y) ( ) d \ \J(a2+|2)(b2+|2)
a?= - 4og/ayy, (15 2 ¥
on the two sides. Note that all the presented exact solutions, X(l T2+12 b2+ |2)’ (18)

Egs.(9), (12), and(14), agree with the well-known resuté

thatn(r) has a square-root singularity near the edge of thavhere\ is equal to zero inside the droplet and is equal to the

DR. Previously, these solutions and their generalizationdargest root of the equation

have been used to study the edges of 2D electron liquids, X2 y2

quantum wire$;® quantum dot$,and antidot: S St =1
In a sense, all the aforementioned examples are one di- a+A\" b+

mensional becaus@.,(r) [or o(r)] depends on a single otherwise. This statement can be proved by expandi(g)

variable. To the best of our knowledge, there are no pubin ellipsoidal harmonic$! see Sec. Il and the Appendix.

lished exact solutions for truly 2D cases, i.e., for the geom-  performing the integration in E18) for the casex=0,
etries wheredg,(r) and o(r) are smooth functions of posi- we get

(19

tion and have no translational or rotational symmetries. The

is ai il thi - meb K-ExX* E-(1-k)Ky?
present paper is aimed to fill this gap. The geometries we Py = d: K — 2 _ Yy . (20
consider are as follows. In Sec. Il we study a droplet in a K k5 a2 K3 b?

arabolic but not necessarily axially symmetric confining po- s )
Itoential. We show that the d?/oplet ﬁ/asyan elliptic shape?v‘\)/itﬂ_'ereK andE are .the complet.e elliptic integrals of the first
Eq. (9) recovered as a special case. In Sec. Ill we derive gnd the second kind, respectivéfpvaluated at
formula for the density profile around an elliptic depletion kg= V1 - (bla)?. (21)

hole. This formula bridges the limiting cases of E(<®) and ) ,
(14). In Sec. IV we treat the nonlinear screening problem forlAS explained above, we expeat=b.) Equations(16) and

a saddle point, which is presumably the most interesting ba20) indicate that, if we choosa, b, andny appropriately, we
sic geometry. We derive the asymptotical formula for thec@n satisfy the equilibrium conditio(l). Indeed, we have
width of the constriction, Eq(73), and give arguments in €P=€Pe+ePq=pu, in the interior of the droplet if the fol-
favor of its universality. In Sec. V we examine a periodic /owing equations hold:

(“checkerboard) external potential, which attains two goals. U, (1- kﬁ)[K(kd) - E(ky)]
First, it enables us to study the interplay of the three funda- 0o B = (1K) (22)
mental geometrie&ot, antidot, and saddle pojnéxamined vy (ko) = (1 ~kg)K(ky)
in Secs. lI-IV. Second, it serves as a test ground for an ap- 2
proximate method of solving electrostatic problems sug- a_ LM (23)
gested in our previous publicatidh. pe Ux Kkki

At the end of each of the following sections we briefly
comment on the relevance of the results obtained for various g K U kG
types of experiments. A detailed comparison with the avail- ;e = 226t (1 - kﬁ)(K “EK’ (24)
able experimental data is deferred for future work.

It is easy to see that these equations have a unique solution
Il ELLIPTIC ISLAND for a, b, andny. Also, from the fact that the integrand in Eq.

In this section we derive the density profile of a metallic (18) is non-negative, we conclude th&{(r) decreases with

droplet that resides in the external potential r, which ensures that the inequal®®) is also satisfied. Thus,

Eq. (17) is the desired solution.

Although the parameters of this solution cannot be ex-
pressed in terms of elementary functions, one can work out
the limiting cases, which are as follows. Let us define

1 1

eDey(r) = EUXXXZ + Euyyyz! 0<Uy= UYY' (16)

If U,,=Uy, we must recover Eq9); otherwise, ifU,,<U,,,

we expect the droplet to be stretched out in xheirection, zg= Uy /U= 1. (25)

along which the confinement is softer. , If zy=1-6z, wheresz<1, we have a nearly circular droplet
The quickest way to obtain the solution for arbitrddy, — \ith the following parameters:

and Uy, is to use a classic theorem of Dys#hOne of the

corollaries of this theorem concerns the 2D charge density 2=t |4 +§62+ 0(62) (26)

distribution WU,y )
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) e 2 quantum dots can be controlled to some degree indepen-
b*= T 1‘55“0(522) , (27)  dently and extensive statistics of the Coulomb blockade
Yoy spacings can be accumulated; see, e.g., Ref. 24. A cautionary
note is that one should study large ddts> 1, where effects

2 « i ; _parti i
ng = __(Uxnyy)lM/-Lé/z"— o). (29) of disorder, single-particle level spacing, or subtle features of
? the edge structufe (see also Ref. 26 neglected here, are
minimal.

In the limit 6z— 0, we indeed recover E@9). In the oppo-
site limit, z;>1, we have a strongly elongated droplet with
parameters IIl. ELLIPTIC HOLE
2 2 1 In this section we consider the depletion hole that forms
a2= ﬂf[l -=4 o<—2)] L = Inzg, (29) in a metallic 2D liquid around an isolated negative minimum
Ux L L of the background charge densiiyr). This problem is rel-

evant for, e.g., determining the density profile of the electron

b2 = Ape| 1 ‘0 1 (30) liquid around an antidot.
TU,l L 2l We assume that the minimum of(r) is located atr=0
and that the depletion hole is small enough so that the ex-
1 pansion
~—=U b<1+i) (31)
M= on W\ " o)

o(r)=op+ 1()'XXX2 + layyyz, 0<owsoy, (36
Note that by settingy to infinity andx to zero, we obtain the 2 2
solution for another geometry of basic interest: an infinitecan be usedo,<0). If 0oxx=0yy, then DR is a circle and Eq.
wire in the parabolic confining potentialbe,(y)=Uy,y?/2.  (12) must be recovered; otherwise, df, < a,,, we expect
The density distribution in a cross section of such a wire is ahe DR to be elongated in thedirection, along whicho(r)

semicircle? has the slowest growth. Indeed, below we show that the DR
« is the ellipse
n(y) = ﬁzuyy\"bz - y2; (32 X2 y2
S 5+5=<1, a=h. (37
see Eqs(17) and (3). a b

Finally, let us calculate the capacitance of the dropletour solution is based on the following series expansion of

Cy=€’dN/due, where N, total number of electrons in the the three-dimensional electrostatic potentidt ,2):
droplet. Integratingn in Eq. (17) over the area, we gét,

