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Phonon effects in molecular transistors: Quantal and classical treatment

A. Mitra, I. Aleiner, and A. J. Millis
Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027, USA
~Received 21 November 2003; revised manuscript received 24 February 2004; published 7 June 2004!

We present a comprehensive theoretical treatment of the effect of electron-phonon interactions on molecular
transistors, including both quantal and classical limits. We study both equilibrated and out of equilibrium
phonons. We present detailed results for conductance, noise, and phonon distribution in two regimes. One
involves temperatures large as compared to the rate of electronic transitions on and off the dot; in this limit our
approach yields classical rate equations, which are solved numerically for a wide range of parameters. The
other regime is that of low temperatures and weak electron-phonon coupling where a perturbative approxima-
tion in the Keldysh formulation can be applied. The interplay between the phonon-induced renormalization of
the density of states on the quantum dot and the phonon-induced renormalization of the dot-lead coupling is
found to be important. Whether or not the phonons are able to equilibrate in a time rapid compared to the
transit time of an electron through the dot is found to affect the conductance. Observable signatures of phonon
equilibration are presented. We also discuss the nature of the low-T to high-T crossover.
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I. INTRODUCTION

In recent years it has become possible to fabricate dev
in which the active element is a very small organ
molecule.1 Such a device may be thought of as a ‘‘quantu
dot’’: a structure weakly coupled to the macroscopic cha
reservoirs~‘‘leads’’ ! and small enough that the discrete n
ture of the energy levels on the dot is important. Quant
dots fabricated using conventional semiconductor technol
have been extensively studied experimentally2 and
theoretically.3. However, the use of small molecules m
lead to new physics. In particular, as electrons are adde
removed from a small molecule, both theshapeof the mol-
ecule and itsposition relative to the leads may be altere
The energies associated with these changes are not s
and the time scales may be comparable to those related t
flow of electrons into and out of the molecule. Interesti
recent data indicate that these effects may lead to observ
structures in the conductance spectra of the dot.4–6

The shape change may be thought of as a coupling
electrons on the molecule to phonon modes of the molec
while the position change corresponds to phonon-depen
tunneling matrix elements. The subject of electron-phon
coupling in quantum dots has received much theoret
attention.7–16 In an early important work Glazman and She
hter obtained analytic expressions for the transmission p
ability through the dot under conditions that the phonons
always in equilibrium.7 Their results for the transmission g
a long way towards describing the behavior of the phon
coupled system when one is far from resonance. Howe
their treatment neglects the phonon renormalization of
dot-lead coupling, and thus gives rise to a zero-bias cond
tance at resonance that is smaller than the value predicte
the Breit-Wigner formula~this situation was not the mai
interest of Ref. 7!. @Note that these issues were also recen
discussed by Flensberg.15# The lack of renormalization of the
dot-lead coupling appears in the treatment carried out
other authors as well,8–10,14 and in addition some author
assert~incorrectly, we believe! that phonon sidebands ma
0163-1829/2004/69~24!/245302~21!/$22.50 69 2453
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be observed even in the linear-response conductance9,10 by
tuning the gate voltage.

In this paper we revisit the problem of the phono
coupled dot. We present a comprehensive formalism v
both in the classical and quantal limits which resolves
ambiguities in the present literature. We also use this form
ism to address issues related to the behavior of this sys
under strongly nonequilibrium conditions in the quantal a
classical regime. We further study the nature of the quan
classical crossover and the noise spectra. An important
ture of our results in the quantum regime is that the cond
tance peak height at resonance is unchanged by elec
phonon interactions.

A recent paper by McCarthyet al.11 treats the problem of
the phonon-coupled dot in the high-T classical regime and
for phonons that couple to the leads. They present results
the regime of ‘‘equilibrated’’ phonons strongly coupled to
heat bath. The high-T regime of our work is similar to that o
Ref. 11, but we also study the physics of out of equilibriu
phonons.

Aji et al.12 have studied the model under off-resona
conditions when the conductance is very low and the curr
is due to elastic/inelastic cotunneling. They study the phon
sidebands in the case of equilibrated and unequilibra
phonons, for the case of an electron coupled to a molec
vibrational mode~our model! and also the case of a phono
dependent tunneling amplitude. In our analysis, the ex
treatment of the leads automatically takes into account
tunneling processes, while the perturbative approximation
stricts our analysis to details of the first phonon sideband.
show how thermal effects wash out cotunneling.

The paper is organized as follows. In Sec. II we descr
the model~Sec. II A!, the important model parameters~Sec.
II B !, and develop a density-matrix formalism~Sec. II C! that
allows one to obtain the probability distribution for variou
states on the dot under out of equilibrium conditions. In S
III we apply the high-temperature approximation in th
density-matrix formalism and derive the rate equations
the dot occupation probabilities in the sequential tunnel
©2004 The American Physical Society02-1
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regime~Sec. III A!. We use these rate equations to calcul
average current~Sec. III B! and the dc noise power~Sec.
III C ! as functions of gate and source-drain voltage for t
limiting cases: phonons equilibrated to the external wo
independent of the electron occupation~phonon equilibration
fast compared to dwell time of electron on molecule!, and
phonons uncoupled from the external world and respond
only to on-dot electrons~phonon equilibration slow com
pared to dwell time of electron on dot!. We find that in the
case of phonons uncoupled from a bath, under certain
conditions the phonon distribution can deviate far from eq
librium.

Section IV deals with the low-temperature quantal regi
of the phonon-coupled dot where we use the Keldy
Green’s-function technique to calculate the dc current
phonon distribution function to leading order in the ratio
~electron-phonon coupling!/~tunneling rate to the leads! for
the two cases of slow and fast phonon equilibration ra
Section IV A reintroduces the problem, Sec. IV B deriv
expressions for the exact eigenstates in the absenc
electron-phonon coupling. These eigenstates form a co
nient basis for carrying out the perturbative Keldysh cal
lation which is outlined in Sec. IV C. Secs. IV D and IV
present results forI -V for the two cases of slow and fas
phonon equilibration rates.

Finally Sec. V studies the crossover from low-T to high-T
regimes and Sec. VI is a summary of our work and its re
tion to already existing literature.

II. MODEL, PARAMETERS, AND FORMALISM

A. Model

We consider the case of a molecule with a single leve
degeneracydg coupled to two leads, which we label as ‘‘le
~L!’’ and ‘‘right ~R!.’’ We suppose that the electrons a
coupled to two different kinds of phonons; an internal vib
tional mode of the molecule of frequencyv0, which couples
to the local charge, and a phonon mode labeled by a
placement operatorẑ, which accounts for the oscillations o
the dot in an external confining potential of parabolicityK.
This phonon mode does not couple directly to the charge
the dot, but results in an explicitẑ dependence in the left an
right tunneling matrix amplitudest i ,k,a$ẑ%. The full Hamil-
tonian is, therefore,

H5HD1Hleads1Ht ~1!

with

HD5end1
U

2
nd~nd21!1lv0~b†1b!nd1

pz
2

2M

1
1

2
Kz21v0b†b, ~2!

Hleads5 (
k,a5L,R

ekaa,k
† aa,k , ~3!
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Ht5 (
a5L,R,k,s,i 51,dg

t i ,k,a$ẑ%aa,k
† di ,s1H.c., ~4!

wheres labels the spin index. Figure 1 shows a schematic
the energies considered.

Here the number of electrons on the molecule,nd , is
given by

nd5 (
i 51,dg

s

di ,s
† di ,s , ~5!

and the parameterU is the charging energy of the molecul
We have defined the zero-phonon state of the vibratio
mode of the molecule to be the ground state whennd50,
and we neglected anharmonicity in the lattice part of
Hamiltonian~such anharmonicity is of course induced by t
electron-phonon coupling and an intrinsic anharmonic
could easily be added!.

The dot-lead couplingt i ,k,a means that@H,nd#Þ0; in the
absence of electron-phonon and many-body physics this
plies an inverse lifetime for decay of an electron in statei on
the dot into a state of energye in leada,

G i ,a~e!52p(
k

ut i ,k,a~ ẑ50!u2d~e2e i ,k!. ~6!

The density matrixr of the full HamiltonianH obeys the
equation of motion

dr~ t !

dt
52 i @H,r~ t !#. ~7!

The current~I! and the noise~S! through the leada are given
by

^I a~ t !&5Trr̂~ t ! Î a , ~8!

Sa~ t !5Trr̂~ t !@dI ~ t !dI ~0!1dI ~0!dI ~ t !#, ~9!

wheredI (t)5I (t)2^I & and the current operator through th
a lead is given by

FIG. 1. Energy-level diagram.mL,R represent the chemical po
tential in the left and right leads, respectively, whilee8 represents
the ground state of the singly occupied dot and the dashed l
indicate phonon excitations of the singly occupied dot. The so
line indicates the energye91U of the doubly occupied dot.
2-2
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Î a5
dNa

dt
5 i @H,Na#5 i (

k,s,i
@ t i ,a~ ẑ!a†

a,k,sdi2H.c.#,

~10!

Na5(k,sak,s
† ak,s being the number operator for thea lead.

B. Parameters and regimes

The behavior of the models we consider is specified
two important dimensionless parameters: the ratio of
temperatureT to a typical decay timeG, and the product of
the dimensionless couplingl and the ratio of the phonon
frequencyv0 to G. For large values ofT/G a classical rate
equation analysis may be employed for all values oflv0 /G;
and this is the subject of Sec. III. For small values ofT/G a
quantal treatment is required. Section IV reports results
low T, obtained using perturbative calculations valid f
lv0 /G<1, while Sec. V treats the quantal-classical cro
over, also in thelv0 /G<1 regime. The quantal strong
coupling regime (T/G,1,lv0 /G.1) is a challenging prob-
lem left for future research. The different regimes and
sections treating them are shown in Fig. 2.

C. Formalism

The essential assumption in the theory of molecular
vices is that the leads are in equilibrium independent of
state of the molecule. In order to implement this assump
it is often convenient to define a projected density matrixrs ,

rs5Trleads$r~ t !% ^ r leads, ~11!

wherer leads is the density matrix of the left and right lead
that are in thermal equilibrium at some specified chem
potentials (mL andmR). The density matrix of the dot~also
known as the reduced density matrix! is therefore given by

rD5Trleadsrs ~12!

and for our model corresponds to projecting the full dens
matrix to the smaller subspace of the degrees of freedom
the dot electrons and the two types of phonon modes.

