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Phonon effects in molecular transistors: Quantal and classical treatment
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We present a comprehensive theoretical treatment of the effect of electron-phonon interactions on molecular
transistors, including both quantal and classical limits. We study both equilibrated and out of equilibrium
phonons. We present detailed results for conductance, noise, and phonon distribution in two regimes. One
involves temperatures large as compared to the rate of electronic transitions on and off the dot; in this limit our
approach yields classical rate equations, which are solved numerically for a wide range of parameters. The
other regime is that of low temperatures and weak electron-phonon coupling where a perturbative approxima-
tion in the Keldysh formulation can be applied. The interplay between the phonon-induced renormalization of
the density of states on the quantum dot and the phonon-induced renormalization of the dot-lead coupling is
found to be important. Whether or not the phonons are able to equilibrate in a time rapid compared to the
transit time of an electron through the dot is found to affect the conductance. Observable signatures of phonon
equilibration are presented. We also discuss the nature of th&@ lmwhigh-T crossover.
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[. INTRODUCTION be observed even in the linear-response conductafty
tuning the gate voltage.

In recent years it has become possible to fabricate devices In this paper we revisit the problem of the phonon-
in which the active element is a very small organiccoupled dot. We present a comprehensive formalism valid
molecule! Such a device may be thought of as a “quantumboth in the classical and quantal limits which resolves the
dot”: a structure weakly coupled to the macroscopic chargeambiguities in the present literature. We also use this formal-
reservoirs(“leads”) and small enough that the discrete na-ism to address issues related to the behavior of this system
ture of the energy levels on the dot is important. Quantununder strongly nonequilibrium conditions in the quantal and
dots fabricated using conventional semiconductor technologglassical regime. We further study the nature of the quantal-
have been extensively studied experimentalland classical crossover and the noise spectra. An important fea-
theoretically’. However, the use of small molecules may ture of our results in the quantum regime is that the conduc-
lead to new physics. In particular, as electrons are added dance peak height at resonance is unchanged by electron-
removed from a small molecule, both tekapeof the mol-  phonon interactions.
ecule and itsposition relative to the leads may be altered. A recent paper by McCarthgt al treats the problem of
The energies associated with these changes are not smdhe phonon-coupled dot in the highclassical regime and
and the time scales may be comparable to those related to tiier phonons that couple to the leads. They present results for
flow of electrons into and out of the molecule. Interestingthe regime of “equilibrated” phonons strongly coupled to a
recent data indicate that these effects may lead to observabteat bath. The highi-regime of our work is similar to that of
structures in the conductance spectra of the*dbt. Ref. 11, but we also study the physics of out of equilibrium

The shape change may be thought of as a coupling gbhonons.
electrons on the molecule to phonon modes of the molecule, Aji et all? have studied the model under off-resonant
while the position change corresponds to phonon-dependenbnditions when the conductance is very low and the current
tunneling matrix elements. The subject of electron-phonons due to elastic/inelastic cotunneling. They study the phonon
coupling in quantum dots has received much theoreticasidebands in the case of equilibrated and unequilibrated
attention’ %6 n an early important work Glazman and Shek- phonons, for the case of an electron coupled to a molecular
hter obtained analytic expressions for the transmission probribrational modgour mode] and also the case of a phonon-
ability through the dot under conditions that the phonons arelependent tunneling amplitude. In our analysis, the exact
always in equilibriunt. Their results for the transmission go treatment of the leads automatically takes into account co-
a long way towards describing the behavior of the phonontunneling processes, while the perturbative approximation re-
coupled system when one is far from resonance. Howevestricts our analysis to details of the first phonon sideband. We
their treatment neglects the phonon renormalization of thehow how thermal effects wash out cotunneling.
dot-lead coupling, and thus gives rise to a zero-bias conduc- The paper is organized as follows. In Sec. Il we describe
tance at resonance that is smaller than the value predicted lye model(Sec. Il A), the important model parameteiSec.
the Breit-Wigner formula(this situation was not the main 11B), and develop a density-matrix formalisi@ec. 11 Q that
interest of Ref. Y. [Note that these issues were also recentlyallows one to obtain the probability distribution for various
discussed by Flensbetg] The lack of renormalization of the states on the dot under out of equilibrium conditions. In Sec.
dot-lead coupling appears in the treatment carried out byll we apply the high-temperature approximation in the
other authors as well;}%*and in addition some authors density-matrix formalism and derive the rate equations for
assert(incorrectly, we believethat phonon sidebands may the dot occupation probabilities in the sequential tunneling
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regime(Sec. Il A). We use these rate equations to calculate e+ U
average currentSec. 11l B) and the dc noise powe(Sec.
[IIC) as functions of gate and source-drain voltage fortwo | = —--oo-- ,
limiting cases: phonons equilibrated to the external world |  _______
independent of the electron occupatigmonon equilibration L ———
fast compared to dwell time of electron on molegulend
phonons uncoupled from the external world and responding
only to on-dot electrongphonon equilibration slow com-
pared to dwell time of electron on doWe find that in the
case of phonons uncoupled from a bath, under certain bias
conditions the phonon distribution can deviate far from equi-
librium. FIG. 1. Energy-level diagranu, r represent the chemical po-

Section IV deals with the low-temperature quantal regimeential in the left and right leads, respectively, whée represents
of the phonon-coupled dot where we use the Keldyshhe ground state of the singly occupied dot and the dashed lines
Green's-function technique to calculate the dc current andhdicate phonon excitations of the singly occupied dot. The solid
phonon distribution function to leading order in the ratio of line indicates the energy’+U of the doubly occupied dot.
(electron-phonon couplingtunneling rate to the leagi$or
the two cases of slow and fast phonon equilibration rate. "
Section IV A reintroduces the problem, Sec. IVB derives He= | szz;i:ld tikalZ8q i ot H.C, )
expressions for the exact eigenstates in the absence of e
electron-phonon coupling. These eigenstates form a convevheres labels the spin index. Figure 1 shows a schematic of
nient basis for carrying out the perturbative Keldysh calcu-the energies considered.
lation which is outlined in Sec. IVC. Secs. IVD and IVE Here the number of electrons on the moleculg, is
present results fot-V for the two cases of slow and fast given by
phonon equilibration rates.

Finally Sec. V studies the crossover from IGwto high-T
regimes and Sec. VI is a summary of our work and its rela- nd:i:% d
tion to already existing literature. oo

iT,lrdi,(rv (5)

and the parametdy is the charging energy of the molecule.

Il. MODEL, PARAMETERS, AND FORMALISM We have defined the zero-phonon state of the vibrational
A. Model mode of the molecule to be the ground state whgr 0,

. ) ) and we neglected anharmonicity in the lattice part of the

We consider the case of a molecule with a single level oy, mijionian(such anharmonicity is of course induced by the

degeneracyl, coupled to two leads, which we label as “left g|eciron-phonon coupling and an intrinsic anharmonicity

(L)" and “right (R).” We suppose that the electrons are ., g easily be addéd

coupled to two different kinds of phonons; an internal vibra-  1he dot-lead coupling ., means thafH,ng]+0: in the

tional mode of the molecule of frequeneyy, which couples _absence of electron-phonon and many-body physics this im-
to the local charge, and a phonon mode labeled by a disjies an inverse lifetime for decay of an electron in staie
placement operatar, which accounts for the oscillations of the dot into a state of energyin lead a,

the dot in an external confining potential of parabolidity

This phonon mode does not couple directly to the charge on

N - 2=0)|2 — €
the dot, but results in an explictdependence in the left and F"a(e)_zwz [tia(2=0)[0(e— € 1) 6)
right tunneling matrix amplitudes,k,a{i}. The full Hamil-
tonian is, therefore, The density matrixp of the full HamiltonianH obeys the
equation of motion
H=Hp+Hgaqst Hy (1)
de(t)
with —at ~ " [H.p®] @
U p§ The curren{l) and the nois&S) through the leadr are given
HD=end+ 5nd(nd—1)+)\0)0(b1’+b)nd+m by
1 La(t)=Trp(,, 8)
+ 5Kz + wobb, 2) {la(t))
S, (1)=Trp(t)[ 51 (t)81(0)+ 81 (0) 81 (t)], 9)
Hioage= 2 ekal,kaa,kr 3) Whereé_l (t)_= I(t)— (1) and the current operator through the
k.a=L,R a lead is given by
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4 Pt=p—Ps (13

Classical Regime from which it follows that

TT (Section I1I) TheagP:=0. (14)
It is desirable to obtain the reduced density matrix of the dot
1 |QuanalClassical ....... S pp because its diagonal components relate directly to the
Crossover (Section V) occupation probabilities of the various states of the dot, and
: Strong Coupling various expectation valugsuch as the current and nojise
Porturbati . Quantal Regime may be expressed in terms of componentp of
Rer fur g’va”?;)m (Not studied here) In what follows we outline a general scheme for obtaining
egimetsection R the reduced density matriX.The equation of motion for the
g full density matrix, Eq.(7), implies
1 Ao, T
, , , . dps(t) dp(t)
FIG. 2. Overview of different regimes studied. T: fleadsT ®Pleads
~ dN, . . - == i(Treaad Hu (1), pit(D]) ® preags, (19
Ia: dt :I[H!Na]zl 2 [ti,a(z)aTOz,k,(rdi_H'C']! ead ‘! § feads
K,o,i
(10) dpy(t) d(p(t)—psi(t))
+ ) dt dt
N,=Zy 8 sk, DEINg the number operator for thelead.
=—i[Hy(t),psi(t) +py (t)]
B. Parameters and regimes ;
g +i(Treagd Hu »pu(1)]) ® preads- (16)

