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A scheme is proposed for the generation of branch-entangled pairs of microcavity polaritons through spon-
taneous interbranch parametric scattering. Branch entanglement is achievable when there are two twin pro-
cesses, where the role of signal and idler can be exchanged between two different polariton branches. Branch
entanglement of polariton pairs can lead to the emission of frequency-entangled photon pairs out of the
microcavity. In planar microcavities, the necessary phase-matching conditions are fulfilled for pumping of the
upper polariton branch at an arbitrary in-plane wave vector. The important role of nonlinear losses due to pair
scattering into high-momentum exciton states is evaluated. The results show that the lack of protection of the
pump polaritons in the upper branch is critical. In photonic wires, branch entanglement of one-dimensional
polaritons is achievable when the pump excites a lower polariton sub-branch at normal incidence, providing
protection from the exciton reservoir.
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INTRODUCTION

The generation of entangled states is one of the most fas-
cinating aspects of quantum mechanics.1 In quantum optics,
parametric sources of entangled photon pairs have been at-
tracting great interest due to their remarkable nonclassical
applications. In particular, polarization-entangled pairs of
photons2 are an essential ingredient for quantum
cryptography,3 while frequency-entangled pairs have been
recently exploited for the so-called quantum optical coher-
ence tomography.4 In atomic physics, parametric collisions
are also enjoying considerable attention with the possibility
of creating entangled pairs of atoms by parametric scattering
off a Bose-Einstein condensate.5

Recently, semiconductor quantum microcavities in the
strong exciton-photon coupling regime6,7 have been shown
to provide very rich parametric phenomena.8–16 In these sys-
tems, the strong coupling between quantum well exciton and
cavity photon modes gives rise to two branches of quasi-two-
dimensional bosons, the so-called lower and upper branch
polaritons. In a polariton device, the parametric scattering is
due to polariton-polariton interactions, which are extremely
efficient.9,14 Moreover, the energy-momentum conservation
(phase matching) can be provided intrinsically by the pecu-
liar shape of the polariton energy dispersion. Interestingly,
semiconductor planar microcavities can be laterally pat-
terned with the possibility of creating zero-dimensional17 and
one-dimensional18 (1D) polariton systems with controllable
parametric properties. Efficient interbranch parametric scat-
tering has been demonstrated in one-dimensional
microcavities,18 where the presence of several polariton sub-
branches provides the opportunity of tailoring the parametric
processes in a remarkable way.

While the outstanding optical gain properties of polariton
parametric amplifiers involving the lower branch are largely
investigated, the study of the genuine quantum properties is
still in its infancy. So far, current research has been focused
on the generation and detection of polariton squeezing19 due
to the anomalous correlation between signal and idler polari-
tons, both belonging to the lower branch. Polariton squeez-
ing has been recently demonstrated in the degenerate

configuration13,20 (signal, pump, and idler in the same lower
polariton branch mode), but the detection of two-mode
squeezing in the nondegenerate configuration appears chal-
lenging due to the very different extra-cavity radiative cou-
pling of signal and idler modes within the lower branch.21

One important issue yet to be explored is the possibility of
creating Einstein-Podolski-Rosen(EPR) pairs of polaritons,
which are entangled with respect to a certain degree of free-
dom and which can be efficiently transferred out of the mi-
crocavity. In this paper, we propose a scheme to create po-
lariton pairs, which are entangled with respect to a peculiar
degree of freedom, namely, the discrete polariton branch in-
dex. We show that spontaneous interbranch parametric scat-
tering can generate pairs in the entangled state of the form