A complementary density matrixr t may also be defined
such that

FIG. 2. Overview of different regimes studied.
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from which it follows that

Trleadsr t50. ~14!

It is desirable to obtain the reduced density matrix of the
rD because its diagonal components relate directly to
occupation probabilities of the various states of the dot, a
various expectation values~such as the current and nois!
may be expressed in terms of components ofrD .

In what follows we outline a general scheme for obtaini
the reduced density matrix.17 The equation of motion for the
full density matrix, Eq.~7!, implies

drsI~ t !

dt
5S Trleads

dr I~ t !

dt D ^ r leads

52 i ~Trleads@HtI~ t !,r It~ t !# ! ^ r leads, ~15!

dr tI~ t !

dt
5

d~r I~ t !2rsI~ t !!

dt

52 i @HtI~ t !,rsI~ t !1r tI~ t !#

1 i ~Trleads@HtI ,r tI~ t !# ! ^ r leads. ~16!

We have used the interaction representation defined
ÔI(t)5ei (HD1Hleads)tÔ(t)e2 i (HD1Hleads)t.

In specifying the solution of Eqs.~15! and ~16!, we re-
quire an initial condition. There are two common choices:~i!
at the initial time,r̂ corresponds to an equilibrium ensemb
for H with mL5mR ; ~ii ! at the initial time (t i) the dot and
leads are decoupled (Ht50) so thatr(t i)5rD ^ r leads with
rD andr leads the equilibrium density matrices correspondin
to the uncoupled problem. We shall be interested in ste
state, so we will take the initial timet i52`. Further we
shall be interested in cases in which the leads are
strongly affected by the presence of the dot. In this case
boundary condition~ii ! is most convenient, but we note tha
if orthogonality effects or Luttinger liquid renormalization
of tunneling amplitudes are important then this choice m
be less convenient.

Choosing boundary condition~ii !, Eq. ~16! being a linear
equation inr tI(t) may be formally solved as

r tI~ t !52 i E
2`

`

dt8KI~ t,t8!@HtI~ t8!,rsI~ t8!#, ~17!

whereKI(t,t8) obeys the following operator equation,

dKI~ t,t8!d

dt
1 i @HtI ,KI~ t,t8!d#

2 i ~Trleads@HtI ,KI~ t,t8!d# ! ^ r leads

5d~ t2t8!, ~18!

where the symbold denotes the operators acted on byK.
The combination of the second and third terms on the l
hand side~lhs! of Eq. ~18! corresponds to processes in whic
the particle distribution in the leads differs from the equili
2-3
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rium one. When substituted back in Eq.~17!, these terms
produce correlations between the dot and lead variables.
cesses corresponding to these correlations have been
cussed in detail by Scholler and co-workers,24 however their
importance for the present problem is unclear.

Substituting Eq.~17! into Eq. ~15! leads to

drDI (t)

dt
52TrleadsE

2`

`

dt8†HtI~ t !,KI~ t,t8!

3@HtI~ t8!,rsI~ t8!#‡. ~19!

Equation ~19! is a generalized master equation that un
steady-state conditions@setting the lhs of Eq.~19! to zero#
can be written in the following form,

05(
j

PjRj→ i , ~20!

where ^ i urDu i &5Pi , the probability of being in thei th dot
state. ~Under steady-state conditions off-diagonal eleme
of the density matrix vanish except in the case of accide
degeneracies.! Conservation of probability requires( iRj→ i
50, from which it follows that

05(
j Þ i

PjRj→ i2Pi(
j Þ i

Ri→ j ~21!

so that the quantitiesRj→ i may be interpreted as the variou
in-scattering and out-scattering rates.

A formal expression for the current may be derived
using Eq.~8! and observing that TrÎrs50, so that

^I &5TrÎr t52 iTrE
2`

`

dt8@ I I~ t !KI~ t,t8!,HtI~ t8!#

3rDI~ t8! ^ r leads. ~22!

Equations~21! and ~22! are our basic results. Furthe
analysis depends on the specifics of the system and of
approximation chosen. At temperatureT, only timest,1/T
are relevant, so at sufficiently highT, we may approximate
KI by its short-time behavior,

KI~ t,t8!→u~ t2t8!. ~23!

Indeed making this substitution in Eq.~17! leads to the fol-
lowing expression forr t in the Heisenberg representation,

r t52 i E
2`

t

dt8e2 i (HD1Hleads)(t2t8)@Ht ,rs~ t8!#

3ei (HD1Hleads)(t2t8). ~24!

The above expression forr t when substituted in the first line
of Eq. ~22! leads to the widely accepted Meir-Wingreen18

expression for the current,

I L5E
2`

t

dt8E deN~«!Im$ei e(t2t8)G,~ t,t8!

1 f L~e!ei e(t2t8)GR~ t,t8!%, ~25!
24530
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whereN(«) is the density of states and the Green’s functio
are defined as

GR~ t,t8!52 iu~ t2t8!^$d~ t ! t̂ kL$ẑ~ t !%,d†~ t8! t̂ kL
† $ẑ~ t8!%%1&,

~26!

G,~ t,t8!5 i ^d†~ t8! t̂ kL
† $ẑ~ t8!%d~ t ! t̂ kL$ẑ~ t !%&. ~27!

In general the second and third terms in Eq.~18! imply
KI(t)5u(t)k(t) wherekÞ1, suggesting the Meir-Wingree
formula is incomplete. However we suspect that in t
present problem in which there is no backscattering a
no ‘‘excitonic’’ interaction between dot and lead variable
correlations corresponding toi @HtI ,•#2 iTrleads@HtI ,•#
^ r leadsÞ0 @Eq. ~18!# are irrelevant: any such configuratio
simply propagates away from the lead and does not ret
Some supporting evidence for this argument is provided
the exact diagonalization results of Sec. III; however the
sue warrants further investigation.

For the simpler case of left and right phonon-independ
tunneling amplitudes the Green’s functions in Eq.~25! are
simply the dot d-electron correlator. Wingreen an
co-workers18 showed that in this scenario and for the case
left and right tunneling amplitudes that are proportional
each other~but with nontrivial on-dot interactions!, the cur-
rent through a single resonant level simplifies to

I 5E de

2p

GL~e!GR~e!

GL~e!1GR~e!
A~e!, ~28!

where A(e)5 i @Gd
R(e)2Gd

A(e)#, with Gd
R(t,t8)52 iu(t

2t8)^$d(t),d†(t8)%1& andGL/R(e)52p(ktk,L/R
2 d(ek2e).

When the temperature is the highest-energy scale in
problem, approximation of Eq.~23! becomes exact, and fur
ther the Green’s functions in Eq.~25! are replaced by their
short-time behavior.19 This shall be explicitly demonstrate
in the following section where we will derive rate equatio
for the on-dot probability distribution within the sequenti
tunneling regime. Following this, in Sec. IV we shall car
out the Meir-Wingreen prescription for calculating the cu
rent for general temperatures.

III. HIGH-TEMPERATURE APPROXIMATION:
RATE EQUATIONS

A. Formalism

In this section we shall carry out a high-T analysis for the
simple case where the only phonon mode the electron
grees of freedom couple to is the on-dot vibrational mo
~The case of the phonons coupled to leads has been
cussed is some detail by McCarthyet al.11 within the high-
temperature approximation!.

It is often convenient to choose a representation which
diagonal in the dot degrees of freedom. In the present mo
this is achieved via a standard20 canonical transformation
Defining S5l(( i ,sdi ,s

† di ,s)(b†2b) and transforming all
operatorsO via eSOe2S leads to a transformed Hamiltonia
H85Hdot8 1Ht81Hleads with
2-4



d

th
ll

n
e

ng

n-
th

ne
re
s
ot

s

n

nts
ore
we

he

m-
-
f

-
ad

an
n
of

s;

PHONON EFFECTS IN MOLECULAR TRANSISTORS: . . . PHYSICAL REVIEW B 69, 245302 ~2004!
HD8 5«8nd1v0b̃†b̃1
Ũ

2
nd~nd21!, ~29!

Ht85 (
a5L,R,i

t i ,a(
p,s

~X̂aaps
† di ,s1H.c.!, ~30!

where the transformed phonon operatorb̃5b2l( i ,sdi ,s
† d

i ,s , so that the phonon ground state depends on the
occupancy. Moreovere85e2l2v0 is the ‘‘polaron shift’’ in
the energy for adding one electron to the molecule and
interaction parameterU is also renormalized, but as we sha
focus here onU→` we do not write the renormalizatio
explicitly. The crucial phonon renormalization of th
electron-lead coupling is given by

X̂5exp@2l~ b̃†2b̃!#. ~31!

The high-T approximation proceeds from Eq.~24! by
making the Markov approximation which involves replaci
rs(t8) in the integrand in Eq.~24! by rs(t). After substitut-
ing for r t in Eq. ~15! it is also convenient to replace*2`

t

5 1
2 *2`

` , which amounts to absorbing any level shifts i
duced by the dot-lead coupling into the bare values of
parameters. Following this we obtain

drs~ t !

dt
52 i @HD1Hleads,rs#

2
1

2E2`

`

dt8†Ht ,e2 i (HD1Hleads)(t2t8)

3@Ht ,rs~ t !#ei (HD1Hleads)(t2t8)
‡. ~32!

On the assumption that orthogonality effects may be
glected, we may formally take the trace over the lead deg
of freedom and in the process arrive at coupled equation
motion for the various occupation probabilities of the d
We outline the calculation in detail for one of the four term
that one gets on opening up the commutator in Eq.~32!.

Trleads

~dr leadŝ rD!

dt
52

1

2E2`

`

dt8TrleadsHt

3e2 i (HD1Hleads)(t2t8)Htr leads

^ rDei (HD1Hleads)(t2t8)1••• .

~33!

