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We consider the problem of spin relaxation in a two-dimensional electron gas(2DEG) in a perpendicular
magnetic field. We assume that the spin relaxation is induced by the Rashba spin-orbit(SO) interaction, which
appears due to the inversion asymmetry of the confining potential. Our solution is based on a microscopic
evaluation of the spin-density response function of the 2DEG with impurities and SO interaction. We derive
explicit expressions for the transverse and longitudinal spin-relaxation rates. Our analysis shows, in particular,
that the spin-relaxation rates exhibitmagnetoquantum oscillations, which are analogous to the Shubnikov–de
Haas oscillations of the electrical resistivity. These oscillations can be observed, for example, in time-resolved
optical experiments.
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I. INTRODUCTION

The study of spin relaxation in semiconductor two-
dimensional electron gases(2DEG’s) is an important area of
the emerging field ofspintronics.1 The dominant spin-
relaxation mechanism in these systems can typically be
associated2 with the Rashba spin-onbit(SO) interaction,3,4

which exists due to the inversion asymmetry of the confining
potential in semiconductor heterostructure based 2DEG sys-
tems. A simple semiclassical picture of the spin relaxation,
due to Dyakonov and Perel(DP),2,5 is that since the Rashba
interaction has the form of a momentum-dependent magnetic
field lẑ·ft3pg, it induces precession of the spin of a mov-
ing electron. This precession leads to the randomization of
the spin at long times. The DP spin relaxation rate is given,
to leading order inl, by the simple expression 1/tsf
,slpF /"d2t, wherepF is the Fermi momentum andt is the
elastic scattering time. Quasiclassically,lpF /" is simply the
spin-precession frequency, associated with the Rashba field.
The distinguishing feature of the DP spin relaxation is that
the relaxation rate is smaller in more disordered systems,
since impurity scattering disrupts the Rashba spin precession
by randomizing the electron’s momentum.

It is well known that transport processes in 2DEG systems
are strongly influenced by the application of a perpendicular
magnetic field. The perpendicular field quantizes electron’s
energy spectrum, which manifests spectacularly in
Shubnikov-de Haas(SdH) oscillations of the resistivity and
eventually leads to the quantum Hall effect. In this paper we
address the question of how a perpendicular magnetic field
influences the Rashba SO interaction-induced spin relaxation
in semiconductor 2DEG systems. This problem has been ad-
dressed before by several authors, both in the
semiclassical6–9 and in the quantum limits,10–15 but a com-
plete and rigorous analysis is still lacking.

In this paper we will provide such an analysis. We will
mainly be interested in the regime of moderate magnetic
fields, such thatvct&1 (herevc is the cyclotron frequency),
and eF@"vc. Our analysis can, however, be generalized to
the quantum Hall limit, wheneF,"vc andvct is large. Our
theory is based on a microscopic evaluation of the spin den-

sity response function of a disordered 2DEG system with the
Rashba SO interaction in a perpendicular magnetic field. We
obtain explicit analytical expressions for the longitudinal and
transverse spin relaxation rates:

1

tz
=

8l2meFt/"2

1 + svctd2 ,
1

t'

=
1

2tz
,

which reduce to the well-known Dyakonov-Kachorovskii2

expressions in the zero-field limit. We show, in particular,
that the application of a perpendicular magnetic field leads to
quantum oscillationsof the spin relaxation rate, which are
analogous to the well-known quantum oscillations of trans-
port coefficients. These oscillations arise from the magnetic
field dependence of the scattering timet, which will be cal-
culated below.

The paper is organized as follows. In Sec. II we calculate
the disorder-averaged Green’s function of a 2DEG system
with the Rashba SO interaction in a perpendicular magnetic
field using the self-consistent Born approximation(SCBA).
In Sec. III the spin-density response function of our system is
calculated by summing SCBA self-energy and ladder vertex
corrections to the bare polarization diagram. The transverse
and longitudinal spin relaxation rates are then extracted from
the poles of this response function.