uCl ~ u j1,kslu j2,kil + u j2,kslu j1,kil, s1d

where u j ,kl denotes a polariton state belonging to thej th
branch(or sub-branch) mode with wave vectork. The signal
and idler wave vectors(ks andki) are such to provide phase
matching for the two branch-exchanged processes, as it will
be discussed later in detail. We show that the necessary(but
not sufficient) phase-matching requirements for this kind of
parametric effect are easily fulfilled both in two-dimensional
systems(planar microcavities) and one-dimensional struc-
tures(photonic wires), thanks to the dispersion of polariton
branches, which can be engineered. In our study, we evaluate
the protection of the considered parametric process from
nonlinear losses(collision broadening). In planar microcavi-
ties, we find that pair scattering into the exciton reservoir can
be a severe limitation. In fact, when the pump drives the
upper branch, pump-pump, pump-signal, and pump-idler
scattering into the high-momentum exciton states is particu-
larly efficient. In photonic wires, this lack of protection of
pump polaritons in the upper branch can be naturally de-
feated. In fact, in photonic wires, the additional confinement
of the photon modes produces a many-fold of sub-branches.
In these systems, interbranch scattering is possible even un-
der pump excitation of the lower sub-branch, as recently
demonstrated experimentally.18 We show that by pumping a
lower sub-branch at normal incidenceskx=0d, branch-
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entangled pairs of polaritons with a finite wave vector can be
obtained. Since the pumped mode lies in a lower sub-branch,
pump-pump, pump-signal, and pump-idler scattering into the
exciton reservoir can be suppressed.

The paper is organized as follows. In Sec. I A, we de-
scribe the proposed interbranch process in a planar microcav-
ity, where the upper polariton branch is excited. The genera-
tion of branch-entangled pairs of polaritons is treated within
a quantum Hamiltonian model, presented in Sec. I B. Section
I C treats the coupling to the extra-cavity field, which is re-
sponsible for the spontaneous emission of frequency-
entangled pairs of photons. In Sec. I D and I E, we address
the important issue of nonlinear losses. In Sec. II, we con-
sider the case of photonic wires. Finally, conclusions are
drawn in Sec. III.

I. 2D MICROCAVITIES

A. Phase matching for interbranch scattering

We start by giving the general idea of the proposed pro-
cess and then we turn to a more detailed theoretical analysis.
The strong coupling between exciton and cavity photon
modes is known to produce an anticrossing of their energy
dispersionsECskd and EXskd, resulting in the appearance of
the lower and upper polariton branches, whose energy dis-
persionsE1skd and E2skd are depicted in Fig. 1(a). So far,
studies of polariton parametric scattering in planar micro-
cavities have focused on the lower branch, in particular, un-
der pump excitation near the inflection point of the lower
branch dispersion. Here, we consider a different process,
which involves both branches. Suppose a pump laser injects
polaritons in the upper branch state with zero in-plane wave
vectorskp=0d. Two injected upper polaritons can scatter co-
herently, being parametrically converted into a signal-idler
pair of polaritons, namely, a lower and an upper polariton
with opposite in-plane momentum[see Figs. 1(a) and 1(b)].
The phase matching is fulfilled when the idler and signal
wave vector are such thatuksu= uk iu=kr, wherekr depends on

the polariton splitting and exciton-photon detuning. Note that
for a givenks, there are two equivalent processes, where the
role of signal and idler is exchanged between the lower and
upper polariton branch. Quantum entanglement is due to our
ignorance on which of the two scattered polaritons is in the
lower or upper branch. Figure 2 depicts the phase-matching
pattern in the two-dimensional momentum space. We have
plotted the phase-matching functionhskd=h1skd+h2skd,
with

h1s2dskd =
g2

fE1s2dskd + E2s1ds2kp − kd − 2E2skpdg2 + g2 ,

s2d

whereg represents the polariton broadening. Note that if the
energy-momentum conservation for the interbranch scatter-
ing is strongly violated,h1s2dskd→0. On the other hand,
whenk is an exact phase-matching wave vector for a lower
(upper) polariton signal,h1s2dskd=1. Importantly, if a wave
vectork is phase matching for both branches, thenhskd=2.
Figure 2(a) shows the casekp=0, whereh1skd=h2skd and
hskd=2 on the ringuk u=kr. Entangled polariton pairs can be
achieved with opposite momentum on the ring. On the other
hand, Fig. 2(b) shows the casekpÞ0, where the lower and
upper branch signal phase-matching curves splitfh1skd
Þh2skdg and branch entanglement is possible only at the two
intersection points. Note that this phase-matching profile is
topologically different from thè -shaped profile obtained
under pumping of the lower branch.22,23 Moreover, we point
out that the pattern in Fig. 2(b) is reminiscent of the one
achieved in type-II parametric down-conversion, which gen-
erates polarization-entanglement of photon pairs.2

FIG. 1. (a) Solid lines: in-plane energy dispersionE1skdfE2skdg
for the lower (upper) polariton branch. Dashed lines: dispersion
ECskdfEXskdg of the cavity(exciton) mode. Arrows depict the con-
sidered interbranch polariton pair scattering process.(b) Sketch of
the excitation geometry of the planar microcavity.