Using the following relations

Trleadsr leads51,

Trleads~r leadsaa,k1

† ab,k2
!5da,bdk1 ,k2

f ~ek2ma!,

Trleads~r leadsaa,k1
ab,k2

† !5da,bdk1 ,k2
„12 f ~ek2ma!…

~34!

we obtain
24530
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drD

dt
52

1

2E2`

`

dt8 (
k,a5L,R,i , j ,s

ta
2 f k,aei ek,a(t2t8)dis

3Xe2 iH d(t2t8)dj s
† X†rDeiH D(t2t8)

1ta
2~12 f k,a!e2 i ek,a(t2t8)dis

† X†e2 iH D(t2t8)dj s

3XrDeiH D(t2t8)1••• . ~35!

We may now identify the probabilityPm
n of the dot being in

a state withn electrons andm phonons as

Pm
n 5^n,murDun,m&. ~36!

Note that whilerD is always diagonal in the dot electro
number, it may be off-diagonal in the phonon number@due to
the presence of theX operators in Eq.~35!#. However such
terms are negligibly small in comparison to the compone
of rD that are diagonal in phonon number, and are theref
neglected in our analysis. That is also the reason why
have dropped the first term in Eq.~32! in the next set of
equations.

We are now in a position to write rate~master! equations
for the electron-phonon joint probabilities, which take t
form

Ṗq
n5 (

a,q8
f a„~q2q8!v01U~n21!…Gq,q8

a Pq8
(n21)

1@12 f a„~q82q!v01Un…#Gq,q8
a Pq8

(n11)

2@12 f a„~q2q8!v01U~n21!…#Gq8,q
a Pq

n

2 f a„~q82q!v01Un…Gq8,q
a Pq

n . ~37!

Note that in our notation the upper index inPq
n always refers

to the electron number and the lower index the phonon nu
ber, while f a(x) is short form for the Fermi function evalu
ated at f (x1e82ma), ma being the chemical potential o
leada.

Thus within the high-T approximation the rate for going
from an n electron andq phonon state on the dot to ann
21 electron q8 phonon state isRq→q8

n→n21
5(a5L,Rf a„(q

2q8)v01U(n21)…Gq,q8
a , whereGq8,q

a represents the tran
sition rate involving hopping an electron from the dot to le
a and changing the phonon occupancy fromq ~measured
relative to the ground state ofHD8 with occupancyn) to q8
~measured relative to the ground state ofHD8 with occupancy
n21) and is equal to the transition rate involving hopping
electron from the leada to the dot and changing the phono
occupancy fromq ~measured relative to the ground state
HD8 with occupancyn21) to q8 ~measured relative to the
ground state ofHdot8 with occupancyn). More explicitly20

Gq8,q
a

5Gau^q8uXuq&u2. ~38!

The matrix element can be computed by standard method20

its absolute valueu^quXuq8&u2[Xqq8
2 is symmetric under in-

terchange ofq andq8 and is
2-5
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Xq,q8
2

5U (
k50,q

~2l2!k~q!q8! !1/2l uq2q8ue2l2/2

~k!! ~q2k!! ~k1uq82qu!!
U2

. ~39!

As interesting special cases, we write several lowest
erators:

X0n5e2l2/2
ln

An!
, ~40!

X115~12l2!e2l2/2, ~41!

X215A2lS 12
l2

2 De2l2/2, ~42!

X225S 122l21
l4

2 De2l2/2. ~43!

Observe that for certain values ofl some of the matrix ele-
ments vanish. This unusual behavior is an interference p
nomenon, which is slightly obscured by the notation. A st
which hasq phonons excited abovethe ground state of the
system with n50 electronsis a superposition~with varying
sign! of many multiphonon states, when viewed in the ba
which diagonalizes then51 electron problem, and therefor
the transition described byXqq8 is really a superposition o
many different transitions, which for some values ofl may
destructively interfere. In several recent papers, the pho
renormalization of the molecule-lead coupling is apparen
omitted, or treated in an average manner which neglects
q,q8 dependent structure.14

B. I -V characteristics

In this section we shall discuss theI -V characteristics
obtained from the solution of the high-temperature rate eq
tions for two extreme cases. One is a scenario where
phonons are not coupled to a bath and their number cha
only when electrons hop on and off the dot. The second c
is when the phonons are strongly coupled to a bath, and
always forced to be in equilibrium.

From Eq.~22! we obtain

^I &5Trr t~ t !I L ~44!

with

Î a5L/R5 i t L(
k

~aa,k
† dX2d†X†aa,k!. ~45!

Using Eq.~24! for r t and following the same procedure o
tracing out the metal degrees of freedom, we arrive at
following expression for the current through the leada in
terms of the joint probability distribution functions,

I a5 (
n,q,q8

~2dg2n!Pq
nf a„~q82q!v01Un…Gq,q8

a

2~n11!Pq
n11@12 f a„~q2q8!v01Un…#Gq8,q

a ,

~46!
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where the sum onn is from 0 to (2dg21), 2dg being the
maximum occupation of the dot.

As an aside consider the simple case of spinless elec
with no coupling to phonons with a nondegenerate dot le
of energy ed . In this case the rate equations give us t
following probability for a singly occupied level,

P15
GL f ~ed2mL!1GRf ~ed2mR!

GL1GR
~47!

while the current from Eq.~46! is simply

I L5
GLGR

GL1GR
$ f ~ed2mL!2 f ~ed2mR!%. ~48!

On comparing the above expression with the exact solu
for the current obtained by Wingreen and co-workers@Eq.
~28!# we can explicitly see that the high-T approximation
corresponds to assuming the spectral function is ad function.

We shall now discuss the opposite limit of phonons equ
brated to an independent heat bath assumed to be at the
temperature as the leads. To implement this we force
probability distributions on the right-hand side of Eq.~37! to
have the phonon-equilibrium formPq

n5Pne2qv0 /T(1
2e2v0 /T). In the U→` limit this ansatz implies that the
probability P0 that the dot is empty is given by

P05

(
a,q,q8

Gq,q8
a e2qv0 /Tf̄ a,q,q8

(
a,q,q8

2Gq,q8
a e2q8v0 /Tf a,q,q81Gq,q8

a e2qv0 /Tf̄ a,q,q8

,

~49!

where f̄ a,q,q8512 f a„(q2q8)v0…, f a,q,q8512 f̄ a,q,q8 while
P1512P0.

In general for both equilibrated and unequilibrated ca
the rate equations may be written in the matrix form

Ṗ5M̂ P. ~50!

Therefore under steady-state conditions (Ṗn50), the prob-
lem reduces to finding the eigenvector corresponding to
zero eigenvalue of the matrixM̂ . We do this numerically.
From these solutions we have computed the current. Re
sentative results are shown in Fig. 2 which plots the lowT
current as a function ofVsd for two gate voltages:Vg
50(mL52mR , upper panel! andVg5Vsd/2 (mR50, lower
panel!, for both equilibrated and unequilibrated phonon
~Note that the calculation is for large values ofU which
correspond to negligible double-occupation probability
the dot electrons!.

Steps ~broadened byT) in the current associated wit
‘‘phonon sidebands’’ are observed when the source-dr
voltage passes through an integer multiple of the pho
frequency. However, in the opposite ‘‘linear-response’’ lim
Vsd→0 ~not shown!, asVg is varied we find just one main
step in theI -V curve, asVg passes through 0, and only ver
tiny structures~vanishing ase2v0 /T, which is the probability
of the dot being empty with one phonon excited! whenVg is
a nonzero multiple of the phonon frequency. This result
2-6
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PHONON EFFECTS IN MOLECULAR TRANSISTORS: . . . PHYSICAL REVIEW B 69, 245302 ~2004!
pears to differ from that stated by other authors9,10 who find
phonon sidebands asVg is swept atVsd→0. The authors of
Refs. 9 and 10 apparently neglected the fact that the pho
sidebands ‘‘float,’’ i.e., shift with the Fermi level asVg is
changed.

Figure 3 reveals on first sight an apparently surpris
result: for symmetric bias (Vg50) and for the coupling con
sidered, the current is larger for equilibrated phonons t
for the unequilibrated case, whereas for the strongly as
metric case (mR50), the opposite is true. This is surprisin
because one expects that in the unequilibrated case
phonons arrange themselves so as to maximize the cur
To gain more insight into this phenomenon we have cal
lated the dependence of the ratio of currents for unequ
brated and equilibrated phonons on the couplingl for dif-
ferent degrees of bias asymmetry. We find that except
mR50.0 ~the most asymmetric case! a minimum in the ratio
occurs for al;1. This behavior may be traced back to Eq
~41! and ~43! which reveal that higher-order ‘‘diagonal’’ (n
phonon–n phonon! matrix elements vanish for al;1.

The steps in current may be conveniently parametrized
the height~or the area, as the width is simply proportional
T) of the corresponding peaksGmax in the differential con-
ductanceG5dI/dV. Ratios of peak heights~or areas! pro-
vide a convenient experimental measure of whether
phonons are in equilibrium. At lowT, the equilibrium pho-
non distribution corresponds to occupancy only of then50
phonon state, so thenth sideband involves a transition from
the 0 phonon to then phonon state. Therefore the ratios
the peak heights or areas are controlled by ratios ofuXn0u2.
In particular Eqs.~40! and ~46! imply that if mL52mR and
T!v0,

Gmax
n

Gmax
0 U

equil

5
uXn0u2

2uX00u2
5

l2n

2~n! !
. ~51!

FIG. 3. Current ~I! vs source-drain voltage~Vsd! traces
calculated for coupling constant forv051 and T50.05. Upper
panel is forVg50.0, while lower panel is forVg5Vsd/2, mR50.
I is in units ofeT/\.
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Note that if mLÞmR , thenm-dependent changes in the o
cupation probabilities lead to additional and not simply ch
acterizedn dependence.

Deviations from this pattern imply nonequilibrium
phonons. As illustration we display in Fig. 4Gmax values
~normalized to the zero-frequency peak! for equilibrium and
nonequilibrium phonons and a weak and strong electr
phonon coupling. One sees that in the nonequilibrium c
the peak heights display a nonsystematic dependence
electron-phonon coupling and peak index, but that in gen
measurements of then51 andn52 peaks reveal the effec
clearly.

It is also of interest to consider how far out of equilibriu
the phonon distribution may be driven. Figure 5 shows
phonon occupation probabilities for weak and stro
electron-phonon coupling andVg50. One sees immediatel
that the phonon distribution function is farther from equili

FIG. 4. Ratio of differential conductance~G! peak heights for
equilibrated and unequilibrated phonons and two different coup
strengths andmL52mR . The points forl50.5 ~open symbols!
have been multiplied by 10.

