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Neutral and charged shallow donor states confined by a parabolic potential in the plane of a GaAs quantum
well are studied in the presence of a perpendicular magnetic field. The influence of the position of the donor on
the energy of the states is studied, i.e., we consider both the cases when the donor impurity is on and off the
center of the dot. We investigate the dependence of the ground and excited states on the confinement potential
and on the presence of an external magnetic field. Two different theoretical approaches are used: the finite
difference technique and the fractional-dimension method. We found that if the donor is displaced from the
center of the quantum well, the presence of the lateral confinement shifts the magnetic field-induced angular
momentum transitions and the unbinding of the charged donor state to a lower magnetic field.
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I. INTRODUCTION

In the past decade, there has been increasing interest in
the properties of negatively charged donors(D− centers) in
quasi-two-dimensional(2D) systems, particularly in quan-
tum wells(QWs)1–13and in quantum dots(QDs).14,15TheD−

centers can be formed in bulk semiconductors only under
metastable conditions,2 however, in semiconductor hetero-
structures these are readily formed because of the dramatic
increase of theD− binding energy as a consequence of the
spatial confinement, which is even further increased by the
application of a magnetic field. Different theoretical ap-
proaches have been used to calculate the spectra ofD− sys-
tems in QWs and QDs, such as the diffusion quantum Monte
Carlo method,3,4 the finite difference technique,12 and the
variational method.8,9 Recently,D− systems have been stud-
ied in quantum dots. In particular, the problem of the neutral
and charged donor in a parabolic 2D quantum dot were
studied,14,15 both in the case when the donor is lying in the
confinement plane and when it is displaced outside the plane.

In spite of all the different approaches used, it is known
that the best variational results for the ground-state energy of
a D− ion in three- and exact two-dimensional semiconductors
were obtained by using a Hylleraas trial function with 35
linear variational parameters.1 For theD− system in semicon-
ductor heterostructures the advantages of this trial function
vanish due to the anisotropy imposed by the confinement
potential and the external field, however, this approach
seems still possible if one reduces the nanostructure problem
to an isotropic one in a space with noninteger dimensions.13

Such an approach was previously applied to the neutralsD0d
and chargedsD−d systems in a QW.19,20

The method of fractional-dimensional space was used to
study shallow donor impurities and excitons in quantum-
confined semiconductor structures.16–18 In this approach the
anisotropic problem in a three-dimensional environment is
mapped to an isotropic one in a lower effective fractional-
dimensional space, where the dimension is related to the an-
isotropy introduced both by the heterostructure barrier poten-

tial and the magnetic field. The method used in Ref. 16 is
rather simple but the problem is that it is not clear how to
map a real problem with confinement to a problem with frac-
tional dimensions where the confinement is no longer
present. As a consequence, this elegant method is not rel-
evant for practical systems. Recently, a new method was in-
troduced in the study of the ground state of neutralsD0d and
charged donorssD−d in QWs and QDs.19,20In this procedure,
the D0 and D− systems in semiconductor heterostructures
were reduced to similar ones in an isotropic effective space
with a nonfixed fractional dimension. Subsequently, a three-
parameter Hylleraas trial function was used to solve the
renormalized Schrödinger equation for theD− system. The
method provides a simple and unified procedure for calculat-
ing theD0 andD− ground-state binding energies in different
heterostructures with arbitrary confining potential. Its accu-
racy has been tested by comparison with theoretical calcula-
tions from Monte Carlo and variational methods using
Chandrasekhar-type trial functions.

In this paper, we study the ground and first excited state of
a D− in a quantum dot of finite thicknessW, which we model
as a QW in thez direction and a parabolic potential of fre-
quencyv0 in the xy plane. In Sec. II we present the model
and discuss how the finite difference method(FDiff ) and the
fractional-dimension method(FDim) are used to solve the
problem. In Sec. III we compare and discuss the results ob-
tained with the two techniques. In Sec. IV we present and
discuss our results for the charged donor in a quantum dot as
function of the donor position, the confinement potential, and
the presence of an external magnetic field. In Sec. V we
summarize our results and conclusions.