FIG. 2. Phase-matching functionhskd (defined in the text) as a
function of the signal in-plane wave vectork (k0 units). (a) The
pump excites the upper branch at normal incidenceskp=0d. (b)
kp=0.15k0x̂. Parameters: EX=ECs0d=1.5 eV, k0=ECs0d / s"cd,
2"VR=4 meV,g=0.5 meV.
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B. Quantum Hamiltonian description

We now turn to a detailed treatment of this system. As a
result of the strong exciton-photon coupling, the lower and
upper polariton boson operatorsp1,k and p2,k are linked to
the quantum well exciton and cavity operatorsbk andak by
an unitary Hopfield transformation, namely,

Sbk

ak
D = SM1,1,k M1,2,k

M2,1,k M2,2,k
DSp1,k

p2,k
D . s3d

The matrix of Hopfield coefficientsMi,j ,k is such that
M1,1,k =M2,2,k =1/Î1+rk

2 and M1,2,k =−M2,1,k =Î1−M1,1,k
2 ,

where rk="VR/ fE1skd−ECskdg and 2"VR is the polariton
splitting when exciton and photon modes are exactly reso-
nant. Polaritons are interacting bosons, due to the exciton-
exciton exchange interaction and due to the anharmonic part
of the exciton-photon interaction(saturation),24,25 whose re-
spective Hamiltonian contributionsHXX andHXC

sat are

HXX =
1

2 o lx
2

A

6e2

elx
bk+q

† bk8−q
† bkbk8, s4d

HXC
sat = − o "VR

nsatA
ak+q

† bk8−q
† bkbk8 + H.c., s5d

beingA the excitation area,lX the 2D exciton radius,e the
static dielectric constant of the semiconductor andnsat
=7/s16plX

2d the exciton saturation density. In the polariton
basis, both effects contribute to create an effective pair inter-
action potential. In our previous treatment of polariton para-
metric scattering,22,25we limited our description to the lower
branch. Including also the upper branch, we get the follow-
ing effective Hamiltonian describing polariton-polariton in-
teractions:

HPP =
1

2 o lx
2

A
Vk,k8,q

j1,j2,j3,j4pj1,k+q
† pj2,k8−q

† pj3,kpj4,k8, s6d

where the effective branch-dependent potential is

Vk,k8,q
j1,j2,j3,j4 = H6e2

elx
M1,j1,k+qM1,j2,k8−qM1,j3,kM1,j4,k8

−
2"VR

nsatlX
2 M2,j1,k+qM1,j2,k8−qM1,j3,kM1,j4,k8

−
2"VR

nsatlX
2 M2,j4,k8M1,j3,kM1,j2,k8−qM1,j1,k+qJ .

s7d

Note that this Hamiltonian is for cocircularly polarized
polariton states. The first contribution toVk8,k8,q

j1,j2,j3,j4 is propor-
tional to the 2D exciton binding energyEb=e2/ s2elxd and is
due to the exciton-exciton interaction. This contribution is
always repulsive, becauseM1,j ,k is always positive. The
other contribution is due to the anharmonic exciton-photon
coupling and can be either positive or negative, depending
on the branch indexes.