The behavior of th del ider i ified b
© Denavior of '€ MoTels We COnsIcer 15 specilie )éNe have used the interaction representation defined by

temperatureT to a typical decay timd&, and the product of ~Oi(t) =g'("o " ieadd'Q(t) e~ Mo Hicasd!,

the dimensionless coupling and the ratio of the phonon  In specifying the solution of Eqg15) and (16), we re-
frequencyw, to I'. For large values of /T a classical rate quire an initial COIJdI'[Ion. There are two common choides:
equation analysis may be employed for all valuea @§/T"; at the initial time,p corresponds to an equilibrium ensemble
and this is the subject of Sec. Ill. For small valuestéF a  for H with u, = ug; (ii) at the initial time ¢;) the dot and
guantal treatment is required. Section IV reports results foteads are decoupledd¢=0) so thatp(t;) =pp® pjeads With

low T, obtained using perturbative calculations valid for pp andp,eaqsthe equilibrium density matrices corresponding
Awy/T'<1, while Sec. V treats the quantal-classical crossto the uncoupled problem. We shall be interested in steady
over, also in thehwy/I'<1 regime. The quantal strong- state, so we will take the initial timg= —o. Further we
coupling regime T/T <1\ wy/T'>1) is a challenging prob- shall be interested in cases in which the leads are not
lem left for future research. The different regimes and thestrongly affected by the presence of the dot. In this case the

sections treating them are shown in Fig. 2. boundary conditiorfii) is most convenient, but we note that
if orthogonality effects or Luttinger liquid renormalizations
C. Formalism of tunneling amplitudes are important then this choice may

be less convenient.

The essential assumption in the theory of molecular de- Choosing boundary conditiofii), Eq. (16) being a linear
vices is that the leads are in equilibrium independent of th%quation inp, () may be formally solved as

state of the molecule. In order to implement this assumption
it is often convenient to define a projected density maigix

pu(t)=—i f:dt’K|(t.t’)[Ht|(t’),Ps|(t’)]. 17

Ps:TrIeads{P(t)}@)Pleads’ (11
wherepjeaqs is the density matrix of the left and right leads whereK,(t,t") obeys the following operator equation,
that are in thermal equilibrium at some specified chemical dK,(t,t')®

potentials f«, and ug). The density matrix of the ddialso
known as the reduced density majriz therefore given by

i iHLKi(L) @]

—i(Treaad Hy . K (1,1 ) @]) ® pleads
=5(t—t"), (18

Po= TheaddPs (12

and for our model corresponds to projecting the full density
matrix to the smaller subspace of the degrees of freedom afihere the symbo® denotes the operators acted on Ky

the dot electrons and the two types of phonon modes. The combination of the second and third terms on the left-
A complementary density matrig, may also be defined hand sidglhs) of Eq. (18) corresponds to processes in which
such that the particle distribution in the leads differs from the equilib-
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rium one. When substituted back in E@.7), these terms whereN(e) is the density of states and the Green’s functions
produce correlations between the dot and lead variables. Prare defined as
cesses corresponding to these correlations have been dis-
cussed in detail by Scholler and co-work&tsiowever their — GR(t,t/)=—ia(t—t)({d()i, {20}, d (O 12t)1),
importance for the present problem is unclear. (26)
Substituting Eq(17) into Eqg. (15) leads to
dpoicy - , G=(t,t) =i ()t fzt Ot fzD}).  (27)
T:_Trleadsf_mdt [Hq(t), K (t,t") _ _ _
In general the second and third terms in Et8) imply
X[Hy (1), pei(t)]]. (19 K (t)= 0(t)K(t) wherek# 1, suggesting the Meir-Wingreen
) ) ) ) formula is incomplete. However we suspect that in the
Equation(19) is a_general_lzed master equation that Underpresent problem in which there is no backscattering and
steady-state conditionsetting the Ihs of Eq(19) to zerd g “excitonic” interaction between dot and lead variables,

can be written in the following form, correlations corresponding td[Hy ,-1—iTreagd He -]
® pleads” 0 [EQ. (18)] are irrelevant: any such configuration
0=> piRHi ’ (200  simply propagates away from the lead and does not return.
]

Some supporting evidence for this argument is provided by
where(i| ppli)= Pi, the probability of being in théth dot the exact diagonalization results of Sec. Ill; however the is-

state. (Under steady-state conditions off-diagonal element$Ue warrants further investigation. _
of the density matrix vanish except in the case of accidental FOr the simpler case of left and right phonon-independent

degeneracies.Conservation of probability requires;R; ; tunneling amplitudes the Green's functions in EB5) are
=0, from which it follows that simply the dot d-electron correlator. Wingreen and

co-workers® showed that in this scenario and for the case of
_ _ left and right tunneling amplitudes that are proportional to
0:.2 PIR_i— P'E_ Rij (21 each otherlbut with nontrivial on-dot interactionsthe cur-
7 7 rent through a single resonant level simplifies to
so that the quantitieR;_,; may be interpreted as the various
in-scattering and out-scattering rates. de I' (e)I'r(e)
A formal expression for the current may be derived by = EWA(G)’ (28
using Eq.(8) and observing that Tp;=0, so that
where A(e)=i[GR(e)—Ghi(e)], with GR(t,t")=—ia(t
Tip=—iTr|  dt : : —t)({d(t),d"(t")}.) andT'jr(€) =272t L rd( ek €).
{)=Trlp, ITerdt (DK, ), Ha ()] When the temperature is the highest-energy scale in the
) problem, approximation of Eq23) becomes exact, and fur-
Xppi(t')®pleads: (22)  ther the Green’s functions in ER5) are replaced by their
short-time behaviol? This shall be explicitly demonstrated

Equations(21) and (22) are our basic results. Further in the following section where we will derive rate equations

analryiism d(:'ipindﬁ onnthit?p;mﬂcrst?; thﬁl s;t/iit]emtgrl(;i_rof thf%r the on-dot probability distribution within the sequential
approximation chosen. emperatureonty imes tunneling regime. Following this, in Sec. IV we shall carry

2rebre!?va2t, f(t) at sbuf20|§ntly high we may approximate out the Meir-Wingreen prescription for calculating the cur-
| By 1ts short-time behavior, rent for general temperatures.
K (t,t")—6(t—t’). (23

Indeed making this substitution in EQL7) leads to the fol-
lowing expression fop, in the Heisenberg representation,

IIl. HIGH-TEMPERATURE APPROXIMATION:
RATE EQUATIONS

A. Formalism

t
pi=—I f dt’e Mo Hieadd " 1, p ()] In this section we shall carry out a highanalysis for the

- simple case where the only phonon mode the electron de-
grees of freedom couple to is the on-dot vibrational mode.
(The case of the phonons coupled to leads has been dis-

The above expression fpr when substituted in the first line cussed is some detail by McCartey al.** within the high-

of Eq. (22) leads to the widely accepted Meir-Wingréén temperature approximation
expression for the current, It is often convenient to choose a representation which is

diagonal in the dot degrees of freedom. In the present model

% @l (HptHieagd (1) (24)

(o ety e o this is achieved via a standdfdcanonical transformation.
I.=| dt’] deN(e)Im{e""G(t,t") Defining S=A(S; ,d! d; ,)(b'—b) and transforming all
operatorsO via e50e™ ® leads to a transformed Hamiltonian
+f (€)' tIGR(, 1)}, (25) "=H/or+ H{ +Hjgags With
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U dpD 1(= 2 i _t!
[ ThL — _ —_— == ! iek,o(t=t")g.
Hy=2"ng+ @gb'B+ 3 na(ng—1), (29 dt = 2) O, 2, ke dio
, . ><Xe—iHd(t—t’)dj‘roxtpDeiHD(t—t’)
Hi= 2 ti.> (Xal,di ,+H.c), (30) , _ - _ ,
TR "*p7 +12(1—fy e i okal=gl XTeiHol-t)g,
where the transformed phonon operalorb—\=; ,df d X XpPelott) .. (35)

i.0» SO that the phonon ground state depends on the dot

occupancy. Moreoves’ = e—\ 2wy is the “polaron shift”in ~ We may now identify the probabilit}}, of the dot being in
the energy for adding one electron to the molecule and tha state withn electrons anan phonons as

interaction parametad is also renormalized, but as we shall

focus here onU—« we do not write the renormalization Pn=(n,m|pp|n,m). (36)

explicity. The crucial phonon renormalization of the ) ) ) _
electron-lead coupling is given by Note that whilepp is always diagonal in the dot electron

number, it may be off-diagonal in the phonon numfskre to
X=exd -\ (bT=H)]. (31) the presence of th¥ operators in Eq(35)]. However such
terms are negligibly small in comparison to the components
The highT approximation proceeds from E¢24) by  Of pp that are diagonal in phonon number, and are therefore
making the Markov approximation which involves replacing Ne€glected in our an_aIyS|s. That IS alsp the reason why we
ps(t") in the integrand in Eq(24) by p4(t). After substitut- have _dropped the first term in E¢32) in the next set of
ing for p, in Eq. (15) it is also convenient to replacg , ~ equations. _ - _ ,
=3[*_, which amounts to absorbing any level shifts in- We are now in a position to write f?‘.“."aS‘eT equations
duced by the dot-lead coupling into the bare values of th%or the electron-phonon joint probabilities, which take the
parameters. Following this we obtain orm

dps(t) ) SN _ . - a (n—1)
= —i[Hp+Hicags.pa] Pq Zq fal(a=a") o+ U(n—1)TG , PY
o0 +1—f r__ +Un Fa ,P(r:+1)
_EJ dt'[H, e (Ho* Hieaad(t—t") [ a((d"~Q)wg N4 Py
- —[1-fa((a—a")we+U(n—1)]T;, P
X[Hy,pg(t)]e! ot Hieadd (1)), (32 — (9’ — Q) wo+Un)TS, PR, (37)