II. THE MODEL AND THE APPROXIMATIONS

We consider aD− center in a quantum dot in the presence
of an external magnetic field. The QD is modeled as a QW
with square-well confinement potential and widthW in thez
direction, and parabolic potential with frequencyv0 in thexy
plane. Such a situation is present in many quantum wells
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where well width fluctuations lead to an additional lateral
confinement of the particles which we model by a simple
parabolic potential. Alternatively, such parabolic in-plane
confinement can be realized, e.g., by using a set of gates on
top of the QW. We use the effective Bohr radiusaB
=«"2/m*e2, the effective RydbergRy=e2/2«aB, and gc
=e"B/2m*Ry as units of length, energy, and magnetic field,
respectively. We will apply our results to the case of a
GaAs/AlGaAs nanostructure where the respective values are
Ry=5.8 meV, aB=99.7 Å and gc=0.148BsTd. Within the
framework of the effective-mass approximation and assum-
ing the Coulomb gauge for the magnetic field, i.e.,A =r
3B /2, the dimensionless Hamiltonian for theD− center in
the QD can be written in cylindrical coordinates as

H = H0sr 1d + H0sr 2d +
2

r12
, s1d

H0sr id = − ¹i
2 + Viszid +

1

4
sv2 + gc

2dri
2 − igc

]

] w
−

2

ur i − zu
,

s2d

where z=s0,0,zd is the position of the impurity ion with
respect to the center of the well,r i is theith electron position
vectors,r12= ur 1−r 2u is the electron-electron distance,Viszid
is the confinement potential, which is zero in the quantum
well, and Ve=0.63 s1.155x+0.37x2d eV outside the well,
with x=0.3 in our case being the concentration of Al in the
GaAsAl barrier;v="v0/2Ry with v0 is the confining fre-
quency corresponding to the in-plane parabolic potential
Vsrd=v0

2r2/2.

A. Finite difference technique (FDiff)

In the finite difference approach we follow a quasiadia-
batic approach. We write the wave function for theD− as

csr d = f0sz1df0sz2dcsr1,r2d, s3d

wheref0szid is the solution for an electron in a QW of width
equal to the thickness of the quantum dot andcsr1,r2d is
obtained as a solution of the Hamiltonian,

H = H0sr 1d + H0sr 2d + Vef fsr12d, s4d

where

H0sr d = − ¹i
2 +

1

4
sv2 + gc

2dri
2 − igc

]

] w
− Vef fsrid, s5d

andVef fsrd is obtained averaging the Coulomb interaction in
the z direction over thez-confinement wave functions
f0sz1df0sz2d. The resulting Schrödinger equation for the neu-
tral donor is solved exactly, using the finite difference tech-
nique. In a second step the Schrödinger equation for the
charged donor is solved using as a wave function a linear
combination of neutral donor functions and angular harmon-
ics. The approximation and the approach followed are ex-
plained in depth in Refs. 12 and 21. This approximation is
justified when the potential in thez direction is strong com-
pared to the Coulomb interaction. This technique was al-

ready used successfully to study the off-center donor in a
QW, see Ref. 12.

B. Fractional-dimension method (FDim)

In the fractional-dimension method we first solve the
problem of the free electron in a QW in the presence of a
magnetic field which can be written as

Hesr dfn,msr d = En,mfn,msr d, s6d

with

Hesr d = − ¹r,i
2 + Vszid +

1

4
sv2 + g2dri

2 − ig
]

] w
s7d

and

f0,msr d = f0szdRmsrdexpsimwd, s8d

wheref0szd is the lowest energy solution for the free electron
in a QW without a magnetic field, with the energyEz, and
whereRmsrd is the radial part of the wave function for the
circular oscillator in the presence of a magnetic field:22

Rnr,m
srd = rumu exps− gr2/4d1F1s− nr,umu + 1;g r2d;

g2 = gc
2 + v2. s9d

Here 1F1 is the confluent hypergeometric function,nr is the
radial quantum number, andm is the magnetic quantum
number. The corresponding energy levels are then given by

E0,nr,m
= E0,z − gc m+ gsumu + 1 + 2nrd,

m= 0, ± 1, ± 2, . . . , nr = 0,1,2 . . . , s10d

and the wave function for the ground and the first excited
state are

f0,msr d = f0szdrumu exps− g r2/4dexpsimwd, m= 0, ± 1.