The regime of polariton parametric scattering takes place
when a pump laser drives coherently a single branch at a

given wave vector. In this case, the corresponding quantum
destruction operatorpjp,kp

can be approximated by the its
mean-field valuekpjp,kp

l, which is a classical field. Hence,
the pair interaction HamiltonianHPP can be approximated by
the parametric Hamiltonian

Hpar= o
j1,j2

o
k

Ek,kp

j1,j2,jpP jp,kp

2 pj1,k
† pj2,2kp−k

† + H.c., s8d

with

Ek,kp

j1,j2,jp = sVkp,kp,k−kp

j1,j2,jp,jp + Vkp,kp,k−kp

j2,j1,jp,jp d/2. s9d

The dimensionless pump polariton density is defined as
uP j2,kp

u2= ukpjp,kp
lu2lX

2 /A. The other effect is a mean-field shift

of the branch-dependent energy, namely,Ẽjskd=Ejskd
+Lk,kp

j ,jp uP jp,kp
u2, where Lk,kp

j ,jp =sVk,kp,0
j ,jp,j ,jp+Vkp,k,0

jp,j ,jp,j +Vk,kp,kp−k
jp,j ,j ,jp

+Vkp,k,k−kp

j ,jp,jp,j d /2.
In this section, we are interested in the case of pump

excitation of the upper branchs j p=2d, with the final states
belonging to two different branchess j1Þ j2d. Since Ek,kp

1,2,2

=Ek,kp

2,1,2, the parametric interaction Hamiltonian reads

Hpar= o
k

Ek,kp

1,2,2P2,kp

2 sp1,k
† p2,2kp−k

† + p2,k
† p1,2kp−k

† d + H.c.

s10d

When applied on the vacuum stateu0l, Hpar generate pairs of
polaritons with total in-plane momentum 2kp, which are en-
tangled with respect to the branch index. Indeed, Eq.(10) has
the paradigmatic form of Hamiltonian, describing the gen-
eration of EPR pairs of bosons, which are entangled with
respect to a discrete degree of freedom. In quantum optics,
the literature about the nonclassical photon properties asso-
ciated to this Hamiltonian is impressive.26 In our case, en-
tanglement concerns polaritonic particles and one peculiar
polaritonic degree of freedom, namely, the branch index. The
generation of branch-entangled pairs is allowed only when
there is phase matching for the two branch-exchanged pro-
cesses, i.e.,E1skd+E2s2kp−kd=2E2skpd andE2skd+E1s2kp
−kd=2E2skpd. For kpÞ0, there are only two possible signal
and idler wave vectors, which are the intersection points in
Fig. 2(b), as anticipated. Whenkp=0, branch entanglement
is achievable for every pair of in-plane wave vectorssk ,
−kd on the phase-matching ringuk u=kr. Figure 3 shows the
contours of the interaction energyEkr,0

1,2,2 (units of the exciton
binding energyEb), as a function of the polariton splitting to
binding energy ratio 2"VR/Eb and of the normalized detun-
ing d=fECs0d−EXg / s2"VRd. As anticipated, Fig. 3 shows
that the effective interaction can be either positive or nega-
tive (the change of sign occurs across the white-dashed line).
The effective interaction is positive when it is dominated by
the exciton-exciton interaction, negative when the anhar-
monic exciton-photon coupling takes over.

C. Emission of frequency-entangled photon pairs

The intracavity polariton parametric scattering dynamics
is coupled to the extra-cavity field, giving rise to parametric
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luminescence.22 This coupling is usually described by the
quasimode Hamiltonian

Hext= o
j ,k
E dv gsvduMj ,2,ku2av,k

† pj ,k + H.c., s11d

wheregsvd is the coupling energy(approximately constant
in the mirror spectral stop band) and av,k

† is the creation
operator of an extra-cavity photon with energy"v and con-
served in-plane wave vectork. The free space photon is
emitted with an external angleu with respect to the vertical
direction, such ask=sv /cdsin u. The coupling of each
branchs j P h1,2jd to the external field is proportional to the
photonic fraction uMj ,2,ku2. Importantly, branch-entangled
pairs of polaritons can emit frequency-entangled pairs of
photons, i.e., states like

uCl ~ sav1,kr

† av2,−kr

† + av2,kr

† av1,−kr

† du0l, s12d

where"v1 ("v2) is the energy of the lower(upper) branch
state with in-plane wave vectorkr. The frequency
entanglement27 of photon pairs can be measured by coinci-
dence counting in Hong-Ou-Mandel-type interferometers,28

which are also used in quantum tomography.4 In order to
have a significant extra-cavity visibility, the polariton signal
and idler modes need to have a similar coupling to the extra-
cavity field. This occurs when the cavity photon fraction of
the polariton signal and idler modes is comparable. Figure
4(a) depicts, respectively, the photon fractionsuM2,2,kr

u2 and
uM1,2,kr

u2 of the upper and lower branch modes on the ring,
versus the normalized detuning. The thick solid line shows
the ratio uM1,2,kr

