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Controllable band structure in a periodic quantum well

Victor A. Pogrebnyak
Department of Electrical and Electronics Engineering, Faculty of Engineering and Architectukeir@a University,
Adana 01330, Turkey
(Received 8 October 2003; revised manuscript received 10 March 2004; published 15 June 2004

Electron states in a two-dimensiondD) infinitely deep quantum well, having periodically corrugated
walls, are analyzed. It is shown that corrugation causes resonant interaction between the transverse modes of
the electron wave function. The interaction results in the non-Bragg nature electron resonances, which give rise
to opening of additional band gaps, besides usual Bragg gaps. The position of the non-Bragg and Bragg gaps
in the quantum-well band structure depends on a period of corrugation and thickness of the quantum well. For
example, for a change in average thickness or period, at some of its value, one of the 2D levels becomes
resonant, and it causes the level splitting and the creation of a 2D subband with the negative effective mass.
The values of the effective mass and gap width depend also on the phase shift between two periodic bound-
aries. These quantities vary from zero to a maximum value upon shifting of one periodic boundary with respect
to another on the half period of corrugation. In the well having the congruent periodic boundaries, there are no
Bragg gaps in the band structure. The lateral periodicity causes the anisotropic stripelike electron-density
distribution in such a periodic quantum well.
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[. INTRODUCTION It appears necessary, then, to analyze electron states in a
quantum well having periodic boundaries in the free electron
The study of two-dimensional electronic systems evoke@pproximation. In spite of the fact that 2D electron systems
considerable interest due to the broad utilization of the sysare studied in detail, the periodic quantum well did not at-
tems in microelectroni¢s* as well as for the close relation tract much attention. In 2DEG problems, the periodic crystal
of this problem to explanation of high-temperature potential was usually included into the effective mass, as a
superconductivity~® Design of new devices are commonly 3D potential, but not as a 2D lateral modulation potential. To
based on exploiting the different configurations of multiple-our knowledge, the quantum-well band structure caused by
quantum-well structures and superlattices. Technological adreriodic lateral modulation, the effect of the phase shift be-
vances in this field allow enable the tailoring of electronictween two periodic boundaries on the band structure, and the
properties of the nanostructures by Varying of parameters cﬂﬂ:ectlve mass of an electron have not been studied. These
quantum wells and barriefs? In these nanostructures, the Problems can be solved analytically by using the standard
vertical transport of electrons across quantum wells is comperturbation theory. As a result, as shown in the paper, new
monly used. Despite great progress in this field, a multiplfundamental properties of a 2DEG are revealed in such a
quantum wel(MQW) has one main inherent defect: a period Periodic quantum well.
of the structure is always greater than a thickness of a single- N Ref. 16 it is shown that the periodic quantum-well band
quantum well. Therefore, the electron energy, associategfructure essentially changes if the characteristics energies
with the period, is always less than the energy of the groungorresponding to the transverse and longitudinal electron
state in the single-quantum well. Taking into considerationmotion become equal. The analysis, presented in this com-
that the energy level crossing causes important resonandBunication, shows that the lateral modulation results in the
properties of the system, it becomes clear that these resonaiRening of additional gaps and in the creation the subband
properties are excluded from MQW structures using the verWwith the negative effective mass. As a result the sharp anisot-
tical transport. This defect can be avoided if the in-plangfOpy of the effective-mass and transport phenomena, for
transport of electrons in a quantum well with periodic bound-electron motion perpendicular and parallel to grooves, arises
aries is used. In this case there are neither physical nor prifd such a periodic quantum well.
cipal technologicdl'®~*?restrictions on the relationship be-
tween thickness gnd a period. Moreover, modern tephnolqu II. INITIAL EQUATIONS
can create the bias voltage tunable lateral modulation using
the same principle as in the metal-oxide-semiconductor Consider an infinitely deep potential well of thickneks
transistor where both walls have one-dimensional periodic corruga-
Similar problems arise in the investigation of a two- tions described by the functions y4(x)= —d/2+ & cosX)
dimensional electron ga2DEG) in 2D layered structures, for the left boundary angy(x)=d/2+ p cos@x+ 6) for the
copper-oxide ceramics, at the boundary of a heterostructumrgght boundary, wherg=2w/a; &, p, anda are amplitudes
or at grain boundaries in mosaic crystals. In these cases and a period of the corrugations, the paramétisrthe phase
lateral modulation can be caused by the crystal lattice or bghift between the right and left periodic corrugations. As we
the presence of a plane array of dislocations, which form anentioned beforea may have a value of the crystal lattice
one- or two-dimensional long-period lateral modulatldnt®>  constant or any other value depending on a periodic profile
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FIG. 1. Two-dimensional potential-energy profile of a periodi-
cally corrugated quantum well is shown in thg plane(a) and a
lateral profile in thexy plane(b); 6 is the phase shift between the
left and right periodic boundaries.