II. DENSITY OF STATES AND DISORDER SELF-ENERGY

The simplest single-particle Hamiltonian describing the
dynamics of electrons in a semiconductor 2DEG in a perpen-
dicular magnetic field can be written as

H0 =
p2

2m
+ lẑ · ft 3 pg −

Dz

2
tz, s1d

wherep=p+se/cdA is the kinetic momentum,t is the spin
operator, andDz=gmBB is the Zeeman energy. The second
term in Eq.(1) describes the Rashba SO interaction. Hamil-
tonianH0 can be easily diagonalized3,16–19if one notices that
the Rashba term mixes only neighboring Landau levels with
opposite spin directions. The eigenstates are thus given by

PHYSICAL REVIEW B 69, 245312(2004)

0163-1829/2004/69(24)/245312(6)/$22.50 ©2004 The American Physical Society69 245312-1



un,al = unaun,↓l + vnaun − 1,↑l, s2d

wherea=1,2 andun,sl is the nth Landau level eigenstate
with spin s= ↑ ,↓. The corresponding eigenenergies are

ena = "vcn + s− 1daÎS"vc + Dz

2
D2

+ 2l2m"vcn, s3d

where vc=eB/mc. Note that n=1,2, . . . for a=1, but n
=0,1, . . . fora=2. The amplitudesuna andvna are given by

una = iÎ1

2
+

s− 1das"vc + Dzd/2
Îs"vc + Dzd2/4 + 2l2m"vcn

,

vna = s− 1da+1Î1

2
+

s− 1da+1s"vc + Dzd/2
Îs"vc + Dzd2/4 + 2l2m"vcn

. s4d

Using the above basis of single-particle eigenstates, the
Hamiltonian of the 2DEG system in the presence of impurity
scattering potential can be written as

H = o
nak

enacnak
† cnak+ o

nak,n8a8k8

Vna,n8a8sk,k8dcnak
† cn8a8k8,

s5d

where indexk denotes orbit-center quantum numbers in the
Landau gauge and

Vna,n8a8sk,k8d = o
s
E drCnak

p srsdVsr dCn8a8k8srsd, s6d

are the matrix elements of the impurity potentialVsr d in the
basis(2). The wave functionsCnaksrsd are given by

Cnaksr ↑d = vnafn−1,ksr d,

Cnaksr ↓d = unafn,ksr d, s7d

where fn,ksr d are the Landau-level eigenfunctions in the
Landau gauge.

Our analysis of the spin relaxation in a system, described
by Eq. (5), is based on a calculation of the spin density
response function, which is similar to Ando’s calculation of
the conductivity of a 2DEG in a perpendicular field20 (see
Ref. 19 for a related recent work on magnetotransport prop-
erties of Rashba 2DEG systems). Our calculation is techni-
cally more complicated than Ando’s due to the presence of
the SO interactions and also due to the fact that vertex cor-
rections to the polarization bubble, which vanish in the case
of the conductivity calculation, are crucial in our case.

Following Ando, we use the SCBA to find the disorder-
averaged Green’s function. This is a very good approxima-
tion for the high Landau-level filling factors that we are as-
suming. The SCBA equation for the retarded disorder self-
energy in our case reads

Sna
R sed = o

n8a8

Gna,n8a8Gn8a8
R sed, s8d

where

Gna,n8a8 = o
k8

kVna,n8a8sk,k8dVn8a8,nask8,kdl, s9d

and

Gna
R sed =

1

e − ena − Sna
R sed

, s10d

is the retarded SCBA Green’s function. The angular brackets
in Eq. (9) denote disorder average.

Matrix elements of G can be easily evaluated for
d-function impurity potential and are given by

Gna,n8a8 =
"2vc

2pt0
suunau2uun8a8u

2 + uvnau2uvn8a8u
2d, s11d

wheret0 is the elastic impurity scattering time in the absence
of the magnetic field.

Equation(8) is too complicated to be solved analytically
without approximations. Fortunately, only very minor simpli-
fication is needed to make this equation solvable. The main
complication is the dependence of the matrixG on the
Landau-level indexn. This dependence is, however, inessen-
tial, since it appears entirely due to the term 2l2m"vcn in
Eq. (4). The dependence onn in this term can be safely
ignored, since the Rashba SO interaction can be assumed to
be a weak perturbation, in the sense thatlpF!eF. In this
case we can make a replacementn→eF /"vc in the Rashba
term in Eqs.(3) and(4), which makes the amplitudesuna and
vna and, consequently,G, independent ofn.19 This simple
approximation allows us to solve Eq.(8) analytically.