=(2m/3)ngab. Using this result, Eqs(22)—24), and some ”
simple algebra, we find ®(r,2)= 2 2 ahFR(MER(WER(v), (39
m=0 {p}
Cq= (’;d)a_ (33)  Where), u, andv are the ellipsoidal coordinate¥’
K

2
As expected, the capacitance scales linearly with the linear 0<’<k=1- b—2 sp’<s1s\? (39
sizea of the droplet. &

One application of the derived results is the formula forthat are related to the original Cartesian coordinatgs and
the energy separatie\V of the Coulomb blockadépeaks  z by
that would be observed if the droplet is weakly connected to a o2
external leads. Her€, has the physical meaning of the volt- 2_2 2 22 2 & 2 22 12342 2
age on a gate that controls the size of the droplet, with con-" kﬁ)\ wve k21 - k) =k ("~ k) ey = 7).
version factor appropriate for the particular experimental ge-

ometry included. In the first approximatiéheAV,=e*/Cy. 2

a

The analytical asymptotics of this expression are as follows: 7= 1 k2(>\2 - D1 -p?)(1-17). (40)
- h
et VU, U : o :
= Yty U.=U The numerical coefficienta!, in Eq. (38) are to be deter
2 , yy = Yxo . . m ;
(eAV,)? ~ 6« N (34) mined, p are certain real numbergigenvaluesthat depend
CO Uy, Uy onm andk;,, andER(§),FR(\) are the ellipsoidal harmonics
EEV'” T Uyy > Uy of the first and the second kind§respectively. The defini-
e XX

tion and some properties &, and F?, are reviewed in the
Thus, for the droplet in a parabolic confinement, the separaAppendix.

tion between the Coulomb blockade peaks should scale as Below we show that only the following?, harmonic$’
N;3 with a coefficient of proportionality that depends on are present in the expansi@d8):

the asymmetry of the confining potential. This can be tested —

in experiments where both the size and the shape of the ER (9 =V1-¢, (41)
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Ef(§)=V1-&(&-Cy, C.= é(l +2¢ 7 V1 - K2+ 4K
(42)

(the actual values gf, andr. will not be needeyl As for FF,

the corresponding formulas are rather cumbersome for an
arbitrary O<k,<1. Fortunately, in this section we will need

primarily their asymptotics ax?— 1 (cf. the Appendix
Ekn)

1FP1(>\) ! +DyV\%-1, D (43)
- =TT Ay - 1 =- ’
3 1 V1- kﬁ 1 1 1- kﬁ

1 ( B +) !

;F’f()\) Bl +D,\2-1,

h

5 _(1-K3+2C2 - 2C.K)E(K,) — (1 - C)(1 - kKK (ky)
= 2(1-C,)C.(Ki = C)(1~kD)

’

(44)

whereK andE are again the complete elliptic integrafs.

The serieg38) is designed to satisfy the Laplace equation

(P192+V?)D(r,2)=0 term by term(cf. Ref. 1 or 27.

PHYSICAL REVIEW B 69, 245321(2004)

O = (1 - (L= 1A)P(u? 1),

whereP is a polynomial of the second degree symmetric in
its two arguments. Sinc® must satisfy Eq(49), it has to be
of the form

(50)

Do
(1 -k,

where®, is some constant. Combined with the expressions
for FP(1) that follow from Egs.(43) and(44), this fixes the
expansion coefficientah, to be

P = )3/2(1 M2)3/2(1 2)3/2 A=1, (51)

1
afft== by, (52)
P
r r 0
T=-dy s ———. 53
a3 %) 14\’1—kﬁ+4kﬁ ( )

After some more algebra one finds that the boundary condi-
tion (47) can indeed be satisfied i, is the solution of the
equation

» (2K = DE(ky) + (1 —K)K(ky)

Oxx
Therefore, our task is to demonstrate that with a suitable —=01-k) 2 2 (54
' 1 +kf)E(ky) — (1 -kH)K(k
choice ofa?,, ®(r,2) also satisfies the boundary conditions vy (2 + k() = (1~ kK (k)
generated by Egsl), (2), (36), and(37): while a is set by
2
L d(r,2= £0)= T 2m(@)o(r), reS, (45 g2=_ 200 LHQEKY - (LK) o
Jdz Oyy (1 k )E(kh)
®(r,z=0)=0, r¢S. (46) For the potentiatb, at the center of the DR we get

In the last line we sefi, to zero, for convenience. 2me k2(1 K )3/2 (56)

In order to express these boundary conditions in terms of
\, u, andv we note that the points immediately above and

below the ellipseS [Eq. (37)] correspond ta?— 1+0. Simi-
larly, points immediately abovébelow) the rest of the 2D
plane correspond tg?— 1-0. The condition(45) will be

satisfied if®=®,+®,, where®, is analytic in\? at \>=1,

while ®, has a square-root singularity,

2mear
1-Kk

K\N1~—

(DZ -~ =
)\24>1

VO =DA-p)(1-27). (4D

Expressed as a function gf and v, o takes the form

1
o) = 00+ 0 227+ =K + 2<axx oy,

(48)
Finally, Eq. (46) is equivalent to

D\, p=1,1)=0. (49)

A quick examination of Eqs(47) and (48) makes plausible
the above claim that the seri€38) involves only the ellip-
soidal harmonics defined by Eq&l1)—(44). Assuming that
this is true, we conclude that, on the ellipSe® must fac-
torize as follows:

0T 3 R (L+KIE- (1- KK T

while at other points o8 ®(r) takes the form stipulated by
Eqg. (51):

2

2\ 3/2
<1>(r):<1>0<1—§—y—) res.

07 (57)
At large distances from the originb(r ,z) is dominated by
them=1, p=p, term in Eq.(38) and behaves similarly to the
potential of an electric dipole,

P 17 o= Ame
Kk (rP+2)¥2 T I5E

except that the apparent dipole momempi,zhas the oppo-
site direction at observation points above and belowzhe
=0 plane. Our formula fopy, resembles the well-known re-
sult 81%for the apparent dipole moment of a round hole in a
metallic sheet.

The sought density distributiom(r) outsideSis given by

®(r,2) ~ —opab?, (58)

n(r)=o(r) + —I|m (59)

or, equivalently, by
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K . @(A,M,v)\rl—kﬁ
n=c+ im == > = (60)
2mea,2 3 V(N = 1)(1 - p)(1-17)
At larger we can use Eq58) to obtain
1
)=o) + 22 r>a, (61)
2mer

which elucidates how the approach to the perfect screening,

n(r)— o(r), takes place away from the DR. As fofr) near
the DR, it is rather complicated, except in two cagds:a

round depletion hole an@) a slit infinite in thex direction.
In the first case the solution is given by E{.2) (see the
Appendix for detailg, in the second case, realizedagt =0,

the solution is given by Eq(14) upon the replacements

—Yy, a—h.