PHYSICAL REVIEW B69, 245307 (2004

wherea,, andb, are the Fourier series coefficients,, and
ks, k, are the transverse and longitudinal components of the
wave vectork.

From the Schrodinger equation and Ed) follows the
dispersion relatiorE(k):

- h2(ke+nQ)? . h2Ke, . h2K2
2m 2m 2m ’

®)

Substitution of Eq.(4) into the boundary condition gives a
system of linear algebraic equations for the coefficiemts
andb, . By equating to zero the determinant of this system,
the allowed values ok, can be found. Hence, the disper-
sion relation in the quantum well is determined. For small
corrugations¢/d<<1, p/d<1 andéq<1, pq<1, it is suffi-
cient to retain the first three space harmonics. As a result, the
following characteristic equation is obtained for determina-
tion of allowed values ok,

Kok 1
sin(k_,d)

Kok Kok_1
tan(dk;) tan(dk_,)
koky
sin(k,d)

1
tan(kod)=z(§2+p2)[

1 cosé
Tt cogkod)

(6)

wherek.. , are the wave numbers of tme= =1 harmonics

ks1=vkgF 2kqg—0g°. @)

In Eq.(6), Eq.(7) and below the subscrigtis dropped in the
wave numberk, .

Ill. SHIFT OF THE 2D LEVELS

of the boundary. Thus, an electron is in a well bounded by a

two-dimensional potentidl (x,y)

0 —di2<y<d/2
o Yg(X)SY<y_q4(x)’

This potential pattern is illustrated in Fig. 1.
The wave function/(x,y,z) and the energy of the elec-

U(x,y)=[ (1)

The solution of Eq(6) is sought by the method of suc-
cessive approximation with respect§@ndp, i.e., kozkgo)
+6k+---. In a case of smooth boundarie$=0 and p
=0, Eq.(6) gives tank{d)=0. Therefore,

tron are found by solving the three-dimensional stationary

Schrodinger equation

—ﬁ(yﬂy—yﬁﬁ y+rUXY)Y=Ey, (2
subject to the boundary condition
P(X,y-a(X),2) = (X, Yq(X),2) =0, ()

where E is the electron energyn is the mass of the free
electron. Due to the boundary periodici(x,y,z) can be

represented in the form of a Fourier seri€oquet’s theo-

rem)

P(X,y)= ; [a, coskyny)+ by sin(kyny)]

Xexd j(ketna)x+jk,z],

(4)

a
kgO):pTEkop’ p:1,2,3,...,
R2(K2+K2) h?pm?
E=Eot —m  Eo~pmg - ®

These are well-known 2D subbands in a smooth quantum
well.

In the next approximation, fo€#0 and p+#0, the 2D
levelsE, and their shiftsSE, with respect to location in the
smooth quantum well are

&+ p? £pk, cosh
E=| 14+ 2Pk, cot(kyd) + (—1)P+1SPEE20 T
p 2q K Cotkad) (= D) S iy | Eop
9
oE. =SP4 cottkud) + (— 1ype2 SPKLOOSE
p=| Tg  Keootkd) (=P Gk | Foe
(10)
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Equation(9) describes a location of the 2D levels as a func- z z

tion of the geometric parametefsp,d, anda. Formulas(6) ¥) Y()

and (9) are counterparts of E@8) for the smooth quantum =y /‘k\

well. The last two equations and E¢p) indicate the non- @\jy p=2 /km\\”/

trivial dependence oE, on thek.,; wave numbers and on N

geometric dimensions of the quantum well. Primarily it dis- . '

plays the resonance behavior of the system, but of not less 1 1

importance is the dependence Bf on an angled, i.e., a ?-ks ?k§

dependence on the phase shift of one periodic boundary with o1 p=1 ot

respect to another. As will be seen below, both dependencies

cause new fundamental properties of electron behavior in the Y

periodic quantum well. -2 di2 —d/2 dr2
(@) (b)

V. NON-BRAGG RESONANCES FIG. 2. Variation of the fundamentak{,) and first spacek(,)

It is seen from Eqs(6), (9), and(10) that resonance in the harmonics of electron wave functiof(y) with they coordinate for
system occurs if the groundp=1, and the first exitedp=2, energy statex,, and
k., are wave numbers of transverse modes,(Eg. (a) In a case of
rar Bragg resonances, the wave functions have always similar wave
kiq= \/kozl 2k.q— %= szlr , r=123,... (1) forms. (b) Wave forms of transverse modes, havikg and ky;
wave numbers, are different. This is the non-Bragg resonance.
The new quantum numberdesignates the order number of
the resonance in the system. From Etfl), it is seen that
r<p in the first Brillouin zone. The Bragg resonandg,

The upper sign % " is taken for the resonant=1 harmonic
and the lower “minus”—for then=—1 harmonic. In Eq.

