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Charged donors in quantum dots: Finite difference and fractional dimensions results
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Neutral and charged shallow donor states confined by a parabolic potential in the plane of a GaAs quantum
well are studied in the presence of a perpendicular magnetic field. The influence of the position of the donor on
the energy of the states is studied, i.e., we consider both the cases when the donor impurity is on and off the
center of the dot. We investigate the dependence of the ground and excited states on the confinement potential
and on the presence of an external magnetic field. Two different theoretical approaches are used: the finite
difference technique and the fractional-dimension method. We found that if the donor is displaced from the
center of the quantum well, the presence of the lateral confinement shifts the magnetic field-induced angular
momentum transitions and the unbinding of the charged donor state to a lower magnetic field.
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I. INTRODUCTION tial and the magnetic field. The method used in Ref. 16 is
rather simple but the problem is that it is not clear how to
In the past decade, there has been increasing interest inap a real problem with confinement to a problem with frac-
the properties of negatively charged dondds center$ in tional dimensions where the confinement is no longer
guasi-two-dimensiona{2D) systems, particularly in quan- present. As a consequence, this elegant method is not rel-
tum wells(QWs)'*3and in quantum dotQDs).1415TheD~  evant for practical systems. Recently, a new method was in-
centers can be formed in bulk semiconductors only undetroduced in the study of the ground state of neut) and
metastable conditiorlshowever, in semiconductor hetero- charged donoréD™) in QWs and QD$92%|n this procedure,
structures these are readily formed because of the dramatige D° and D~ systems in semiconductor heterostructures
increase of thed™ binding energy as a consequence of thewere reduced to similar ones in an isotropic effective space
spatial confinement, which is even further increased by thevith a nonfixed fractional dimension. Subsequently, a three-
application of a magnetic field. Different theoretical ap-parameter Hylleraas trial function was used to solve the
proaches have been used to calculate the specta sf/s-  renormalized Schrodinger equation for the system. The
tems in QWs and QDs, such as the diffusion quantum Montenethod provides a simple and unified procedure for calculat-
Carlo method’* the finite difference techniqué,and the ing theD® andD~ ground-state binding energies in different
variational method:® Recently,D~ systems have been stud- heterostructures with arbitrary confining potential. Its accu-
ied in quantum dots. In particular, the problem of the neutrakacy has been tested by comparison with theoretical calcula-
and charged donor in a parabolic 2D quantum dot wergions from Monte Carlo and variational methods using
studied}**>both in the case when the donor is lying in the Chandrasekhar-type trial functions.
confinement plane and when it is displaced outside the plane. |n this paper, we study the ground and first excited state of
In spite of all the different approaches used, it is knowna D~ in a quantum dot of finite thicknes#, which we model
that the best variational results for the ground-state energy a&fs a QW in thez direction and a parabolic potential of fre-
aD" ion in three- and exact two-dimensional semiconductorgjuencywy in the xy plane. In Sec. Il we present the model
were obtained by using a Hylleraas trial function with 35and discuss how the finite difference meth®®iff) and the
linear variational parametetd-or theD™ system in semicon-  fractional-dimension metho@Dim) are used to solve the
ductor heterostructures the advantages of this trial functioproblem. In Sec. Ill we compare and discuss the results ob-
vanish due to the anisotropy imposed by the confinementained with the two techniques. In Sec. IV we present and
potential and the external field, however, this approachiiscuss our results for the charged donor in a quantum dot as
seems still possible if one reduces the nanostructure problefanction of the donor position, the confinement potential, and
to an isotropic one in a space with noninteger dimensténs. the presence of an external magnetic field. In Sec. V we
Such an approach was previously applied to the ne(®3l  summarize our results and conclusions.
and chargedD") systems in a QW?2°
The method of fractional-dimensional space was used to
study shallow donor impurities and excitons in quantum-
confined semiconductor structurés’®In this approach the We consider &~ center in a quantum dot in the presence
anisotropic problem in a three-dimensional environment isof an external magnetic field. The QD is modeled as a QW
mapped to an isotropic one in a lower effective fractional-with square-well confinement potential and widthin the z
dimensional space, where the dimension is related to the auwlirection, and parabolic potential with frequensyin the xy
isotropy introduced both by the heterostructure barrier potenplane. Such a situation is present in many quantum wells