/M2,2,kr
u2. Compared to the known intra-

branch process9 where the signal-idler coupling ratio is typi-
cally less than 0.05,21 the interbranch process here described
enjoys a higher ratio. At zero detuning, the ratio is.0.2,

rising significantly in the region of negative detuning
(.0.4 for d=−1). Finally, Fig. 4(b) shows the dependence of
the phase-matching ring wave vector on the polariton cou-
pling. The corresponding emission angleur (deg) increases
with increasing polariton splitting. For a given polariton
splitting, ur depends only onudu, being minimum for zero
detuning.

D. Losses for the polariton modes

As well known in quantum optics, the interesting quan-
tum regime is achieved when the scattering is spontaneous,
i.e., the probability of having more than one entangled pair in
the same state is negligible. In other words, the parametric
scattering should be kept below the stimulated parametric
oscillation threshold.22,29 However, the system cannot be
driven too much below threshold, because other scattering
mechanism can prevail, disentangling the pairs created by
parametric scattering. Hence, the role of losses is crucial and
needs to be carefully addressed.

1. Linear losses

Losses for the polariton modes produce a branch- and
wave-vector dependent polariton broadeningg j ,k. In the low
excitation regime at low temperatures, the linear broadening
g j ,k

L is essentially due to the radiative linewidth, the interac-
tion with acoustic phonons,30 scattering by impurities and,
for the upper branch, mixing with the exciton continuum
states.31 The radiative lifetime and the impurity concentra-
tion are strongly sample dependent, being determined by the
growth quality of the microcavity. Usually, the broadening
due to emission of acoustic phonons is smaller with respect
to the radiative linewidth and to the impurity-induced losses.
On the other hand, the continuum of unbound electron-hole

FIG. 3. (a) Contours of the dimensionless parametric interaction
energy Ekr,0

1,2,2/Eb vs 2"VR/Eb and the normalized detuningd
= +fECs0d−EXg / s2"VRd. Parameters:ECs0d=1.5 eV, exciton bind-
ing energyEb=10 meV. The white-dashed line depicts the zero
value points.

FIG. 4. (a) Photon fractions of the polariton modes on the
phase-matching ringsuk u=krd as a function of the normalized detun-
ing. Upper triangle: upper branch. Lower triangle: lower branch.
Thick solid line: the ratio between the lower and upper branch
photon fractions.(b) Ring emission external angleur (deg) vs po-
lariton splitting (meV) for different normalized detunings.
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pairs is a major source of broadening for the upper branch
states with energy higher than the continuum onset. In prin-
ciple, the upper branch state on the ring can form a Fano
resonance with the continuum states, with a finite probability
of decaying irreversibly into undesirable unbound electron-
hole pairs. This issue is addressed in Fig. 5, which shows the
difference between the upper branch final-state energyE2skrd
and the continuum band edge energyEX+Eb, in units ofEb.
The white-dashed line depicts the points where the difference
is 0. The encouraging fact is that there is a wide region with
negative values, implying that the upper polariton final-state
can be protected from the free carrier absorption. At zero
detuning, this occurs for a polariton splitting to exciton bind-
ing energy ratio smaller than 0.8. The condition becomes
even less stringent for negative detunings.