On the assumption that orthogonality effects may be nénote that in our notation the upper indexm always refers
glected, we may formally take the trace over the lead degreeg, the electron number and the lower index the phonon num-
of freedom and in the process arrive at coupled equations Qfgr \hile f ,(x) is short form for the Fermi function evalu-

motion for the various occupation probabilities of the dot. 5404 atf(x+e — ), m, being the chemical potential of
We outline the calculation in detail for one of the four terms o544 el e

that one gets on opening up the commutator in (4. Thus within the highF approximation the rate for going
(d 2 pp) 1 (e from ann electron andg phonon state on the dot to an
Tneads%:—E dt’ TrieagHs —1 electronq’ phonon state isR2:271=2a=L’Rfa((q

—q’)w0+U(n—1))F3'q, , WhereFZ,’ represents the tran-
sition rate involving hopping an electron from the dot to lead
a and changing the phonon occupancy frgm{measured
®ppe (Ho+Hieadd(t=t) relative to the ground state &ff, with occupancyn) to q’
(measured relative to the ground stateHgf with occupancy

% e*i(HDJrHleads)(t*t')HtpleadS

(33 n—1) and is equal to the transition rate involving hopping an

Using the following relations electron from the lead to the dot and changing the phonon
occupancy fromg (measured relative to the ground state of

TreadPieads= 1, Hp with occupancyn—1) to g’ (measured relative to the

ground state of j,, with occupancyn). More explicitly?
Treaad T agi)=0, 56k r.flex—ia)
leads Pleadsfa,k,88,k,) = Oa, 80k, kT (€K™ Ha)) .
Fq"q:Fa|<q’|X|q>|2 (38)

T )= 1—f(e— :
Neadd PleadPak, Ap k) = a9k, k, (1~ (€= 11a)) a4 The matrix element can be computed by standard metffods;
B4 ts absolute valu¢<q|x|q’>|zzxéq, is symmetric under in-
we obtain terchange ofj andq’ and is
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(_)\2)k(q!q/!)1/2)\|q—q’|e—)\2/2’2 where the sum om is from O to (2,—1), 2d4 being the

. (39 maximum occupation of the dot.
‘ As an aside consider the simple case of spinless electron
with no coupling to phonons with a nondegenerate dot level
Pof energy €4. In this case the rate equations give us the

X2_.=
<0 SBa (K)!(g—k)!(k+|q' —q])!

As interesting special cases, we write several lowest o

erators: following probability for a singly occupied level,
A" T f(eg— p)+Trf(eg— pr)
X :e—xz/z_, (40) 1_- L& ML RIL€E4™ LR
Oon \/m P FL+FR (47)
X11=(1—)\2)e"‘2/2, (41) while the current from Eq(46) is simply
A2 =B ey )~ fegm ). (48)
Xo1= \/5)\(1—?>e>\2/2, (42) r+ret T ¢ PR
On comparing the above expression with the exact solution
A4 ) for the current obtained by Wingreen and co-workges|.
X22=(1—2)\2+ 7) e M (43)  (28)] we can explicitly see that the high-approximation
corresponds to assuming the spectral functiondgunction.
Observe that for certain values »fsome of the matrix ele- We shall now discuss the opposite limit of phonons equili-

ments vanish. This unusual behavior is an interference phesrated to an independent heat bath assumed to be at the same
nomenon, which is slightly obscured by the notation. A stateemperature as the leads. To implement this we force the
which hasq phonons excited abovie ground state of the probability distributions on the right-hand side of Eg7) to
system with B0 electronsis a superpositioriwith varying  have the phonon-equilibrium formPg: Phe 9vo/T(1

sign of many multiphonon states, when viewed in the basis—e~“0/T). In the U—o limit this ansatz implies that the
which diagonalizes the=1 electron problem, and therefore probability P° that the dot is empty is given by

the transition described b¥ is really a superposition of
many different transitions, which for some valueshomay S ord e-awlTy,
destructively interfere. In several recent papers, the phonon 9.0’ aa.q

7 A 0 a,q,q'
renormalization of the molecule-lead coupling is apparently P°= ,
omitted, or treated in an average manner which neglects the a o=q'wglT a  o—qug/Tf
, g 9 D 20y e Vool g gt TG e 90 T g g
0,9’ dependent structuré. a,a.q'
(49
B. I-V characteristics wheref, ;o =1—f.((q—q") wp), fa’q'q,:l—f_a'q’q, while

a,q.d
In this section we shall discuss tHeV characteristics P1=1—P%.
obtained from the solution of the high-temperature rate equa- In general for both equilibrated and unequilibrated cases
tions for two extreme cases. One is a scenario where théne rate equations may be written in the matrix form
phonons are not coupled to a bath and their number changes . A
only when electrons hop on and off the dot. The second case P=MP. (50

is when the phonons_ are s_tr_on_gly coupled to a bath, and A Fherefore under steady-state conditiof%,€0), the prob-
always forced to be in equilibrium. lem reduces to finding the eigenvector corresponding to the

From Eq.(22) we obtain zero eigenvalue of the matrid. We do this numerically.
(=Trp(D)1, (44)  From these solutions we have computed the current. Repre-
sentative results are shown in Fig. 2 which plots the Tow-
current as a function o4 for two gate voltagesV
=0(u =~ ug, upper panglandVy=Vsy2 (ug=0, lower
To—ur=it > (a6  dX—dXTa, ). (450  pane), for both equilibrated and unequilibrated phonons.
K (Note that the calculation is for large values df which
Using Eq.(24) for p, and following the same procedure of ::r?érngz?gcttr%@r;egI|g|ble double-occupation probability for
e e o i e owa " Steps(broadened bi) i the curent sssocited wih
terms of the joint probability distribution functions ‘phonon sidebands™ are observed when the source-drain
' voltage passes through an integer multiple of the phonon
frequency. However, in the opposite “linear-response” limit

with

.= 2 (2dy— n)nga((q’ —q)wgt+ Un)l“zlq, Vsg—0 (not shown, asV, is varied we find just one main
n,a,q’ step in thel-V curve, asVy passes through 0, and only very
. . - —w, /T . - g
(N4 1P 1 —§ —q")wg+UN)ICE, . tiny structuregvanishing ag™ “o’'", which is the probability
(n+1)Pq 1 2((@=a)wot Ul g of the dot being empty with one phonon excitethenV is

(46) a nonzero multiple of the phonon frequency. This result ap-
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FIG. 4. Ratio of differential conductand&) peak heights for
equilibrated and unequilibrated phonons and two different coupling

FIG. 3. Current(l) vs source-drain voltaggVgy) traces strengths andu = — ug. The points for\=0.5 (open symbols
calculated for coupling constant fap,=1 and T=0.05. Upper  p4ve been multiplied by 10.

panel is forVy=0.0, while lower panel is fokVy=V.¢2, ug=0.

lisi its ofeT/4. . .
1S 1N units ore Note that if u, # ur, then u-dependent changes in the oc-

cupation probabilities lead to additional and not simply char-

pears to differ from that stated by other autfdfavho find )
acterizedn dependence.

phonon sidebands a4 is swept atvsq— 0. The authors of

Refs. 9 and 10 apparently neglected the fact that the phonorh Deviati?:s _“frotm i this p?jt_terr i_mpII:y rgnequililbrium
sidebands “float,” i.e., shift with the Fermi level ag, is phonons. As illustration we dispiay In F1g. Gmay Values

changed (normalized to the zero-frequency pedér equilibrium and

Figure 3 reveals on first sight an apparently surprisin onequmbrlum phonons and a vyeak and stro'n.g glectron-
result: for symmetric bias\(;=0) and for the coupling con- honon coupling. One sees that in the nonequilibrium case

sidered, the current is larger for equilibrated phonons thatj;lhe peak heights display a nonsystematic dependence on

for the unequilibrated case, whereas for the strongly asymglectron—phonon coupling and peak index, but that in general

metric case r=0), the opposite is true. This is surprising mearslurements of the=1 andn=2 peaks reveal the effect
because one expects that in the unequilibrated case tl%]:\eﬁ.y' | fint t ider how f t of iibri
phonons arrange themselves so as to maximize the currertlﬁ. IS alSo of Interest 1o consider how tar out of equilibrium

To gain more insight into this phenomenon we have calcu- he phonon dlstrltputlon mt?ybpl'(te' dnvfen. F|guLe 5 sdhom{[s the
lated the dependence of the ratio of currents for unequilip onon - occupation probabitities - for weak and strong

brated and equilibrated phonons on the couplingpr dif- electron-phonon coupling and,=0. One sees immediately

ferent degrees of bias asymmetry. We find that except fo[,hat the phonon distribution function is farther from equilib-

ur=0.0 (the most asymmetric casa minimum in the ratio
occurs for an~1. This behavior may be traced back to Egs.
(41) and (43) which reveal that higher-order “diagonal’h(
phonon-n phonon matrix elements vanish for a~1. .
The steps in current may be conveniently parametrized by P, 0.1 - :
the height(or the area, as the width is simply proportional to “

0.2

T) of the corresponding peak3,,,, in the differential con-
ductanceG=dl/dV. Ratios of peak heightéor areas pro-

HHHHHDD:
I

) . X 0
vide a convenient experimental measure of whether the

phonons are in equilibrium. At low, the equilibrium pho- 0.1 _
non distribution corresponds to occupancy only of the0

1
phonon state, so theth sideband involves a transition from P 0.2 11

the 0 phonon to th@ phonon state. Therefore the ratios of

the peak heights or areas are controlled by ratiopXqf|?. 031 r=05 ] h=20
In particular Eqs(40) and(46) imply that if u, = — ug and L L
T<wo, 0 2 4 6 8 0 2 4 6 8 10
n n
Gmax [Xnol2 2N FIG. 5. Phonon probability distributions for two different
0 = 2~ 2(nh)" (51) electron-phonon coupling constants calculated fof=—pur
G 2| Xod (n!) -
maxi equil =2wq.
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0.05 —
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, 0.3 - 1k
P .
0.4+ -
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0.6 - |
1 | 1] OO 1

T I BRI | P I |
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n n
FIG. 6. Phonon probability distributions for weak electron-  FIG. 7. Average phonon number under symmetric bias condi-
phonon coupling X=0.5) calculated foru, =2wq,ug=0.0 (left  tions, u = — ug, electron-phonon coupling=1.0 andwy=20T.
pane) and u; =5wq,ugr=0.0 (right pane). Note the saturation in

the probability distribution function which is also much closer to Using the fact that,_(t)zethI L(o)e—th, the above expres-
equilibrium. This situation is quite different for the same coupling sjon for noise may be rewritten as

constant and symmetric bidsee Fig. 5.