Il. THE MODEL AND THE APPROXIMATIONS
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where well width fluctuations lead to an additional lateralready used successfully to study the off-center donor in a
confinement of the particles which we model by a simpleQW, see Ref. 12.
parabolic potential. Alternatively, such parabolic in-plane

confinement can be realized, e.g., by using a set of gates on B. Fractional-dimension method (FDim)
top of the QW. We use the effective Bohr radiag ] ) ) i
=ehi?/m'&, the effective RydbergR,=€?/2eas, and 7y, In the fractional-dimension method we first solve the

—ehB/2m' R, as units of length, energy, and magnetic field, problem of the free electron in a QW in the presence of a
respectlvely We will apply our results to the case of amagnetic field which can be written as

GaAs/AlGaAs nanostructure where the respective values are H.)f. (1) =E ) ©)
R/=5.8 meV, ag=99.7 A and y,=0.148(T). Within the e(Nam(") = Enmfnm(r),

framework of the effective-mass approximation and assumgyyith

ing the Coulomb gauge for the magnetic field, i.azr

X B/2, the dimensionless Hamiltonian for tie center in

2 —
the QD can be written in cylindrical coordinates as He(r) == V,i+V(@) + 7 (“’ + )P - '7’ (7)
2
H=Ho(ry) + Holrp) + (r and
12 .
fom(r) = fo(2)Rn(p)explime), 8
1 .0 2 i ;
or)=—V2+Vi(z) + Z(wz T Y L A —— yvherefo(z) Is the lowest energy solutlc_)n for the free electron
de Iri=¢ in a QW without a magnetic field, with the energy, and

) whereR(p) is the radial part of the wave function for the

. - _ o . circular oscillator in the presence of a magnetic fi&ld:
where £=(0,0,¢) is the position of the impurity ion with

respect to the center of the wall,is theith electron position Ry m(p) = pI™ exp(— yp¥4),F (- n,|m+1;y p?);
vectors,r,=|r,—r,| is the electron-electron distancé,z) B )
is the confinement potential, which is zero in the quantum V= Vg+ w-. (9)

— 2 i
wgll, a_nd \/.e—0.6><(1.155<.+0.375< ) ev outsuje the W,e”’ Here ;F, is the confluent hypergeometric functiam,is the
with x=0.3 in our case being the concentration of Al in the . jiq) quantum number, anch is the magnetic quantum

GaAsAl barrier; w=fhwo/ 2R, with w, is the confining fre- Pumber. The corresponding energy levels are then given by
quency corresponding to the in-plane parabolic potentia

V(p)=w§p2/2. EO,nr,m: EO,Z_ Ye m+ 7(|m| +1+ Z’]r)a

A. Finite difference technique (FDiff) m=0,£1,+2,..., nn=012..., (10

In the finite difference approach we follow a quasiadia-and the wave function for the ground and the first excited

batic approach. We write the wave function for tbe as state are
() = fo(z) fo(z) ¥lp1.p2), 3 fom(r) = fo(2p™ exp(— y p?dexpime), m=0,=1.
wherefy(z) is the solution for an electron in a QW of width (11

equal to the thickness of the quantum dot af(@,,p,) is

obtained as a solution of the Hamiltonian, From now on we will no longer write the subscript 0, which

indicates that for the electron in ttzedirection we consider
H =Hg(ry) + Hg(r) + Vetip1o) , (4)  only the lowest QW level, as this is true through the whole
paper. In order to solve the problem foDd impurity in a
QD, we choose the following trial wave function, which
1 9 takes into account the possible asymmetry of the system
Ho(r) == V7 + Z(wz + 92— Yy Veifp), (5)  along thez axis produced by the displacement of the impu-
rity:

where

andV¢(p) is obtained averaging the Coulomb interaction in (m) )

the z direction over thez-confinement wave functions B(r) = frn(r) g (1 = £ 12
fo(z1)To(zo). The resulting Schroédinger equation for the neu- ) . .

