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Controllable band structure in a periodic quantum well

Victor A. Pogrebnyak*
Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, C¸ ukurova University,

Adana 01330, Turkey
~Received 8 October 2003; revised manuscript received 10 March 2004; published 15 June 2004!

Electron states in a two-dimensional~2D! infinitely deep quantum well, having periodically corrugated
walls, are analyzed. It is shown that corrugation causes resonant interaction between the transverse modes of
the electron wave function. The interaction results in the non-Bragg nature electron resonances, which give rise
to opening of additional band gaps, besides usual Bragg gaps. The position of the non-Bragg and Bragg gaps
in the quantum-well band structure depends on a period of corrugation and thickness of the quantum well. For
example, for a change in average thickness or period, at some of its value, one of the 2D levels becomes
resonant, and it causes the level splitting and the creation of a 2D subband with the negative effective mass.
The values of the effective mass and gap width depend also on the phase shift between two periodic bound-
aries. These quantities vary from zero to a maximum value upon shifting of one periodic boundary with respect
to another on the half period of corrugation. In the well having the congruent periodic boundaries, there are no
Bragg gaps in the band structure. The lateral periodicity causes the anisotropic stripelike electron-density
distribution in such a periodic quantum well.

DOI: 10.1103/PhysRevB.69.245307 PACS number~s!: 73.21.Fg, 73.21.Ac
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I. INTRODUCTION

The study of two-dimensional electronic systems evo
considerable interest due to the broad utilization of the s
tems in microelectronics1–4 as well as for the close relatio
of this problem to explanation of high-temperatu
superconductivity.5–6 Design of new devices are common
based on exploiting the different configurations of multip
quantum-well structures and superlattices. Technological
vances in this field allow enable the tailoring of electron
properties of the nanostructures by varying of parameter
quantum wells and barriers.3–9 In these nanostructures, th
vertical transport of electrons across quantum wells is co
monly used. Despite great progress in this field, a multi
quantum well~MQW! has one main inherent defect: a peri
of the structure is always greater than a thickness of a sin
quantum well. Therefore, the electron energy, associa
with the period, is always less than the energy of the gro
state in the single-quantum well. Taking into considerat
that the energy level crossing causes important reson
properties of the system, it becomes clear that these reso
properties are excluded from MQW structures using the v
tical transport. This defect can be avoided if the in-pla
transport of electrons in a quantum well with periodic boun
aries is used. In this case there are neither physical nor p
cipal technological3,10–12 restrictions on the relationship be
tween thickness and a period. Moreover, modern techno
can create the bias voltage tunable lateral modulation u
the same principle as in the metal-oxide-semiconduc
transistor.3

Similar problems arise in the investigation of a tw
dimensional electron gas~2DEG! in 2D layered structures
copper-oxide ceramics, at the boundary of a heterostruc
or at grain boundaries in mosaic crystals. In these cas
lateral modulation can be caused by the crystal lattice or
the presence of a plane array of dislocations, which form
one- or two-dimensional long-period lateral modulation.13–15
0163-1829/2004/69~24!/245307~6!/$22.50 69 2453
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It appears necessary, then, to analyze electron states
quantum well having periodic boundaries in the free elect
approximation. In spite of the fact that 2D electron syste
are studied in detail, the periodic quantum well did not
tract much attention. In 2DEG problems, the periodic crys
potential was usually included into the effective mass, a
3D potential, but not as a 2D lateral modulation potential.
our knowledge, the quantum-well band structure caused
periodic lateral modulation, the effect of the phase shift b
tween two periodic boundaries on the band structure, and
effective mass of an electron have not been studied. Th
problems can be solved analytically by using the stand
perturbation theory. As a result, as shown in the paper, n
fundamental properties of a 2DEG are revealed in suc
periodic quantum well.

In Ref. 16 it is shown that the periodic quantum-well ba
structure essentially changes if the characteristics ener
corresponding to the transverse and longitudinal elect
motion become equal. The analysis, presented in this c
munication, shows that the lateral modulation results in
opening of additional gaps and in the creation the subb
with the negative effective mass. As a result the sharp ani
ropy of the effective-mass and transport phenomena,
electron motion perpendicular and parallel to grooves, ar
in such a periodic quantum well.