=+q/2, is a particular case of Eq11) at r=p. Equation (14) it is enough to consider the range>0 since it is ob-

(11) along with Eq.(9) are condition of the non-Bragg reso- Viously thatk. ,(— [kl ) =K_1([Ky)

nance between transverse modes of the wave function, and jt "€ wave functions of electrons with the resonignbave
can be written in the form the standing wave wave form along theaxis, but the elec-

trons can move freely in the transverse direction. This anisot-
ropy of electron motion resembles the stripe phase in high-

r p
kﬂ:FEklr , ko”:T' (120  temperature superconductors.
The physical meaning of the resonance condition becomes V. SUBMINIZONE SPECTRUM

clear if the last equations are rewritten in terms of the de
Broglie wavelength X=2w/k) associated with the trans-
verse modesk{”) andk.,) of the fundamentalr(=0) and

Substitution ofk; , ,

the resonant energy

into Eq. (5) gives an expression for

then==1 space harmonics of the electron wave function 52 K2, —q2—k2,\2
E K2+ Kop= 0~ ks (15)
P 2m 2q
Mo _ )\1
d=p- 2 ?' (13 In vicinity of resonance, the more accurate solution of Eq.

(6) shows that this resonant energy level splits into two val-
Equation(13) shows that a resonance arises if the thlckne3§|es|5+ andE,, separated by the forbidden gaf,, ,
of the welld is simultaneously a multiple of the de Broglie
half wavelengths associated with transverse modes of the , ) Y 211/2
fundamental §=0) andn==+1 space harmonics but with Epr=Epr|1FE— d[§ +2(-1) &p cosf+p°]
different quantum numbens andr Schematic illustration of (16)
this phenomenon is given in Fig. 2.

It is appropriate to underline here that in contrast to com- SEp = E;r— E;;r

mon consideration of interference of electronic traveling
waves that gives rise to the Bragg gap, E4®) and(13) are
the condition of the constructive or destructive interference
of electronic standing wavdfransverse modesThat is why

pr:

2EOp [gz+ 2(—1)P T 1¢p cosh+ p?]H2

this resonance is of a non-Bragg nature. (17
The resonant valudq, . of the wave numbek,, at Thus, the resonances divide thth subband into submi-
which the resonance Cond|t|(6ﬂ]3) hOldS can be found from nizones. The quantum numbershows the order number of
Eq. (12) the subminizone in the subband. A number of subminizones
in the minizone can be found from relatighl). Since the
K i(kz Rk (14) last gap(Bragg gap takes place at=p, it means that a
P 2q e number of subminizones equals the order nungbef given
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subband. The number of subminizones is the same as a num- E E
ber of gaps, including the Bragg gap. The rakgg between
two successive resonances in thepace can be found from
Eq. (14):

N N 2r+1 72
kx,r:kx,p,r+l_kx,p,r:W¥- (18

It does not depend on the quantum numper

A. The negative effective mass

From Eq. (15) it is seen that the resonant energy ap-
proaches to the ground stakg, as the expression in the
brackets kj,—q?—ki,) vanishes. Equality of this expres-
sion to zero imposes relationship between the thickmkss (a) (b)
and the periodh, and quantum numbers andr

FIG. 3. Schematic representation of dispersion cubfds) for
a different relations between thicknedsand perioda in the asym-
dreszi\/ pe—r2. (19 metric quantum well(a) Energy levelE, is located in the third
minizone of the ground 2D subbani) Energy levelE, is located
It means that given 2D level will be resonant under the spein the fourth minizone.
cific geometric relationship. That is why the resonance can