tral donor is solved exactly, using the finite difference tech-H€réfm(r) is the wave funct|on for a free electron in thh
nique. In a second step the Schrédinger equation for thétate given by Eq8) and¢>D0 is the envelope wave function
charged donor is solved using as a wave function a lineawhich depends on the distance of the electron from the origin
combination of neutral donor functions and angular harmonef the coordinate system located at the donor position. As
ics. The approximation and the approach followed are exexplained in Refs. 19 and 20 we start from the Schrodinger
plained in depth in Refs. 12 and 21. This approximation isvariational principle to formulate the corresponding problem
justified when the potential in thedirection is strong com- for D® in a QW as a variational one of the following func-
pared to the Coulomb interaction. This technique was altional:
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o d 2 2 2
Flggo]= fo Jm(r){[acbfg”é)(r)} - “Le(F FLgm™] = f dr, f dr2Jmm(rl,rz)[E(Vid)(D”I”“)2
i=1
+[Em- Em(D°>][¢gB><r>]2}dr, (13) FU(r, 1) ()2 + (Epy+ Eqy — E)
whereE,, is defined by Eq(6) andJ,(r) is the radial part of ><(¢(”lm{))2 ’ (18)
the Jacobian volume element related to the free-electron den- D

sity charge,P,(r), averaged over a sphere of radiusen-

tered at the ion location, and which is given by where
1
In(r) = 4mr“a). A9 Jny(11r2) = S Prnlr)Par(r2)
with
1 2 T + Pm’m’(rl) Pmr‘r{rz) t mem(rl) Pm’m(rz)]v
Pm(f) = — J de J dé sin 6f2(r cos O)RZ(r sin 6). (19
41 0 0

(15)

Calculating the derivative of the functional in Ed.3), one
can obtain a one-dimensional Euler-Lagrange equation for

1 21 T
P (1) = 4—f d@f sin 6 d6 f2(r cos 6+ )
mJo 0

ihe function(bg?(r): XRy(r sin )Ry (r sin 6), (20
g g 5 and
_ —| 3N — (na) ] _ £ (rg)
Jm(r)dr[ (r)drd)D ") rd)D ") U(rl,rz,rlz)z_E_Li, (21)
_ 0 (m) r ) EP)
=[En(D") = Eml¢ppo (1), (16)

whererq, r, are the ion-electron separations for electron 1
which describes a hydrogenlike atom in a space with an efand 2, respectively, and, is the distance between the two
fective fractional dimensionality-!® To obtain the corre- electrons, and,,(r) is the Jacobian in an isotropic space
spondingD® energy levels, we solve this equation by usingwith fractional dimension. In order to solve the functional
the trigonometric sweep methégl. (13) and calculate theD™ binding energy, we consider a

The advantage of the procedure explained above lies isimple three-parameter Hylleraas trial function for the enve-
the fact that all information about any anisotropy of the sys{ope wave function as follows:
tem(confinement due to the heterostructure and/or magnetic )
field) is contained in the Jacobiad,(r), which is known Pp-(ry,r1,r12) = €xp— as)(1 + Bt + nu), (22

analytically. This allows us, once the charge density distribuyhere o B, and 7 are variational parameters, agdr;+r,

tion of th_e frge electron in the he_terostructure is known, t°t=r1—r2, andu=r, are the Hylleraas coordinates. Following

reduce s!gmf!cantly the computational time to solve the doy,e Hylleraas procedutewe obtain an explicit expression

nor Hamiltonian. o _ , for the variational energy as a function of the parameters
We proceed in a similar way with the calculation of the B, and 7 and we calculate the binding energy of the system

ground and first excited state of Ui by choosing a trial - minimizing this expression with respect to those param-
wave function with a well-defined component of the total

' eters:
magnetic numbeL=m+m’ as follows:
E(D7) = minE(D™;a,B,7). (23
(mm) _1 a By
Voo (ry,rp) = Ta[fm(rl)fm'(rz) + o (r)fm(ro)]
AY
X¢(D"1m')(|rl -&\|rs- §|,r12), I1l. COMPARISON BETWEEN THE TWO METHODS
(mm' =0, +1) (17) The binding energies for thB® and D~ ground and ex-
' T cited states are defined as
. (mm’) .
where the envelope functios,-  takes into account the E,(D°) = E(W, w,B) — E(DY), (24)

effect of the correlation between the electrons within the het-
erostructure produced by the Coulomb interaction. In this
equation the sign +) corresponds to the singlétriplet)
state, andf(f,,) are the wave functions given by E¢f).  with E(W, wg,B) the energy of an electron in a quantum well
Transferring the origin of the coordinate system to the ionwith thicknessW and lateral parabolic confinemedag in the
position and following the procedure as described in Ref. 1presence of an uniform magnetic fieBl and E+(X) is the

we can write the Schrodinger equation for the off-cemer total energy of the compleX in the presence of the quantum
system in a QD as a variational problem of the functional: well and of the parabolic confinement and external magnetic

