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Spin relaxation in a two-dimensional electron gas in a perpendicular magnetic field
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We consider the problem of spin relaxation in a two-dimensional electrorf2isisG) in a perpendicular
magnetic field. We assume that the spin relaxation is induced by the Rashba spiis0yhitteraction, which
appears due to the inversion asymmetry of the confining potential. Our solution is based on a microscopic
evaluation of the spin-density response function of the 2DEG with impurities and SO interaction. We derive
explicit expressions for the transverse and longitudinal spin-relaxation rates. Our analysis shows, in particular,
that the spin-relaxation rates exhibitagnetoquantum oscillationwhich are analogous to the Shubnikov—de
Haas oscillations of the electrical resistivity. These oscillations can be observed, for example, in time-resolved
optical experiments.

DOI: 10.1103/PhysRevB.69.245312 PACS nuni®er72.25.Rb, 72.25.Dc

[. INTRODUCTION sity response function of a disordered 2DEG system with the
Rashba SO interaction in a perpendicular magnetic field. We
The study of spin relaxation in semiconductor two- obtain explicit analytical expressions for the longitudinal and
dimensional electron gasé8DEG’S) is an important area of transverse spin relaxation rates:
the emerging field ofspintronics' The dominant spin-
relaxation mechanism in these systems can typically be 1_ 8\2meg1/h? 1 1

associatetl with the Rashba spin-onb{SO) interaction* r, l+(wn?' 71, 2_72

which exists due to the inversion asymmetry of the confining

potential in semiconductor heterostructure based 2DEG sysvhich reduce to the well-known Dyakonov-Kachorovakii
tems. A simple semiclassical picture of the spin relaxationgxpressions in the zero-field limit. We show, in particular,
due to Dyakonov and PeréDP),%® is that since the Rashba that the application of a perpendicular magnetic field leads to
interaction has the form of a momentum-dependent magnetiguantum oscillationf the spin relaxation rate, which are
field Nz-[ X p], it induces precession of the spin of a mov- analogous to the well-known quantum oscillations of trans-
ing electron. This precession leads to the randomization gfort coefficients. These oscillations arise from the magnetic
the spin at long times. The DP spin relaxation rate is givenfield dependence of the scattering timewhich will be cal-

to leading order in\, by the simple expression 14  culated below.

~ (\pg/#)?7, wherepg is the Fermi momentum andis the The paper is organized as follows. In Sec. Il we calculate
elastic scattering time. QuasiclassicaNyg/# is simply the  the disorder-averaged Green’s function of a 2DEG system
spin-precession frequency, associated with the Rashba fiel@ith the Rashba SO interaction in a perpendicular magnetic
The distinguishing feature of the DP spin relaxation is thaffield using the self-consistent Born approximati@@CBA).

the relaxation rate is smaller in more disordered systemdn Sec. Ill the spin-density response function of our system is
since impurity scattering disrupts the Rashba spin precessiglculated by summing SCBA self-energy and ladder vertex
by randomizing the electron’s momentum. corrections to the bare polarization diagram. The transverse

It is well known that transport processes in 2DEG system#&nd longitudinal spin relaxation rates are then extracted from
are strongly influenced by the application of a perpendiculathe poles of this response function.
magnetic field. The perpendicular field quantizes electron’s
energy  spectrum, which manifests spectacularly Ny pgnsITY OF STATES AND DISORDER SELF-ENERGY
Shubnikov-de HaasSdH) oscillations of the resistivity and
eventually leads to the quantum Hall effect. In this paper we The simplest single-particle Hamiltonian describing the
address the question of how a perpendicular magnetic fieldynamics of electrons in a semiconductor 2DEG in a perpen-
influences the Rashba SO interaction-induced spin relaxatiodicular magnetic field can be written as
in semiconductor 2DEG systems. This problem has been ad-
dressed before by several authors, both in the
semiclassic&® and in the quantum limit&€-%but a com-
plete and rigorous analysis is still lacking.