It is also possible to work out analytically the lowest-

PHYSICAL REVIEW B 69, 245321(2004)

T A v T
$1
=

=

= = =
Y,
' } T
> | ¢ﬁh | Ep

FIG. 1. The geometry of the field-penetration experiment. The

order corrections to these two limiting cases. Thus, a highl)?D layer of interest is sandwiched between the top and the bottom

asymmetrico minimum, z,=oy,/ 0, <1, gives rise to a
strongly elongated DR with parameters

2=~ D14 Lgr0z)], L=z -1, (62

Oxx
4 1
bzz_ﬂ{l——ﬁzhm(zh)], (63)
Oyy 2
swelo 3/2 1
@0:—?—%{1——£2h+0(2h):|- (64)
K oy 2

Equation(15) is recovered in the limig,— 0.

On the other hand, if ther minimum is nearly axially
symmetric, &z=1-z,<1, then the corresponding DR is
nearly circular, with the parameters

3 2

Q2= - =20 {1+—§z+0(822)] (65)
VOxyy 5
3 2

b?=- &{1——&+0(&2)] (66)
VOxyy 5
8 e 3/2

qDO == |0-0| 1/4 + O(é\ZZ) . (67)
V3K(Uxxayy)

At 6z=0, EQs.(65) and(66) reduce to Eq(11).

Let us now discuss the effect of an isolated elliptic DR on

metallic gates. The sample contains ionized impuritiéspant$

that are shown as randomly scattered plus signs. The cage of
doping is assumed where all the dopants reside in a plane parallel to
the 2D layer. The impurities create a random electric field that
nucleates the depletion regiorishown as holes in the probed
layen. These depletion regions enhance the penetrating electric field
E, that can be detected with the help of the bottom gate.

AE:%deND(F)e[n(f)—U(f)]

1 X2 y2 3/2
- e dof1-5- %)
S
_ 167 & ofat? o
"~ 105 k E(ky) (69)

The result is in agreement with the preceding estimde:-
call that 1= E(k,) < 7/2, and scE(k;,) does not have a strong
dependence om/b.] For fixed oy, and oy,, we havea,b
«|op|2, so thatAE = |og| 2.

The energy correction due to DRs affects a number of
experimentally measurable properties of 2D electron sys-
tems. One example is the magnetization of quantum dots and
quantum wires under the quantum Hall effect conditions. Al-
though the DRs witin(r)=0 do not appear in that context, a
very similar role is played by regions of locally depleted
topmost Landau levet?

Another example concerns the DRs induced by random

the total energy of the system. It is easy to see that the DiNpurities(see Fig. 1. Such DRs can strongly influence the

causes a positive correctidxE to the energy, which can be

energy density of macroscopic 2D systems, especially at low

estimated as follows. The unscreened electric field that suglectron densities. This effect may be importafor the ac-

rounds the DR is of the order &~ 2n(e/ k)0 and is con-
centrated mainly in a volumAV~aXxhbXb. Hence,

AE:LJerJdZEZ(r,Z)~e—20%ab2. (69)
8 K

tively studied phenomenon of the 2D metal-insulator

transition?8

To show how the obtained formulas can be applied in this
context let us discuss one experimental technique, which is a
particular sensitive probe of DRs. This technique, pioneered
by Eisensteirt? is the measurement of the electric field pen-

The exact calculation okE is more convenient to perform in etration. In order to do this type of experiméfit3lone pre-

terms of the potentiakb(r) and the total charge density

en(r)—eo(r),

pares a structure where the 2D layer is sandwiched between

two electrodes that can be considered good metals. Once a
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voltage difference is applied between the 2D layer, and thelectron separatioft. Nevertheless, to the best of our knowl-
top electrode, some electric field leaks through the 2D layeredge, an analytic solution for the electron density profile
and its spatial averagé,) can be measured by monitoring n(x,y) and the total electrostatic potenti&(x,y) around the
the amount of electric charge that has flown into the bottontonstriction has not been presentéBor recent numerical
layer (see Fig. 1 It is immediately obvious that DRs must work, see Ref. 34.Instead, the unknown functional forms of
enhance(Ep). Using the results of this section, we are nown and ® have been approximated by expressions chosen
able to calculate how this enhancementBf) is related to  somewhat arbitrarily. Fod(r), a parabolic functiot>*®[as
the concentration and the linear sizes of the DRs. In thidn Eq.(72)] or a parabola with a flat inséfthas been used.
calculation we will assume that the interlayer distanses The boundary of the 2D electron channel was modeled vari-
ands, (see Fig. 1 are large. ously by combination of wedgé®,circular arcs’® confocal
Equation(58) gives one way to calculatéE,). An alter-  hyperbolas, or more complicated curvés. .
native and a more general way is to work with the energy L€t y=xb(x) be the equation for the boundaries of the
correctionAE and the corresponding contributiakC™ to ~ €lectron liquid in the constriction. Although we have not suc-
the inverse capacitance per unit area of the deyit€™! is cegded in solving the electrostatics problem for the sadd_le
the correction to the inverse geometric capacita@g  Point completely, below we show that the correct asymptoti-
=47s,/ k; cf. Eq.(6).] For a single elliptic DRAE andAC™  cal behavior of(x) is given by
are related by

ARAE 1 PAE 472 al? p( 1 Tx )
ACt=— =— =— 7 b(x) = aglxlexpl = v/ =In| = | |, |X < X, 73
=2 dN2 €A do2  3kAE(k)’ (79 (0 = g 2 | x M<xo, (79

whereA is the sample area. If the DRs in the 2D layer are

well separated, their contributions thC™* are, in the first Whereqg,X, are constants determined by the boundary con-
approximation, additive. The total correction to the inverseditions far from the saddle point. This is perhaps the most
capacitanceACt_olt, characterizes the nonideal nature of ourinteresting theoretical result that we achieve in this work.
capacitor and therefore the amount of field penetration. In- The exponential factor in Eq73) is a nontrivial effect of
deed, a simple derivation along the lines of Ref. 29 leads téhe long-range Coulomb interactigaee below It is there-

the relation fore interesting to do a quick estimate of this factor for a
typical experimental setup. As explained in Sec. I, pure elec-
i(E )= EAC—lz 4129&% ab?’ (71) trostatics is not adequate at distances shorter than the inter-
dne' » s, 3 ks, \E(ky/’ particle separation,_.. Therefore, in reality, Eq.73) applies

only as long asb(x),|X|>a,~1/yn(x,0). On the other

whereNpg is the DR concentration. hand,xy can be large. For example, usirg~1 um andx