Ep(D7) = E(W,w0,B) + Ex(D°) - Ex(D"), (25)
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FIG. 1. Binding energies of the ground state of the donor and of,
the negatively charged donor obtained with the FQEffmbolg and
with the FDim (curveg methods. In(a) the binding energies are
plotted vs the donor position for fixed values of the confinementg
potential. In(b) the binding energies are plotted vs the confinement
potential energy for fixed values of the magnetic field and the donor

fiw (meV)

is placed in the center of the dot, i.e.,&t0.
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about 0.785 away from the center, see Fig.al Notice that
for the D® the FDim binding energy is slightly lower than the
FDiff one, while forD~ the FDim’s are larger than the FDiff
ones. This small discrepancy is not surprising, in fact the
FDiff confines the electrons to a plane while the FDim al-
lows them to move along thedirection. This means that for
DO the FDiff will slightly overestimate the attraction between
the electron and the donor, especially when the donor is in
the center of the well. For the negatively charged donor the
electron-electron repulsion is also somehow atrtificially en-
hanced in the FDiff by the fact that both electrons are con-
fined in a plane at the center of the well. The fact that the
electrons are confined at the center of the well keeps them
also further from the impurity when it is off-center, dimin-
ishing as a consequence the electron-donor attraction. The
combination of this two effects is likely to lead to an under-
estimation of the binding energy by the FDiff method.

Next we consider the case when the donor is in the center
of the well and the parabolic confinement is present, i.e.,
wo# 0, Fig. Ib), in the absence of a magnetic field. Notice
that whenB=0 the binding energy of both® andD~ ground
states are increased by the added confinement. While for the
DO the binding energy increases slowly but constantly, for
the D™ it tends to saturate. In fact in tHe° the electron is
forced closer to the donor by the extra confinement, which
increases the binding energy. In thEe the extra confine-
ment, on the one hand, pushes the electrons closer to the
donor, but on the other hand, it forces the electrons to be
close to each other. Thus, there are two competing trends: the
increase of the electron-donor attraction and the increase of
the electron-electron repulsion, which almost balance each
other. Similarly to the previous case the results from the two
echniques are very close and the small discrepancy can be
easily explained with the fact that the FDiff imposes a stron-
er confinement on the electrons in thelirection with re-
spect to the FDim technique.
If we apply a perpendicular magnetic field, e8510 T
in Fig. 1(b), the binding energy increases and the increase is
larger for small confinement. We find that the results ob-

field. For those systems the projection of the angular motained for the binding energy of the ground state of both the
mentum along the direction is a good quantum number, due D° andD~ systems with the two techniques are qualitatively
to the cylindrical symmetry of the confining structure. The similar, though the quantitative differences among the results
groundstate of the negatively charged donor is the spin sirfor the D™ ground state is slightly increased. The quantitative
glet with L=0 which is known to be the groundstate of the difference can again be explained by the fact that different
D~ in the absence of a magnetic field; the excited state is theapproximations are used in the two approaches. In particular,

first excited state aB=0 which hasL=-1 and is a spin-

triplet state.

in this situation, the magnetic field pushes the electrons
closer to each other and to the donor which is in the center of

First we compare in Fig. 1 the results obtained with thethe well, and since in the FDiff they are not allowed to re-

FDiff (symbolg and the FDim(curveg in a QW for a GaAs

accommodate in the direction, the binding energy is then

well of width W=100 A. In Fig. 1a) the binding energies are more strongly influenced than in the FDim, where the elec-
shown as a function of the position of the donor with respectrons can compensate for the extra confinement in the plane

to the center of the quantum well witldashed curvgsand
without (full curves confinement, while in Fig. (b) the

by reaccommodating in thedirection.
Since the two techniques agree for the on-ceBteand

binding energies of a centdd® andD", are shown as func- D~ with and without magnetic fields we want to see what
tions of the dot confinement for different external magnetichappens if we have the off-center donor in a QD, i@,
fields. We observe that the results obtained with both methoet 0. In Fig. 1@ we see that as the donor moves away from
for B=0 and different positions of the impurity are remark- the center of the dots, the results obtained for@hevith the

ably close, both for thé®° and theD~ system. Notice also two techniques diverge, while the results for D& are still