1
rium for weak couplings than for strong couplings. We asso- Si(O=2T(01L.(0), (53
ciate this effect to the strong dependence of operatoxsg, ,
[Eq. (40)] which allows the system at large to “jump
down” from a highly excited state to one of low phonon , )
occupancy. The deviation from equilibrium is largest Yoy MO =e YU = ))ptp(I=()e™. (54
=0 for similar reasons. Figure 6 illustrates the scenario of
nonzero gate V0|tage or asymmetric bias COﬂditiQ[LS Since we are calculating the correlation of the same physical
=V,q,r=0.0. Here the phonon distribution for weak cou- quantity at two different times, we expe&(t)=S(—t).
pling saturates with bias to a value which is closer to itsTherefore we shall explicitly calculat&(t) for positive
equilibrium distribution. As we shall show in Sec. 1V, this times, for which we need to calculate the causal function
gate voltage dependence of the nonequilibrium phonon dist(t) that obeys the equation of motion
tribution function is recovered in the quantum regiine T

where

as well. Figure 7 is the average phonon numibgy, d\(t) )

=3, NP for moderate electron-phonon coupling. The steps g~ ILHAM D]+ 8W{dI p+pdlL}, =0,

in N,,— V4 Observed here coincide with the stepd- and

correspond to sequentiairect tunneling. This is to be con- =0, t<O0 (55)

trasted with the quantum regini®ec. 1V, Fig. 13 whereN,,
increases continuously with bias due to higher-order cotunwhere 8l =1, —(l_). Note that Tk(0)=0, and we expect

neling processes. \(t) to be traceless at all times. Also from charge conserva-
tion it follows that the noise across the left and right leads
C. dc noise characteristics are equal S (t) = Sgr(t)].

) ) . . We now solve the equation of motion farby decompos-
Another important spectroscopic tool that is sensitive tomg N=Ae+ A, Wherehs=\p®\jeaqsis diagonal in the dot
S 1 S eadas

the details of the eIeCtron-phonon COUpling and to the phO'and lead variables, Wh”ﬁt is Of‘f-diagonal. After dOing a

non distribution is the current noise, and in this section Weimilar decomposition for the density matrics: p+ p
outline the calculation of the dc current noise within thethe equation of motion fox [Eq. (55)] may be rewrittsen itn,a
high-T approximation. Quite generally current noiSa (1) anner similar to that done for the equations of motiorgfor

throughlt;ﬂ’g left lead is given by the following correlation in the preceding section,

function:

SO =3Trp{IL(DIL(0)+1L (0L (1)} = (Trpl )% 2 dd_7‘ts =—i[H N ]+ 8t (I pet+pd —2(1)ps),  (56)
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d\; _ . whereS_ (—t)=S..(t), and
dt =—i[Hp+Hjeags: Nl —i1[H¢ As]
Su(t)= > (2dg—mAN(HR-M
+3(0)(1 st psl —2(1)py). (57) e
Note that we have dropped tfiélp+H,,\¢] term for the —(n+ 1))\3+1(t)R:‘3,+1’” (64)
same reasons as before, namely that the matrix element of '
this term is off-diagonal in the phonon number and is very@"
small in comparison to the componentsixafthat are diago-
H L 1
nal in phonon number. o S, (H)=258(t) > (2dg—n)P2(t)Rq:g;”+
The solution for\; from Eg. (57) is given by a.9’.n
. +(n+1)PF DR, (65)
_ 1 a—i(Hp+Heaq9(t—t") '
M) 'f_wdt € Note our notation Ag=(n,q|\"[n,q), etc., where \°
_ ) =Treaqshs- Also note that thes(t) in the expression for
X[H, Ag(t')]e (Ho T Hieadd(t=11) S,.(t) again arises from replacing oscillating factaes!
_i ~278(t)d(e).
i(Hp+Hgagdt
+o(t)e o Heasd [1(0)pg(0) +ps(0)1(0) We find it convenient to perform the following shift of
—2(1)p,(0)]e'(Ho*Hicaast, (58) variables\®—\P+2(1 )P. This shift of variables does not

o _ . affect the equations of motion, E€59), becauséV P=0 in
Substituting Eq(58) in Eqg. (56) and going through the usual steady state. However this shift of variables canceld the
steps of extending the upper range of the integral to infinityierm in Eq.(63).
and making the Markov approximati¢which involves pull- Collecting all the terms we arrive at the following expres-
ing \ out of the time integraj we arrive at the fO"OWing sion for the dc noise power:
matrix expression for the equation of motion for

o Sie-2| atsi, (66
——=MX\p+48(t)h, t=0 *°°
dt
=0, t<0. (59) S4e=2 2 (2dg—n)[PG+XG(0) IR,
q.q’.n
The matrix M is the same that enters in the equation of —(n+1)[—PQ“+X2“(O)]R;:3,“'”, 67)

motion forpp . In arriving at the expression for the vectar

we have approximated oscillating factors such @S \yhere the components &{«=0) are obtained from solving
~2m(t) 6(¢). Following this the vectoh has the structure  the matrix equation

YD — — -1
hi=—2(1)P1+23 (2dg—n)P],R"! AMe=0)==M"h. (68)
ann Note that the matrisM has the property that;M;; =0, so
—(n+1)P"IRY LN (60)  that one of its eigenvalues is 0. Howevebeing traceless,
o M~ h is well defined.
where as before the sum ornis from 0 to 2,—1, dg4 being Let us now look at the simple case of no electron-phonon
the number of degenerate levels not counting spin. Note thafoupling and spinless electrons. In that case the madrix
we are using the following shorthand notation, acquires the simple 22 form [note that f,=1/(1
L + el ~ralT)]
Ryg =fal(d’ —@wo+UmIg ., (61)
M= —(I f +Trfr)  Ti(1-f)+TR(1-fgR)
Roy "=[1-fa((@' =@+ UMIT . (62 | LUf +Tkfr —[FL(l—fL)+FR(1—fR)](69)
Moreover by using Eq46) it is easy to check thdt [whose _ _ _
components are given in E(0)] is traceless. while the components of (w=0) are given by
Now we shall rewrite the Eq53) explicitly in terms of 1
the components okp and the steady-state probabilitié’ﬁ N0= _Y1=_ h (70)
and P} (components of reduced density matiy). After ' +Tr
some algebra one finds that where
SLL(t)=3Trypl A, t=0 hi=2r, P, —2(1,)PL (72)
=—{(I)2+3[Sy (1) + Sy (1) ], (63)  The full expression for the dc noise is
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FIG. 8. dc noise foh =0.2 and under symmetric bias conditions ~ FIG. 9. dc noise fon=1.0 and under symmetric bias conditions
puL=— pr=Vsd2. Vg is in units of wy=20T. S, is in units of &L=~ #r=Vsd2. Vsq is in units of wy=20T. Sy is in units of

eZT/h. eZT/ﬁ.
2 IV. QUANTUM THEORY OF TRANSPORT THROUGH A
Sd ZFL[ POfL+ Pl(l fL)] 4 1“ POfL PHONON-COUPLED DOT
A. Overview
+4L<| yPL, (72) In this section we present a fully quantum-mechanical

I +r treatment of the simple limit of the model considered in pre-
vious sections. In order to carry out the calculation we re-
We may now derive expressions for the dc noise in twostrict attention to a single nondegenerate level with no on-
limits. The first one is in the linear response regimg  site CoulombU, and to low orders in perturbation theory in
=g SO thatP®=1—f,_ and(l )=0. In that case, the electron-phonon coupling. The results shed light on the
relation between the Green’s-function formalism natural in
the quantal treatment, and the density-matrix formalism
S,.=4 fL(1—f,) (73y  natural in classical problems, and elucidate the quantal to
T +Tg F classical crossover. For the reader’s convenience we repro-
duce here the limit of Eqg2)—(4) which we study
which is the result expected from the fluctuation dissipation
theoremSy,=4TG.
The other limit isu, = — ug=eVI2>T so that by using He=e€odd+ > ealaca

the expressiorP' = (I' f, + 'xfg)/(I' +T'r) and setting to k=L R

zero combinations such dg(1—f_) we obtain
+ > tea(dfag,t+H.c), (75)

k,a=L,R
2
S(w=0)= 2( T )2<IL> (74) (76)
R

th:wObTbi (77)

where(l )=T T'g/(T'_+Tg). The above expression gives
the standard shot-noise result whep<T'g.%! He-ph=Awo(b+b"d'd. (79