FIG. 5. Phonon probability distributions for two differen
electron-phonon coupling constants calculated formL52mR

52v0.
2-7
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MITRA, ALEINER, AND MILLIS PHYSICAL REVIEW B 69, 245302 ~2004!
rium for weak couplings than for strong couplings. We as
ciate this effect to the strongl dependence of operatorsX0n ,
@Eq. ~40!# which allows the system at largel to ‘‘jump
down’’ from a highly excited state to one of low phono
occupancy. The deviation from equilibrium is largest forVg
50 for similar reasons. Figure 6 illustrates the scenario
nonzero gate voltage or asymmetric bias conditionsmL
5Vsd ,mR50.0. Here the phonon distribution for weak co
pling saturates with bias to a value which is closer to
equilibrium distribution. As we shall show in Sec. IV, th
gate voltage dependence of the nonequilibrium phonon
tribution function is recovered in the quantum regimeG@T
as well. Figure 7 is the average phonon numberNph

5(n,mnPn
m for moderate electron-phonon coupling. The ste

in Nph2Vsd observed here coincide with the steps inI -V and
correspond to sequential~direct! tunneling. This is to be con
trasted with the quantum regime~Sec. IV, Fig. 15! whereNph
increases continuously with bias due to higher-order cot
neling processes.

C. dc noise characteristics

Another important spectroscopic tool that is sensitive
the details of the electron-phonon coupling and to the p
non distribution is the current noise, and in this section
outline the calculation of the dc current noise within t
high-T approximation. Quite generally current noiseSLL(t)
through the left lead is given by the following correlatio
function:17,21

SLL~ t !5 1
2 Trr$I L~ t !I L~0!1I L~0!I L~ t !%2~TrrI L!2.

~52!

FIG. 6. Phonon probability distributions for weak electro
phonon coupling (l50.5) calculated formL52v0 ,mR50.0 ~left
panel! andmL55v0 ,mR50.0 ~right panel!. Note the saturation in
the probability distribution function which is also much closer
equilibrium. This situation is quite different for the same coupli
constant and symmetric bias~see Fig. 5!.
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Using the fact thatI L(t)5eiHt I L(0)e2 iHt , the above expres
sion for noise may be rewritten as

SLL~ t !5 1
2 Trl~ t !I L~0!, ~53!

where

l~ t !5e2 iHt$~ I L2^I L&!r1r~ I L2^I L&!%eiHt . ~54!

Since we are calculating the correlation of the same phys
quantity at two different times, we expectS(t)5S(2t).
Therefore we shall explicitly calculateS(t) for positive
times, for which we need to calculate the causal funct
l(t) that obeys the equation of motion

dl~ t !

dt
52 i @H,l~ t !#1d~ t !$dI Lr1rdI L%, t>0,

50, t,0 ~55!

wheredI L5I L2^I L&. Note that Trl(0)50, and we expect
l(t) to be traceless at all times. Also from charge conser
tion it follows that the noise across the left and right lea
are equal@SLL(t)5SRR(t)#.

We now solve the equation of motion forl by decompos-
ing l5ls1l t , wherels5lD ^ l leads is diagonal in the dot
and lead variables, whilel t is off-diagonal. After doing a
similar decomposition for the density matricesr5rs1r t ,
the equation of motion forl @Eq. ~55!# may be rewritten in a
manner similar to that done for the equations of motion for
in the preceding section,

dls

dt
52 i @Ht ,l t#1d~ t !~ Ir t1r tI 22^I &rs!, ~56!

FIG. 7. Average phonon number under symmetric bias con
tions,mL52mR , electron-phonon couplingl51.0 andv0520T.
2-8
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dl t

dt
52 i @HD1Hleads,l t#2 i @Ht ,ls#

1d~ t !~ Irs1rsI 22^I &r t!. ~57!

Note that we have dropped the@HD1Hm ,ls# term for the
same reasons as before, namely that the matrix eleme
this term is off-diagonal in the phonon number and is ve
small in comparison to the components ofls that are diago-
nal in phonon number.

The solution forl t from Eq. ~57! is given by

l t~ t !52 i E
2`

t

dt8e2 i (HD1Hleads)(t2t8)

3@Ht ,ls~ t8!#ei (HD1Hleads)(t2t8)

1u~ t !e2 i (HD1Hleads)t@ I ~0!rs~0!1rs~0!I ~0!

22^I &r t~0!#ei (HD1Hleads)t. ~58!

Substituting Eq.~58! in Eq. ~56! and going through the usua
steps of extending the upper range of the integral to infin
and making the Markov approximation~which involves pull-
ing l out of the time integral!, we arrive at the following
matrix expression for the equation of motion forl,

dlD

dt
5M̂lD1d~ t !h, t>0

50, t,0. ~59!

The matrix M̂ is the same that enters in the equation
motion forrD . In arriving at the expression for the vectorh,
we have approximated oscillating factors such asei et

;2pd(t)d(e). Following this the vectorh has the structure

hq
n522^I L&Pq

n12(
q8,n

~2dg2n!Pq8
n Rq8,q

L,n,n11

2~n11!Pq8
n11Rq8,q

L,n11,n , ~60!

where as before the sum onn is from 0 to 2dg21, dg being
the number of degenerate levels not counting spin. Note
we are using the following shorthand notation,

Rq,q8
a,n,n11

5 f a„~q82q!v01Un…Gq,q8
a , ~61!

Rq8,q
a,n11,n

5@12 f a„~q82q!v01Un…#Gq,q8
a . ~62!

Moreover by using Eq.~46! it is easy to check thath @whose
components are given in Eq.~60!# is traceless.

Now we shall rewrite the Eq.~53! explicitly in terms of
the components oflD and the steady-state probabilitiesPn

0

and Pn
1 ~components of reduced density matrixrD). After

some algebra one finds that

SLL~ t !5 1
2 Trm,DI Ll t , t>0

52^I L&21 1
2 @S1L~ t !1S2L~ t !#, ~63!
24530
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whereSLL(2t)5SLL(t), and

S1L~ t !5 (
q,q8,n

~2dg2n!lq
n~ t !Rq,q8

L,n,n11

2~n11!lq
n11~ t !Rq,q8

L,n11,n ~64!

and

S2L~ t !52d~ t ! (
q,q8,n

~2dg2n!Pq
n~ t !Rq,q8

L,n,n11

1~n11!Pq
n11~ t !Rq,q8

L,n11,n . ~65!

Note our notation lq
n5^n,qulDun,q&, etc., where lD

5Trleadsls . Also note that thed(t) in the expression for
S2L(t) again arises from replacing oscillating factorsei et

;2pd(t)d(e).
We find it convenient to perform the following shift o

variableslD→lD12^I L&P. This shift of variables does no
affect the equations of motion, Eq.~59!, becauseM̂ P50 in
steady state. However this shift of variables cancels the^I L&2

term in Eq.~63!.
Collecting all the terms we arrive at the following expre

sion for the dc noise power:

S̃dc52E
2`

`

dtSLL~ t !, ~66!

S̃dc52 (
q,q8,n

~2dg2n!@Pq
n1l̃q

n~0!#Rq,q8
L,n,n11

2~n11!@2Pq
n111l̃q

n11~0!#Rq,q8
L,n11,n , ~67!

where the components ofl̃(v50) are obtained from solving
the matrix equation

l̃D~v50!52M 21h. ~68!

Note that the matrixM̂ has the property that( iM i j 50, so
that one of its eigenvalues is 0. Howeverh being traceless,
M 21h is well defined.

Let us now look at the simple case of no electron-phon
coupling and spinless electrons. In that case the matrixM̂
acquires the simple 232 form @note that f a51/(1
1e(e82ma)/T)]

M5S 2~GL f L1GRf R! GL~12 f L!1GR~12 f R!

GL f L1GRf R 2@GL~12 f L!1GR~12 f R!#
D
~69!

while the components ofl̃(v50) are given by

l̃052l̃152
h1

GL1GR
, ~70!

where

h152GLP0f L22^I L&P1. ~71!

The full expression for the dc noise is
2-9
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MITRA, ALEINER, AND MILLIS PHYSICAL REVIEW B 69, 245302 ~2004!
S̃dc52GL@P0f L1P1~12 f L!#24
GL

2

GL1GR
P0f L

14
GL

GL1GR
^I L&P1. ~72!

We may now derive expressions for the dc noise in t
limits. The first one is in the linear response regimemL
5mR so thatP0512 f L and ^I L&50. In that case,

S̃dc54
GLGR

GL1GR
f L~12 f L! ~73!

which is the result expected from the fluctuation dissipat
theoremSdc54TG.

The other limit ismL52mR5eV/2@T so that by using
the expressionP15(GL f L1GRf R)/(GL1GR) and setting to
zero combinations such asf L(12 f L) we obtain

S̃~v50!52
GL

21GR
2

~GL1GR!2
^I L&, ~74!

where ^I L&5GLGR /(GL1GR). The above expression give
the standard shot-noise result whenGL!GR .21

The results for the noise for the case of phonons in eq
librium and the opposite case of phonons not coupled to
heat bath are illustrated in Figs. 8~weak coupling! and 9
~strong coupling!. The difference between the equilibrate
and unequilibrated cases is more dramatic for smallerl. For
l50.2 while only one phonon sideband is seen for
equilibrated case, very sharp phonon sidebands are see
the entire bias range when the phonon distribution is far
of equilibrium, with certain sidebands appearing as pe
~rather than steps! associated with the suppression of nois

FIG. 8. dc noise forl50.2 and under symmetric bias condition
mL52mR5Vsd/2. Vsd is in units of v0520T. Sdc is in units of
e2T/\.
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IV. QUANTUM THEORY OF TRANSPORT THROUGH A
PHONON-COUPLED DOT

A. Overview

In this section we present a fully quantum-mechani
treatment of the simple limit of the model considered in p
vious sections. In order to carry out the calculation we
strict attention to a single nondegenerate level with no
site CoulombU, and to low orders in perturbation theory i
the electron-phonon coupling. The results shed light on
relation between the Green’s-function formalism natural
the quantal treatment, and the density-matrix formali
natural in classical problems, and elucidate the quanta
classical crossover. For the reader’s convenience we re
duce here the limit of Eqs.~2!–~4! which we study

Hel5e0d†d1 (
k,a5L,R

ekak,a
† ak,a

1 (
k,a5L,R

tk,a~d†ak,a1H.c.!, ~75!