Note that, like all the other results in this paper, E4l)  _
is derived in the approximation that ignores non-Hartre

terms in the energykinetic and exchange-correlation ener- exponential factor in Eq.73) is approximately 0.2. Thus, the

gies. This is not a serious omission at low electron densitieﬁon _range interaction can cause a sianificant narrowing of
n. where the DRs dominate the field penetration. However g-rang 9 g

. " . éhe bottleneck of the constriction.
at higher densities, the non-Hartree terms must be included. In the purely electrostatic modé, .=0) we are allowed
This may lead to an interesting nonmonotonic behavior of purely e

-1 ; : ; to consider the limitx— 0. Then Eq.(73) predicts that the
ACi((ne), discussed theoretically in Refs. 16 and 11. tangenta(x) =b(x)/x of the opening angle of the constriction

becomes vanishingly small, independentlylgf,/U,,. This
IV. SADDLE POINT behavior stems from the long-range nature of the Coulomb
interaction between the electrons. With short-range interac-
In this section we examine the structure of the 2D electrorjons (or without interaction electrons fill the constriction
liquid near a saddle point of the external potential, up to the equipotential contow,,(X,y) = u.; therefore, the
1 1 constriction is bounded either by two confocal hyperbolas or,
Dy = Euyyyz— EUXXx2+0(r4), UUyy>0. (720 whenb(0)—0, by the two straight lines. In the latter case
a=(U,,/Uy)*2 which is finite, in contrast to Eq73). The
This is the most interesting fundamental geometry but als@hysical reason for the difference is the ability of the system
the most difficult one for analytical study. with long-range interactions to modifiscreen the external
It is easy to understand that the electron liquid should bgotential even at points=(x,y) that areoutsidethe area
confined in they direction into a strip that has the smallest occupied by the electrons. The screening flattens out the con-
width atx=0 and widens al| increases. In other words, this fining potential®,,, allowing the electron liquid to spread
structure can be thought of as a local constriction in a 2Dover a larger area compared to the noninteracting limit. The
electron system. Such structures have been fabricated amaéntrivial statement embodied by E@.3) is that the screen-
intensively studied in the past. In particular, much attentioning is more effective along the longitudin@{) direction, so
has been devoted to quantum point contacts, which are comhat the extra area occupied by the interacting electrons is
strictions with the bottleneck width comparable to the inter-strongly funneled into the constriction center.
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Let us proceed to the derivation of E.3). We distin-
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that the RG is able to reach its fixed point. What is this fixed

guish two cases, which are treated in two separate subsepeint? To the order we are working withJ,,=U,(Xo)

tions below.

A. Small-opening-angle constriction

First we will treat the limitU,,<U,, where®,,;is a slow

+[U—Uy(X0)]/2. This implies that forU,,(xg) > U,(Xo)
the renormalization o, can be ignored. Therefore, at the
fixed point, where the right-hand sides of E@7) must van-
ish, a(l=x)=a(x=0)=0, in agreement with Eq(73) and

function ofx. In this case the constriction can be thought ofstatements above.

as an adiabatically narrowing quantum wifélo the lowest
order in the parametdd,,/U,,, they dependence afi(x,y)

at a given fixedx can be found by solving the requisite
electrostatic problem assuming thét,, is x independent.
The solution forn(r) is given by Eq.(32) whereb should
now be understood as a yet to be found functiorx.oThe
electrostatic potential is also easy to find,

1 o
D(r) = pe+ EUyy<y\'y2 b~ szOSh_l)_t;) -

Let us define the one-dimensiondD) electron density)(x)
along the wire by

b
1k
q(x) = f dyn(x,y) = 5 5Uyx*a’(x). (75)
-b

In view of the last equation, the desirégx) is directly re-
lated toq(x). To find the equation fog(x) we substitute Eq.
(32) into the boundary conditiorfl) and takey=0. This
yields

XO 1
J dX’G(X,X’)Q(X')=EUXXXZ—Me—M)(Xo)- (76)
=X
The kernelG(x,x’) can be expressed in terms of elliptic
integrals. Atjx—x'|>b(x’) , it reduces to the Coulomb inter-
action potentialG(x,x’) =€?/ k|x—x’|. The termA®(xy) in

Let us now derive the complete form efx). From Egs.
(75) and(76) we find that

|
U
- 2a(N[In a(l) + O(1)] +f di'e?(1") = M (78)
0 Uyy
Differentiating both sides with respect tpwe get
d o
-~ 7
d“ 4mna’ (79

which complements Eq.77) and has Eq(73) as the solu-
tion.

It is instructive to rewrite Eq(73) in terms of the renor-
malizedU,, [this can be done by integrating EF.7)]:

Uxx(l) |:1 + InUxx(lo):|_l.
Uyy Uxx(l)

Since U, (I=»)=0 [see Eqs(77) and (78)], Eq. (80) de-
scribes the decrease of(x) from its noninteracting limit
value atx=xg to the asymptotical zero at=0.

The RG fixed point obtained must have a finite basin of
attraction, presumablyy=<1, for which Eq.(73) must be
valid. The strong evidence that E@.3) is the universal as-
ymptotical law independently of the starting(xy) is fur-
nished by the following analysis of the cagée<,) > 1, which
is the far departure from the found fixed point.