The results for the noise for the case of phonons in equi-
librium and the opposite case of phonons not coupled to anilote that we have neglected the spin index, which may be
heat bath are illustrated in Figs. (@/eak coupling and 9 restored in the final expressions for the current by simply
(strong coupling The difference between the equilibrated multiplying by a factor of 2.
and unequilibrated cases is more dramatic for smallefor We use two methods to analyze the above Hamiltonian.
A=0.2 while only one phonon sideband is seen for theOne is the Keldysh Green’s-function method and the other is
equilibrated case, very sharp phonon sidebands are seen fan explicit construction of the eigenstates and thus the den-
the entire bias range when the phonon distribution is far ousity matrix. We note that the Green’s-function method di-
of equilibrium, with certain sidebands appearing as peaksectly computes the expectation value of operators at differ-
(rather than stepsassociated with the suppression of noise. ent times, bypassing the explicit construction of the density
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matrix. However equal-time multiparticle Green’s functions
correspond to moments of the density matrix, and permit in I /r( G)ZZWEK th LrS(e— ). (84)
principle its reconstruction.
The rest of the section is divided as follows. In Sec. VB The current through the left lead is given by
we provide the exact solution in the absence of coupling to
phonons. The eigenstates of this system will form the basis dN,_ e :
for the perturbative calculations that follow. In Sec. IV C we =47 ="'7 ; te (d'a —H.c),
outline the Keldysh calculation while in Sec. IVD we
present results for the special case when the phonon distri- e
bution is al\_/vays in its ground state. In Secs. IVE and IVF <|L>:2E E tkL|m<dTakL>a (85)
we generalize to the case when the phonons are allowed to k

deviate from equilibrium and also supplement our resultsand charge conservation requifgs= — I . Plugging in the

pertubative caloulation for the phonon deny matrx thatPrESSIONS fod anday in terms of the exact eigensiates
. o o into the expression for the currefq. (85)] we obtain
allows us to obtain the out of equilibrium phonon distribu- “ka P . (85)]

tion function. e ;
— *
()= 25 " k2§ﬁ=L . LMk k, 87K, ol Hr.a¥k2,8)) -

B. Noninteracting dot and exact expressions for the current (86)

for an interacting dot ) ] o )
In the noninteracting limit the expectation value of the exact

Following standard method§,the exact eigenstates of eigenstates is

H¢ [Eq. (75)] can be easily obtained. The Hamiltonian after
diagonalization is <al1aak2,ﬁ>: SOk, ,f (€= g), (87)

_ + wheref(x) is the Fermi-Dirac distribution function. Substi-
Hel k,a:EL,R k*ka%ka- (79 tuting this in Eq.(86) we obtain

Note that whilea, | ,r in Eq. (75) refer to states that live only e de T (e)Tg(e)
on the left/right lead, an exact eigenstaterhfj has nonva-  (IL)=7 | 5 m{f(f—m)—f(f—MR)}A(f%

. 3 . . . L R
nishing amplitude in both leads. We write the exact solution (89)
in a scattering state basis in whialy ,— & refers to a run- _ _ o
ning wave incident from the left/right lead with a certain WhereA(e) is the spectral density of the dot and is given by
amplitude of getting reflected back to the starting lead and a
corresponding amplitude for transmission to the other side. B I' () +I'r(e)
The label L/R now refers to the lead from which the particle Ale)= T'(e)

2

7. (89

is incident, and therefore determines the distribution function [e—eo—3'(e)]+

describing occupancy of the states. The dot and metal elec-

tron creation/annihilation operators are related to these exattote that3’(e) is related tol'(e) =T", (€) +T'r(€) by the

(scattering eigenstates as follows: usual Kramers-Kronig relation. For simplicity in our subse-

quent computation we assume energy-independent density of

states and tunneling amplitudier, so thats’=0 andl'_ g

are constants. Equatidi88) agrees with the expression for

the current that was derived by Wingreen and co-worRers

employing the Keldysh nonequilibrium technique.

dzk ZL 5 Vk,a%¥,a - (81) In the presence of electron-phonon interactions, the full
sk Hamiltonian [now including Egs.(77) and (78)] takes the

following form in the basis of exact eigenstates of the non-

énteracting system,

aga= > Tkak' bk’ b s (80)
K’ b=L,R

The coefficientsy and v in the above set of equations
obtained from ensuring proper commutation relations ar
given by

H= EL ] €y 2@ at @b b+ Nwo(b+bT)
a=L,

tkaVirp

Mkak'b= Ok’ Oab™ (82

€ka” € tlo X 2 V:,aVk’,balaak’b . (90)
k.k",a,b=L,R
Via= fa > ) (83)  Astandard method for studying the nonequilibrium problem
Gy posed byH is to define retarded Green’s function for the
€ka— €0~ 2 . electrons on the dot,
k'b €ka— €k’b 10
We identify tunneling rates to the left and right leads by Ga(t,t')=—ia(t—t")({d(t),d"(t")}.) 91
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. , 2
SOt D varie DR(w)= o , (100
ka,k’b w’— w5+idsgn o)
X ({ara(t), app(t)}) 92 .
. 0
and the Keldysh Green'’s function for the dot electron, Do (@)= —27i{8(w+ wg) + (@ = wo)jcoth—.
GS(tt) = —i({d(t),d'(t)} ) (93) (103
In order to calculate the current for the case when
=—j 2 v (t),aT, (t"H}_). (94) electron-phonon interactions are present, we shall use the
ka,k'b @i ea enlt}-) result derived by Wingreen and co-workers, namely that the

Similarly for the phonons we define the corresponding re_current through an interacting dot is still given by the expres-

; - sion, Eqg. (28), but with the spectral densityA(e)
tarded and Keldysh Green's functions, =2ilm{G{(e)}, whereGF is thed-electron retarded Green’s
DR(t,t")= —i0(t—t’)<{b(t)+bT(t),b(t’)+bT(t’)}_>, function calculated under appropriate nonequilibrium condi-

(95) tions and with respect to the full Hamiltonian. We shall
carry out this prescription for calculating the spectral density
DK(t,t")=—i{{b(t)+b'(t),b(t")+b'(t")},). (96) in the following section.

Note that the phonofelectron Keldysh propagators in the ’ ) _ )
equal-time limit areiDK(t,t)=2(1+ 2(bTb)) [iGg(t,t)= 1 C. Keldysh Green's-function method: perturbative analysis
—2(d'd)] and are directly related to the average phonon In the presence of nonzero electron-phonon coupling, the
(electron number and therefore correspond to the first mo-Dyson’s equations we wish to solve may be written in the
ments of the density matrix. Higher-order equal-time correlafollowing compact form in % 2 Keldysh spacé?

tors ([b(t)b™(t)]") give higher moments of the density ma-

trix, enabling in principle the full reduced density matfix Gglz ggl—i, (102

to be reconstructed.

The retarded dot Green’s function for a single resonant D-l=p-l-qn (103
level in the absence of phonons can be easily obtained by 0 '
using Eq.(87), where
’ R K
GR(tt) =0t t) =2 Vel Clakalti ta),  (97) G4 Gy
ka d= A
0 Gy

where G, a(tit)=—i6(t—t")({aalt), afa(t)} )= , ,
—ig(t—t")e "t |t is now easy to see that in Fourier IS the local dot Green’s function, and
space the retarded Green’s function for the noninteracting <R <k
dot has the familiar form B ( DAY )

EOEA

~ | Vka|2 1
R — —
g (w) % w—€tio I 8 is the electron self-energy due to electron-phonon interac-
@€t 2 tions. A similar matrix structure for the phonon propagdor
. i L. and polarization Il in terms of retarded, advanced
In a similar manner the Keldysh Green'’s function in the ab-(DR/A’HR,A)' and Keldysh D,TTX) components also ex-
sence of phonons is found to be ists. The noninteracting Green’s functiogg and D, have
components that have been explicitly calculated in Egs.
IK(w)=271 2, |ral?8(w—e){2f(ex— ma) — 1} (98)—(101). Note that the temperature enters explicitly via
ka the bare electron and phonon Green’s function.
We analyze the equations perturbatively. The expansion
T 2f(e ’ML)HFR[lZ 200~ pe)] parameter i3 w, /T, and the leading nontrivid andIl are
(0— 50)2+F— represented by the diagrams in Fig. 10. We write the pertur-
4 bative expansion in the usual self-energy language, but we
(99) note that in contrast to the conventional band-electron case
crossed diagrams for the electron Green’s function are not
where f(x) = 1[exp/T)+1] denotes the Fermi distribution small relative to uncrossed diagrams, because the Green’s
function. function lacks the pole structure found in the translation in-
Moreover in the noninteracting limit, the retarded andvariant case. Our results for the electron Green’s function
Keldysh phonon Green's function®F'*) defined in Egs. and electron kinetic equation should be understood to be
(95 and (96) take the following form in Fourier space: perturbative in\.
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z n and
Lemmfoal
Tol o)
2] 2w , I? , 2
(wy—€g)°+ 7 (0+ wy—€p)°+ 7
FIG. 10. Diagrams that correspond to the leading contribution to
the electron self-energy2() and the phonon polarizatiodl(). (110

To leading nontrivial order it is sufficient to calculate the
phonon self-energyl using the bare electron Green’s func-
tion g4, but a correct calculation & requires the use of the
full D.