s11d

From now on we will no longer write the subscript 0, which
indicates that for the electron in thez direction we consider
only the lowest QW level, as this is true through the whole
paper. In order to solve the problem for aD0 impurity in a
QD, we choose the following trial wave function, which
takes into account the possible asymmetry of the system
along thez axis produced by the displacement of the impu-
rity:

CD0
smdsr d = fmsr dfD0

smdsur − zud. s12d

Here fmsr d is the wave function for a free electron in themth
state given by Eq.(8) andf

D0
smd is the envelope wave function

which depends on the distance of the electron from the origin
of the coordinate system located at the donor position. As
explained in Refs. 19 and 20 we start from the Schrödinger
variational principle to formulate the corresponding problem
for D0 in a QW as a variational one of the following func-
tional:
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FffD0
smdg =E

0

`

JmsrdHF d

dr
fD0

smdsrdG2

−
2

r
ffD0

smdsrdg2

+ fEm − EmsD0dgffD0
smdsrdg2Jdr, s13d

whereEm is defined by Eq.(6) andJmsrd is the radial part of
the Jacobian volume element related to the free-electron den-
sity charge,Pmsrd, averaged over a sphere of radiusr cen-
tered at the ion location, and which is given by

Jmsrd = 4pr2Pmsrd, s14d

with

Pmsrd =
1

4p
E

0

2p

dwE
0

p

du sin ufz
2sr cosudRm

2 sr sin ud.

s15d

Calculating the derivative of the functional in Eq.(13), one
can obtain a one-dimensional Euler-Lagrange equation for
the functionf

D0
smdsrd:

−
1

Jmsrd
d

dr
FJmsrd

d

dr
fD0

smdsrdG −
2

r
fD0

smdsrd

= fEmsD0d − EmgfD0
smdsrd, s16d

which describes a hydrogenlike atom in a space with an ef-
fective fractional dimensionality.17,19 To obtain the corre-
spondingD0 energy levels, we solve this equation by using
the trigonometric sweep method.23

The advantage of the procedure explained above lies in
the fact that all information about any anisotropy of the sys-
tem (confinement due to the heterostructure and/or magnetic
field) is contained in the JacobianJmsrd, which is known
analytically. This allows us, once the charge density distribu-
tion of the free electron in the heterostructure is known, to
reduce significantly the computational time to solve the do-
nor Hamiltonian.

We proceed in a similar way with the calculation of the
ground and first excited state of theD− by choosing a trial
wave function with a well-definedz component of the total
magnetic numberL=m+m8 as follows:

CD−
smm8dsr 1,r 2d =

1
Î2

ffmsr 1dfm8sr 2d ± fm8sr 1dfmsr 2dg

3fD−
smm8dsur 1 − zu,ur 2 − zu,r12d,

sm,m8 = 0, ± 1d, s17d

where the envelope functionf
D−
smm8d takes into account the

effect of the correlation between the electrons within the het-
erostructure produced by the Coulomb interaction. In this
equation the sign +s−d corresponds to the singlet(triplet)
state, andfmsfm8d are the wave functions given by Eq.(6).
Transferring the origin of the coordinate system to the ion
position and following the procedure as described in Ref. 17
we can write the Schrödinger equation for the off-centerD−

system in a QD as a variational problem of the functional:

FffD−
smm8dg =E dr 1E dr 2 Jmm8sr1,r2dFo

i=1

2

s¹ifD−
smm8dd2

+ Usr1,r2,r12dsfD−
smm8dd2 + sEm + Em8 − Ed

3sfD−
smm8dd2G , s18d

where

Jmm8sr1,r2d =
1

2
fPmmsr1dPm8m8sr2d

+ Pm8m8sr1dPmmsr2d ± 2Pmm8sr1dPm8msr2dg,

s19d

Pmm8srd =
1

4p
E

0

2p

dwE
0

p

sin u du fz
2sr cosu + zd

3Rmsr sin udRm8sr sin ud, s20d

and

Usr1,r2,r12d = −
2

r1
−

2

r2
+

2

r12
, s21d

where r1, r2 are the ion-electron separations for electron 1
and 2, respectively, andr12 is the distance between the two
electrons, andJmm8srd is the Jacobian in an isotropic space
with fractional dimension. In order to solve the functional
(13) and calculate theD− binding energy, we consider a
simple three-parameter Hylleraas trial function for the enve-
lope wave function as follows:

FD−sr1,r1,r12d = exps− asds1 + bt2 + hud, s22d

wherea, b, andh are variational parameters, ands=r1+r2,
t=r1−r2, andu=r12 are the Hylleraas coordinates. Following
the Hylleraas procedure24 we obtain an explicit expression
for the variational energy as a function of the parametersa,
b, andh and we calculate the binding energy of the system
by minimizing this expression with respect to those param-
eters:

EsD−d = min
a,b,h

EsD−;a,b,hd. s23d

III. COMPARISON BETWEEN THE TWO METHODS

The binding energies for theD0 and D− ground and ex-
cited states are defined as

EbsD0d = EsW,v0,Bd − ETsD0d, s24d

EbsD−d = EsW,v0,Bd + ETsD0d − ETsD−d, s25d

with EsW,v0,Bd the energy of an electron in a quantum well
with thicknessW and lateral parabolic confinementv0 in the
presence of an uniform magnetic fieldB and ETsXd is the
total energy of the complexX in the presence of the quantum
well and of the parabolic confinement and external magnetic
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field. For those systems the projection of the angular mo-
mentum along thez direction is a good quantum number, due
to the cylindrical symmetry of the confining structure. The
groundstate of the negatively charged donor is the spin sin-
glet with L=0 which is known to be the groundstate of the
D− in the absence of a magnetic field; the excited state is the
first excited state atB=0 which hasL=−1 and is a spin-
triplet state.

First we compare in Fig. 1 the results obtained with the
FDiff (symbols) and the FDim(curves) in a QW for a GaAs
well of width W=100 Å. In Fig. 1(a) the binding energies are
shown as a function of the position of the donor with respect
to the center of the quantum well with(dashed curves) and
without (full curves) confinement, while in Fig. 1(b) the
binding energies of a center,D0 andD−, are shown as func-
tions of the dot confinement for different external magnetic
fields. We observe that the results obtained with both method
for B=0 and different positions of the impurity are remark-
ably close, both for theD0 and theD− system. Notice also
that both theD− and theD0 binding energies diminish with
about 50% as the donor moves from the center of the well to

about 0.75aB away from the center, see Fig. 1(a). Notice that
for theD0 the FDim binding energy is slightly lower than the
FDiff one, while forD− the FDim’s are larger than the FDiff
ones. This small discrepancy is not surprising, in fact the
FDiff confines the electrons to a plane while the FDim al-
lows them to move along thez direction. This means that for
D0 the FDiff will slightly overestimate the attraction between
the electron and the donor, especially when the donor is in
the center of the well. For the negatively charged donor the
electron-electron repulsion is also somehow artificially en-
hanced in the FDiff by the fact that both electrons are con-
fined in a plane at the center of the well. The fact that the
electrons are confined at the center of the well keeps them
also further from the impurity when it is off-center, dimin-
ishing as a consequence the electron-donor attraction. The
combination of this two effects is likely to lead to an under-
estimation of the binding energy by the FDiff method.

Next we consider the case when the donor is in the center
of the well and the parabolic confinement is present, i.e.,
v0Þ0, Fig. 1(b), in the absence of a magnetic field. Notice
that whenB=0 the binding energy of bothD0 andD− ground
states are increased by the added confinement. While for the
D0 the binding energy increases slowly but constantly, for
the D− it tends to saturate. In fact in theD0 the electron is
forced closer to the donor by the extra confinement, which
increases the binding energy. In theD− the extra confine-
ment, on the one hand, pushes the electrons closer to the
donor, but on the other hand, it forces the electrons to be
close to each other. Thus, there are two competing trends: the
increase of the electron-donor attraction and the increase of
the electron-electron repulsion, which almost balance each
other. Similarly to the previous case the results from the two
techniques are very close and the small discrepancy can be
easily explained with the fact that the FDiff imposes a stron-
ger confinement on the electrons in thez direction with re-
spect to the FDim technique.

If we apply a perpendicular magnetic field, e.g.,B=10 T
in Fig. 1(b), the binding energy increases and the increase is
larger for small confinement. We find that the results ob-
tained for the binding energy of the ground state of both the
D0 andD− systems with the two techniques are qualitatively
similar, though the quantitative differences among the results
for theD− ground state is slightly increased. The quantitative
difference can again be explained by the fact that different
approximations are used in the two approaches. In particular,
in this situation, the magnetic field pushes the electrons
closer to each other and to the donor which is in the center of
the well, and since in the FDiff they are not allowed to re-
accommodate in thez direction, the binding energy is then
more strongly influenced than in the FDim, where the elec-
trons can compensate for the extra confinement in the plane
by reaccommodating in thez direction.