In this paper we will provide such an analysis. We will wherem=p+(e/c)A is the kinetic momentums is the spin
mainly be interested in the regime of moderate magnetioperator, and\,=gugB is the Zeeman energy. The second
fields, such thatw.7=1 (herew, is the cyclotron frequengy  term in Eq.(1) describes the Rashba SO interaction. Hamil-
and eg>fiw.. Our analysis can, however, be generalized tatonianH, can be easily diagonaliz&#-1°%f one notices that
the quantum Hall limit, wher: ~fw, andw,7is large. Our  the Rashba term mixes only neighboring Landau levels with
theory is based on a microscopic evaluation of the spin demspposite spin directions. The eigenstates are thus given by

w A,
Ho= —— +\2-[r X 7] - =2 1
0= 5 NZ-[7X 1] 272, (D
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|n’a> = u”a|n’ ‘L> + U”aJn B 1'T>’ (2) 1_‘na,n’a’ = 2 <Vna,n’a’(kak/)vn’a’,na(k,xk»a (9)

wherea=1,2 and|n,o) is the nth Landau level eigenstate ¥

with spino=1,|. The corresponding eigenenergies are and

g+ A, \?
€na=hon+ (- 1)a\/(wc—z> + 2°mhwen,  (3) GR(e) = ;, (10)
2 na €= €na— 3R (€)

is the retarded SCBA Green’s function. The angular brackets

in EQ. (9) denote disorder average.

. _.\/1 (= D2(hag + A2 Matrix elements of ' can be easily evaluated for
na

where w.=eB/mc. Note thatn=1,2,... fora=1, butn
=0,1,... fora=2. The amplitudesi,, andv,, are given by

S-function impurity potential and are given by

2 (hwe+ A)Y4 + 20°mhiwn’

fw,
F It = Cu ZUI12+ 2 172, 11
1 (- 1)a+1(ﬁwc+ A)I2 nan’a 271_7_0(| na| | n’a | |Una| |Un a | ) (11
Upa= (= D* [+ , > > . (4
2 \(hog+A)H4 + 2°mhon wherer, is the elastic impurity scattering time in the absence

Using the above basis of single-particle eigenstates, th8f the magnetic field.

Hamiltonian of the 2DEG system in the presence of impurity . Equat|on(8).|s too corppllcated Ito bel salved analyt_lcallly
scattering potential can be written as without approximations. Fortunately, only very minor simpli-

fication is needed to make this equation solvable. The main
- t Net complication is the dependence of the matfixon the
H=2 eratnalnact 2 Vnawar(KK)Cragnrani Landau-level index. This dependence is, however, inessen-
tial, since it appears entirely due to the term’@fwn in
(5) Eq. (4). The dependence on in this term can be safely
where indexk denotes orbit-center quantum numbers in the/gnored, since the Rashba SO interaction can be assumed to
Landau gauge and be a weak perturbation, in the sense that<e. In this
case we can make a replacemant e-/%iw. in the Rashba
, By term in Eqs(3) and(4), which makes the amplitudes, and
Vignar(kK) =2 fdr\Pnak(r")V(r)‘Pn’a’k’(“’)' (6) .. and, consequenthl’, independent of.2% This simple
7 approximation allows us to solve E@) analytically.

nak nakn’a’k’

are the matrix elements of the impurity potentét) in the It is convenient to introduce the following new notation.
basis(2). The wave functionsV',,(r o) are given by Let
\Pnal&r 1= Unad’n—l,k(r)- A= 2\/( ﬁwcz"' A2)2 + 2)\2m6|:. (12)
VYoadrl)=u r, 7
nald 1) = tnahn,{1) @ Then e,,=fiwn+(-1)2A/2. Also, define
where ¢, (r) are the Landau-level eigenfunctions in the _ _
Landau gauge. up=icogd), vi=sin(d),
Our analysis of the spin relaxation in a system, described
by Eq. (5), is based on a calculation of the spin density Uy =i sin(®¥), v,=-cogd), (13)

response function, which is similar to Ando’s calculation of

the conductivity of a 2DEG in a perpendicular fi#ldsee where

Ref. 19 for a related recent work on magnetotransport prop-

erties of Rashba 2DEG system®ur calculation is techni- 1 faoctA,

cally more complicated than Ando’s due to the presence of cog9) = N2~ " oA (14)
the SO interactions and also due to the fact that vertex cor-

rections to the polarization bubble, which vanish in the caséJsing this notation, the matrix elements Iofare given by
of the conductivity calculation, are crucial in our case.