The retarded phonon self-ener(fyig. 10 becomes

Analytic expressions fof 1(u,®) andT,(u,®) may be ob-
tained at zero temperature, and are given in Appendix A.
Note that the combinatio(w ,I'| ,0)+T1(px, ',
—w) is symmetric, whileT,(u ,I'| ,0)—To(u ,I'L,— )
is asymmetric with respect te. As a result, for all combi-

i\ 202 nation of couplings and applied voltages
MR ) =~ 4Rt gM (0 +gM(Et)gAT b}
(104 R (- w)=T1R(w), (111
while the Keldysh phonon self-energy is
—iNwg fiR (—w)=—TiR (@) (112
() = ——{gN(Lt) gt ) + gA(t,t)gT(t' 1) " e
+g"(t,t) gkt ol 10 - -
g (t.t)g (t D)} (105) 4 )= 1), 113

Going into Fourier space and using E@388) and (99) we
obtain the following expression for the real and imaginary
parts of [I”(w) andT¥(w), The retarded electron self-energy represented by the dia-
gram in Fig. 9 is
(@)= NI To(pr,0) + Ty, — o)

IRTi(ur, @) +TRrT1(ug,~ )}, (106 iNwf
B T T O S {gR()DK (L) +gM (Lt )DRLL)).

MR (0)=INYT To(puy @)~ T Talpy,— o) (114

+rTo(ur,0) —TRT2(ur, — @)}, (107
Once we know the components of the polarization mdikjx

1%(w) rf ® we may use the Dyson equatios03 together with the
-t — — — ; oAt K.23
nZ 21’COU’< ZT)[Tz(ML )= Tolp, —o)] following parametrization foDX:
F% w K Rf ph_F phpA
+ 5ot 5 | [ To(r, @)~ To(ur, — 0)] DX=DRfPh—,P"D (115
I' I'r O+ U~ MR ;
C to obtain
+ 21—* VOf( 2T [TZ(MLI(‘U)
I'Tr '_<w+/LR_ML)
—To(ur,— )]+ cot 2
lr =) or 2T DR(w)= g = —. (s
w—wytidsgnw) —2wll™(w)
X[To( g, 0) = To(p, — )], (108
where we define the following integrals:
(iiﬂi)fph(t t,) = IRFP"— FRPIIA—TIX.
dw, (0t wy— €){1—2f(wy— p)} aty dty Ko “ “
Tl(M:w):fz_ T2 2 (117
m 2 2
(((1)2_60) +Z ((1)+(1)2_Eo) +Z

(109 Note that our parametrization in termst}jlh is such that at
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equilibrium fEh(x)zcoth(x)=1+2nB(x), ng being the Bose SK(t,t)

distribution function. 2——— =g (t,t")DR(Lt") +g"(t,t)DALL)
BesidesS R it is also useful to evaluate the Keldysh com- Ny

ponent of the self-energy® that we will later use in order to +gK(t,t)DK(L,t) (118

calculate the distribution function of the dot. To the pertur-

bative order to which we worksX is related to the nonin-

teracting Green'’s function of the dot and the phonon Green’s Now that we know the retarded electron self-energy, we
function as follows: can use EQq(88) to calculate the current which is given by

eZ

I'I'g
I(ML!MR):%

r +Tg

do F—ZiiRm(w,,u JUR)
| Sott(o— 0~ f(o )] _— 7.

- r _
[w_fo_zi(w#L :MR)]2+ E_Eﬁn(w’ML T MR)

(119

In the following two sections we present our results for theneling. (Under the asymmetric bias condition oft
two extreme cases of phonons strongly coupled to a heatV.y,ur=0 one observes only sequential tunneling.
bath, and therefore always in equilibrium, and of phonons The transition from cotunneling dominant current to se-

uncoupled to an external environment. quential tunneling dominant current can be understood by
studying how the imaginary part of the electron self-energy
D. Results: Equilibrated phonons due to interaction with phononsS{) evolves with bias.

In this section we specialize to the case where thdigure 13 show€{ () for the symmetric bias case where
phonons are always in their ground state so that the phonatiL = Vsd/2= —ur=wo/2 and for two different values of
Green's functiondDR and DX in Egs. (114 and (118 are ['/wo. For simplicity we have considered the cabe
always calculated under the condition that=ug, while ~ =T'g. Under symmetric bias 3, increases rapidly for
all the nonequilibrium effects are included in the electron|w|>|wy— V42|, while in calculating the current the spec-
Green’s functions. An important property &ff (w) is that  tral density is integrated from-V 42 to Vs42 [see Eq.
at equilibrium it is zero foro=0, and from this and Eq. (119]. Therefore clearly there is a threshold 4= wg
(119 it immediately follows that the zero-bias conductancewhen theS,;,(w= wy/2) jumps byT'/(w3+1?), and this
even in the presence of electron-phonon coupling has the
form 1

e? 4 I'
G(V=0)=———"-— (120

h (I +TR)2 08

for the case where the two lead chemical potentials in addi-
tion to being equal to each other are also aligned with the dot
level 4. Figure 11 shows the gate voltage dependence of the
zero hias conductance for symmetric broadening and two
values of\.

Figure 12 presents our result for the currea@nductance
for the equilibrated phonon case at zero temperature. The top 0.4
panel is the difference between the current with and without
electron-phonon coupling for two different bias conditions.
Note that for asymmetrically applied biases, the current with
phonons can take a value larger than that in the absence of 0.2
phonons. This is due to a shift in the center position of the
spectral densitythe total area under the spectral density be-
ing conserved The lower panel is conductance for the same
bias conditions. The conductance for the symmetric bias 0 ;
(m.=—ug) case shows two features, one\aly/wy=1.0 €,/o,
and_ the other is a much broader featureV@Q/wozz.O. FIG. 11. Zero-bias conductan¢® units of e?/h) as a function
Wh_|le the former corresponds to the onset of inelastic CcotUngs |avel energy(or gate voltage with (we=2T, solid lin® and
neling, the latter corresponds to the onset of sequential tungy ¢ coupling to a vibrational modelotted line.

0.6

G(V_=0)
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FIG. 12. Zero-temperature currefih units ofel’/h) and mea-
sured relative to no phonon currehyf [upper pangdland conduc-
tance (in units of e?/h) [lower pane] under asymmetric g
=0,u. =V and symmetric o, = — ur=Vs42) bias conditions
and for equilibrated phonons. The phonon frequedagy: 2.0I" and
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FIG. 14. Cotunnelingdl/dV (in units of e%/#4) for bias condi-
tions p =—ur=Vsd2, level energyey=4.0', wy=2I", Nwy
=1I" and for phonons not coupled to any heat bath.

' =Tg=0.9I". Moreover the electron-phonon dimensionless cou-grgundw = wo, and this corresponds to the onset of sequen-
pling strength is\ = 0.25. Note that under conditions of asymmetric tj5) tunneling.

bias, the current can saturate to a value larger than that for the

device without phonons\(=0).

As T is made smaller, the size of the step 3§ (w
= wy/2) decreases, thus decreasing the cotunneling contribu-

corresponds to the onset of inelastic cotunneling. As the volttion to the conductance. Moreover the Lorentzian broadening

age is increased further, the range of integration also ini the self-energy arouna, also becomes narrower, so that
creases to f|na”y |nC|Ude the Lorentzian broaden|ng Centereﬂhe Sequentia' tunne”ng peak in the conductance also gets

1

l I T I l
i [— =050, |
b |- =010,

05505 1 05 0 05 1 15 2
m/o)0

FIG. 13. Imaginary part of the electron self-enekgy units of
I') due to the phonons for the symmetric bias conditipp=
—ur=Vsd2=w/2, andrwy=1 T, level energye,=0.

sharper.

Figure 14 shows the temperature dependence of inelastic
cotunneling under conditions of no coupling to a heat bath
(unequilibrated phonons Calculations for this have been
performed in the regime,>u, ,ugr SO that the current is
entirely due to cotunnelingThe current under resonant con-
ditions for this unequilibrated phonon case is discussed in
detalil in the following section.lt is clear from Fig. 14 that
inelastic cotunneling shows up as a stepdiidV that gets
rounded very rapidly with increasing temperature.

E. Results: Unequilibrated phonons

For out of equilibrium conditions, we may derive a quan-
tum Boltzmann equation for the mean phonon number,
which for weak electron-phonon couplings is identified as
(Npw =[— 1+ fP"(w=we)]/2. [This is from using Eq(115
and the fact that for weak couplin@x;, is almost as func-
tion at the phonon frequendyTherefore Eq(117) rewritten

under steady-state conditions and at an on-shell frequency
has the form

0=(Npp)[IT*(wg) +TTR(wq) = IT*(wg) 1= (1+(Npp))
X{IT¥(wo) — [MR(wg) — A (w0) 1} (121
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FIG. 15. Plot of average phonon occupation number dgr 0075 1 1.25 15 1.75
=2.0I', for several different bias conditions. Except for the most V /o
sd 0

asymmetric casey =Vsq), the phonon number diverges for large
enough bias voltages. Also note that the onset voltage for the de-
viation of the phonon number from its equilibrium val(® zerg
also continuously shifts fromu, = wy (most asymmetric biasto
ML= wol2 (symmetric biassignaling inelastic cotunneling.

FIG. 16. Zero-temperature conductance and current for equili-
brated, unequilibrated, and noninteracting levels under asymmetric
bias conditions fr=0,u =Vsgy). The phonon frequencyw,
=2.0I" andI'  =I'r=0.5I". Moreover the electron-phonon dimen-

) ) ) . sionless coupling strength is=0.25. Note that (upper panslis in
From this the phonon outscattering rate may be identified agnits ofel'/h and G (lower panel is in units ofe?/h.