()= (80)

B. Large-opening-angle constriction

Eq. (76) represents the potential created by electrons located
at points|x| >xo. It is determined by the behavior dfe, at If the starting, i.e., long-distance value ofis large, it is

large distance_s and therefo_re h_igh energies. On the othef, longer convenient to parametrize the saddle pointy
hand, we are interested mainly in the structure of the conznq U " |ndeed. now the external potentid,,, is almost
yy ! X

striction as smalk. Physically, we may expect that minor compjetely screened, and so it is rather useless in setting up
changes inu, modify b(x) near the origin considerably but e hropiem. Instead, as in Sec. Iil, we describe the effect of
leave Ad(xo) virtually the same. Therefore, the role of he external sources by an effective neutralizing charge den-
AD(xy) is simply to renormalize the electrochemical poten-sity &, so that the total charge density in the system(is
tial by a constantue— ue+Ad(Xp). -a(r); see Sec. I. Near the origing(r) should be of a
The idea of renormalization proves to be very fruitful in saddle-point type,
the present problem. Indeed, since we are interested in the
behavior at small distances, we have a freedom in choosing = Ont —gx— =
the cutoff as long as it exceeds the distance of interest. Then 07 gt 2
e Should be viewed as a function of the cutoff and as such
it must satisfy a certain renormalization grotRG) equa-
tion. Similarly, there must be a RG equation fdg, and, in
fact, forUy,. From Eq.(76) one finds that to the lowest order
in the parametew(l) <1, these equations are

W 0<oy <o (81

fn fact, working with o(r) instead ofU(r) also brings us
closer to the practical side of fabrication of such a large-
angle constriction. It seems feasible that one can make this
type of a structure by depositing a static surface charge of the
form (81) near the 2D plane but doing it with voltage sources
d _ 5 d 1 5 (thin metallic gates may be problematic. Although in the
auxx_ = Uyya(l), auyy‘ Uy, (7D former methodo,, and o, in Eq. (81) would likely be fixed

2
once the structure is madey could still be varied by an
wherel=In|xy/x|, x being the running cutoff. The RG flow

persists as long &%|x|>b(x). Let us consider the most in-
teresting caseh(0)=0, where|x| is always larger thab, so

additional distant gate on top of the device.
As in the case of the small-angle constriction, the relation
betweenoy and ., i.e., the top-gate voltage in the suggested
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setup, is determined by behavior at large distances. Conse- p(y) = - (7/16) o, @%(y). (90)
quently, in a small interval of. of interest to us we should _ o
have Next, as in the case of a narrow constriction, we must ac-
count for the renormalizatioor— o+ A of the bare param-
00=(Cl€?) e, (82)  eters. From Eqg89) and(90) we obtain
whereC is a constant approximately equal @, the geo- o fyo dy'[a*(y’) - a*(y)]
metric capacitance per unit argef. Eq. (6)]. Ac(0,y) 32)., ly-yPrcaly 1. (9D

We have a situation where the 2D plane is almost com-

pletely_covered by the metallic liquid, except a narrow deI0|eEva|uating this integral and substitutingo(0,y) into Eq.
tion strip that gradu.ally f_ans out f_rom the origin anng the (85), we find a divergent log correction te=y/a. To facili-
axis. This problem is adiabatic with respect to coordinate iate the comparison with Eq73), the final result can be

@) = (O-xxlzo'yy)llzv (83) 12 Xo
b(x) = ay|X|| 1 -—In| =] |. (92
we can solve the system of Eq9), (2), (4), and(81) pre- aj | X

tending thato is y independent. The solution is an obvious . . . .
modification of Eqs(14) and (57): The most likely behavior consistent with both E¢g3) and

(92) is as follows. A constriction that appears very wide,

1 > =ay>1, at large distances, renormalizes first into@n 1
n(X,y) = Eo-xx|x| VXZ - az(y), (84) strdcture EUX:)?C,
2
20y) = - 400yl (85) Xe ~ XgeXp(— a7/12), (93
and then into an adiabatically narrowing small-opening-
iy angle constriction at even smalberIf so, Eq.(73) is a uni-
D(X,Y) = pe + - —afa(y) = X2, (86)  versal asymptotic law.
3« Concomitantly, we expect that E¢94) applies only at
These equations apply whenever they give meand ®;  |y|> X, otherwise, it is replaced by
otherwisen=0 and® = y,. At this level of aproximation, the oS3
boundaries of the c;onsztrlcglon are confocal hyperbolas de- D0y) = —xy?  lyl <%, (94)
fined by the equatiorx“=a<(y) [see EQ.(85)]. At 0,=0 K Oyy

where the constriction just opens up, these hyperbolas b
come straight lines withw=a;=const, while® acquires a
cubic dependence on

A nominal agreement with the popular mod&is® for the
electrostatic potential near the constriction.

e .
d(0,y) = 2—7;?0%20;)%/2|y|3_ (87 C. Numerical results

In order to verify the outlined analytical theory we did a
Let us now show that in a more careful treatment Egsseries of numerical simulations. In these simulations the
(84)—«87) become invalid at exponentially smalandy. Itis  sought n(x,y), the external potential in the fornd.,=
convenient to assume that, at largeo(r) changes from a —(1/2)U,x%+(1/2)U,,y?+Ux*, and the Coulomb interaction
decreasing to an increasing functionyafo that the depletion  kernel were discretized on a real-space square grid. The units
region terminates at sonfg =Y. In this case the system can used in the simulations wees= k=1, and the length unit was
be thought of as a 2D metallic sheet with an elongatedhe size of the grid cell. In each run, the energy of the system
bowtie-shaped hole. Similar to the case of a round folee  was minimized numerically for a triat, with the help of the
3D electrostatic potential &|,|z|>a(y) can be sought in the maTLAB ™ QUADPROG library function. The value ofu, at

form which the constriction just opens up was then found by mini-
&2 (Yo dy' ply')|z mizing the combinatior{® — u,)2+n? at the pointr =(0,0).
D(r,2) = po = _J 5 a5 (88 To avoid a difficult task of reconstructing(x) from n data
Kk J oy X+ Z+(y-y) defined on the discrete grid(x,0) was studied instead. Ac-

which is the lowest-ordedipolarn term in the multipole ex- cording to Eq.(32), n(x,0)=b(x), so that the scaling form

pansion compatible with Eq1). Since the total charge den- Ed- (73) should equally apply tei(x, 0). Shown in Fig. 2a)
sity An(r)=n(r)—o(r) is proportional to the discontinuity in IS the numerically calculated(x,0) for U,,=1, U,,=4, the
a®/dz at z=0, Eq.(88) entails grid size 161X 81, and the system 5|z_1e|s1/2, ly|<1/4.
On the same graph we plot the best fit to HF®) and(32),

Yo dy’p(y’) which is obtained fd® «,=0.88,x,=1.23. Considering that

An(r) = Zf_ [x2+ (y—y')2]¥2 (89) for the chosen simulation parameters we are not yet deep

Yo inside the asymptotic regime<<1 [in the interval of x
To find p(y) we match the near- and far-field asymptotics,shown in Fig. 2a), « calculated according to E¢32) ranges