Following Ando, we use the SCBA to find the disorder- =Tz @[1 —lsinz(Zﬁ)]
averaged Green’s function. This is a very good approxima- umt2T onn 2 ’
tion for the high Landau-level filling factors that we are as-
suming. The SCBA equation for the retarded disorder self- 52
energy in our case reads =Ty = wcsin2(2ﬁ)_ (15)
TTo
R — R
Zra€) = 2 TnanaGyar(€), ® Let us also make the usual assumption that the real part of
na . . .
the disorder self-energy can be absorbed into the chemical
where potential. Then SCBA equation can be written as
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Im 35(€) = X Tanlm Gy (€) = = 272022 T g 0 (6, @ A
na’ a' - i i

(16) .

b = ! + |

where ® ' l

1 R
0q(€) == WE Im Gy(e), (17) FIG. 1. (a) SCBA equation for the disorder-averaged Green’s
n

function. (b) Equation for the vertex functioD. Dashed lines de-

is the density of states arfd: V7c/eBis the magnetic length. note impurity potential correlataiv(r)V(r’)).
Writing out Eq.(17) explicitly, we have
of I'. Then the density of states becomes independent of the

04(e)=- # indexa and is given by the following simple expression:

" i ImE?(e) o(e) = Qo[ 1+2> e‘”P/‘“cToco< 2mpe _ wp)] , (22
= [6— ﬁwcn _ (_ 1)aA _ hwc5a,1]2 + [Ing(e)]z' p=1 ﬁwc

(18)  wherep,(€)=0,(e)=p(€)/2 andgy,=m/#2x is the zero-field

The sum over Landau-level indices in the above equation caflensity of states. If the magnetic field is not too large, i.e., if
be done using the Poisson summation fornfla: wer=1, only the first term in the sum overin Eq. (22)
needs to be retained. Then the oscillatory term in the density
(0)

- f oo . of states is purely sinusoidal. Substituting £g2) in Eq.

> f(n)= > 7 > f dn f(n)e?™P". (19 (16) we find that SCBA self-energy is also independent of
=0 p==e= =0 the indexa and is given by

Up to this point, our calculations were applicable to mag-

netic fields of general strength. To proceed further, we will Im SR(e) = - _ho_ mh® 0@ 29
restrict ourselves to the regime whef7r/A>1 and e 27(e) 2mry ’

>fiw.. (The calculation we present can be done in other

regimes as well, but the actual procedure will be a littleThe above disorder self-energy reduces to the usual expres-
different) This allows us to neglect the terff0)/2 in Eq.  sion /27, in the zero-field limit. At finite fields, the oscil-
(19). Then, changing the integration variablexs#iw,n—e latory term in the density of states in E@3) is at the origin
+(=1)?°A+%w.8, 1 and extending the lower limit of integra- of a number of magnetoquantum oscillation phenomena, in-

tion to —°, which is justified by the above assumptions, wecluding the SdH oscillations of the electrical resistivity. As
obtain will be shown later, it also leads to similar magnetoquantum

oscillation effects in the spin relaxation rate.

1 <« (* dx
Qal€)=— 2202 > P
¢ p==oe J —o LW IIl. SPIN DENSITY RESPONSE FUNCTION
« exp(ZwipX +e-(-1)°%A- ﬁwc5a,1) Im 3%(e) We can now calculate spin-density response function of a
hog x2+[32R(e]?"  disordered 2DEG system with the Rashba SO interactions in
a perpendicular magnetic field. Transverse and longitudinal
(20 ) .
spin relaxation rates can be found from the poles of the cor-
Calculating the above integral, we obtain responding spin-density response functions. The calculation
o is similar to the analogous calculation that can be done at
m oo | ~ . : X
— 1+ 2> e o zero fields= We will usefi=1 units in the rest of this section,
0(€) 271%2[ p§::1 except for the final results.
We start from the general density matrix response func-
- (-1)%A - hwd ion:
X cos(27-rpE ) e ai)] (21) tlon:
haog

XO'(T,(T(T(r —I”,t—t,)

where we have replaced |EI§(E), which appears in the ex- s _4 ~t .