that both theD™ and theD° binding energies diminish with in very good agreement. The reason for the strong disagree-
about 50% as the donor moves from the center of the well tanent between the two techniques for the off-cemeérin a
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8.0 . - and first excited state of the negatively charged donor versus
the magnetic field applied in a QD with thicknes¥
i i =100 A and confinement frequendyw,=5 meV and we
% e compare them to the one obtained without in-plane confine-
£ e ment, i.e.,hwy=0. The binding energy of the=0 ground
3 40f . state of theD™ has a slow increase with the magnetic field in
g the low field region, while in a QW in this region the in-
l-; I ) crease of the binding energy is quite fast with the magnetic
= 20 o W=100A ; (=0 ] field. However for large magnetic field, i.eB>20 T, we
£ S fio,=0 meV L=0 find that the behavior of the negatively charged donor in the
ool 7 === hoy=5 RV ] two nanostructures converges, i.e., becomes independent of
oo T :“’0:0 lad L:'1 the lateral confinement. The explanation for this is as fol-
! SR 0,=5 meV L=-1 L.
¥ @) lows: in a QW the energy of the state dependser-B
-2-00 == '1'0‘ — '2‘0' — '3'0' — '4‘0‘ — '5'0' =55 while for a quantum dot it depends oyp\f'yg+w2. This

means that fory,/w<1 the behavior of thé®~ in the two
nanostructures differs. In particular in the QD the depen-
dence on the magnetic field is less strongyd® o instead
we havey= v, and consequently the two results converge,
namely the confinement due to the magnetic field dominates
the parabolic confinement. Notice that we have used hgre
and o which are thea-dimensional correspondents Bfand
wg, because they give a better idea of the relative weight of
the different terms contributing to the Hamiltonian.

For the first excited state=-1 we observe that both in

Binding Energy(meV)

\ the QW and in the QD there is a fast increase of the binding
20} W= 103:%}@0 ] energy of the state with the magnetic field. Notice that for
el — _ B=10T B=0 theL=-1 state has zero binding energy in the absence
401 Teleeees B=0T ] of in-plane confinement and it is “unbound,” i.e., positive
e BT o Coulomb energy when thg~ system is confined. In this case
-6-00 5 3 5 - 3 23 in fact due to a projection of the angular momentum along
hay(meV) the z axis, which is nonzero, there is a linear dependence on

B both for the QD and the QW. Also in this case the behavior
FIG. 2. Binding energies of the ground state and the first excite®f the first excited state in the two nanostructures tends to
state of an on-center negatively charged donor@nthe binding  converge for large magnetic fields. Notice that also in a QD
energies are plotted vs the magnetic field for fixed values of thavhen the donor is at the center of the well there is no
confinement potential. Ifb) the binding energies are plotted vs the magnetic-field-induced transition of the ground-state to a
confinement potential energy for fixed values of the magnetic fieldstate with different. [see Fig. 2a)].
Next we studied the effects of a varying confinement po-
QD is difficult to find. In fact while the small discrepancies tential, see Fig. @). We observe that both in the presence
found until now could easily be explained with the different 2nd in the absence of an external magnetic field the energy of
approximations used, they are not enough to explain théhe ground state of thB™ increases with increasing confine-
large difference obtained if the donor is more than a quartefent potentialw,, however we notice that the increase is
of the well width away from the center and, in fact, it signals Slower when a magnetic field is applied. This result is some-
the breakdown of the FDim approach. In particular, the elechow close to the one we reported in Figag for increasing
trons also in the FDim do not follow the donor that movesB and fixedwo. On the other hand, the dependence of the
further than a quarter of the well width away from the centerfirst excited state on the confinement frequency is quite dif-
Thus, the movement of the electron in the FDim approact{érent from its dependence on the magnetic figldVe ob-
cannot account for the large difference found between thé€rve that with increasing parabolic confinement the binding

two techniques. energy of the excited state decreases and can even become
negative, while in the case of increasing magnetic field the
IV. INFLUENCE OF THE POSITION OF THE DONOR ON  Pinding energy of the excited state increases.
THE ANGULAR MOMENTUM TRANSITIONS AND The reason for this behavior is to be found in the fact that
THE UNBINDING OF THE D- the parabolic confinement constrains the electrons around the

position p=0, while the magnetic field action can be rewrit-
We found that the FDiff and the FDim lead to similar ten as the one of a displaced harmonic oscillator in which the
results for the binding energies of the on-cer@drandD~  electrons oscillate around the positirthat depends on the
system. Since the FDim provides a faster calculation, we use component of the angular momentum of the electron, i.e.,
this method to study th®~ on center system while we will 15# 0. Thus, when a parabolic confinement is applied, the
use the more accurate FDiff for the off cenT later in this  electrons are forced to stay closer and closer to each other,
paper. In Fig. 2 we present the binding energy of the groundboth in the ground and in the excited state. This potential

245306-5



RIVA et al.