Eqgs.(14) and(89). To the lowest order in 1d,, we get from 0.5 to about 0. the quality of the fit is quite accept-
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y FIG. 3. The ground-state density distribution computed numeri-
) ) o cally on a 40< 40 square grid for the symmetric checkerbobgd
FIG. 2. (@ Numerical(doty and analyticaksolid line) results =b,=1. Darker areas correspond to higiér). The area shown in

for n(x,0) at U,=1, Uyy=4, U=2. (b) ®(0,y) (dotg at U,=1,  each subplot extends beyond the boundary of the unit cell by a half
Uyy=0.2, U=3.125. The slopes for quadratic and cubic depen-grig cell in each direction(a) Low density, n,=0.08731,. (b) ne
dences are shown for comparison. =0.2461, which is slightly aboven,. (c) n,=0.470n;, about twice
larger thamn,,. (d) High density,n,=0.8361,. The solid lines are

able. In other words, we think that our computer simulations=const contours for a set of linearly spaced densities. These densi-
do support the validity of Eq(73). ties are different in each subplot and are chosen to minimize uncer-

In Fig. 2(b), ®(0,y) for the casdJ,,/ U,,=5 is presented. taintie_s in the contour positions that arise due to the discreteness of
In agreement with Eq87), it shows a cubiy dependence at the grid.
largey and is more consistent with the quadratic law of Eq.
(94) at smally. This again reinforces our case for universal- of Secs. II-IV can be used to understand its structure. We
ity of Eq. (73). will also derive some exact asymptotics and finally, at the

Concluding this section, we would like to make a few end of this section, we will discuss a semianalytic ansatz that
brief comments on the relevance of the results obtained foreproduces many properties of the numerical solution with a
experiments. First, our predictions fofr) and®d(r) can be high accuracy, in particular, its energy as a functiomof
directly verified by a number of currently available high-  We start with numerical results, which are shown in Fig.
resolution imaging techniques, e.g., near-field optical3. These plots represent the distributionngf) within the
microscopy'® conductance interferometty, electrostatic  unit cell 0<x<b,, 0<y= by that are computed by a numeri-
force microscopy? or local potentiometry*3? Second, it is  cal program similar to that described in Sec. IV. In this par-
feasible that the differences between the solution found anticular simulationb,=b, so that the unit cell is a square.
commonly assumed forms afand® can also be detected in As one can see from Fig(8, at low densityn.<<n, the
transport through a quantum point contact. The signatures alectron liquid is broken into isolated nearly circular drop-
such deviations and the question of how they could be amlets. The droplets surround the maximaddf) that are lo-
plified by a suitable design of the point contact warrant fur-cated at the corners of the unit cell. Asincreases at fixed
ther study. n,, the droplets grow. Their boundaries progressively deviate
from the circular form as they become funneled toward the
nearest saddle points of(r), which are located at the mid-
points of the edges of the unit cell. At some density(per-

As an application of the obtained results to a more com-<olation poinj the droplets merge. In the symmetric check-
plicated geometry, in this section we examine a 2D electrorerboard simulated on a 4040 grid, this occurs at the
liquid situated on the periodic charge density background average density of

2 2
o:ne+m(coswa+cosbiy), by=Dby,. (95

2 X y From experiments with different grid sizes, we concluded
We refer to this model as the “checkerboard.” It is interestingthat the above value should be close to the percolation
because it allows one to study the interplay of the three basithreshold in the continuum limit but no detailed finite-size
building blocks (a droplet, an isolated DR, and a saddlescaling was attempted.
point) that exist for a generak(r). The complete analytical Figure 3b) shows the density profile slightly abovg
solution of the electrostatic problem for the checkerboardvhere a continuous path through the electron liquid already
geometry remains however unkno#h.instead, we will exists. Atn,<n.<n; the most noticeable change that takes
present a numerical solution and will discuss how the resultplace asn, continues to increase is the contraction of the

V. CHECKERBOARD

n,=0.2y, b,=bh,. (96)
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(@ 2 (b) 2
1 .5! !

x 1

We start with the low-density case. Let us split the total
charge background-(r) into a part with zero meang(r)
—-n,, and a uniform charge density. The former produces
the electrostatic potential
- enle(cosle + t—)Ycosziy)

2k b, by by
The function®,(r) has minima at the corners of the unit cell
and this is the reason why the metallic droplets that form at
small n, reside there. Each droplet has the electric charge
Q=enb,b,. Consider the droplet centered @,0) and de-
note by®d,,r) the total potential felt by the electrons in that
droplet due to all the others and the unifongibackground.

Py(r) = (98)

0.5

© 2 To find d4,(r) we can model the other droplets as point
chargeQ arranged in the rectangular lattice. In the leading-
1.5 order approximation in the parametgy n,, within the small
i area covered by the dropleb,,, is related to®, as follows:
< 1
<bext(r):<bl(r)+gM<E(>. (99
xby, \by

HereM(z) is the Madelung constant of the rectangular lattice

with unit cell of size Xz 1. M can be easily calculated by

Ewald's method. For example, one finds th&t(1l)=

—3.900 264 920 001 955. To determine the size of the drop-

let we further notice thab.,; admits an expansion analogous
FIG. 4. Similar to Fig. 3 but fob,=2, by=1. (a) Low density,  to that in Eq.(16),

Ne=0.0549;. (b) ne=0.26%;, which is betweempy, and n,. ()

ne=0.384, which is aboven,. (d) High density,n,=0.897,. 6oy = po+ %UXXX2+ %Uyyy2+ O(r4), (100)

depletion hole at the center of the unit cell, see Figs) &nd

3(d). Finally, atn,=n; (not shown the electron liquid be- enb, (b e’n
comes free of the DRs and its profile faithfully repeats the Mo= _KQMM<b_X> - Z_Kl(bx+ by), (101)
backgroundn(r)=o(r). Y

In the asymmetric checkerboard,> b,, the evolution of &n U b
the ground state with increasimg is similar, except that the Ug= 2m2—=, W= (102
transition to the global percolation takes place in two steps. kb Uy by

2:2"% cshoariT;IES tdhezgsrlmpy :rrglﬂlettz tmh:;?(ies |r§8bggnﬂrél:l?lus Substituting these equations into the formulas of Sec. I, we
. P i : a Y. find the semiaxea andb of the droplet to be
atn,>ny,, the chains become interconnected. This behavior

is illustrated in Fig. 4 where we display the results of our 3 K(kg) - E(kg) by |3 ng\ 3
simulations forb,/b,=2 on the 30<60 grid. For this grid a=by ﬁ—zgx = (103
size, the two aforementioned thresholds were found to be kg X 1
b [ .2
=007y, np=03In;, *=2. (97) b=aV1-kg, (104)
y

whereky is the solution of Eq(22) for U,,/U,, specified by

Note that in the asymmetric checkerboard the boundaries (ﬁq_ (102). The depleted area fractidig is related toa and
the DRs are elongated along tkélirection. In particular, the p a5 follows:

small droplets at lown, and the small DRs at high, are
elliptic in shape. ab
Our goal in the rest of this section is to develop analytical
approaches that are able to reproduce the above numerical
findings. Using the equations of Sec. Il, we can also calculate the
) _ corrections to the electrochemical potential and the inverse
A. Exact analytical asymptotics capacitancegu and AC™%, respectively, in the droplet state:
The structure of the ground state can be determined as- 22 13 3
ymptotically exactly in the two limits, the low densif, ACL= [212 b.bikg } (”_1) (106
<n,) and the high densityn; —n.<n,). 3 Kikg) = E(ky) ne/

(109
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3¢?