II. INITIAL EQUATIONS

Consider an infinitely deep potential well of thicknessd,
where both walls have one-dimensional periodic corru
tions described by the functionsy2d(x)52d/21j cos(qx)
for the left boundary andyd(x)5d/21r cos(qx1u) for the
right boundary, whereq52p/a; j, r, anda are amplitudes
and a period of the corrugations, the parameteru is the phase
shift between the right and left periodic corrugations. As
mentioned before,a may have a value of the crystal lattic
constant or any other value depending on a periodic pro
©2004 The American Physical Society07-1
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of the boundary. Thus, an electron is in a well bounded b
two-dimensional potentialU(x,y)

U~x,y!5H 0 2d/2,y,d/2

` yd~x!<y<y2d~x!
. ~1!

This potential pattern is illustrated in Fig. 1.
The wave functionc(x,y,z) and the energy of the elec

tron are found by solving the three-dimensional station
Schrodinger equation

2
\2

2m S ]2

]x2 1
]2

]y2 1
]2

]z2Dc1U~x,y!c5Ec, ~2!

subject to the boundary condition

c~x,y2d~x!,z!5c~x,yd~x!,z!50, ~3!

where E is the electron energy,m is the mass of the free
electron. Due to the boundary periodicity,c(x,y,z) can be
represented in the form of a Fourier series~Floquet’s theo-
rem!

c~x,y!5(
n

@an cos~kyny!1bn sin~kyny!#

3exp@ j ~kx1nq!x1 jkzz#, ~4!

FIG. 1. Two-dimensional potential-energy profile of a perio
cally corrugated quantum well is shown in thezy plane~a! and a
lateral profile in thexy plane~b!; u is the phase shift between th
left and right periodic boundaries.
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wherean andbn are the Fourier series coefficients,kyn and
kx , kz are the transverse and longitudinal components of
wave vectork.

From the Schrodinger equation and Eq.~4! follows the
dispersion relationE(k):

E5
\2~kx1nq!2

2m
1

\2kyn
2

2m
1

\2kz
2

2m
. ~5!

Substitution of Eq.~4! into the boundary condition gives
system of linear algebraic equations for the coefficientsan
andbn . By equating to zero the determinant of this syste
the allowed values ofkyn can be found. Hence, the dispe
sion relation in the quantum well is determined. For sm
corrugations,j/d!1, r/d!1 andjq!1, rq!1, it is suffi-
cient to retain the first three space harmonics. As a result,
following characteristic equation is obtained for determin
tion of allowed values ofky0 ,

tan~k0d!5
1

4
~j21r2!H k0k1

tan~dk1!
1

k0k21

tan~dk21!J
2

1

2
jr

cosu

cos~k0d! H k0k1

sin~k1d!
1

k0k21

sin~k21d!J ,

~6!

wherek61 are the wave numbers of then561 harmonics

k615Ak0
272kxq2q2. ~7!

In Eq. ~6!, Eq.~7! and below the subscripty is dropped in the
wave numberskyn .

III. SHIFT OF THE 2D LEVELS

The solution of Eq.~6! is sought by the method of suc
cessive approximation with respect toj andr, i.e., k05k0

(0)

1dk1¯ . In a case of smooth boundaries,j50 and r
50, Eq. ~6! gives tan(k0

(0)d)50. Therefore,

k0
(0)5

pp

d
[k0p , p51,2,3,...,

E5E0p1
\2~kx

21kz
2!

2m
, E0p5

\2p2p2

2md2 . ~8!

These are well-known 2D subbands in a smooth quan
well.

In the next approximation, forjÞ0 and rÞ0, the 2D
levelsEp and their shiftsdEp with respect to location in the
smooth quantum well are

Ep5F11
j21r2

2d
k1 cot~k1d!1~21!p11

jrk1 cosu

2d sin~k1d!GE0p ,

~9!

dEp5Fj21r2

2d
k1 cot~k1d!1~21!p11

jrk1 cosu

2d sin~k1d!GE0p .

~10!
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Equation~9! describes a location of the 2D levels as a fun
tion of the geometric parametersj,r,d, anda. Formulas~6!
and ~9! are counterparts of Eq.~8! for the smooth quantum
well. The last two equations and Eq.~6! indicate the non-
trivial dependence ofEp on thek61 wave numbers and on
geometric dimensions of the quantum well. Primarily it d
plays the resonance behavior of the system, but of not
importance is the dependence ofEp on an angleu, i.e., a
dependence on the phase shift of one periodic boundary
respect to another. As will be seen below, both dependen
cause new fundamental properties of electron behavior in
periodic quantum well.

IV. NON-BRAGG RESONANCES

It is seen from Eqs.~6!, ~9!, and~10! that resonance in the
system occurs if

k615Ak0
272kxq2q25

rp

d
[k1r , r 51,2,3,.... ~11!