~76!

Hph5v0b†b, ~77!

Hel-ph5lv0~b1b†!d†d. ~78!

Note that we have neglected the spin index, which may
restored in the final expressions for the current by sim
multiplying by a factor of 2.

We use two methods to analyze the above Hamiltoni
One is the Keldysh Green’s-function method and the othe
an explicit construction of the eigenstates and thus the d
sity matrix. We note that the Green’s-function method
rectly computes the expectation value of operators at dif
ent times, bypassing the explicit construction of the dens

FIG. 9. dc noise forl51.0 and under symmetric bias condition
mL52mR5Vsd/2. Vsd is in units of v0520T. Sdc is in units of
e2T/\.
2-10
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PHONON EFFECTS IN MOLECULAR TRANSISTORS: . . . PHYSICAL REVIEW B 69, 245302 ~2004!
matrix. However equal-time multiparticle Green’s functio
correspond to moments of the density matrix, and permi
principle its reconstruction.

The rest of the section is divided as follows. In Sec. IV
we provide the exact solution in the absence of coupling
phonons. The eigenstates of this system will form the ba
for the perturbative calculations that follow. In Sec. IV C w
outline the Keldysh calculation while in Sec. IV D w
present results for the special case when the phonon d
bution is always in its ground state. In Secs. IV E and IV
we generalize to the case when the phonons are allowe
deviate from equilibrium and also supplement our resu
obtained from the Keldysh Green’s-function technique b
perturbative calculation for the phonon density matrix th
allows us to obtain the out of equilibrium phonon distrib
tion function.

B. Noninteracting dot and exact expressions for the current
for an interacting dot

Following standard methods,20 the exact eigenstates o
Hel @Eq. ~75!# can be easily obtained. The Hamiltonian aft
diagonalization is

Hel5 (
k,a5L,R

ekak,a
† ak,a . ~79!

Note that whileak,L/R in Eq. ~75! refer to states that live only
on the left/right lead, an exact eigenstate ofHel has nonva-
nishing amplitude in both leads. We write the exact solut
in a scattering state basis in whichak,a5L/R refers to a run-
ning wave incident from the left/right lead with a certa
amplitude of getting reflected back to the starting lead an
corresponding amplitude for transmission to the other s
The label L/R now refers to the lead from which the partic
is incident, and therefore determines the distribution funct
describing occupancy of the states. The dot and metal e
tron creation/annihilation operators are related to these e
~scattering! eigenstates as follows:

ak,a5 (
k8,b5L,R

hka,k8bak8,b , ~80!

d5 (
k,a5L,R

nk,aak,a . ~81!

The coefficientsh and n in the above set of equation
obtained from ensuring proper commutation relations
given by

hka,k8b5dk,k8da,b2
tkank8b

eka2ek8b1 id
, ~82!

nka5
tka

eka2e02(
k8b

tk8b
2

eka2ek8b2 id

. ~83!

We identify tunneling rates to the left and right leads by
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GL/R~e!52p(
k

tk,L/R
2 d~e2ek!. ~84!

The current through the left lead is given by

I L5
dNL

dt
52 i

e

\ (
k

tkL~d†akL2H.c.!,

^I L&52
e

\ (
k

tkLIm^d†akL&, ~85!

and charge conservation requiresI L52I R . Plugging in the
expressions ford and akL in terms of the exact eigenstate
aka into the expression for the current@Eq. ~85!# we obtain

^I L&52
e

\ (
k,k1 ,k2 ;a,b5L,R

tLIm~hkL,k2bnk1 ,a* ^ak1,a
† ak2,b&!.

~86!

In the noninteracting limit the expectation value of the ex
eigenstates is

^ak1a
† ak2 ,b&5da,bdk1 ,k2

f ~ek2mb!, ~87!

where f (x) is the Fermi-Dirac distribution function. Subst
tuting this in Eq.~86! we obtain

^I L&5
e

\E de

2p

GL~e!GR~e!

GL~e!1GR~e!
$ f ~e2mL!2 f ~e2mR!%A~e!,

~88!

whereA(e) is the spectral density of the dot and is given

A~e!5
GL~e!1GR~e!

@e2e02S8~e!#21S G~e!

2 D 2 . ~89!

Note thatS8(e) is related toG(e)5GL(e)1GR(e) by the
usual Kramers-Kronig relation. For simplicity in our subs
quent computation we assume energy-independent densi
states and tunneling amplitudetL,R , so thatS850 andGL,R
are constants. Equation~88! agrees with the expression fo
the current that was derived by Wingreen and co-worke18

employing the Keldysh nonequilibrium technique.
In the presence of electron-phonon interactions, the

Hamiltonian @now including Eqs.~77! and ~78!# takes the
following form in the basis of exact eigenstates of the no
interacting system,

H5 (
k,a5L,R

ekak,a
† ak,a1v0b†b1lv0~b1b†!

3 (
k,k8,a,b5L,R

nk,a* nk8,baka
† ak8b . ~90!

A standard method for studying the nonequilibrium proble
posed byH is to define retarded Green’s function for th
electrons on the dot,

Gd
R~ t,t8!52 iu~ t2t8!^$d~ t !,d†~ t8!%1& ~91!
2-11



re

o
o
la

a-

an

r
tin

b

n

nd

en
the

the
es-

s
di-

ity

the
he

ac-

d
-

qs.
ia

ion

tur-
we
ase
not
en’s
in-
ion
be

MITRA, ALEINER, AND MILLIS PHYSICAL REVIEW B 69, 245302 ~2004!
52 iu~ t2t8! (
ka,k8b

nkank8b
*

3^$aka~ t !,ak8b
†

~ t8!%1& ~92!

and the Keldysh Green’s function for the dot electron,

Gd
K~ t,t8!52 i ^$d~ t !,d†~ t8!%2& ~93!

52 i (
ka,k8b

nkank8b
* ^$aka~ t !,ak8b

†
~ t8!%2&. ~94!

Similarly for the phonons we define the corresponding
tarded and Keldysh Green’s functions,

DR~ t,t8!52 iu~ t2t8!^$b~ t !1b†~ t !,b~ t8!1b†~ t8!%2&,
~95!

DK~ t,t8!52 i ^$b~ t !1b†~ t !,b~ t8!1b†~ t8!%1&. ~96!

Note that the phonon~electron! Keldysh propagators in the
equal-time limit areiD K(t,t)52(112^b†b&) @ iGd

K(t,t)51
22^d†d&# and are directly related to the average phon
~electron! number and therefore correspond to the first m
ments of the density matrix. Higher-order equal-time corre
tors ^@b(t)b†(t)#n& give higher moments of the density m
trix, enabling in principle the full reduced density matrixrD
to be reconstructed.

The retarded dot Green’s function for a single reson
level in the absence of phonons can be easily obtained
using Eq.~87!,

Gd
R~ t,t8!5gR~ t1 ,t2!5(

ka
unkau2Gka,ka

R ~ t1 ,t2!, ~97!

where Gka,ka
R (t,t8)52 iu(t2t8)^$aka(t),aka

† (t8)%1&5

2 iu(t2t8)e2 i ek(t2t8). It is now easy to see that in Fourie
space the retarded Green’s function for the noninterac
dot has the familiar form

g̃R~v!5(
ka

unkau2

v2ek1 id
5

1

v2e01 i
G

2

. ~98!

In a similar manner the Keldysh Green’s function in the a
sence of phonons is found to be

g̃K~v!52p i(
ka

unkau2d~v2ek!$2 f ~ek2ma!21%

52 i
GL@122 f ~v2mL!#1GR@122 f ~v2mR!#

~v2e0!21
G2

4

~99!

where f (x)51/@exp(x/T)11# denotes the Fermi distributio
function.

Moreover in the noninteracting limit, the retarded a
Keldysh phonon Green’s functions (D0

R/K) defined in Eqs.
~95! and ~96! take the following form in Fourier space:
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D0
R~v!5

2v0

v22v0
21 idsgn~v!

, ~100!

D0
K~v!522p i $d~v1v0!1d~v2v0!%coth

v0

2T
.

~101!

In order to calculate the current for the case wh
electron-phonon interactions are present, we shall use
result derived by Wingreen and co-workers, namely that
current through an interacting dot is still given by the expr
sion, Eq. ~28!, but with the spectral densityA(e)
52i Im$Gd

R(e)%, whereGd
R is thed-electron retarded Green’

function calculated under appropriate nonequilibrium con
tions and with respect to the full HamiltonianH. We shall
carry out this prescription for calculating the spectral dens
in the following section.

C. Keldysh Green’s-function method: perturbative analysis

In the presence of nonzero electron-phonon coupling,
Dyson’s equations we wish to solve may be written in t
following compact form in 232 Keldysh space:22

Gd
215gd

212S̃, ~102!

D215D0
212P, ~103!

where

Gd5S Gd
R Gd

K

0 Gd
AD

is the local dot Green’s function, and

S̃5S S̃R S̃K

0 S̃AD
is the electron self-energy due to electron-phonon inter
tions. A similar matrix structure for the phonon propagatorD
and polarization P in terms of retarded, advance
(DR/A,PR,A), and Keldysh (DK,PK) components also ex
ists. The noninteracting Green’s functionsgd and D0 have
components that have been explicitly calculated in E
~98!–~101!. Note that the temperature enters explicitly v
the bare electron and phonon Green’s function.

We analyze the equations perturbatively. The expans
parameter islv0 /G, and the leading nontrivialS̃ andP are
represented by the diagrams in Fig. 10. We write the per
bative expansion in the usual self-energy language, but
note that in contrast to the conventional band-electron c
crossed diagrams for the electron Green’s function are
small relative to uncrossed diagrams, because the Gre
function lacks the pole structure found in the translation
variant case. Our results for the electron Green’s funct
and electron kinetic equation should be understood to
perturbative inl.
2-12
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To leading nontrivial order it is sufficient to calculate th
phonon self-energyP using the bare electron Green’s fun
tion gd , but a correct calculation ofS̃ requires the use of the
full D.