Since the two techniques agree for the on-centerD0 and
D− with and without magnetic fields we want to see what
happens if we have the off-center donor in a QD, i.e.,v0
Þ0. In Fig. 1(a) we see that as the donor moves away from
the center of the dots, the results obtained for theD− with the
two techniques diverge, while the results for theD0 are still
in very good agreement. The reason for the strong disagree-
ment between the two techniques for the off-centerD− in a

FIG. 1. Binding energies of the ground state of the donor and of
the negatively charged donor obtained with the FDiff(symbols) and
with the FDim (curves) methods. In(a) the binding energies are
plotted vs the donor position for fixed values of the confinement
potential. In(b) the binding energies are plotted vs the confinement
potential energy for fixed values of the magnetic field and the donor
is placed in the center of the dot, i.e., atz=0.
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QD is difficult to find. In fact while the small discrepancies
found until now could easily be explained with the different
approximations used, they are not enough to explain the
large difference obtained if the donor is more than a quarter
of the well width away from the center and, in fact, it signals
the breakdown of the FDim approach. In particular, the elec-
trons also in the FDim do not follow the donor that moves
further than a quarter of the well width away from the center.
Thus, the movement of the electron in the FDim approach
cannot account for the large difference found between the
two techniques.

IV. INFLUENCE OF THE POSITION OF THE DONOR ON
THE ANGULAR MOMENTUM TRANSITIONS AND

THE UNBINDING OF THE D−

We found that the FDiff and the FDim lead to similar
results for the binding energies of the on-centerD0 and D−

system. Since the FDim provides a faster calculation, we use
this method to study theD− on center system while we will
use the more accurate FDiff for the off centerD− later in this
paper. In Fig. 2 we present the binding energy of the ground

and first excited state of the negatively charged donor versus
the magnetic field applied in a QD with thicknessW
=100 Å and confinement frequency"v0=5 meV and we
compare them to the one obtained without in-plane confine-
ment, i.e.,"v0=0. The binding energy of theL=0 ground
state of theD− has a slow increase with the magnetic field in
the low field region, while in a QW in this region the in-
crease of the binding energy is quite fast with the magnetic
field. However for large magnetic field, i.e.,B.20 T, we
find that the behavior of the negatively charged donor in the
two nanostructures converges, i.e., becomes independent of
the lateral confinement. The explanation for this is as fol-
lows: in a QW the energy of the state depends ongc<B
while for a quantum dot it depends ong=Îgc

2+v2. This
means that forgc/vø1 the behavior of theD− in the two
nanostructures differs. In particular in the QD the depen-
dence on the magnetic field is less strong. Ifgc@v instead
we haveg<gc and consequently the two results converge,
namely the confinement due to the magnetic field dominates
the parabolic confinement. Notice that we have used heregc
andv which are thea-dimensional correspondents ofB and
v0, because they give a better idea of the relative weight of
the different terms contributing to the Hamiltonian.

For the first excited stateL=−1 we observe that both in
the QW and in the QD there is a fast increase of the binding
energy of the state with the magnetic field. Notice that for
B=0 theL=−1 state has zero binding energy in the absence
of in-plane confinement and it is “unbound,” i.e., positive
Coulomb energy when theD− system is confined. In this case
in fact due to a projection of the angular momentum along
the z axis, which is nonzero, there is a linear dependence on
B both for the QD and the QW. Also in this case the behavior
of the first excited state in the two nanostructures tends to
converge for large magnetic fields. Notice that also in a QD
when the donor is at the center of the well there is no
magnetic-field-induced transition of the ground-state to a
state with differentL [see Fig. 2(a)].

Next we studied the effects of a varying confinement po-
tential, see Fig. 2(b). We observe that both in the presence
and in the absence of an external magnetic field the energy of
the ground state of theD− increases with increasing confine-
ment potentialv0, however we notice that the increase is
slower when a magnetic field is applied. This result is some-
how close to the one we reported in Fig. 2(a), for increasing
B and fixedv0. On the other hand, the dependence of the
first excited state on the confinement frequency is quite dif-
ferent from its dependence on the magnetic fieldB. We ob-
serve that with increasing parabolic confinement the binding
energy of the excited state decreases and can even become
negative, while in the case of increasing magnetic field the
binding energy of the excited state increases.