The new quantum numberr designates the order number
the resonance in the system. From Eq.~11!, it is seen that
r<p in the first Brillouin zone. The Bragg resonance,kx

6

56q/2, is a particular case of Eq.~11! at r 5p. Equation
~11! along with Eq.~9! are condition of the non-Bragg reso
nance between transverse modes of the wave function, a
can be written in the form

k615
rp

d
[k1r , k0p5

pp

d
. ~12!

The physical meaning of the resonance condition beco
clear if the last equations are rewritten in terms of the
Broglie wavelength (l52p/k) associated with the trans
verse modes (k0

(0) andk61) of the fundamental (n50) and
the n561 space harmonics of the electron wave functio

d5p
l0

2
5r

l1

2
. ~13!

Equation~13! shows that a resonance arises if the thickn
of the well d is simultaneously a multiple of the de Brogl
half wavelengths associated with transverse modes of
fundamental (n50) andn561 space harmonics but wit
different quantum numbersp andr Schematic illustration of
this phenomenon is given in Fig. 2.

It is appropriate to underline here that in contrast to co
mon consideration of interference of electronic traveli
waves that gives rise to the Bragg gap, Eqs.~12! and~13! are
the condition of the constructive or destructive interferen
of electronic standing waves~transverse modes!. That is why
this resonance is of a non-Bragg nature.

The resonant valuekx,p,r
6 of the wave numberkx , at

which the resonance condition~13! holds, can be found from
Eq. ~11!

kx,p,r
6 56

1

2q
~k0p

2 2q22k1r
2 !. ~14!
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The upper sign ‘‘1 ’’ is taken for the resonantn51 harmonic
and the lower ‘‘minus’’—for then521 harmonic. In Eq.
~14! it is enough to consider the rangekx.0 since it is ob-
viously thatk11(2ukxu)5k21(ukxu).

The wave functions of electrons with the resonantkx have
the standing wave wave form along thex-axis, but the elec-
trons can move freely in the transverse direction. This anis
ropy of electron motion resembles the stripe phase in hi
temperature superconductors.

V. SUBMINIZONE SPECTRUM

Substitution ofkx,p,r
6 into Eq. ~5! gives an expression fo

the resonant energy

Epr5
\2

2m H k0p
2 1S k0p

2 2q22k1r
2

2q D 2J . ~15!

In vicinity of resonance, the more accurate solution of E
~6! shows that this resonant energy level splits into two v
uesEpr

1 andEpr
2 , separated by the forbidden gapdEpr ,

Epr
6 5EprH 16

E0p

Epr

r

p

1

d
@j212~21!p1r 11jr cosu1r2#1/2J ,

~16!

dEpr5Epr
1 2Epr

2

52E0p

r

p

1

d
@j212~21!p1r 11jr cosu1r2#1/2.

~17!

Thus, the resonances divide thepth subband into submi-
nizones. The quantum numberr shows the order number o
the subminizone in the subband. A number of subminizo
in the minizone can be found from relation~11!. Since the
last gap~Bragg gap! takes place atr 5p, it means that a
number of subminizones equals the order numberp of given

FIG. 2. Variation of the fundamental (kop) and first space (k1r)
harmonics of electron wave functionc(y) with they coordinate for
the ground,p51, and the first exited,p52, energy states.kop and
k1r are wave numbers of transverse modes, Eq.~12!. ~a! In a case of
Bragg resonances, the wave functions have always similar w
forms. ~b! Wave forms of transverse modes, havingk02 and k11

wave numbers, are different. This is the non-Bragg resonance.
7-3
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subband. The number of subminizones is the same as a n
ber of gaps, including the Bragg gap. The rangekx,r between
two successive resonances in thek space can be found from
Eq. ~14!:

kx,r5kx,p,r 11
1 2kx,p,r

1 5
2r 11

2q

p2

d2 . ~18!

It does not depend on the quantum numberp.

A. The negative effective mass

From Eq. ~15! it is seen that the resonant energy a
proaches to the ground stateE0p as the expression in th
brackets (k0p

2 2q22k1r
2 ) vanishes. Equality of this expres

sion to zero imposes relationship between the thicknesd
and the perioda, and quantum numbersp and r

dres5
a

2
Ap22r 2. ~19!

It means that given 2D level will be resonant under the s
cific geometric relationship. That is why the resonance
be named as the geometric resonance in a periodic qua
well. By analogy with solutions~16! and ~17!, the 2D level
of thepth subbandE0p splits atd5dres , into two levelsEpr

1

andEpr
2 , separated by the gapdEpr ,

Epr
6 5F16

1

d

r

p
@j212~21!p1r 11jr cosu1r2#1/2GE0p ,

~20!

dEpr5
2

d

r

p
@j212~21!p1r 11jr cosu1r2#1/2E0p .