be named as the geometric resonance in a periodic quantum A. Asymmetric well, §=0
well. By analogy with solutiong16) and (17), the 2D level In this case, ifé=p, a separation between the congruent
of the pth subbande,,, splits atd=d s, into two levelsE,,  poundaries is constant and equaldaat any value of the
andE,, separated by the gagE,,,, x coordinate. If¢#p, the deviation fromd is equal to
*[€-pl|.
E§r= 14_,5 L[§2+2(_ 1)P*7+1¢) cosh+ p?] L2 Eop. (a) If poth p andr are even or both are od_d numbers, the
dp expressiong22), (16), and (17) for the effective mass, the
(200 resonant energy, and the gap take the form
2r _
SEp == —[£2+2(—1)PT " 1&p coso+ p? ]V, . m*:_immm (23)
dp v d  ?
(21)
Since SE,, is the forbidden gap, the geometric resonance _. +|§—P| r Eop E SE. —2) |€-pl E
causes the creation of the subminizdje with the negative PrelTT d pEy) P PreCp d o
effective mass (24
11 K. Kk (b) If p is even butr is odd or vice versa, then
m* =~ —— S 2(~ )P gp cosf+ p2]H2—22 .
22 a 22 el L (Ep) Kok 5
N 2v2 d  q°
From Egs.(6)—(22) it is seen that the band structure and the
effective mass of the electron in the quantum well substan- . (E+p) 1 Egp r (é+p)
tially depend on the phase shift between two periodic  E, =|1% —=|Epry OEp=2————Eq,.
J d pEy p d
boundaries. (26)
VI. EFFECT OF THE PHASE SHIFT ON VALUES OF THE Figure 3 shows qualitative representation of the disper-
GAP AND THE EFFECTIVE MASS sion curvesk(k,) and split IeveIsE,fr for the first two 2D

subbands in the asymmetric quantum well for different rela-

In this section the dependence of width of the gap, eqions between thickness and period

(17), and the effective mass, E(R2), on the phase shifé
between two periodic boundaries is investigated. The analy-
sis is given here for two case¢l) 6=0, which may be
called as a case of asymmetric boundaries, é2df= , In this case a separation between boundaries varies with
which corresponds to shifting of the right boundary on thethe x coordinate between valuekt ¢+ p andd— £—p.

half period of the corrugation. In the latter case the bound- (a) If both p andr are even or both are odd numbers, the
aries are symmetrical with respect to the centerline of thexpressions for the effective mass, split energy levels, and
well—the x axis. SE,, are given by Eqs(25) and(26).

B. Symmetric well, ==
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(b) If p is even and is an odd number or vice versa the =0 G=r
result is the same as EqR3) and (24).
From EQs.(25) and(26) it is first seen that the gapE,
and m* are proportional, as expected, to the perturbation l
(¢+p)/d caused by corrugations. But Eq3) and (24) \>
show that this common rule is not always valid. In the case LN
of the asymmetric well, described by E@23) and (24), all O
Bragg gaps (=p) and the effective mass vanish §&p.
Only the subminizone gaps, which have the order number
of different evenness than the quantum numteremain in
the energy spectrum of the subband. The widths of these
gaps are defined by E€R6). Thus, in a quantum well having ..
the congruent periodic boundaries, there are no Bragg gaps
in the band structure. -
In the symmetric well, the Bragg gaps as well as submi-
nizone gaps have the maximum value given by §). The
effective mass and subminizone gaps, defined by the condi- o ) )
tion (6) above, vanish. Figure 4 presents illustration of such FIG- 4. Qualitative evolution oE(k,) vs phase shife. (@) II-
a transformation of dispersions for the first two 2D subbandduStrates gapless zone folding in the asymmetric quantum well.
upon phase shiffin a quantum well with a specific configu- There are no Bragg gaps at the edge and center of the first Brillouin

ration corresponding to the geometric resonance case zone. Only non-Brag gapsEy open due to the energy level cross-
' ing. (b) Upon phase shi#= 7, in the symmetric well, Bragg gaps

open and have maximum values. For this particular illustration, in
VII. EVALUATION both(a) and(b) casesd anda are chosen to satisfy to the geometric

. L . resonance conditiofl9): the top of the second minizone touches
Let us estimateSE,, for a periodic quantum well having ha pottom of the second 2D subbafmbint I').