The reason for this behavior is to be found in the fact that
the parabolic confinement constrains the electrons around the
positionr=0, while the magnetic field action can be rewrit-
ten as the one of a displaced harmonic oscillator in which the
electrons oscillate around the positionl0 that depends on the
z component of the angular momentum of the electron, i.e.,
l0Þ0. Thus, when a parabolic confinement is applied, the
electrons are forced to stay closer and closer to each other,
both in the ground and in the excited state. This potential

FIG. 2. Binding energies of the ground state and the first excited
state of an on-center negatively charged donor. In(a) the binding
energies are plotted vs the magnetic field for fixed values of the
confinement potential. In(b) the binding energies are plotted vs the
confinement potential energy for fixed values of the magnetic field.
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adds extra positive energy which is larger with increasingv0.
When an external magnetic field is applied, the electrons in
the excited stateL=−1 are pushed further apart, which eases
the repulsion between the electrons so that the binding en-
ergy increases, see Fig. 2(b).

Next we study the influence of the donor position on the
binding energy of the ground and excited states. It is well
known12 that for negatively charged donors in quantum wells
a displacement of the donor from the well center leads to
angular momentum transitions of the ground state when ap-
plying an external uniform magnetic field. In a quantum dot
such transitions can still be induced, however the presence of
an additional parabolic confinement shifts the critical field to
higher values and the transition energy to lower energies as
compared to thev0=0 case. In Figs. 3(a) and 3(b) we plot
the binding energy for the ground state and the first excited
state of a negatively charged donor in a quantum well of
width 100 Å when the donor is at the edge of the well. We
compare those results with the results for a negatively
charged donor in a quantum dot with the same thickness as
the reference QW and a confinement potential of 5 meV in

the xy plane. Notice that similarly to the case of the on-
center donor only the low magnetic field behavior of the
binding energy for the ground state is influenced, i.e., it be-
comes less sensitive to a change in the magnetic field
strength when we move from QW to QD, see Fig. 3(a). The
binding energy of the excited state decreases when an extra
confinement is present, but the qualitative behavior is not
altered. The net effect of this is to shift the critical magnetic
field, i.e., the field where the ground-state transition happens,
to larger values and the transition energy to lower values.

The influence of the in-plane confinement potential on the
D− binding energy for a fixed magnetic field is shown in Fig.
3(b) for a donor positioned at the edge of the dot. Notice that
without magnetic field the ground-state binding energy in-
creases withv0 up to about 0.3 Ry and then for "v0
ù6 meV it starts to decrease. In the latter case the electron-
donor attraction is decreased as compared to the on-center
case. The donor and the electron are spatially separated along
the z axis and as a consequence the increase in the electron-
electron repulsion due to the extra confinement diminishes
the binding of the system. The excited state is not shown
since it is unbound in this case.

When a magnetic field of, e.g., 20 T is applied we observe
that as expected12 at v0=0, the first excited state atB=0
becomes the ground state. However the energy of the excited
state decreases with increasing confinement potential fre-
quency and has a faster decrease than theL=0 ground-state
energy. As a consequence for"v0ù5.5 meV the state with
L=0 becomes again the ground state. Notice that the binding
energy of the excited state decreases faster than the one of
the ground state, which can be explained by the fact that the
electrons in the excited state are farther apart from each other
and are thus more sensitive to the extra localization.

The fact that in the presence of an in-plane confinement
the critical magnetic field shifts to higher values and the
energy decreases implies that a smaller number of angular
momentum transitions occur before theD− becomes un-
bound in the QD as compared to a similar situation in the
QW case. In Fig. 4 we show the phase diagram for the case
when the donor is a distance of 75 Å away from the center of
the dot in a 100-Å-wide QW, i.e., the donor is located in the
barrier. We observe that ifv0=0 there are up to five angular
momentum transitions, but as the confinement is increased
we notice that substantially smaller magnetic fields are re-
quired to unbind the negatively charged donor. Of course, in
our dot system, unbinding means that theD− bound state has
a higher energy than the state consisting of a neutral donor
and an extra electron. With other words, when adding a sec-
ond electron to the donor system, the extra Coulomb energy
is positive. The magnetic-field-induced unbinding of theD−

system at high magnetic fields can be shown more clearly by
resorting to the classical problem. As is well known in the
limit of very high magnetic field the kinetic energy of the
electrons freezes out and a classical problem with point par-
ticles results. Such a classical approach is given in the Ap-
pendix.