2. Density-dependent losses

For moderate and higher excitation densities, nonlinear
losses32–36play an important role. In particular, polariton pair
scattering into the exciton reservoir can become the leading
source of broadening for the polariton modes. Namely, fast
decoherence of the pumped mode can occur due to pump-
pump scattering into the high-momentum exciton states,
while pump-signal(idler) scattering into the exciton reser-
voir creates a loss mechanism for the polariton signal(idler)
mode. Panel(a) represents the scattering of one upper polar-
iton state with one pump polariton with zero in-plane wave-
vector. Panel(b) represents the analogous scattering for one
lower polariton. Within the Born approximation, the nonlin-
ear broadening is given by

g j ,k
NL = 2po

q
N2,0uslX

2/AdV0,k,q
1,1,2,ju2dsDEd, s13d

where here d is the Dirac function, DE=E2s0d+Ejskd
−E1sqd−E1su−q+k ud andN2,0 is the number of polaritons in

the pumped mode. If the pump mode is driven coherently
(the case of our interest), N2,0.ukp2,0lu2. Since the energy
conservation is fulfilled for a wave vectorq very large com-
pared tok (see Fig. 6), we can safely approximateE1su−q
+k ud.E1sqd.EX+s"2q2/2Md, being M the exciton mass.
Hence, the expression for the nonlinear broadening becomes

g j ,k
NL .

MlX
2

2"2 uV0,k,q̄j

1,1,2,ju2sn2,0lX
2d, s14d

where q̄j is such that E2s0d+Ejskd=2E1sq̄jd and n2,0
=N2,0/A is the density of pump polaritons per unit area. Let
us calculate the nonlinear broadening for a set of realistic
parameters, namely, exciton massM =0.3 m0, pump density
n2,0= 1/20nsat, polariton splitting 2"VR=7 meV, lX
=10 nm. For this parameters, we getg1,kr

NL =1.1 meV, g2,kr

NL

=0.25 meV for normalized photon detuningd= +1. For d
=0, g1,kr

NL =4.3 meV,g2,kr

NL =0.3 meV, while ford=−0.5 g1,kr

NL

=6.7 meV,g2,kr

NL =0.12 meV. Note that, under pumping of the
upper branch, the collision broadening of the upper polariton
state on the ring is smaller than that of the companion state
on the lower branch. This occurs because the upper polariton
state on the ring has always an excitonic fraction smaller
than the lower polariton state with the same wave vector.

E. Collision broadening catastrophe

The spontaneous scattering regime22 is achieved for pump
intensities well below the stimulated parametric oscillation
threshold. Since interbranch parametric interaction and pair
scattering into the exciton reservoir are due to the same mi-
croscopic mechanism,a priori it is not clear if a stimulation
threshold can be ever achieved under pump excitation of the
upper branch. In fact, the parametric oscillation threshold is

FIG. 5. Contours offE2skrd−EX−Ebg /Eb vs 2"VR/Eb and the
normalized detuningd=fECs0d−EXg / s2"VRd. The white-dashed
line depicts the zero value points, i.e., the upper polariton state on
the ring is resonant with the continuum band edge. Same param-
eters as in Fig. 3.

FIG. 6. Sketch of the pair scattering processes responsible for
nonlinear losses of the polariton modes.(a) An upper branch polar-
iton scatter with one pump polaritonskp=0d belonging to the upper
branch. The final states are excitons with large momentum.(b)
Analogous loss process for a lower polariton, due to scattering with
one pump polariton.
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achieved when the parametric interaction energy compen-
sates for the total losses of the signal-idler pair, namely,

uEkr,0
1,2,2 P2,0

thr 2u2 = sg1,kr

L + g1,kr

NL dsg2,kr

L + g2,kr

NL d, s15d

which is a self-consistent equation, becauseg j ,kr

NL depends on
the pump density. If we definej j ,k

NL=sMlX
2 /2"2duV0,k,q̄j

1,1,2,ju2,
then we can rewrite the collision broadening asg j ,k

NL

=j j ,k
NLn2,0lX

2. Hence, Eq.(15) becomes

fsEkr,0
1,2,2d2 − j1,kr

NL j2,kr

NL gsn2,0
thrlX

2d2 = b n2,0
thrlX

2 + g1,kr

L g2,kr

L ,

s16d

whereb=sg1,kr

L j2,kr

NL +g2,kr

L j1,kr

NL d is always positive. For typical
values of the exciton mass, the quantitysEkr,0