~21!

Since dEp is the forbidden gap, the geometric resonan
causes the creation of the subminizoneEp

2 with the negative
effective mass

m* 52
1

2&

1

d
@j212~21!p1r 11jr cosu1r2#1/2

k0pk1r

q2 m.

~22!

From Eqs.~6!–~22! it is seen that the band structure and t
effective mass of the electron in the quantum well subst
tially depend on the phase shiftu between two periodic
boundaries.

VI. EFFECT OF THE PHASE SHIFT ON VALUES OF THE
GAP AND THE EFFECTIVE MASS

In this section the dependence of width of the gap,
~17!, and the effective mass, Eq.~22!, on the phase shiftu
between two periodic boundaries is investigated. The an
sis is given here for two cases:~1! u50, which may be
called as a case of asymmetric boundaries, and,~2! u5p,
which corresponds to shifting of the right boundary on t
half period of the corrugation. In the latter case the bou
aries are symmetrical with respect to the centerline of
well—the x axis.
24530
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A. Asymmetric well, uÄ0

In this case, ifj5r, a separation between the congrue
boundaries is constant and equal tod at any value of the
x coordinate. If jÞr, the deviation fromd is equal to
6uj2ru.

~a! If both p andr are even or both are odd numbers, t
expressions~22!, ~16!, and ~17! for the effective mass, the
resonant energy, and the gap take the form

m* 52
1

2&

uj2ru
d

k0pk1r

q2 m, ~23!

Epr
6 5S 16

uj2ru
d

r

p

E0p

Epr
DEpr , dEpr52

r

p

uj2ru
d

E0p .

~24!

~b! If p is even butr is odd or vice versa, then

m* 52
1

2&

~j1r!

d

k0pk1r

q2 m, ~25!

Epr
6 5S 16

~j1r!

d

r

p

E0p

Epr
DEpr , dEpr52

r

p

~j1r!

d
E0p .

~26!

Figure 3 shows qualitative representation of the disp
sion curvesE(kx) and split levelsEpr

6 for the first two 2D
subbands in the asymmetric quantum well for different re
tions between thickness and period.

B. Symmetric well, uÄp

In this case a separation between boundaries varies
the x coordinate between valuesd1j1r andd2j2r.

~a! If both p andr are even or both are odd numbers, t
expressions for the effective mass, split energy levels,
dEpr are given by Eqs.~25! and ~26!.

FIG. 3. Schematic representation of dispersion curvesE(kx) for
different relations between thicknessd and perioda in the asym-
metric quantum well.~a! Energy levelE2 is located in the third
minizone of the ground 2D subband.~b! Energy levelE2 is located
in the fourth minizone.
7-4
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~b! If p is even andr is an odd number or vice versa th
result is the same as Eqs.~23! and ~24!.

From Eqs.~25! and ~26! it is first seen that the gapdEpr
and m* are proportional, as expected, to the perturbat
(j1r)/d caused by corrugations. But Eqs.~23! and ~24!
show that this common rule is not always valid. In the ca
of the asymmetric well, described by Eqs.~23! and ~24!, all
Bragg gaps (r 5p) and the effective mass vanish ifj5r.
Only the subminizone gaps, which have the order numbr
of different evenness than the quantum numberp, remain in
the energy spectrum of the subband. The widths of th
gaps are defined by Eq.~26!. Thus, in a quantum well having
the congruent periodic boundaries, there are no Bragg g
in the band structure.

In the symmetric well, the Bragg gaps as well as sub
nizone gaps have the maximum value given by Eq.~25!. The
effective mass and subminizone gaps, defined by the co
tion ~6! above, vanish. Figure 4 presents illustration of su
a transformation of dispersions for the first two 2D subba
upon phase shiftu in a quantum well with a specific configu
ration corresponding to the geometric resonance case.

VII. EVALUATION

Let us estimatedEpr for a periodic quantum well having
parameters close to the experimental realization of suc
structure in Ref. 11. Consider a thickness of the welld
5200 Å, then a period of lateral modulation,a @see Eq.
~19!#, equals to 231 Å. Assume an amplitude of the modu
tion equal to 10% ofd and takem50.058m0 ~InGaAs!. In
this case, the band gapdE21513 meV opens in the vicinity
of the second energy levelE2 . The gap can be observed, fo
example, by measuring a dc conductivity in a direction p
pendicular to grooves at helium temperatures. When
Fermi energyEF coincides with the onset ofdE21, the con-
ductivity significantly drops due to the gap.EF can be
changed by biasing or by doping as in cuprate supercond
ors or, vice versa, the location ofdE2 can be altered by
varying d anda. In accordance with Eq.~25!, anisotropy of
the effective mass,m* (')/m* (i), for electron motion per-
pendicular~'! and parallel~i! to grooves, equals 5.55. Thes
estimates are in qualitative agreement with the experime
results in Ref. 11. However, the geometry of the InGa
periodic channel in Ref. 11 does not match the optimal
mensions taken here. The gap can be also detected by in
tigating the photoeffect atl595.4mm.