V. CONCLUSION

In conclusion we studied how the neutral and charged
donors in a quantum well are influenced by an external para-

FIG. 3. Binding energies of the ground state and the first excited
state of the negatively charged donor located at the well barrier
interface. In(a) the binding energies are plotted vs the magnetic
field for fixed values of the confinement potential. In(b) the binding
energies are plotted vs the confinement potential energy for fixed
values of the magnetic field.
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bolic confinement, i.e., transition from QW to QD. We also
studied the influence of an external magnetic field. We found
that the on-centerD0 and D− ground-state binding energies
are increased both by the extra confinement and by the ex-
ternal magnetic field. TheD− excited-state binding energy is,
on the other hand, increased by an external magnetic field
but decreased when a parabolic confinement is applied. For
the off-center systems we found that the ground-state energy
of theD− is increased by the extra confinement. The effect of
the external magnetic field and of the parabolic confinement
on the ground-state of theD− is similar, namely the binding
energy is first increased up to a maximum after which it
starts to decrease. The excited state of theD− has a different
dependence on the magnetic field and the confinement.
While there is an increase with the magnetic field of the
binding energy of theL=−1 state, at least at low field, the
confinement only decreases the excited-state binding energy.
In particular we found that the presence of an in-plane con-
finement shifts the magnetic field at which the angular mo-
mentum transitions occur to higher values, and as a conse-
quence a smaller number of angular momentum transitions
take place before theD− becomes unbound in the QD as
compared to the QW case.
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APPENDIX : CLASSICAL APPROACH

We present here a classical calculation that should coin-
cide with the quantum results known for theD− system in the
very high magnetic field limit.

Let us first consider theD− in a quantum well in the
classical limit. The classical energy of two electrons which
can be taken on a line in the presence of the impurity poten-
tial is

Eclass= −
e2

eÎx1
2 + z2

−
e2

eÎx2
2 + z2

+
e2

eux1 − x2u
, sA1d

with x1.0 and x2,0 the classical coordinates of the two
electrons, andz the distance between the impurity and the
QW center. The configuration with the minimum energy is:
x1=0 andx2 infinity, i.e., the symmetric statex1=−x2 is not
the ground state. Which agrees with the findings12 that in
high magnetic field the two-electron bound state evaporates.

Next we add a parabolic potential so that Eq.(A1) be-
comes

Eclass=
mv0

2
sx1

2 + x2
2d −

e2

eÎx1
2 + z2

−
e2

eÎx2
2 + z2

+
e2

eux1 − x2u
,

sA2d

and introducing dimensionless variablesx1=x1/z and x2
=x2/z we obtain

Eclass=
e2

ezFasx1
2 + x2

2d −
1

Îx1
2 + 1

−
1

Îx2
2 + 1

+
1

ux1 − x2uG ,

sA3d

with a=e /e23mv0z3/2. Here the ground-state configuration
is given by a single parametera. In particular we find that if
a.0.025, the state with minimum energy is symmetric,
while for a,0.025 the symmetric state is no longer the
ground state and an asymmetric solution appears. An esti-
mate for the confinement threshold can be easily done using
the material parameters, e.g., we found that for a GaAs quan-
tum well with the donor 75 Å away from the center of the
well, as we considered in the phase diagram presented in this
work (see Fig. 4), the threshold confinement frequency is
6.3 meV. In this case the electrons are confined by the para-
bolic potential and consequently we cannot find a solution in
which one of the electrons moves to infinity. However we
find that the binding energy of the negatively charged donor
is always negative, which agrees with the results found in
this paper that for sufficiently high magnetic fields theD− is
no longer bound and this for any value of the confinement
potentialv0.

FIG. 4. Phase diagram for the ground state of a negatively
charged donor confined into a quantum dot of thickness 100 Å and
lateral confinementv0. The donor is positioned a vertical distance
75 Å away from the center of the dot.Bc indicates the critical
transition field.
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