ponent after integration, by its zero-field valug/27,. The =10 =) [20,0,(11), 00, (T, 1)D, (24)
oscillatory term in the above expression is slightly different R

from the usual expression, which is periodicfin, due to ~ Whered, .. (r =W, (r h¥, (r 1) is the generalized den-
the presence of the Rashba and Zeeman splittings. In whaity operator, whose expectation value is the density matrix.
follows we will ignore this modification of the density of As usual, the calculation is most conveniently done by ana-
states, setting.=0 andA,=0 in the oscillatory term. This lIytical continuation of the imaginary time response
does not mean, of course, that we are ignoring SO interadunction?® Fourier transformed imaginary time response
tions altogether, since they still enter in the matrix elementgunction can be written as
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H 1 H H H P(OT 05,070,
Xoyoprsorg( A1) = /—% Pooyorso(diioio+iQ), (25) 17273%

1
:F J drdr ’G/,;\Sgl(r ’,r,e,:)foz%(r,r " e+ Q)

(er—ine+Q+in

where

1 N4 "oV ,
:FJdrdr, E nak(r o3) nak(r o1)

Pa'lo'z,(r3o'4(r -riojio+ IQ’) €~ €na— i12r

(G (111 0) G (11T +1€0)) (26)

nakn’a’k’
\I’nra/k/(r 102)\P:’a’k’(r ’10-4)
X

€ +Q0 - €nrg’ + |/2'T

(32
is the polarization bubble diagram agdare imaginary time
Green’s functionsP can be calculated by summing all the \ynerer= Her) and the wave functions are given by Ea).

SCBA diagrams for the disorder self-energy and all the ladp,o spatial integrals in the above equation can be easily
der vertex corrections to the polarization bubble, which con, 4 uated using the orthonormality of the Landau gauge
stitutes a conserving approximation for the density matrixeigenfuctions and are given by

response function. The result can be written in matrix nota-

tion asP=P°D, whereP? is the “bare” polarization bubble

with only the self-energy corrections included: f A WoalF, D Wovarie (1, 1) = Vabar G ik

0
010,030,

= G (T T 10)G o (1 i +i0Q),  (27)

(r=r'jiojio+iQ) N .
dr\lfnal&r, l )q,nrarkr(r , l) = Uauar 5n’nr 5k,k’ y

with G here being the disorder-averaged Green’s function. Jdr‘l’ﬁa;g(r.T)\I’nrarkr(r,l)=v;ua,5n,n,+18k,k,,
The vertex part, or, as it is often called, diffusion propagator,
D satisfies the following matrix equation:

J dr‘l’ﬁak(r s l)\I’nra/kr(r s T) = U;l)ar 5n,n’—15k,k’ . (33)

D=1+ yPD, (28)
The sums over Landau-level indices in Eg§2) can be done
where y=(VA(r)). The solution of this equation is as follows. We first decouple the product of two Green's
functions appearing iN32) as
D=[1-PT™. (29 1

We can now calculate the retarded real time response (e — €,,— 1/27) (e + Q — €4 +1/27)
function by analytically continuing Eq25) to real frequen-

cies. The result can be written as an integral along the branch - 1 ( 1
cut of the SCBA Green’s function: Q+(-1)2A-(-D)¥A+i/7\ €~ €na— /27
1
© de , , - : 34
X(@,0) = f S AP et ine+ O +in) e,:+Q—en,a,+i/27) .

The real parts of the decoupled sums over Landau-level in-
dices can then be neglected by our assumption taat
-P(g,e-Q-ine-in)]. (30 >fiwe, \Pg, 7). The imaginary parts are simply proportional
to the density of states at Fermi energfer). Thus we ob-
At low frequencies and low temperatures E80) can be tain the following expressions for the matrix element$8f
simplified to

-P(Q,e-ine+Q+in +P(q,e-Q-ine+in)

1
YR =Y = (1 - Esmz(Zﬁ))fo(Q)

iQ . . &)
X(q!Q):Z_P(q!EF_IWIEF+Q+I7’)+Q( £ . (31)
T 2

Sir?(29)
+ = @)+ @),

Thus, the problem reduces to calculating the matrix
PY(q, ec—i7n, ee+Q+i7). We will in fact be interested only 0 0 Sin?(29)
in the relaxation of uniform spin polarization and thus will ~ YPir. = YPn = 4 [2fo() = £.(Q) - f(D)],
setq=0 henceforth. The calculation & in our case closely
resembles the analogous calculation in the zero-field SIrg(29)
problem?? YR 1= Tfo(ﬂ + wp) + Sif(N . (Q + o)