Binding Energy (meV)

Binding Energy (meV)

3.0 T

e R

P

W=100 A ; t=50 A
L=0

=0
------ fw,=5 meV

10 20 30 40 50

25
20 |

151

T

W=

100 A; ¢=50 A

0.0

4 6
i (meV)

PHYSICAL REVIEW B 69, 245306(2004)

the xy plane. Notice that similarly to the case of the on-
center donor only the low magnetic field behavior of the
binding energy for the ground state is influenced, i.e., it be-
comes less sensitive to a change in the magnetic field
strength when we move from QW to QD, see Fi¢p)3The
binding energy of the excited state decreases when an extra
confinement is present, but the qualitative behavior is not
altered. The net effect of this is to shift the critical magnetic
field, i.e., the field where the ground-state transition happens,
to larger values and the transition energy to lower values.

The influence of the in-plane confinement potential on the
D~ binding energy for a fixed magnetic field is shown in Fig.
3(b) for a donor positioned at the edge of the dot. Notice that
without magnetic field the ground-state binding energy in-
creases Wwithwg up to about 0.3 R and then forfiw,
=6 meV it starts to decrease. In the latter case the electron-
donor attraction is decreased as compared to the on-center
case. The donor and the electron are spatially separated along
the z axis and as a consequence the increase in the electron-
electron repulsion due to the extra confinement diminishes
the binding of the system. The excited state is not shown
since it is unbound in this case.

When a magnetic field of, e.g., 20 T is applied we observe
that as expectéd at w,=0, the first excited state @&=0
becomes the ground state. However the energy of the excited
state decreases with increasing confinement potential fre-
quency and has a faster decrease tharLthé ground-state
energy. As a consequence fbiy=5.5 meV the state with
L=0 becomes again the ground state. Notice that the binding
energy of the excited state decreases faster than the one of
the ground state, which can be explained by the fact that the
electrons in the excited state are farther apart from each other
and are thus more sensitive to the extra localization.

FIG. 3. Binding energies of the ground state and the first excited The fact that in the presence of an in-plane confinement
state of the negatively charged donor located at the well barriethe critical magnetic field shifts to higher values and the

i_nterface_. In(a) the binding en(_ergies are plott_ed S the_ma_1gneti<:energy decreases implies that a smaller number of angular
field fc_)r fixed values of the conflm_ement potentlalf(h)the blndlng_ momentum transitions occur before tiE becomes un-
energies are plotted vs _the confinement potential energy for f'xeg)ound in the QD as compared to a similar situation in the
values of the magnetic field. QW case. In Fig. 4 we show the phase diagram for the case
adds extra positive energy which is larger with increasigg ~ When the donor is a distance of 75 A away from the center of
When an external magnetic field is applied, the electrons ithe dot in a 100-A-wide QW, i.e., the donor is located in the
the excited state=—1 are pushed further apart, which easesbarrier. We observe that if,=0 there are up to five angular
the repulsion between the electrons so that the binding effnomentum transitions, but as the confinement is increased
ergy increases, see Fig(h} we notice that substantially smaller magnetic fields are re-
Next we study the influence of the donor position on thequired to unbind the negatively charged donor. Of course, in
binding energy of the ground and excited states. It is wellour dot system, unbinding means that Bbiebound state has
knownt? that for negatively charged donors in quantum wellsa higher energy than the state consisting of a neutral donor
a displacement of the donor from the well center leads t@nd an extra electron. With other words, when adding a sec-
angular momentum transitions of the ground state when apend electron to the donor system, the extra Coulomb energy
plying an external uniform magnetic field. In a quantum dotis positive. The magnetic-field-induced unbinding of e
such transitions can still be induced, however the presence 6ystem at high magnetic fields can be shown more clearly by
an additional parabolic confinement shifts the critical field toresorting to the classical problem. As is well known in the
higher values and the transition energy to lower energies dénit of very high magnetic field the kinetic energy of the
compared to thevwy=0 case. In Figs. @) and 3b) we plot  electrons freezes out and a classical problem with point par-
the binding energy for the ground state and the first excitedicles results. Such a classical approach is given in the Ap-
state of a;egatively charged donor in a quantum well ofendix.
width 100 A when the donor is at the edge of the well. We
compare those results with the results for a negatively V- CONCLUSION
charged donor in a quantum dot with the same thickness as In conclusion we studied how the neutral and charged
the reference QW and a confinement potential of 5 meV irdonors in a quantum well are influenced by an external para-
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60 APPENDIX : CLASSICAL APPROACH
50 We present here a classical calculation that should coin-
= 40 cide with the quantum results known for tbé system in the
o° very high magnetic field limit.