It is convenient to introduce the following new notation.
Let

D = 2ÎS"vc + Dz

2
D2

+ 2l2meF. s12d

Thenena="vcn+s−1daD /2. Also, define

u1 = i cossqd, v1 = sinsqd,

u2 = i sinsqd, v2 = − cossqd, s13d

where

cossqd =Î1

2
−

"vc + Dz

2D
. s14d

Using this notation, the matrix elements ofG are given by

G11 = G22 =
"2vc

2pt0
f1 − 1

2sin2s2qdg ,

G12 = G21 =
"2vc

pt0
sin2s2qd. s15d

Let us also make the usual assumption that the real part of
the disorder self-energy can be absorbed into the chemical
potential. Then SCBA equation can be written as
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Im Sa
Rsed = o

n,a8

Gaa8Im Gna8
R sed = − 2p2,2o

a8

Gaa8%a8sed,

s16d

where

%ased = −
1

2p2,2o
n

Im Gna
R sed, s17d

is the density of states and,=Î"c/eB is the magnetic length.
Writing out Eq.(17) explicitly, we have

%ased = −
1

2p2,2

3 o
n=0

`
ImSa

Rsed
fe − "vcn − s− 1daD − "vcda,1g2 + fImSa

Rsedg2 .

s18d

The sum over Landau-level indices in the above equation can
be done using the Poisson summation formula:21

o
n=0

`

fsnd =
fs0d
2

+ o
p=−`

` E
0

`

dn fsnde2pipn. s19d

Up to this point, our calculations were applicable to mag-
netic fields of general strength. To proceed further, we will
restrict ourselves to the regime wheneFt /"@1 and eF
@"vc. (The calculation we present can be done in other
regimes as well, but the actual procedure will be a little
different.) This allows us to neglect the termfs0d /2 in Eq.
(19). Then, changing the integration variable tox="vcn−e
+s−1daD+"vcda,1 and extending the lower limit of integra-
tion to −̀ , which is justified by the above assumptions, we
obtain

%ased = −
1

2p2,2 o
p=−`

` E
−`

` dx

"vc

3 expS2pip
x + e − s− 1daD − "vcda,1

"vc
D Im Sa

Rsed
x2 + fSa

Rsedg2 .

s20d

Calculating the above integral, we obtain

%ased =
m

2p"2F1 + 2o
p=1

`

e−pp/vct0

3 cosS2pp
e − s− 1daD − "vcda,1

"vc
DG , s21d

where we have replaced ImSa
Rsed, which appears in the ex-

ponent after integration, by its zero-field value −" /2t0. The
oscillatory term in the above expression is slightly different
from the usual expression, which is periodic in"vc, due to
the presence of the Rashba and Zeeman splittings. In what
follows we will ignore this modification of the density of
states, settingl=0 andDz=0 in the oscillatory term. This
does not mean, of course, that we are ignoring SO interac-
tions altogether, since they still enter in the matrix elements

of G. Then the density of states becomes independent of the
index a and is given by the following simple expression:

%sed = %0F1 + 2o
p=1

`

e−pp/vct0cosS2ppe

"vc
− ppDG , s22d

where%1sed=%2sed=%sed /2 and%0=m/"2p is the zero-field
density of states. If the magnetic field is not too large, i.e., if
vct&1, only the first term in the sum overp in Eq. (22)
needs to be retained. Then the oscillatory term in the density
of states is purely sinusoidal. Substituting Eq.(22) in Eq.
(16) we find that SCBA self-energy is also independent of
the indexa and is given by

Im SRsed ; −
"

2tsed
= −

p"3

2mt0
%sed. s23d

The above disorder self-energy reduces to the usual expres-
sion −" /2t0 in the zero-field limit. At finite fields, the oscil-
latory term in the density of states in Eq.(23) is at the origin
of a number of magnetoquantum oscillation phenomena, in-
cluding the SdH oscillations of the electrical resistivity. As
will be shown later, it also leads to similar magnetoquantum
oscillation effects in the spin relaxation rate.

III. SPIN DENSITY RESPONSE FUNCTION

We can now calculate spin-density response function of a
disordered 2DEG system with the Rashba SO interactions in
a perpendicular magnetic field. Transverse and longitudinal
spin relaxation rates can be found from the poles of the cor-
responding spin-density response functions. The calculation
is similar to the analogous calculation that can be done at
zero field.22 We will use"=1 units in the rest of this section,
except for the final results.

We start from the general density matrix response func-
tion:

xs1s2,s3s4
sr − r 8,t − t8d

= − iust − t8dkf%̂s1s2

† sr ,td,%̂s3s4
sr 8,t8dgl, s24d

where %̂s1s2
sr ,td=Cs2

† sr ,tdCs1
sr ,td is the generalized den-

sity operator, whose expectation value is the density matrix.
As usual, the calculation is most conveniently done by ana-
lytical continuation of the imaginary time response
function.23 Fourier transformed imaginary time response
function can be written as

FIG. 1. (a) SCBA equation for the disorder-averaged Green’s
function. (b) Equation for the vertex functionD. Dashed lines de-
note impurity potential correlatorkVsr dVsr 8dl.