The retarded phonon self-energy~Fig. 10! becomes

PR~ t,t8!52
il2v0

2

2
$gR~ t,t8!gK~ t8,t !1gK~ t,t8!gA~ t8,t !%

~104!

while the Keldysh phonon self-energy is

PK~ t,t8!5
2 il2v0

2

2
$gR~ t,t8!gA~ t8,t !1gA~ t,t8!gR~ t8,t !

1gK~ t,t8!gK~ t8,t !%. ~105!

Going into Fourier space and using Eqs.~98! and ~99! we
obtain the following expression for the real and imagina
parts ofP̃R(v) andP̃K(v),

P̃ re
R ~v!52l2$GLT1~mL ,v!1GLT1~mL ,2v!

1GRT1~mR ,v!1GRT1~mR ,2v!%, ~106!

P̃ im
R ~v!5 il2$GLT2~mL ,v!2GLT2~mL ,2v!

1GRT2~mR ,v!2GRT2~mR ,2v!%, ~107!

PK~v!

2il2
5

GL
2

2G
cothS v

2TD @T2~mL ,v!2T2~mL ,2v!#

1
GR

2

2G
cothS v

2TD @T2~mR ,v!2T2~mR ,2v!#

1
GLGR

2G
cothS v1mL2mR

2T D @T2~mL ,v!

2T2~mR ,2v!#1
GLGR

2G
cothS v1mR2mL

2T D
3@T2~mR ,v!2T2~mL ,2v!#, ~108!

where we define the following integrals:

T1~m,v!5E dv2

2p

~v1v22e0!$122 f ~v22m!%

S ~v22e0!21
G2

4 D S ~v1v22e0!21
G2

4 D
~109!

FIG. 10. Diagrams that correspond to the leading contribution
the electron self-energy (S) and the phonon polarization (P).
24530
and

T2~m,v!

5
G

2E dv2

2p

122 f ~v22m!

S ~v22e0!21
G2

4 D S ~v1v22e0!21
G2

4 D .

~110!

Analytic expressions forT1(m,v) andT2(m,v) may be ob-
tained at zero temperature, and are given in Appendix A

Note that the combinationT1(mL ,GL ,v)1T1(mL ,GL ,
2v) is symmetric, whileT2(mL ,GL ,v)2T2(mL ,GL ,2v)
is asymmetric with respect tov. As a result, for all combi-
nation of couplings and applied voltages

P̃ re
R ~2v!5P̃ re

R ~v!, ~111!

P̃ im
R ~2v!52P̃ im

R ~v!, ~112!

P̃K~2v!5P̃K~v!. ~113!

The retarded electron self-energy represented by the
gram in Fig. 9 is

SR~ t,t8!5
il2v0

2

2
$gR~ t,t8!DK~ t,t8!1gK~ t,t8!DR~ t,t8!%.

~114!

Once we know the components of the polarization matrixP,
we may use the Dyson equations~103! together with the
following parametrization forDK:23

DK5DRf k̂
ph2 f k̂

phDA ~115!

to obtain

DR~v!5
2v0

v22v0
21 idsgn~v!22v0PR~v!

, ~116!

S i
]

]t1
1 i

]

]t2
D f k

ph~ t1 ,t2!5PRf k
ph2 f k

phPA2PK.

~117!

Note that our parametrization in terms off k
ph is such that at

o

2-13
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equilibrium f k
ph(x)5coth(x)5112nB(x), nB being the Bose

distribution function.
BesidesSR it is also useful to evaluate the Keldysh com

ponent of the self-energySK that we will later use in order to
calculate the distribution function of the dot. To the pert
bative order to which we work,SK is related to the nonin-
teracting Green’s function of the dot and the phonon Gree
function as follows:
he
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2
SK~ t,t8!

il2v0
2

5gR~ t,t8!DR~ t,t8!1gA~ t,t8!DA~ t,t8!

1gK~ t,t8!DK~ t,t8!. ~118!

Now that we know the retarded electron self-energy,
can use Eq.~88! to calculate the current which is given by
I ~mL ,mR!5
e2

\ S GLGR

GL1GR
D E dv

2p
@ f ~v2mL!2 f ~v2mR!#

G22S̃ im
R ~v,mL ,mR!

@v2e02S̃ re
R ~v,mL ,mR!#21S G

2
2S̃ im

R ~v,mL ,mR! D 2 .

~119!
e-
by
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In the following two sections we present our results for t
two extreme cases of phonons strongly coupled to a h
bath, and therefore always in equilibrium, and of phono
uncoupled to an external environment.

D. Results: Equilibrated phonons

In this section we specialize to the case where
phonons are always in their ground state so that the pho
Green’s functionsDR and DK in Eqs. ~114! and ~118! are
always calculated under the condition thatmL5mR , while
all the nonequilibrium effects are included in the electr
Green’s functions. An important property ofS im

R (v) is that
at equilibrium it is zero forv50, and from this and Eq
~119! it immediately follows that the zero-bias conductan
even in the presence of electron-phonon coupling has
form

G~V50!5
e2

h

4GLGR

~GL1GR!2
~120!

for the case where the two lead chemical potentials in a
tion to being equal to each other are also aligned with the
level ed . Figure 11 shows the gate voltage dependence of
zero bias conductance for symmetric broadening and
values ofl.

Figure 12 presents our result for the current~conductance!
for the equilibrated phonon case at zero temperature. The
panel is the difference between the current with and with
electron-phonon coupling for two different bias condition
Note that for asymmetrically applied biases, the current w
phonons can take a value larger than that in the absenc
phonons. This is due to a shift in the center position of
spectral density~the total area under the spectral density b
ing conserved!. The lower panel is conductance for the sam
bias conditions. The conductance for the symmetric b
(mL52mR) case shows two features, one atVsd /v051.0
and the other is a much broader feature atVsd /v052.0.
While the former corresponds to the onset of inelastic cot
neling, the latter corresponds to the onset of sequential
at
s

e
on

e

i-
ot
e
o

op
t

.
h
of

e
-
e
s

-
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neling. ~Under the asymmetric bias condition ofmL
5Vsd ,mR50 one observes only sequential tunneling.!

The transition from cotunneling dominant current to s
quential tunneling dominant current can be understood
studying how the imaginary part of the electron self-ene
due to interaction with phonons (S̃ im

R ) evolves with bias.

Figure 13 showsS̃ im
R (v) for the symmetric bias case wher

mL5Vsd/252mR5v0/2 and for two different values o
G/v0. For simplicity we have considered the caseGL

5GR . Under symmetric bias ,S̃ im
R increases rapidly for

uvu.uv02Vsd/2u, while in calculating the current the spec
tral density is integrated from2Vsd/2 to Vsd/2 @see Eq.
~119!#. Therefore clearly there is a threshold atVsd5v0

when theS̃ im(v5v0/2) jumps by}G/(v0
21G2), and this

FIG. 11. Zero-bias conductance~in units of e2/h! as a function
of level energy~or gate voltage! with ~v052G, solid line! and
without coupling to a vibrational mode~dotted line!.
2-14



o
in
r

en-

ibu-
ing

at
gets

stic
ath
n

-
in

n-
er,
as

ncy

u
ric

t

PHONON EFFECTS IN MOLECULAR TRANSISTORS: . . . PHYSICAL REVIEW B 69, 245302 ~2004!
corresponds to the onset of inelastic cotunneling. As the v
age is increased further, the range of integration also
creases to finally include the Lorentzian broadening cente

FIG. 12. Zero-temperature current~in units of eG/h) and mea-
sured relative to no phonon currentI 0 @upper panel# and conduc-
tance ~in units of e2/h) @lower panel# under asymmetric (mR

50,mL5Vsd) and symmetric (mL52mR5Vsd/2) bias conditions
and for equilibrated phonons. The phonon frequencyv052.0G and
GL5GR50.5G. Moreover the electron-phonon dimensionless co
pling strength isl50.25. Note that under conditions of asymmet
bias, the current can saturate to a value larger than that for
device without phonons (l50).

FIG. 13. Imaginary part of the electron self-energy~in units of
G! due to the phonons for the symmetric bias conditionmL5
2mR5Vsd/25v0/2, andlv051 G, level energye050.
24530
lt-
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aroundv5v0, and this corresponds to the onset of sequ
tial tunneling.

As G is made smaller, the size of the step inS̃ im
R (v

5v0/2) decreases, thus decreasing the cotunneling contr
tion to the conductance. Moreover the Lorentzian broaden
in the self-energy aroundv0 also becomes narrower, so th
the sequential tunneling peak in the conductance also
sharper.

Figure 14 shows the temperature dependence of inela
cotunneling under conditions of no coupling to a heat b
~unequilibrated phonons!. Calculations for this have bee
performed in the regimee0.mL ,mR so that the current is
entirely due to cotunneling.~The current under resonant con
ditions for this unequilibrated phonon case is discussed
detail in the following section.! It is clear from Fig. 14 that
inelastic cotunneling shows up as a step indI/dV that gets
rounded very rapidly with increasing temperature.

E. Results: Unequilibrated phonons

For out of equilibrium conditions, we may derive a qua
tum Boltzmann equation for the mean phonon numb
which for weak electron-phonon couplings is identified
^Nph&5@211 f k

ph(v5v0)#/2. @This is from using Eq.~115!
and the fact that for weak couplingsDim

R is almost ad func-
tion at the phonon frequency.# Therefore Eq.~117! rewritten
under steady-state conditions and at an on-shell freque
has the form

05^Nph&@PK~v0!1PR~v0!2PA~v0!#2~11^Nph&!

3$PK~v0!2@PR~v0!2PA~v0!#%. ~121!

-

he

FIG. 14. CotunnelingdI/dV ~in units of e2/\) for bias condi-
tions mL52mR5Vsd/2, level energye054.0G, v052G, lv0

51G and for phonons not coupled to any heat bath.
2-15
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From this the phonon outscattering rate may be identified
$PK(v0)1PR(v0)2PA(v0)%, while the inscattering rate
may be identified as$PK(v0)2@PR(v0)2PA(v0)#%.
^Nph& is plotted in Fig. 15 for a variety of bias condition
The results here are similar to what was observed in
high-T classical calculation, namely that for bias conditio
under which the dot is half filled or close to it, the phono
tend to go far out of equilibrium. When the phonons devi
considerably from their ground state, the corrections to
electron self-energy become comparable toG and one is no
longer within the perturbative regime. Therefore the resu
for the current and conductance that we present here~Fig.
16! are for the case ofmL5Vsd ,mR50.0, when the phonon
acquire a steady-state distribution at large biases that is
far from its equilibrium value and a perturbative approxim
tion is valid.