Let us first consider th®~ in a quantum well in the
classical limit. The classical energy of two electrons which
can be taken on a line in the presence of the impurity poten-
tial is

e e e

-— + s
ex/xf + e+ dxi—x

(A1)

Eclass= -

FIG. 4. Phase diagram for the ground state of a negativelywith x;>0 andx,<0 the classical coordinates of the two
charged donor confined into a quantum dot of thickness 100 A anélectrons, and’ the distance between the impurity and the
lateral confinementy,. The donor is positioned a vertical distance QW center. The configuration with the minimum energy is:
75 A away from the center of the doB. indicates the critical x;=0 andx, infinity, i.e., the symmetric state,=-x, is not
transition field. the ground state. Which agrees with the findig#at in

high magnetic field the two-electron bound state evaporates.
bolic confinement, i.e., transition from QW to QD. We also Next we add a parabolic potential so that E41) be-
studied the influence of an external magnetic field. We foundcomes

that the on-centeD® and D~ ground-state binding energies m 2 2 2

are increased both by the extra confinement and by the ex-g .= ﬂ)(X§+ xg) - — - + ,
ternal magnetic field. ThB~ excited-state binding energy is, 2 e+ ehe+ P dxi—X
on the other hand, increased by an external magnetic field (A2)

but decreased when a parabolic confinement is applied. For . _ _ _
the off-center systems we found that the ground-state energdnd introducing dimensionless variablgs=x;/{ and x,
of theD~ is increased by the extra confinement. The effect of=X2/{ we obtain

the external magnetic field and of the parabolic confinement 1 1 1

on the ground-state of th@~ is similar, namely the binding  Egaes= —| a0+ X)) - ——- 75—+ ,
energy is first increased up to a maximum after which it € Vxitl Wxptl X1~ xal
starts to decrease. The excited state of@héhas a different (A3)

dependence on the magnetic field and the confinement., 3 ) )
While there is an increase with the magnetic field of theVith a=el€ X mwg®/2. Here the ground-state configuration

binding energy of the.=—1 state, at least at low field, the IS 9iven by a single parameter In particular we find that if
confinement only decreases the excited-state binding energy>0-025, the state with minimum energy is symmetric,
In particular we found that the presence of an in-plane conWhile for «<0.025 the symmetric state is no longer the
finement shifts the magnetic field at which the angular mo9round state and an asymmetric solution appears. An esti-
mentum transitions occur to higher values, and as a cons&nate for t'he confinement threshold can be easily done using
quence a smaller number of angular momentum transition§'€ material parameters, e.g., we found that for a GaAs quan-

take place before th®~ becomes unbound in the QD as tum well with the donor 75 A away from the center of the
compared to the QW case. well, as we considered in the phase diagram presented in this

work (see Fig. 4, the threshold confinement frequency is
6.3 meV. In this case the electrons are confined by the para-
ACKNOWLEDGMENTS bol_ic potential and consequently we cannot find a solution in
which one of the electrons moves to infinity. However we
This work was supported by the FWO-VFlemish Sci- find that the binding energy of the negatively charged donor
ence Foundation the Belgian Interuniversity Attraction is always negative, which agrees with the results found in
Poles (IUAP), the Flemish Concerted Actio(GOA) Pro-  this paper that for sufficiently high magnetic fields e is
gramme, and the University of Antwe(p'IS). Clara Rivais  no longer bound and this for any value of the confinement
supported by FWO-Vlaanderen. Ruthber Escorcia wishes tpotential w,.
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