SPIN RELAXATION IN A TWO-DIMENSIONAL… PHYSICAL REVIEW B 69, 245312(2004)

245312-3



xs1s2,s3s4
sq,iVd =

1

b
o
iv

Ps1s2,s3s4
sq,iv,iv + iVd, s25d

where

Ps1s2,s3s4
sr − r 8,iv,iv + iVd

= kGs3s1
sr 8,r ,ivdGs2s4

sr ,r 8,iv + iVdl s26d

is the polarization bubble diagram andG are imaginary time
Green’s functions.P can be calculated by summing all the
SCBA diagrams for the disorder self-energy and all the lad-
der vertex corrections to the polarization bubble, which con-
stitutes a conserving approximation for the density matrix
response function. The result can be written in matrix nota-
tion asP=P0D, whereP0 is the “bare” polarization bubble
with only the self-energy corrections included:

Ps1s2,s3s4

0 sr − r 8,iv,iv + iVd

= Gs3s1
sr 8,r ,ivdGs2s4

sr ,r 8,iv + iVd, s27d

with G here being the disorder-averaged Green’s function.
The vertex part, or, as it is often called, diffusion propagator,
D satisfies the following matrix equation:

D = 1 + gP0D, s28d

whereg;kV2sr dl. The solution of this equation is

D = f1 − gP0g−1. s29d

We can now calculate the retarded real time response
function by analytically continuing Eq.(25) to real frequen-
cies. The result can be written as an integral along the branch
cut of the SCBA Green’s function:

xsq,Vd =E
−`

` de

2pi
nFsedfPsq,e + ih,e + V + ihd

− Psq,e − ih,e + V + ihd + Psq,e − V − ih,e + ihd

− Psq,e − V − ih,e − ihdg. s30d

At low frequencies and low temperatures Eq.(30) can be
simplified to

xsq,Vd =
iV

2p
Psq,eF − ih,eF + V + ihd +

%seFd
2

. s31d

Thus, the problem reduces to calculating the matrix
P0sq ,eF− ih ,eF+V+ ihd. We will in fact be interested only
in the relaxation of uniform spin polarization and thus will
setq=0 henceforth. The calculation ofP0 in our case closely
resembles the analogous calculation in the zero-field
problem.22

We start from the definition ofP0 Eq. (27), using the
disorder-averaged Green’s functions calculated in Sec. II:

Ps1s2,s3s4

0 seF − ih,eF + V + ihd

=
1

L2 E drdr 8Gs3s1

A sr 8,r ,eFdGs2s4

R sr ,r 8,eF + Vd

=
1

L2 E drdr 8 o
nak,n8a8k8

Cnaksr 8,s3dCnak
p sr ,s1d

eF − ena − i/2t

3
Cn8a8k8sr ,s2dCn8a8k8

p sr 8,s4d

eF + V − en8a8 + i/2t
, s32d

wheret;tseFd and the wave functions are given by Eq.(7).
The spatial integrals in the above equation can be easily
evaluated using the orthonormality of the Landau gauge
eigenfuctions and are given by

E drCnak
p sr ,↑dCn8a8k8sr ,↑d = va

pva8dn,n8dk,k8,

E drCnak
p sr , ↓ dCn8a8k8sr ,↓d = ua

pua8dn,n8dk,k8,

E drCnak
p sr ,↑dCn8a8k8sr ,↓d = va

pua8dn,n8+1dk,k8,

E drCnak
p sr ,↓dCn8a8k8sr ,↑d = ua

pva8dn,n8−1dk,k8. s33d

The sums over Landau-level indices in Eq.(32) can be done
as follows. We first decouple the product of two Green’s
functions appearing in(32) as

1

seF − ena − i/2tdseF + V − en8a8 + i/2td

=
1

V + s− 1daD − s− 1da8D + i/t
S 1

eF − ena − i/2t

−
1

eF + V − en8a8 + i/2t
D . s34d

The real parts of the decoupled sums over Landau-level in-
dices can then be neglected by our assumption thateF
@"vc,lpF ,"V. The imaginary parts are simply proportional
to the density of states at Fermi energy%seFd. Thus we ob-
tain the following expressions for the matrix elements ofP0:

gP↑↑,↑↑
0 = gP↓↓,↓↓

0 = S1 −
1

2
sin2s2qdD f0sVd

+
sin2s2qd

4
ff+sVd + f−sVdg,

gP↑↑,↓↓
0 = gP↓↓,↑↑

0 =
sin2s2qd

4
f2f0sVd − f+sVd − f−sVdg,

gP↑↓,↑↓
0 =

sin2s2qd
2

f0sV + vcd + sin4sqdf+sV + vcd

+ cos4sqdf−sV + vcd,
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gP↓↑,↓↑
0 =