The upper panel of Fig. 16 plots the difference betwe
the current with and without phonons for the asymme
bias case, and for comparison this is plotted for both equ
brated and unequilibrated phonons, while the lower pane
the conductance peak corresponding to the first phonon s
band. Again within perturbation theory the differences b
tween these two cases is not significant.

F. Perturbative calculation for phonon distribution function

So far the out of equilibrium Green’s-function techniq
allowed us to calculate various averages such as current
mean phonon number. However it is also interesting to
what the phonon probability distribution function itself
under nonequilibrium steady-state conditions. In order to
so we revert to the density matrix formalism developed

FIG. 15. Plot of average phonon occupation number forv0

52.0G, for several different bias conditions. Except for the mo
asymmetric case (mL5Vsd), the phonon number diverges for larg
enough bias voltages. Also note that the onset voltage for the
viation of the phonon number from its equilibrium value~of zero!
also continuously shifts frommL5v0 ~most asymmetric bias! to
mL5v0/2 ~symmetric bias! signaling inelastic cotunneling.
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Sec. II. The complication in calculating this quantity is th
nontrivial form of the operator equation, Eq.~19!. One can
however carry out the calculation for the rates to lead
order in the electron-phonon coupling, using the diagra
matic language developed in Refs. 24,25. In implement
this we again find it convenient to be in the exact eigens
basis for the noninteracting system@Eq. ~90!#. The leading-
order contribution to the rates is obtained by expanding
exponentials entering in the quantum rate equation~19! to
leading order in the electron-phonon coupling. The expl
form for the in-scattering and out-scattering rates is theref

Rn→n615TrleadsE
2`

0

dt^nuHe-ph~0!un61&

3^n61uHe-ph~ t !un&, ~122!

where

He-ph~ t !5lv0@b~ t !1b†~ t !#

3 (
k,k8,a,b5L,R

nk,a* nk8,baka
† ~ t !ak8b~ t !.

~123!

On evaluating the above expressions we obtain the
lowing quantum rate equation for the distribution function

t

e- FIG. 16. Zero-temperature conductance and current for eq
brated, unequilibrated, and noninteracting levels under asymm
bias conditions (mR50,mL5Vsd). The phonon frequencyv0

52.0G andGL5GR50.5G. Moreover the electron-phonon dimen
sionless coupling strength isl50.25. Note thatI ~upper panel! is in
units of eG/h andG ~lower panel! is in units ofe2/h.
2-16
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PHONON EFFECTS IN MOLECULAR TRANSISTORS: . . . PHYSICAL REVIEW B 69, 245302 ~2004!
052Pn
ph~Rn→n111Rn→n21!1Pn11

ph Rn11→n

1Pn21
ph Rn21→n , ~124!

where the in-scattering rate is given by

Rn→n115l2v0
2~n11!E de

4p

3

(
a,b5L,R

GaGbf ~e2ma!@12 f ~e2v02mb!#

H ~e2e0!21
G2

4 J H ~e2e02v0!21
G2

4 J
5~n11!r in ~125!

and the out-scattering rate is given by

Rn→n215l2v0
2nE de

4p

3

(
a,b5L,R

GaGbf ~e2ma!@12 f ~e1v02mb!#

H ~e2e0!21
G2

4 J H ~e2e01v0!21
G2

4 J
5nrout . ~126!

We have used shorthand notationsr in/out for the cumbersome
integrals that appear in the definition ofRn→n11, etc. In
terms ofr in/out the quantum Boltzmann equation~124! takes
the form

Pn
phH ~n11!

r in

r out
1nJ 5Pn11

ph ~n11!1~n!Pn21
ph r in

r out
.

~127!

It is easy to check that the above equation has a sim
solution given by

Pn
ph5S 12

r in

r out
D S r in

r out
D n

. ~128!

The quantityr in /r out has been plotted for various combin
tions of G and v0 in Fig. 17. The figure illustrates that th
rapidity with which the phonon distribution diverges wi
bias depends on the relative sizes ofG andv0. The stronger
the coupling to the leads, the more easily the phonons eq
brate.

In the high-T classical regime the rate equations f
phonons for weak electron-phonon coupling have the sa
structure as Eq.~127! but with modified scattering rate
r in/out . ~This has been explicitly shown in Appendix B.! It
therefore follows that even in the high-T regime, the phonon
distribution function is given by Eq.~128!.

Note that on comparing Eqs.~126! and ~125! with Eqs.
~107! and ~108! we find, not surprisingly,

r in

r out
5

PK2~PR2PA!

PK1PR2PA
uv5v0

, ~129!
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where the polarizationP was evaluated within the Keldys
Green’s-function approach. Thus in particular^Nph&5
@2DK(t50)11#/25(nnPn

ph , where DK has been calcu-
lated for phonons with no lifetime broadening.

V. LOW- T TO HIGH- T CROSSOVER

We now connect our low-T quantum calculation with the
high-T calculation discussed in Sec. III. The high-T limit
may be reached by takingT@G in the Keldysh calculation.
The crossover from theT50 to T@G case has been illus
trated in Figs. 16 and 17 for equilibrated and unequilibra
phonons, respectively. The results for the equilibra
phonons have been presented for a rather large elec
phonon couplinglv0510G which strictly speaking is be-
yond the limits of validity of the perturbative approximatio
used here, in order to illustrate how the phonon sideba
evolve with temperature.

The top panel of Fig. 18 illustrates how the elastic res
nance broadens with temperature, while the lower pa
shows the broadening of the phonon sideband. As is evid
from the two panels, at high temperatures the agreemen
tween the high-T rate equation calculation and the quantu
calculation is much better for the case of phonons with
lifetime broadening. The effect of the lifetime broadenin
due to interactions with electrons is to round off the phon
sideband further.

Figure 19 illustrates the crossover from the low-T to high-
T regime under conditions of unequilibrated phonons a
within the perturbative limit oflv050.5G and asymmetric
bias. The phonon sidebands vanish forT.lv0.

FIG. 17. Plot of ratio of phonon in-scattering and outscatter
ratesr in /r out for several different ratios ofv0 /G. The bias condi-
tions aremL52mR , and the onset of a nonzeror in at mL5v0/2 is
the sign of inelastic cotunneling. The high-T limit is approached for
G!v0, when the onset of nonzeror in shifts to the sequential tun
neling limit of mL5v0.
2-17
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VI. CONCLUSIONS

A. Summary

In this paper we have studied a simple model of
electron-phonon coupled quantum dot, involving a~possibly
degenerate! electron level coupled to leads and to phono
The problem has four different important ‘‘internal’’ param
eters: a dimensionless electron-phonon couplingl @defined,
for example, in Eq.~2!#, the ratio of the phonon frequenc
v0 to the broadeningG of the on-site level due to coupling t
the leads, the ratio of the temperatureT to the level widthG.
~A fourth parameter, the ratio of the rategeq at which the
phonons relax to the heat bath characteristic of the device
the mean electron current flow rate has only been studie
limiting cases.!

The model admits two important subcases: of phon
coupled to the number of electrons on the molecule@Eq. ~2!#,
and of phonons coupled to the dot-lead hybridization@Eq.
~4!#. Our formulation applies to both cases, but we have
cused mostly on the former~McCarthyet al.have considered
special features of the latter case in the classical regime!. In
this paper we have attempted to present a general framew
within which different special cases can be analyzed as

FIG. 18. Quantal-classical crossover effects in differential c
ductance spectra for equilibrated phonons. Upper panel: temp
ture dependence of zero-bias ‘‘resonance’’ peak computed as
scribed in text and compared to results obtained from classical
equations~Sec. III, butU50). Lower panel: temperature depe
dence of first phonon sideband, computed as described in text
compared to results obtained from classical rate equations.
rapid thermal smearing of both central peak and phonon sideba
evident. Note that in the phonon sideband case, broadening o
phonon level due to electron-phonon coupling leads to additio
smearing not included in the rate equation model. The parame
are v05100G, l50.1 andT51,5,10G. The bias conditions are
mL52mR . Rate equation calculation:l50.1, T510G. Note:
dI/dV is in units of (e2/\)(G/v0).
24530
n

.

to
in

s

-

rk,
e-

sired. There are two important crossovers: the electro
quantal-classical crossover controlled byT/G, and the pho-
non adiabatic/antiadiabatic~phonon frequency long or shor
relative to inverse electron dwell time on molecule! cross-
over controlled byv0 /G. ~The limit of v0!T is not inter-
esting.! In the classical limit~roughly,T/G.1) this program
has been carried out completely for all values of couplingl
by us and by other workers. The relation between our res
and those of other workers is discussed in detail in the
lowing section below.

The model has two external ‘‘control’’ parameters: th
source-drain voltage differenceVsd5mL2mR ~see Fig. 1!
and the molecule one-electron addition energye8 measured
relative to the average of the source-drain voltage (mL
1mR)/2, and also referred to as the gate voltage. It is w
known that the conductance exhibits steps whenever on
the lead chemical potentials passes through the level en
e8. The important new consequence of electron-phonon c
pling is the appearance of steps such as those shown in
3 in the I -V characteristics, when the source-drain volta
passes though an integer multiple of the phonon freque
The existence of the phonon sidebands has been note
several authors.7,8 An important result~Fig. 4! of our work is
the systematic study of the dependence of the phonon he
on whether the phonon distribution function is controlled
the nonequilibrium current or is equilibrated to a heat b
~Aji et al. presented similar information for the cotunnelin
regime!. We have also studied~Figs. 5, 6, and 15! the non-
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FIG. 19. Quantal to classical crossover effects onI -V curve for
unequilibrated phonons. The parameters arev0510G, l50.05 and
the temperature for the classical calculation corresponds
T510.0G. The quantum calculation has been performed
T50.1,1,10G. The results are for asymmetric biasmR50.0,
mL5Vsd when the perturbation approximation is valid. Note:I is in
units of eG/\.
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equilibrium phonon distribution for different bias voltages.
further result of our work is the theory for noise in the cla
sical limit ~Sec. III C! showing that noise is a powerful spe
troscopy of the degree to which the phonons are equilibra
~Figs. 8 and 9!, especially in the weak-coupling limit.