In discussing properties of a 2DEG in semiconductors
metallic compounds, caused by a lateral periodic modulat
it is important to note the essential difference of the prop
ties in these materials, which originated due to different v
ues of the electron mean-free path in the media. The pri
pal condition of observation of the properties, caused
periodicity, is l @a, wherel is the electron mean-free path
anda is a period of the lateral modulation. In semicondu
tors the condition is usually met at helium temperatur
while for metal crystals, it can meet at much higher tempe
tures, up to the room temperature, depending on a value oa.
This could be one of reasons of the observation o
large transport anisotropy only at low temperatures
24530
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semiconductors,14,17,18 but at much higher temperatures
layered metallic crystal such as cuprates.

VIII. CONCLUSION

The investigation shows that the lateral periodic modu
tion of a 2DEG causes Bragg and non-Bragg resonances
gaps, which transform the band structure into subminizon
The Bragg gap corresponds to the last non-Bragg reson
(p5r ) in the subminizone structure, and as usual, it is
gap at the boundary of the Brillouin zone. A number of ga
~the same as subminizones!, including the Bragg gap, is
equal to the order number of the subband. For example, t
are two subminizones in the second subband (p52).

At some specific configuration, the geometric resona
occurs in the periodic quantum well. This phenomenon c
sists of the crossing of the folded 2D levels at a cert
relationship between a thickness and a period of the well.
a result, an electron state with the negative effective m
arises in the 2D subband. A widthdEpr of the gap and a
value of the effective massm* depend on the phase shiftu
between two periodic boundaries and evenness of quan
numbersp and r . dEpr and m* vary from zero to a maxi-
mum value upon shifting of one periodic boundary with r
spect to another on the half period of corrugation. In a w
having the congruent periodic boundaries, Bragg gaps do
open. Unlike the effective-mass approximation, results~19!–
~26! reveal anisotropy for electron motion perpendicular a
parallel to grooves, caused by the lateral modulation.

After introducing a lateral periodic potential into a 2DEG
it becomes possible to transfer general properties of crys
caused by 3D or 2D periodicity, to the case of the 2DE
Recent theoretical and experimental achievements in

FIG. 4. Qualitative evolution ofE(kx) vs phase shiftu. ~a! Il-
lustrates gapless zone folding in the asymmetric quantum w
There are no Bragg gaps at the edge and center of the first Brill
zone. Only non-Brag gapsdEN open due to the energy level cros
ing. ~b! Upon phase shitu5p, in the symmetric well, Bragg gap
open and have maximum values. For this particular illustration
both~a! and~b! cases,d anda are chosen to satisfy to the geometr
resonance condition~19!: the top of the second minizone touche
the bottom of the second 2D subband~point G!.
7-5
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VICTOR A. POGREBNYAK PHYSICAL REVIEW B69, 245307 ~2004!
study of two-dimensional photonic crystals, see, for e
ample, Ref. 19, permits direct transfer of their properties
the 2DEG. A two-dimensional~square, hexagonal, etc.! lat-
eral periodic modulation of a 2DEG in layered crystals, h
erostructures, copper-oxide ceramics as well as at g
boundaries in mosaic crystals can be caused by the cry
lographic potential or misfit dislocations.13–15 Unlike a one-
dimensional periodic modulation, Eq.~1!, a strong 2D peri-
odic modulation creates a real complete band gap for ank.
In cuprates, parametersd and a are more than 20 time
smaller than in the example given above~in effective-mass
approximation!, so the gap would be much greater and m
match the Fermi level in the metallic state. If the Fermi lev
coincides with the gap, the 2DEG does not conduct curr

The transport properties of the 2DEG are largely de
mined by the shape of the Fermi surface. The anisotrop
the shape of the Fermi surface become quite sharp as i
tersects boundaries of the Brillouin zones. For example, f
square lattice, formed by the lateral modulation, the Fe
surface has a almost square shape~holelike! in the second

*Email address: vpog@cu.edu.tr
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