1,2,2d2−j1,kr

NL j2,kr

NL is
negative. Hence, Eq.(15) can be never satisfied, because the
left-hand side is negative, while the right-hand side is always
strictly positive. In other words, the collision broadening due
to scattering into the high-momentum states acts as a positive
feedback, preventing the system to enter the stimulated re-
gime. This kind of collision catastrophe is absent when the
pump excites the lower branch, because the coupling to the
high-momentum states is strongly suppressed.32–36

II. 1D MICROCAVITIES

The concept of branch entanglement is quite general and
can be applied also to multibranch systems, such as photonic
wires.18 In a one-dimensional cavity, the additional confine-
ment along they direction produces a series of cavity photon
sub-branches, whose energy dispersionEC

snydskxd is given by

fEC
snydskxdg2 = fECskxdg2 +

s"cd2

e
Spsny + 1d

Ly
D2

, s17d

whereECskxd is the energy of the planar cavity withk=kx, Ly

is the wire width andny is the sub-branch index(positive or
equal to zero). Strong coupling to the exciton resonance pro-
duces a many-fold of lower polariton sub-branches with en-
ergy E1

snydskxd and upper polariton sub-branches with energy
E2

snydskxd. Each cavity sub-band couples to an exciton mode
with the same symmetry.37 The polariton splitting 2"VR is
approximately independent37 of the branch indexny for small
values ofny. As experimentally demonstrated in the experi-
ments by Dasbachet al.18, there are many new parametric
scattering channels available. In particular, it is possible to
have inter-branch scattering by pumping one lower
sub-branch.18 The momentum conservation along they di-
rection is lifted, being replaced by the less stringentparity
selection rule.18,38 This selection rule for pair scattering of
1D polaritons imposes that the sum ofny for signal and idler
must be even. The interbranch parametric scattering process
has an efficiency,39 which is comparable to the intrabranch
scattering in planar microcavities. In Fig. 7, we propose a
scattering process, in which the pump excites the lower sub-
branch withny=2 and kx=0. For a proper exciton-photon
detuning, there is a phase-matched process, in which the final
states are two polariton modes with opposite and finite wave
vectors, one belonging to the lowerny=0 sub-branch and the

other to the upperny=0 sub-branch. The phase-matching
function for this interbranch scattering channel is depicted in
Fig. 8, as a function of the wave vectorkx and the normalized
detuning D=fECs0d−EXg / s2"Vd, where ECs0d is the 2D-
cavity energy and 2"VR is the polariton splitting. As in Fig.
2, the phase-matching function is equal to 2, when there are
two branch-exchanged processes, which are exactly phase-
matched(the condition for branch entanglement). For zero
pump wave vectorkp [see Fig. 8(a)], this property is
achieved in a broad, but finite range of negative detuningD.
In contrast to the 2D case, forkpÞ0, the phase-matching
function is equal to 2 only at the pump wave vector, as
shown in Fig. 8(b). But this does not correspond to pure
polariton branch-entanglement, because signal and idler have
the same wave-vector.

Importantly, in a photonic wire it is possible to have inter-
sub-branch scattering processes restricted to the lower many-
fold only. One parity-conserving process is shown in Fig. 9,
where the pump excites theny=2 sub-branch atkx=0 and the
signal and idler modes belong to theny=1 andny=3 sub-
branches. The phase-matching properties of this processes
are reported in Fig. 10 as a function of the signal wave vector
along the wire direction and of the normalized detuningD.