parameters close to the experimental realization of such a
structure in Ref. 11. Consider a thickness of the well gemiconductors*1”18 but at much higher temperatures in
=200 A, then a period of lateral modulation, [see Eqg. layered metallic crystal such as cuprates.
(19)], equals to 231 A. Assume an amplitude of the modula-
tion equal to 10% ofd and takem=0.058n, (InGaAs. In
this case, the band gafE,;= 13 meV opens in the vicinity
of the second energy level,. The gap can be observed, for  The investigation shows that the lateral periodic modula-
example, by measuring a dc conductivity in a direction pertion of a 2DEG causes Bragg and non-Bragg resonances and
pendicular to grooves at helium temperatures. When thgaps, which transform the band structure into subminizones.
Fermi energyEg coincides with the onset ofE,;, the con-  The Bragg gap corresponds to the last non-Bragg resonance
ductivity significantly drops due to the gafcr can be (p=r) in the subminizone structure, and as usual, it is the
changed by biasing or by doping as in cuprate superconductiap at the boundary of the Brillouin zone. A number of gaps
ors or, vice versa, the location &fE, can be altered by (the same as subminizonesncluding the Bragg gap, is
varyingd anda. In accordance with Eq25), anisotropy of  equal to the order number of the subband. For example, there
the effective massn* (L )/m*(ll), for electron motion per- are two subminizones in the second subbanée 2).
pendicular(L) and parallel]l) to grooves, equals 5.55. These At some specific configuration, the geometric resonance
estimates are in qualitative agreement with the experimentalccurs in the periodic quantum well. This phenomenon con-
results in Ref. 11. However, the geometry of the InGaAssists of the crossing of the folded 2D levels at a certain
periodic channel in Ref. 11 does not match the optimal di+elationship between a thickness and a period of the well. As
mensions taken here. The gap can be also detected by inves+esult, an electron state with the negative effective mass
tigating the photoeffect at =95.4um. arises in the 2D subband. A widthE,, of the gap and a

In discussing properties of a 2DEG in semiconductors andralue of the effective mas®* depend on the phase shift
metallic compounds, caused by a lateral periodic modulatiorhetween two periodic boundaries and evenness of quantum
it is important to note the essential difference of the propernumbersp andr. 6E,, andm* vary from zero to a maxi-
ties in these materials, which originated due to different val-mum value upon shifting of one periodic boundary with re-
ues of the electron mean-free path in the media. The princispect to another on the half period of corrugation. In a well
pal condition of observation of the properties, caused byhaving the congruent periodic boundaries, Bragg gaps do not
periodicity, is|>a, wherel is the electron mean-free path, open. Unlike the effective-mass approximation, restiis—
anda is a period of the lateral modulation. In semiconduc-(26) reveal anisotropy for electron motion perpendicular and
tors the condition is usually met at helium temperaturesparallel to grooves, caused by the lateral modulation.
while for metal crystals, it can meet at much higher tempera- After introducing a lateral periodic potential into a 2DEG,
tures, up to the room temperature, depending on a valae of it becomes possible to transfer general properties of crystals,
This could be one of reasons of the observation of acaused by 3D or 2D periodicity, to the case of the 2DEG.
large transport anisotropy only at low temperatures inRecent theoretical and experimental achievements in the

-

— -
{Q

VIIl. CONCLUSION
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study of two-dimensional photonic crystals, see, for ex-zone and starlike shagelectron typgin the third zone. The
ample, Ref. 19, permits direct transfer of their properties tashape of the Fermi surface results in the anisotropy of the
the 2DEG. A two-dimensionalsquare, hexagonal, etdat-  electron velocityy=, E(k), and transport phenomena in the
eral periodic modulation of a 2DEG in layered crystals, het-2DEG in the same manner as anisotropy of wave propaga-
erostructures, copper-oxide ceramics as well as at graition occurs in photonic crystals. In Ref. 20, the anisotropy of
boundaries in mosaic crystals can be caused by the crystdlght propagation in a hexagonal 2D photonic crystal was
lographic potential or misfit dislocatiori3-'° Unlike a one-  demonstrated; the angle between allowed directions equals
dimensional periodic modulation, E¢l), a strong 2D peri- 60°. In a laterally modulated 2DEG, such an anisotropy of
odic modulation creates a real complete band gap forkany electron motion results the stripelike electron-density distri-
In cuprates, parameterd and a are more than 20 times bution; electrons move along allowed directions and have a
smaller than in the example given abofre effective-mass standing wave waveform distribution in transverse direc-
approximation, so the gap would be much greater and maytions. Two such conducting wellechannely connected in
match the Fermi level in the metallic state. If the Fermi levelsuccessive order form an insulating junction if their allowed
coincides with the gap, the 2DEG does not conduct currentirections are nonparallel to each other.

The transport properties of the 2DEG are largely deter-
mined by the shape of the Fermi surface. The anisotropy in
the shape of the Fermi surface become quite sharp as it in-
tersects boundaries of the Brillouin zones. For example, for a This work was supported by the Scientific and Technical
square lattice, formed by the lateral modulation, the FermResearch Council of Turke¢yTUBITAK)) through a Project
surface has a almost square shapelelike) in the second No. 101E045.
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