S ==—AC .+ . (107
2 k 5
3
Equations(103<107) are valid for (bby)™<n,<n,. At ”%
smallern, one expects deviations due to the discreteness of ©
electrons in each droplet. At largeg there are other kinds of o
deviations, from the nonelliptic shape of the droplets and 102 04 06 08 1
their strong mutual interaction. Tie/m

Let us now switch to the opposite limit of of high density,
n=n;—ny,<n,. In this case we deal with small depletion
ho_Igs that surround the negative minima afr). Such numerical simulationgdots, and the trial ansatz methoghick
minima are located at th_e centerg of the checkerboard CeII§,olid ling) for a checkerboard with unit cell of aspect rabg/b
e.g.,(b/2,b,/2). Expandinga(r) given by Eq.(95) around  _, Y
this point and adhering to the notations of E86), we ob-
tain

FIG. 5. The electrochemical potential correcti6p according
to the analytical asymptoticEEqgs. (107) and (114)] (thin lines,

clude that our analytical asymptotics, which are basically the
0p=Ne—Ny=— 8N, (108 perturbation theory results, indeed work at low and at high
ne, as expected.

_27ny

Oyx = 2
b
X

Ty _ By

== (109
Oyx bf,

B. Trial ansatz method

It is also apparent from Fig. 5 that the derived analytical
formulas fail at intermediata.. For example, at the percola-
tion thresholdn,~ 0.31n,, the actual value obu is about a

b, (1+kﬁ)E—(1—kﬁ)K]1’z(&1)”2 fa_lctor of 2 oﬁ_the nearest analytical asymptote. Go_mg to
b= 5 — (110 higher orders in perturbation theory to reduce the discrep-

m KnE(kn) Ny ancy appears to be cumbersome and impracticable. It seems
that the quantitatively accurate description of the ground

a (111) state of the checkerboard model at intermediatés cur-

Substituting these expressions into the formulas of Sec. Il
we get the semiaxes of the depletion hadeandb to be

a=

TR 2 rently beyond the reach of controlled analytical methods.
There is however an alternative approach, the idea of
wherek, is the solution of Eq(54) for o,/ o, specified by ~which was introduced in Ref. 11. Strictly speaking, this ap-
Eg. (109). For the DR area fraction we get proach is uncontrolled yet it is semianalytical and, as we will
show below, it reproduces the behavior &d at all n, re-
oo ab (112 markably well, both for the symmetric and for the asymmet-
bR™ beby’ ric checkerboards. In its simplest implementation, this
. L . method amounts to adopting the following trial ans@ia)
while for oy and AC™ we find for the ground state density distribution:
2 2 o~ 2
R le—kh( @)3’2’ 113 Ny(r) = 60 = opRIN () ~ opg. (115
3y Elkn) \ My Here 6(x) is the step function andpg is a constant that must
obey the condition
2¢ -1 b, b
Su=—-—-——ACén. (114 x y
5k dx| dym(x,y) = nebyby. (116
0 0

So far we have neglected the interaction among the depletion ) . ] . .
holes. In principle, such an interaction, which is a subleading=€arly.n(r) is entirely fixed byne ando(r) with no adjust-
correction of a dipole-dipole type, can be included perturba@ble parameters. Why do we choose the trial state in this
tively along the lines of Sec. IV. However, for dl/b, stud- form? Several reasons can be given. First, it is consistent
ied in our numerical simulations, it was estimated to be avith the notion thain(r) is determined primarily by the be-
tiny effect at all densities), at which the approximation of havior of o at points nearby(After all, the interactions do
DRs by elliptic holes is still adequate. Therefore, we will notdecay with distancg.Second, unless a functiom(r) pos-
discuss such a refinement. sesses multiple widely different length scales, the behavior
The comparison between the analytical asymptotics an@f o in the vicinity of a given point is dictated predomi-
the numerical data fobu is shown in Fig. 5 for the case nhantly by the value otr(r) at the same pointe.g., smalle
b,/b,=2. As one can see, the droplet pictyiEg. (107), the  tend to be located near minima and laigenear maxima
left thin line in Fig. § remains accurate up ta,~0.07,.  Consequently, the purely local ansatiz)=n,[o(r)] seems
The isolated depletion hole approximatipBq. (114), the  reasonable. Third, Eq115 preserves the two asymptotic
other thin line in Fig. $is accurate ah,=0.4n;. We con-  characteristics of the exact solution: a square-root singularity
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FIG. 7. Depleted area fraction according to the analytical as-
ymptotics of Eqs.(105 and (112 (thin lines, numerical simula-
tions (doty, and the TA methodthick line) for the symmetric
checkerboard.

ground staten(r). Such a comparison is shown in Figh$
where we present a scatter plot mfvs o, for the caseb,
=b,. The spread of the symbalsumerical datpwith respect

to the solid lines indicates that our TA is certainly not exact.

FIG. 6. Comparison between the TA method, analytical asympHowever, this spread is not dramatic, and so @45) is a
totics, and numerical simulations for the symmetric checkerboardyiable approximation, especially at low and at high

by=hy. (@ The correctionsu [cf. Eqg. (7)] to the electrochemical
potential as a function afi,. The meaning of the lines and the dots
is the same as in Fig. 4b) A scatter plot ofn vs . Solid curves are
the predictions of the TA for the same densitigss the dots at the
top graph but skipping every otheg point for clarity. The leftmost
curve is forneg=ny, the rightmost ongwhich degenerates into a
single poinj for n,=0. The symbols near each curve are from nu-
merical simulations for the corresponding

at the edges of the metallic regioftd. Sec. ) and the perfect
screeningn— o at largen (cf. Sec. lll). Fourth, one can
verify that Eq.(115) is exact for the DR in the form of an
infinite slit [Eqg. (14)] and is also rather accurate for the round
depletion holdEq. (12)].