In the quantal limit (T,G), our treatment is restricted t
low orders of perturbation theory in the coupling consta
Within this approximation we are able to obtain results~Figs.
14, 16, and 18! for the I -V characteristics including both th
‘‘direct tunneling’’ (mL.e8.mR or conversely! and ‘‘cotun-
neling’’ regimes (mL ,mR.e8 or conversely! and were able
to treat the quantal to classical crossover~Figs. 17, 18, and
19!. We presented both a diagrammatic~Keldysh! calculation
and a solution based on the construction of exact eigenst
and confirmed that the peculiar broadening of the pho
distribution found in the ‘‘unequilibrated classical’’ case su
vives also in the quantum limit.

B. Other work

In this section we consider the relation of our results
the extensive existing theoretical literature. The subject w
pioneered by Glazman and Shekter7 who showed that the
problem of a single electron transiting a resonant level
coupled to phonons can be solved in complete analytic
tail. They determined the form of the phonon sidebands
the transmission amplitude and showed how the reso
behavior was modified by the electron-phonon interacti
Very similar results were subsequently obtained by W
green, Jacobsen, and Wilkins.8 However the single-electron
approximation used in these papers is not applicable to
case of leads containing a Fermi sea of electrons. The p
ence of other electrons blocks some of the intermediate s
in the electron-phonon scattering process, changing the f
of the eigenstates and crucially blocks some of the fi
states in the transmission process. This blocking ensures
the T50 linear-response conductance at resonance take
quantized value if 2e2/h, whereas the on-resonance tran
mission probabilities calculated in Refs. 7 and 8 are less t
unity. This issue was very recently also discussed
Flensberg.15

One crucial consequence of the presence of Fermi se
the leads is the ‘‘floating’’ of the phonon sidebands in t
electron spectral function and thus in theI -V curve. At Vsd
50, the features in the spectral function occur at energ
displaced from the Fermi level by integer multiples of t
phonon frequency, thus the corresponding steps in theI -V
curve are observed whenVsd is swept, but are not observe
if Vg ~i.e., the mean lead Fermi level! is changed at fixed
small Vsd ~see Fig. 11!. Several authors9,10,14 employ ap-
proximations to the electron Green’s function correspond
roughly to those of Glazman and Shekhter or Wingreen
co-workers. These miss the above physics and erroneo
predict phonon sidebands asVg is varied.9,10

As also noted by Flensberg the approximations emplo
by Refs. 9 and 10 amount to writing the dot Green’s funct
asGd

R(t)5e( i e02G)t^X†(t)X(0)& @where the operatorsX have
been defined in Eq.~31!#. This approximation becomes exa
in the high-temperature limit, and can be used as the star
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point of an alternative derivation of the rate equations. Ho
ever some of the literature14 which have used this approac
have treated theX-operator matrix elements in an approx
mate manner which does not capture the structure giving
to the step height variations displayed in our Fig. 4.

Finally Gogolin and Komnik have used an adiabatic~slow
phonons, fast electrons! semiclassical approximation to ex
plore the strongly electron-phonon coupled regime. It is w
known that at strong coupling the energy as a function
phonon coordinate becomes bistable, signaling the onse
polaronic instability. Reference 13 considered the behav
of the polaronic state under nonequilibrium conditions, a
observed that a bistableI -V characteristic could result. By
contrast our rate equation analysis always leads to sin
valuedI -V curves. The bistability corresponds to a first-ord
‘‘energy landscape’’; however the system under study is z
dimensional, and~at least within the approach used her!
thermal and quantal fluctuations allow the system to expl
all of phase space wiping out any phase-transition behav
The calculations of Gogolin and Komnik are presented fo
different regime (T!G), but we suspect that fluctuation
would also eliminate the apparent transition in that case.
enhanced low-frequency noise might, however, occur.

Four recent papers have appeared which present re
consistent with those presented here, but emphasizing so
what different aspects of the physics. McCarthyet al.11 used
the rate equation approach of our Sec. III, our results rep
duce theirs; however the main interest if Ref. 11 was in
I -V curves of phonons coupled to the dot-lead hybridizat
and the principal focus was on thermally equilibrat
phonons. Our result extends theirs by treating the n
equilibrium case~see, e.g., Fig. 5! and the noise~see, e.g.,
Fig. 9!.

Fedorets and co-workers16 have analyzed the same pro
lem as McCarthyet al.but in the limit of very weak coupling
of phonons to a heat bath. They find that an instability occ
for Vsd greater than a critical value. Interestingly in th
weak-coupling limit the criticalVsd reported is identical to
the critical Vsd found in our calculation above which th
phonon distribution becomes broad~see Fig. 5!. According
to Ref. 16 the instability occurs if one has both lead coup
and dot coupled phonons, whereas the broad distributio
generic. However, this relation deserves further explorati
Here we observe that the calculations of Ref. 16~as well as
those of our Sec. III! are based on a sequential-tunneli
approximation. In this approximation when the threshold
exceeded the distribution we find changes rapidly~in the
weak electron-phonon coupling limit! from very narrow to
very broad. However if cotunneling processes~in particular
the electron contribution to the phonon lifetime! are in-
cluded, the transition becomes broadened with the on
moving to a lower voltage~see Fig. 15!. We find the breadth
of the distribution to depend strongly on the bias asymme
i.e., to the average occupation of the dot.

Flensberg15 has used an approximate equation of moti
approach to analyze the quantum limit, determining in p
ticular the equilibrium dot spectral function and presenting
clear analysis of the terms omitted in previous approache7,8
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Where there is overlap our results are in agreement with
however nonequilibrium conditions have not been cons
ered in Ref. 15.

Finally Aji, Moore, and Varma12 have considered phono
effects on the cotunneling spectrum. Their results are in
sential agreement with ours, however we note that the s
in dI/dV which they report to be vertical atT50 are in fact
smoothed by the phonon lifetime arising from electro
phonon coupling~see Fig. 14! or to coupling to a heat bath
Also we find that the steps are thermally broadened into
detectability at a relatively lowT fixed by the step height an
the phonon lifetime induced slope, rather than generic
visible up to temperatures of order the phonon frequency
stated in Ref. 12.

As far as experiments are concerned, three rec
papers4–6 have observed signatures in the current-volta
characteristics which are attributed to coupling to a mole
lar vibrational mode. A direct comparison to our results is n
yet feasible because noise measurements have not been
formed, and most of the samples studied show one or at m
two phonon sidebands.~Only one of the samples of Ref.
was reported to show more.!

C. Future directions

Finally we briefly mention a few issues raised by th
work, but not resolved. One important research area is
extension of our quantum limit results beyond the pertur
tive regime ~in particular to the nonequilibrium polaro
limit !, a second is to obtain the frequency dependence of
noise spectra in the classical and quantal regimes, a t
issue is the crossover between equilibrated and uneq
brated phonons, and a fourth issue is to explore the con
tion between the nonequilibrium distributions we find a
the instabilities discussed by the Chalmers group.16 Another
interesting question is to explore the effect of image char
induced in the surrounding electrodes onI -V ~Ref. 26! which
have been argued to be important in certain experimen6

Work in these directions is in progress.
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APPENDIX A: ZERO-TEMPERATURE PHONON
POLARIZATION

At zero temperature the function 122 f (x)5sgn(x), and
the integral, Eqs.~109! and~110!, may be performed explic
itly. The corresponding expressions are
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T1~mL ,v!5
1

2p~v21G2!
ln

~mL2e0!21
G2

4

~mL1v2e0!21
G2

4

1
1

2pv S 2G

v21G2D arctan
mL1v2e0

G/2

2
2

pGv
S G2

2
1v2

G21v2
D arctan

mL2e0

G/2
~A1!

and

T2~mL ,v!52
1

p~v21G2!
S arctan

mL1v2e0

G/2

1arctan
mL2e0

G/2 D1
1

pv S G/2

v21G2D
3 ln

~mL2e0!21
G2

4

~mL1v2e0!21
G2

4

. ~A2!

APPENDIX B: HIGH- T LIMIT OF PHONON RATE
EQUATIONS

In this section we shall show how for weak electro
phonon coupling and at high-T the quantum Boltzmann
equation for phonons@Eqs.~124!–~126!# reduces to the clas
sical rate equations derived in Sec. II. ForT@G, we can
replace the Lorentzian broadenings in Eqs.~125! and ~126!
by d functions, i.e.,

G/2

x21G2/4
→pd~x!.

Moreover for weak electron-phonon couplings we may ide
tify the probability of single occupancy of the dot to be give
by its value in the absence of electron-phonon coupling,
P15(aGaf (e02ma)/G, so that

Rn→n115~n11!l2
1

11
G2

4v0
2

H P1(
b

Gb@12 f ~e02v0

2mb!#1P0(
b

Gbf ~e01v02mb!J ~B1!

and
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Rn→n215nl2
1

11
G2

4v0
2

H P1(
b

Gb@12 f ~e01v02mb!#

1P0(
b

Gbf ~e02v02mb!J . ~B2!

Now the classical rate equations in Eq.~37! rewritten for
the case of a single resonant level withU50 take the form

Ṗn
052Pn

0(
a,m

Rn,m
a,0,11(

a,m
Pm

1 Rm,n
a,1,0, ~B3!

Ṗn
152Pn

1(
a,m

Rn,m
a,1,01(

a,m
Pm

0 Rm,n
a,0,1, ~B4!
,
.R

M

r-

M
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.R
n
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kin
.C

.
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whereRn,m
a,0,1, etc., are defined in Eqs.~61! and ~62! with U

50. In the weak electron-phonon coupling limit, only tra
sitions that change the phonon number at most by 1
allowed. In this limit theGn,n11

a →(n11)l2Ga . Moreover
we may again factorize the joint probability distribution
having 0/1 electrons andm phonons asPm

0,15P0,1Pm
ph . After

making these approximations in Eqs.~B3! and~B4! and add-
ing the two equations we obtain

Ṗn
ph52Pn

ph~Rn→n111Rn→n21!1Pn11
ph Rn11→n

1Pn21
ph Rn21→n ~B5!

with the rates given by Eqs.~B1! and ~B2!.
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