sin2s2qd
2

f0sV − vcd + sin4sqdf−sV − vcd

+ cos4sqdf+sV − vcd, s35d

where functionsf0 and f± are given by

f0sVd =
1

1 − iVt
,

f±sVd =
1

1 − iVt ± iDt
. s36d

All other matrix elements ofP0 vanish.
To calculate the transverse and longitudinal spin relax-

ation rates we need to find the poles of the spin-density re-
sponse function, or, equivalently, zeroth of the inverse diffu-
sion propagatorD−1. It is most easily done by transforming
D−1 to the physical space of charge and spin-density compo-
nents, which is accomplished by multiplying it on both sides
with Pauli matrices:

Dab
−1 =

1

2
ts1s2

a Ds1s2,s3s4

−1 ts4s3

b , s37d

wherea ,b=c,x,y,z and tc is the identity matrix. Thus we
obtain

Dcc
−1sVd = 1 − f0sVd,

Dzz
−1sVd = 1 − f0sVd +

sin2s2qd
2

f2f0sVd − f+sVd − f−sVdg,

D+−
−1sVd = 1 −

sin2s2qd
2

f0sV + vcd − sin4sqdf+sV + vcd

− cos4sqdf−sV + vcd. s38d

ClearlyDcc
−1s0d=0, which is a consequence of charge conser-

vation. For the spin part of the inverse diffusion propagator,
to leading order inlpFt /" and Vt, and assuming thatDz
!"vc, we obtain

t−1Dzz
−1sVd = − iV +

1

tz
,

t−1D+−
−1sVd = − iV + i"−1Dz +

1

t'

, s39d

where the longitudinal and transverse spin relaxation rates
are given by

1

tz
=

8l2meFt/"2

1 + svctd2 ,
1

t'

=
1

2tz
. s40d

Equation(40) is our main result. The form of these expres-
sions is rather similar to the well-known Dyakonov-
Kachorovskii expressions2 for the spin-relaxation rates in the

zero-field case, except for the factor 1/f1+svctd2g, which
describes the suppression of spin relaxation by the perpen-
dicular field. The mechanism of this suppression can be un-
derstood in quasiclassical terms by imagining electrons mov-
ing along classical cyclotron orbits and undergoing impurity
scattering and the Rashba spin precession. Orbital motion
affects the spin precession, since the direction of the Rashba
field is always transverse to the direction of electron’s veloc-
ity, and thus changes as the electron moves along a circular
cyclotron orbit. However, ifvct!1, impurity scattering ran-
domizes the direction of electron’s motion and the influence
of the magnetic field on the orbital motion is then negligible.
On the other hand, whenvct@1, electrons can move around
cyclotron orbits almost freely and thus the Rashba spin pre-
cession is averaged out. This picture of the suppression of
the DP spin relaxation by a perpendicular magnetic field has
been discussed before by several authors.6–8 However, we
are not aware of a rigorous derivation of a simple analytical
expression for the spin-relaxation rate, such as Eq.(40).

Probably the most noteworthy feature of our result is the
oscillatory dependence on the magnetic field, which appears
due to the oscillatory term in the scattering rate 1/t in Eqs.
(22) and(23). If vct,1, we may neglect thesvctd2 term in
the denominator in Eq.(40) and leave only the first term in
the sum overp in Eq. (22). In this case spin relaxation rates
will exhibit purely sinusoidal SdH-like oscillations. Similar
effects have been discussed earlier in the context of nuclear
spin-lattice relaxation in quantum Hall systems.24–26 How-
ever, the possibility of such magnetoquantum oscillations in
the SO-induced spin relaxation rates has never been dis-
cussed before. Such oscillations have in fact been observed
in recent experiments on spin relaxation in InGaAs quantum
wells.27

In conclusion, we have considered the problem of spin
relaxation in a 2DEG with the Rashba SO interactions in a
perpendicular magnetic field. We have given a rigorous mi-
croscopic derivation of the transverse and longitudinal spin
relaxation rates from the poles of the spin-density response
function in the limit eF@"vc. It is possible to extend our
calculation to other regimes, including the quantum Hall re-
gime eF,"vc. Our results demonstrate that magnetoquan-
tum oscillation effects should be observed in spin-relaxation
phenomena in 2DEGs. One of the advantages of our ap-
proach is that it can be easily extended to study another very
interesting and still unexplored question of what is the effect
of Coulomb interactions on the spin relaxation in semicon-
ductor 2DEGs. This question will be addressed in a future
publication.
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