We start from the definition oP® Eq. (27), using the
disorder-averaged Green’s functions calculated in Sec. II: +co(NF_(Q+ wy),
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Sir(29) ) zero-field case, except for the factor[1#(w.7)?], which
PP = TfO(Q = w) + sinf(9)_(Q - wo) describes the suppression of spin relaxation by the perpen-
dicular field. The mechanism of this suppression can be un-
+cod(Nf Q- wp), (35  derstood in quasiclassical terms by imagining electrons mov-
ing along classical cyclotron orbits and undergoing impurity
where functiong, andf, are given by scattering anq the Rashba s_pin prece'ssio.n. Orbital motion
affects the spin precession, since the direction of the Rashba
1 field is always transverse to the direction of electron’s veloc-
fol)) = 1-iQ7 ity, and thus changes as the electron moves along a circular
cyclotron orbit. However, ifw.7<<1, impurity scattering ran-
1 domizes the direction of electron’s motion and the influence
f.(Q) = 1 i0riAs (36) of the magnetic field on the orbital motion is then negligible.

On the other hand, when.r> 1, electrons can move around

] ) cyclotron orbits almost freely and thus the Rashba spin pre-

All other matrix elements oP® vanish. _ cession is averaged out. This picture of the suppression of
To calculate the transverse and longitudinal spin relaxyne pp spin relaxation by a perpendicular magnetic field has

ation rates we need to fjnd the poles of the sp_in-density répeen discussed before by several autfidtddowever, we
sponse function, or, equivalently, zeroth of the inverse diffu-3re not aware of a rigorous derivation of a simple analytical

sion propagatoD™. It is most easily done by transforming expression for the spin-relaxation rate, such as(&@).
D™* to the physical space of charge and spin-density compo- prohably the most noteworthy feature of our result is the
nents, which is accomplished by multiplying it on both sidesggciliatory dependence on the magnetic field, which appears
with Pauli matrices: due to the oscillatory term in the scattering rater inf Egs.
(22) and(23). If w,7<1, we may neglect théw,7)? term in
D;%;: ETﬁlgzD;igz,%%TgM, (37)  the denominator in Eq40) and leave only the first term in
the sum ovep in Eqg. (22). In this case spin relaxation rates
wherea, 8=c,X,Y,z and 7° is the identity matrix. Thus we Wwill exhibit purely sinusoidal SdH-like oscillations. Similar
obtain effects have been discussed earlier in the context of nuclear
DU spin-lattice relaxation in quantum Hall systeffis?® How-
De(€) =1 = fo(€), ever, the possibility of such magnetoquantum oscillations in
the SO-induced spin relaxation rates has never been dis-

-1 — Sinf(29) cussed before. Such oscillations have in fact been observed
Daz((V) =1~ fo((1) + 2 [2fo(€2) = £.(0) = - ()], in recent experiments on spin relaxation in InGaAs quantum
wells 27
i SirA(29) ) In conclusion, we have considered the problem of spin
DZ(Q)=1- > fo(Q + wg) = sirf(9)F.(Q + ) relaxation in a 2DEG with the Rashba SO interactions in a
perpendicular magnetic field. We have given a rigorous mi-
- cod(NF_(Q+ o). (39 croscopic derivation of the transverse and longitudinal spin

relaxation rates from the poles of the spin-density response
Clearly D_2(0)=0, which is a consequence of charge conserfunction in the limit e->7%w.. It is possible to extend our
vation. For the spin part of the inverse diffusion propagatorcalculation to other regimes, including the quantum Hall re-
to leading order inl\pe7/% and Qr, and assuming that,  gime e~ #Aw,. Our results demonstrate that magnetoquan-

<hw,, We obtain tum oscillation effects should be observed in spin-relaxation
phenomena in 2DEGs. One of the advantages of our ap-
7D Q) =-i0+ 1, proach is that it can be easily extended to study another very

7 interesting and still unexplored question of what is the effect

of Coulomb interactions on the spin relaxation in semicon-
ductor 2DEGs. This question will be addressed in a future

— - H T 1
7D =-iQ+iA A+ —, (39 publication.

Ty

where the longitudinal and transverse spin relaxation rates

are given by
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