The interest of photonic wires does not rely only in the
possibility of having new scattering channels. One advantage
is to provide a much better protection from the exciton res-
ervoir. In fact, in contrast to pumping of the upper branch,
the interbranch process shown in Fig. 7 suffers much weaker
nonlinear losses due to pair scattering into the high-
momentum exciton states. As already studied theoretically
and experimentally, under excitation of the lower branch,

FIG. 7. Energy dispersion(units of 2"VR) of 1D polaritons as a
function on the wave vectorkx (k0 units) along the direction of the
photonic wire. Compared to the 2D system, the lower branchs j
=1d is split in a multiplet of sub-branchessny=0,1,2, . . .d, as well
as the upper branchs j =2d. The arrows depict the considered inter-
branch parametric scattering process, in which the pump excites the
ny=2 lower sub-branch mode withkx=0. Parameters: 2"VR

=4 meV, wire width Ly=4 mm, EX=ECs0d+4"VR, with ECs0d
=1.5 eV is the 2D-cavity energy.
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pump-pump scattering into the exciton reservoir is strongly
suppressed due to lack of energy-momentum
conservation.33,34,36 The same is true for pump-signal and
pump-idler scattering. The only allowed channel is the
signal-signal(or idler-idler) scattering, in which the signal
(idler) mode belong to the upper branch. But this is not a
crucial process especially below or near threshold, when the
signal(idler) population is much smaller than the pump one.

III. CONCLUSIONS

In conclusion, we have proposed and analyzed a scheme
for the generation of branch-entangled polariton pairs in
semiconductor microcavities through spontaneous inter-
branch parametric scattering. Branch entanglement of polar-
iton pairs leads to emission of frequency-entangled pairs of
extra-cavity photons, which have been recently attracting
considerable attention in the field of quantum tomography.4

This kind of nonclassical states cannot be achieved by intra-
branch polariton pair scattering,9 being a peculiarity of inter-
branch processes. In planar microcavities, the phase-
matching conditions are satisfied by pumping the upper
polariton branch for an arbitrary pump in-plane wave vector
kp. We have studied the phase-matching properties and the
efficiency of the process as a function of exciton-photon de-
tuning, polariton splitting and exciton binding energy. While
the phase-matching properties for the 2D interbranch process
are very flexible, the nonlinear losses due to polariton pair
scattering into the high-momentum exciton states is a reason
of concern, being a significant source of decoherence. The
lack of protection of pump polaritons in the upper branch can
be naturally overcome in photonic wires, thanks to the exis-
tence of a many-fold of sub-branches. In this paper, we have
shown that there are parity-conserving interbranch scattering
processes(forbidden in planar microcavities), in which the
pump excites a lower polariton sub-branch mode withkx=0,
providing branch entanglement of the signal-idler polariton
pair. These processes enjoy much better protection from the
high-momentum exciton states, making one-dimensional mi-

FIG. 8. Phase-matching function for the inter-sub-branch scat-
tering of 1D polaritons depicted in Fig. 7, as a function ofkx (k0

units) and the normalized detuningD=sECs0d−EXd / s2"Vd, with
ECs0d the 2D-cavity energy.(a) kp=0. (b) kp=0.05k0x̂. Parameters:
2"VR=4 meV,g=0.5 meV.

FIG. 9. Arrows depict the inter-sub-branch scattering, with all
states belonging to the lower many-fold. Parameters: 2"VR

=4 meV, wire widthLy=4 mm, EX=ECs0d+3.5 "VR, with ECs0d
=1.5 eV is the 2D-cavity energy. Horizontal and vertical axis as in
Fig. 7.

FIG. 10. Phase-matching function for the inter-subbranch scat-
tering of 1D polaritons depicted in Fig. 9, as a function ofkx (k0

units) and the normalized detuningD=fECs0d−EXg / s2"Vd, with
ECs0d the 2D-cavity energy.(a) kp=0. (b) kp=0.05k0x̂. Parameters:
2"VR=4 meV,g=0.4 meV.

BRANCH-ENTANGLED POLARITON PAIRS IN PLANAR… PHYSICAL REVIEW B 69, 245304(2004)

245304-7



crocavities a strong candidate to demonstrate and exploit the
quantum effects here proposed. Current experiments in pho-
tonic wires are encouraging.40 In the future, we would like
to address interesting features such as the dynamics of en-
tanglement generation. We hope that the ideas presented in
this paper will stimulate experimental and theoretical re-
search in a field at the frontier between condensed matter
physics and quantum optics. Indeed, one challenging, but
intriguing goal would be the development of polariton

micro-sources of non-classical states with controllable prop-
erties.
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