{IT*(we) + IR (wg) — M (wp)}, while the inscattering rate

H i K _ R _TTA
may be identified as{ll"(wo) ~[11"(wo) ~II™(wo)]}.  gac |1 The complication in calculating this quantity is the

{Npp) is plotted in Fig. _15_for a variety of bias conditigns. nontrivial form of the operator equation, E@.9). One can
T_he results_here are S|_m|lar to what was ol_)served n th‘P\owever carry out the calculation for the rates to leading
high-T classical calculation, namely that for bias cond|t|0nsOrder in the electron-phonon coupling, using the diagram-
under which the dot is half filled or close to it, the phononsrnatic language developed in Refs 24’ 25. In implementing
tend togo far out of equnlbnum. When the phonops dev'atethis we again find it convenient to be in the exact eigenstate
considerably from their ground state, the correctlon_s to th%asis for the noninteracting systei&q. (90)]. The leading-
electron self-energy become comparabld'tand one is N0 o e contribution to the rates is obtained by expanding the
longer within the perturbative regime. Therefore the resunsexponentials entering in the quantum rate equati®) to
for the current and conductance that we present Hei® o, qing order in the electron-phonon coupling. The explicit

16) are for the case & =Vsq,ur=0.0, when the phonons o0, for the in-scattering and out-scattering rates is therefore
acquire a steady-state distribution at large biases that is not

far from its equilibrium value and a perturbative approxima-

tion is valid. 0
The upper panel of Fig. 16 plots the difference between R“ﬂnilzTrleadSﬁdemHe—ph(0)|”i1>
the current with and without phonons for the asymmetric
bias case, and for comparison this is plotted for both equili- X(n=1|Hepn(t)[n), (122

brated and unequilibrated phonons, while the lower panel is

the conductance peak corresponding to the first phonon sidgzhere
band. Again within perturbation theory the differences be-
tween these two cases is not significant.
He.pn(t) =X wq[b(t) +b'(1)]

F. Perturbative calculation for phonon distribution function

_ . . X ¥ Vi e arp(t).
So far the out of equilibrium Green’s-function technique k’k,‘a’Eb:L’R ViaVk pkal ) ain(t)

allowed us to calculate various averages such as current and
mean phonon number. However it is also interesting to ask
what the phonon probability distribution function itself is
under nonequilibrium steady-state conditions. In order to do On evaluating the above expressions we obtain the fol-
so we revert to the density matrix formalism developed inlowing quantum rate equation for the distribution function:

(123
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h h
0=-— Pg (Rn—>n+l+ Rn—»n—1)+ Pﬁ+1Rn+1—>n

+PP" Ry_1n, (124

where the in-scattering rate is given by

de

Rn—»n+1:)\2w3(n+1) 4o

> Talpf(e—pa)[1—f(e— wo— pp)]
><a,b=L,R

2

2
:(e— EO)Z—I—FZ

(€= €o— wp)?+ 7

(125

=(n+1ry,

and the out-scattering rate is given by

> Talpf(e—pa)[1—f(et+ wo— pp)]
a,b=L,R

2

r 2
[(G_ €0)+ 7

{(E— €t wO)Z—I—Z

(126)

= nl’out.

We have used shorthand notationg,, for the cumbersome
integrals that appear in the definition &, _ .4, etc. In
terms ofr /04t the quantum Boltzmann equatiéh24) takes
the form
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FIG. 17. Plot of ratio of phonon in-scattering and outscattering
ratesr;, /r o for several different ratios ob,/I". The bias condi-
tions areu, = — ur, and the onset of a nonzerg, at u, = wy/2 is
the sign of inelastic cotunneling. The highlimit is approached for
I'<wg, when the onset of nonzerg, shifts to the sequential tun-
neling limit of x| = wq.

where the polarizatiohl was evaluated within the Keldysh
Green's-function approach. Thus in particulgNy,) =
[—DK(t=O)+1]/2=EnnPﬁh, where D¢ has been calcu-
lated for phonons with no lifetime broadening.

ph lin _ pph ph Fin
Ph |(n+1) rout+n P”“(n+1)+(n)P”*1rout V. LOW-T TO HIGH- T CROSSOVER
(127 We now connect our low- quantum calculation with the
It is easy to check that the above equation has a simplgjgh-T calculation discussed in Sec. Ill. The hightimit
solution given by may be reached by taking>1" in the Keldysh calculation.
n The crossover from th&=0 to T>1" case has been illus-
pﬁh: 1— r;”) (r;”) _ (129 trated in Figs. 16 and 17 for equilibrated and unequilibrated
Fout/ \Tout phonons, respectively. The results for the equilibrated

The quantityr;, /r o, has been plotted for various combina-
tions of I' and wq in Fig. 17. The figure illustrates that the
rapidity with which the phonon distribution diverges with

bias depends on the relative sized'oénd wy. The stronger

the coupling to the leads, the more easily the phonons equil

brate.

In the highT classical regime the rate equations for
phonons for weak electron-phonon coupling have the sam
structure as Eq(127 but with modified scattering rates

linout- (This has been explicitly shown in Appendix)Bt
therefore follows that even in the highregime, the phonon
distribution function is given by Eq128).

Note that on comparing Eq$126) and (125 with Egs.
(107 and (108 we find, not surprisingly,

Tin K= (R-T1%
K+ MR- 1A

= (129

rOUt |w:w0’

phonons have been presented for a rather large electron-
phonon coupling\ wy=10I" which strictly speaking is be-
yond the limits of validity of the perturbative approximation
used here, in order to illustrate how the phonon sidebands
Ix_evolve with temperature.

The top panel of Fig. 18 illustrates how the elastic reso-
nance broadens with temperature, while the lower panel
shows the broadening of the phonon sideband. As is evident
ffom the two panels, at high temperatures the agreement be-
tween the highF rate equation calculation and the quantum
calculation is much better for the case of phonons with no
lifetime broadening. The effect of the lifetime broadening
due to interactions with electrons is to round off the phonon
sideband further.

Figure 19 illustrates the crossover from the Idwe high-

T regime under conditions of unequilibrated phonons and
within the perturbative limit o\ wy=0.5" and asymmetric
bias. The phonon sidebands vanish Tor A w,.
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FIG. 18. Quantal-classical crossover effects in differential con- u, /o,
ductance spectra for equilibrated phonons. Upper panel: tempera-
ture dependence of zero-bias “resonance” peak computed as de- FIG. 19. Quantal to classical crossover effectd oh curve for
scribed in text and compared to results obtained from classical ratenequilibrated phonons. The parametersage 10", A =0.05 and
equations(Sec. I, butU=0). Lower panel: temperature depen- the temperature for the classical calculation corresponds to
dence of first phonon sideband, computed as described in text an=10.d". The quantum calculation has been performed for
compared to results obtained from classical rate equations. Th€=0.1,1,10". The results are for asymmetric biggg=0.0,
rapid thermal smearing of both central peak and phonon sideband jg, = V4 When the perturbation approximation is valid. Ndtés in
evident. Note that in the phonon sideband case, broadening of thanits of el'/#.
phonon level due to electron-phonon coupling leads to additional
smearing not included in the rate equation model. The parametesired. There are two important crossovers: the electronic
are wy=100"", A=0.1 andT=1,5,10". The bias conditions are quantal-classical crossover controlled B{", and the pho-
m=—ug. Rate equation calculationn=0.1, T=10I'. Note:  non adiabatic/antiadiabatiphonon frequency long or short

di/dVis in units of €%%)(I'/ wg). relative to inverse electron dwell time on molegutzoss-
over controlled bywy/T". (The limit of wy<<T is not inter-
VI. CONCLUSIONS esting) In the classical limi{roughly, T/I'>1) this program

has been carried out completely for all values of couphng
by us and by other workers. The relation between our results
In this paper we have studied a simple model of anand those of other workers is discussed in detail in the fol-
electron-phonon coupled quantum dot, involvingpassibly  lowing section below.
degenerateelectron level coupled to leads and to phonons. The model has two external “control” parameters: the
The problem has four different important “internal” param- source-drain voltage differencé = —ug (see Fig. 1
eters: a dimensionless electron-phonon coupkinglefined, and the molecule one-electron addition eneegymeasured
for example, in Eq(2)], the ratio of the phonon frequency relative to the average of the source-drain voltagg (
wy to the broadenind’ of the on-site level due to couplingto + ug)/2, and also referred to as the gate voltage. It is well
the leads, the ratio of the temperatdréo the level widthl". known that the conductance exhibits steps whenever one of
(A fourth parameter, the ratio of the ratg, at which the the lead chemical potentials passes through the level energy
phonons relax to the heat bath characteristic of the device, te’. The important new consequence of electron-phonon cou-
the mean electron current flow rate has only been studied ipling is the appearance of steps such as those shown in Fig.
limiting cases). 3 in the |-V characteristics, when the source-drain voltage
The model admits two important subcases: of phonongasses though an integer multiple of the phonon frequency.
coupled to the number of electrons on the mole¢kig. (2)], The existence of the phonon sidebands has been noted by
and of phonons coupled to the dot-lead hybridizati&g.  several author§® An important resultFig. 4) of our work is
(4)]. Our formulation applies to both cases, but we have fothe systematic study of the dependence of the phonon heights
cused mostly on the formékcCarthyet al. have considered on whether the phonon distribution function is controlled by
special features of the latter case in the classical regime the nonequilibrium current or is equilibrated to a heat bath
this paper we have attempted to present a general frameworidji et al. presented similar information for the cotunneling
within which different special cases can be analyzed as daegime. We have also studie(Figs. 5, 6, and 16the non-

A. Summary
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equilibrium phonon distribution for different bias voltages. A point of an alternative derivation of the rate equations. How-
further result of our work is the theory for noise in the clas-ever some of the literatuféwhich have used this approach
sical limit (Sec. 111 § showing that noise is a powerful spec- have treated th&-operator matrix elements in an approxi-
troscopy of the degree to which the phonons are equilibrateghate manner which does not capture the structure giving rise
(Figs. 8 and 9 especially in the weak-coupling limit. to the step height variations displayed in our Fig. 4.