One more quantity we can do the comparison for is the
DR area fractionfpg. As one can see from Fig. 7, the TA
method performs quite well at afi,, while the analytical
asymptotics[Egs. (105 and (112)] are obeyed in their re-
spective validity domains.

Finally, let us discuss the estimate of the percolation
threshold that follows from the TA. According to the TA, the
boundaries of the DR are defined by the equatign)
=opr(ne). Therefore, the percolation occurs at the average
densityn; that satisfies the relatiompg(n,) =n,. Under this
condition, the DR boundary passes simultaneously through
all the saddle points in the system. For example, within a
single rectangular unit cell, the DR has the shape of a rhom-

Perhaps the only serious deficiency of the proposed TA i®us with vertices at the midpoints of the cell edges. Solving

the omission of the funneling effect of the saddle points
Indeed, according to Eq115 the boundaries of the DRs
coincide with the o(r)=opgr=const contour, whereas we

the above equation numerically, we foung

0.31n;. This
number is independent af,=b,/b, because checkerboards
with differentz,, can be mapped onto each other by rescaling

showed in Sec. IV that there are logarithmic deviations fromthe coordinate axes. Within the TA, such a rescaling does not
such a behavior, and these are noticeable in Figs. 3 and 4. Ahange the topology of the DRs or the average electron den-

any rate, the ansafa15) is probably the simplest form that
one can write down, so it makes sense to examine how

sity.
it Clearly, the TA is unable to resolve the existence of two

performs. Having learned its strengths and limitations, oneeparate thresholds,, and n, in the asymmetric checker-

will be in a better position to apply this kind of method in

board. Within the TA, the percolation occurs simultaneously

situations where brute force numerical simulations are diffiin the x andy directions. StiII,n; is remarkably close to the

cult, such as in models of disordered systéfns.

The implementation of the TA method goes as follows.

First one selects a reasonably dense set, @nd determines
the correspondingpg by solving Eq.(116) on the computer.
In practice, we did it by approximating the integrals in Eq.
(116) by a sum over the grid points. Then, for eaghi, one

upper(global) percolation threshold determined numerically
for z.,=2 [see EQq.97)]. This is also the case at largey,
e.g., atz;,=3, where we foundn,=0.32n;. On the other
hand, at lowerz,, the discrepancy grows and reaches its
largest relative size of about 30%zt=1 [see Eq(96)]. We
believe that these discrepanciese threshold instead of two

evaluates the total energy of the corresponding trial statand the value ofi,) originate from the two drawbacks of the

(115). Finally, the electrochemical potentidk is computed

TA method we mentioned earlier. One is its inability to

by a numerical differentiation of the total energy with respecthandle widely separate length scales, which is the case in
to ne. The results of such calculations are shown by the thicicheckerboards with large,,. The other is its weakness in
lines in Figs. 5 and &). As one can see, the agreementdealing with the saddle points. The funneling effect of the

between the TA method results fr and the corresponding
numerical data points is very good.

saddle points allows the electron droplets to reach them
sooner as, increases. Therefore, the continuity of the elec-

To test the TA method further we can directly compare thetron liquid is established at a loweg compared to that pre-

density distributionn,(r) with the numerically determined

dicted by the TA.

245321-13



MICHAEL M. FOGLER PHYSICAL REVIEW B 69, 245321(2004)

One may wonder why the TA method is able to predigt 1 1 Vm ’ 1
with a much higher accuraty (~10%) in the case of a —FR(\) = 5 —\’kz—lE(arcsm—,kh) ,
randoma(r). One possible explanation is as follows. The 1-ky A A
funneling effect of the saddle points that is mishandled by (A3)

the TA method is especially pronounced in the checkerboard
geometry because all the saddle points have the same value 1 (A= C)N*- K2
of o, so that the percolation contour has to pass through all SF3\)=-———"5——"

= 5 5+ \\2=1(\*-C,)
: : : 7 (C.-D1-kp
of them simultaneously. Thus, the inaccuracy of our TA is

maximized precisely ab=n,. In contrast, in the case of a 1 1

random o(r) the percolation contour passes precisely x| AE arcsm}:,kh -B.F arcsm}:,kh '

through the center of a saddle point very rarely, and so the

TA works very well. (A4)
We conclude that the TA method is an excellent and con-

venient tool for determining the ground-state energy and de- 3 1 -k2+2CZ - 2C,K?

pleted area fraction but it may be less accurate when it comes A= 2C.(C.- DX -CH(L-K) *

to more subtle parameters of the real-space structure, espe-

cially if those are heavily dominated by the saddle points or - 1 (A5)

a hierarchy of multiple length scales. 2C,(C, - 1(KE-Cy)’
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APPENDIX: ELLIPSOIDAL HARMONICS

(AT)
The ellipsoidal harmonié$ of the first and the second

kinds, EP(¢€) andFR (&), respectively, are defined as the two 1 1 5 15 15 .
linearly independent solutions of the Lamé equaiifam A) ;Frl-()\) T E)\z - E)\Z\s‘)\z - larcsirf1/\).
d’A  1dfdA
42 T 20gqe - MM+ DE-L+KIPIA, (@ (A8)
5 ) 2 As an application of these formulas, one can derive the elec-
=(E-D(E-kp). (Al)  trostatic potentiaib(r ,z) around the elliptic DR discussed in

For eachm, which has to be a natural numbprgan take any Sec.plll. To do so one needs o substitute EAS) and(A4)
of 2m+1 different values that depend ¢g. The functions O Fry EQS.(41) and(42) for Ey, and also Eqs(52) and(53)

f(&)

EP(\) andFP(\) atA2=1 are related by for o into the series _expansio(r38). Combining sgch an
expression ford(r,z) with Eq. (60), one can then, in prin-
* dl ciple, deduce the formula for the density profile) of the
P(\) = P -
Ry = (@m+ DIE;(M) N \,W)|Ep(|)|2' (A2)  glectron liquid outside the DR. However, this calculation is
m

not presented here because for a gengrtbe result is rather
At large N, FR(\)<1/\™1 As a rule, theFP's are not ex-  unilluminating. The two notable exceptions dg=0, where
pressed in terms of elementary functions. For example, fopne obtains a circular DR with(r) given by Eq.(12), and
EP given by Eqgs.(41) and(42), Eq. (A2) leads to the fol- k,=1, where the DR is an infinite depletion strip and Eig)
lowing FP; holds.
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