In the quantal limit (l'< F), our treatment is restricted to F|na||y Gogo”n and Komnik have used an adiab&dsiow
low orders of perturbation theory in the coupling constant.yhonons, fast electropsemiclassical approximation to ex-
Within this approximation we are able to obtain resWft®Ss.  pjore the strongly electron-phonon coupled regime. It is well
14_, 16, and 1§for the |-V characteristics including both the | hown that at strong coupling the energy as a function of
“direct tunneling” (u, > €’ > ug Of converselyand “cotun-  phanon coordinate becomes bistable, signaling the onset of
neling” regimes (. ,ug>€" or conversely and were able 5 onic instability. Reference 13 considered the behavior

tlog)trs\?t the qu?n(tjatlj tctJthads_smaI crozfé)ecll délgsr.? 17i 1?’,{??? of the polaronic state under nonequilibrium conditions, and
- Ve presented both a diagrammarieidysh caiculatio observed that a bistableV characteristic could result. By
and a solution based on the construction of exact eigenstates

and confirmed that the peculiar broadening of the phonoﬁontraSt our rate equati_on a_rjalysis always Ieads_to single-
distribution found in the “unequilibrated classical” case sur- valuedI-V curves. The bistability corresponds to a first-order

vives also in the quantum limit. “energy landscape”; however the system under study is zero
dimensional, andat least within the approach used Hhere

thermal and quantal fluctuations allow the system to explore

B. Other work all of phase space wiping out any phase-transition behavior.

In this section we consider the relation of our results to! he calculations of Gogolin and Komnik are presented for a

the extensive existing theoretical literature. The subject wadlifferent regime T<I"), but we suspect that fluctuations
pioneered by Glazman and Shektervho showed that the Would also eliminate the apparent transition in that case. An
problem of a single electron transiting a resonant level angnhanced low-frequency noise might, however, occur.
coupled to phonons can be solved in complete analytic de- Four recent papers have appeared which present results
tail. They determined the form of the phonon sidebands irconsistent with those presented here, but emphasizing some-
the transmission amplitude and showed how the resonanthat different aspects of the physics. McCaréyal 1! used
behavior was modified by the electron-phonon interactionthe rate equation approach of our Sec. Ill, our results repro-
Very similar results were subsequently obtained by Win-duce theirs; however the main interest if Ref. 11 was in the
green, Jacobsen, and Wilkifisdowever the single-electron |-v curves of phonons coupled to the dot-lead hybridization
approximation used in these papers is not applicable to thgnd the principal focus was on thermally equilibrated
case of leads containing a Fermi sea of electrons. The prephonons. Our result extends theirs by treating the non-
ence of other electrons blocks some of the intermediate stateguilibrium case(see, e.g., Fig. 5and the noisdsee, e.g.,
in the electron-phonon scattering process, changing the formpig. 9).
of the eigenstates and crucially blocks some of the final Fedorets and co-workéfshave analyzed the same prob-
states in the transmission process. This blocking ensures thgim as McCarthet al. but in the limit of very weak coupling
theT=0 linear-response conductance at resonance takes tig¢ phonons to a heat bath. They find that an instability occurs
quantized value if 8%/h, whereas the on-resonance trans-for V., greater than a critical value. Interestingly in the
mission probabilities calculated in Refs. 7 and 8 are less thajyeak-coupling limit the criticaV4 reported is identical to
unity. This issue was very recently also discussed bythe critical V¢4 found in our calculation above which the
Flensbergd? phonon distribution becomes brog&ske Fig. % According
One crucial consequence of the presence of Fermi seas {§ Ref. 16 the instability occurs if one has both lead coupled
the leads is the “floating” of the phonon sidebands in theand dot coupled phonons, whereas the broad distribution is
electron spectral function and thus in th&/ curve. AtVsq  generic. However, this relation deserves further exploration.
=0, the features in the spectral function occur at energiegiere we observe that the calculations of Ref.(46 well as
displaced from the Fermi level by integer multiples of thethose of our Sec. )l are based on a sequential-tunneling
phonon frequency, thus the corresponding steps inltde  approximation. In this approximation when the threshold is
curve are observed whevy, is swept, but are not observed exceeded the distribution we find changes rapity the
if Vg (i.e., the mean lead Fermi leyek changed at fixed weak electron-phonon coupling limifrom very narrow to
small V¢4 (see Fig. 11 Several authofs®'* employ ap- very broad. However if cotunneling process@s particular
proximations to the electron Green’s function correspondinghe electron contribution to the phonon lifetimare in-
roughly to those of Glazman and Shekhter or Wingreen andluded, the transition becomes broadened with the onset
co-workers. These miss the above physics and erroneousiioving to a lower voltagésee Fig. 15 We find the breadth
predict phonon sidebands ¥g is varied?° of the distribution to depend strongly on the bias asymmetry,
As also noted by Flensberg the approximations employedle., to the average occupation of the dot.
by Refs. 9 and 10 amount to writing the dot Green’s function  Flensberd® has used an approximate equation of motion
asGH(t)=el«~ DY XT(t)X(0)) [where the operatodé have  approach to analyze the quantum limit, determining in par-
been defined in Eq31)]. This approximation becomes exact ticular the equilibrium dot spectral function and presenting a
in the high-temperature limit, and can be used as the startingear analysis of the terms omitted in previous approaéfies.
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Where there is overlap our results are in agreement with his, 2
however nonequilibrium conditions have not been consid- 1 (ML_60)2+Z
ered in Ref. 15. Ty ,0)= In
Finally Aji, Moore, and Varm& have considered phonon 2m(w?+1?)

effects on the cotunneling spectrum. Their results are in es-
sential agreement with ours, however we note that the steps
in d1/dV which they report to be vertical &=0 are in fact Lt
smoothed by the phonon lifetime arising from electron- 27w
phonon couplingsee Fig. 13 or to coupling to a heat bath.
Also we find that the steps are thermally broadened into in- r? 2
detectability at a relatively low fixed by the step height and 2 2 to UL~ €o
the phonon lifetime induced slope, rather than generically T > 5 | arctan T (A1)

o o\ T2+ 12
visible up to temperatures of order the phonon frequency, as
stated in Ref. 12.

As far as experiments are concerned, three recernd
paperé—® have observed signatures in the current-voltage
characteristics which are attributed to coupling to a molecu-
lar vibrational mode. A direct comparison to our results is not T, _
; : 2 )

yet feasible because noise measurements have not been per- m(024+T?)
formed, and most of the samples studied show one or at most
two phonon sideband$Only one of the samples of Ref. 5 ML~ € 1
was reported to show moje. +arctanw) —_

2

+w—€g)’+—
(pL+o—€o) 4

2r

w?+T?

; st o~ €
retan—————
arctarn——>

; MLt o€
arctan—— >

r/2
w?+T?

mTw

1"2
C. Future directions (L — €0)®+ T
Finally we briefly mention a few issues raised by this XIn 5. (A2)

work, but not resolved. One important research area is the (Lt o—€0)®+ —

extension of our quantum limit results beyond the perturba- 4

tive regime (in particular to the nonequilibrium polaron

limit), a second is to obtain the frequency dependence of the

noise spectra in the classical and quantal regimes, a third APPENDIX B: HIGH- T LIMIT OF PHONON RATE
issue is the crossover between equilibrated and unequili- EQUATIONS

brated phonons, and a fourth issue is to explore the connec-

tion between the nonequilibrium distributions we find andphonon coupling and at high-the quantum Boltzmann
the instabilities discussed by the Chalmers grfupnother equation for phononkEgs. (124 —(126)] reduces to the clas-
interesting question is to explore the effect of image chargegicm rate equations derived in Sec. Il. FB&T, we can

induced in the surrounding electrodeslex (Ref. 26 which replace the Lorentzian broadenings in EG25 and (126)
have been argued to be important in certain experirﬁientsby S functions. i.e.

Work in these directions is in progress.

In this section we shall show how for weak electron-

rr2
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APPENDIX A: ZERO-TEMPERATURE PHONON

POLARIZATION

—ub>]+P°§ T'pf (€0t wo— i) (B1)

At zero temperature the function-12f(x) =sgn), and
the integral, Eqs(109 and(110), may be performed explic-
itly. The corresponding expressions are and
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1 whereR&!, etc., are defined in Eq$61) and (62) with U
Rnﬂnl:n)\ZT{ PLY Tp[1—f(eg+ wo— pup)] =0. In the weak electron-phonon coupling limit, only tran-
14— g sitions that change the phonon number at most by 1 are
4w§ allowed. In this limit theFﬁ’n+1H(n+1))\2Fa. Moreover
we may again factorize the joint probability distribution of
+POY T f(eo— wO_Mb)] _ (B2)  having 0/1 electrons angh phonons a®Y'=POPPRI'. After
b making these approximations in E¢B3) and(B4) and add-

Now the classical rate equations in E§7) rewritten for ing the two equations we obtain

the case of a single resonant level with=0 take the form

Sph_ h h
Pﬁ ——Pﬁ (Rn—»n+1+Rn—>n—1)+PE+1Rn+1—>n

PR=—PR2, R+ 2 PRRLL, (B3) h
' ' +PR Ra-1 (B5)
plo _piS Ral0, S poRaot B4 . |
" ngﬁ e azr;w memn BY ith the rates given by Eq$B1) and (B2).
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