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We study by Wilson numerical renormalization group the spectral properties of a two-orbital Anderson
impurity model in the presence of an exchange splitting that follows either regular or inverted Hund’s rules.
The phase diagram contains a non-Fermi-liquid fixed point separating a screened phase, where conventional
Kondo effect occurs, from an unscreened one, where the exchange splitting takes care of quenching the
impurity degrees of freedom. On the Kondo screened side close to this fixed point the impurity density of states
shows a narrow Kondo peak on top of a broader resonance. This narrow peak transforms in the unscreened
phase into a narrow pseudogap inside the broad resonance. Right at the fixed point only the latter survives. The
fixed point is therefore identified by a jump of the density of states at the chemical potential. We also consider
the effect of several particle-hole symmetry-breaking terms. We show that particle-hole perturbations that
simply shift the orbital energies do not wash out the fixed point, unlike those perturbations that hybridize the
two orbitals. Consequently the density-of-state jump at the chemical potential remains finite even away from
particle-hole symmetry. In other words, the pseudogap stays pinned at the chemical potential, although it is
partially filled in. We also discuss the relevance of these results for lattice models that map onto this Anderson
impurity model in the limit of large lattice coordination. Upon approaching the Mott metal-insulator transition,
these lattice models necessarily enter a region with a local criticality that reflects the impurity non-Fermi-liquid
fixed point. However, unlike the impurity, the lattice can get rid of the single-impurity fixed-point instability by
spontaneously developing bulk coherent symmetry-broken phases, which we identify for different lattice
models.
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[. INTRODUCTION electron lattice models. Here the kinetic energy profits by the
electrons hopping coherently through the whole lattice. In
Non-Fermi-liquid behavior may emerge in Anderson andcontrast, the strong correlation tries to optimize on-site
Kondo impurity models for two distinct reasons. The first (atomig energetics, thus opposing the hopping. This may
one is that, by construction, the conduction electrons may ndativolve two energy scales. The higher one is the so-called
be able to perfectly screen the impurity degrees of freedontubbardU, which tends to suppress on-site valence fluctua-
for the Kondo effect. This is realized, for instance, in multi- tions. The lower one, let us call & governs the splitting
channel Kondo models. among on-site electronic configurations at fixed charge. It
The alternative route towards non-Fermi-liquid behaviormay be controlled by the exchange splitting, by the crystal
is the presence of an intra-impurity mechanism that splits théeld, by local distortion modes, or even by short-range inter-
impurity degeneracy favoring a nondegenerate configuratiorsite correlations. When the lattice model is driven towards a
The Kondo exchange takes advantage of letting the impuritylott metal-insulator transitiotMIT), either by increasing)
tunnel among all available electronic configurations. Thisor by doping at larg&J, it necessarily encounters a regime in
quantum tunneling is hampered by any term that splits thevhich the coherent quasiparticle bandwidtf, is of the
degeneracy and tends to trap the impurity into a given statesame order a3, which we expect is essentially unaffected by
Therefore either the Kondo exchange overwhelms the intrab) as it just determines the multiplet splitting at fixed charge.
impurity splitting mechanism or vice versa, which leads, re-Since coherent hopping tends to occupy more or less demo-
spectively, to a Kondo-screened phase or an unscreenedatically all multiplets, it opposed Out of this competition
phase. When none of the two effects prevails, a nontrivialnteresting physical properties may emerge, just like in the
behavior may appear. This is actually what happens in thénderson impurity models we discussed before. The analogy
two S=1/2 impurity Kondo model in the presence of an between the impurity and the lattice models can be even put
antiferromagnetic direct exchange between impurity spins. on firm grounds in the limit of large coordination lattices
There it is known that, under particular circumstarttes,  through dynamical mean field theof@MFT).% In that limit
unstable non-Fermi-liquid fixed point separates the Kondoit is possible to map the lattice model into an effective
screened and unscreened regimes. Since this fixed point rAnderson impurity model (AIM) subject to a self-
quires fine tuning of the model parameters, it is tempting tcconsistency condition that relates the impurity Green’s func-
conclude that it is of little physical relevance. In reality a tion to the hybridization with the conduction bath. The qua-
similar competition may be at the heart of strongly correlatedsiparticle bandwidth of the lattice model transforms into the
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Kondo temperaturdy of the AIM. Since approaching the _ U 5 o )

MIT Wg,—0, the effective AIM is necessarily driven into H=Hy+Hy+Hc+ thb—E(”d‘ 2 +v)"+ 2J[(T)"+ (T)7]
the regimeTyx ~J, where the competition among the two

screening mechanisms may result in anomalous physical + >, €Cla.Chan* > Va(Clagdan + Al Cran) - (1)
properties. Exactly this competition was invoked by Ref. 6 to kaa kaa

explain the appearance of a superconducting pocl_<et, Iat?—ﬁerecﬁ creates a conduction electron in the bawll , 2
shown to have a hugely enhanced superconducting @esp, aa

‘ h N | for alkali | fll with momentumk, spin «, and energye,, measured with
before the MIT in a model for alkali-metal-doped fullerenes. o gpect 1o the chemical potentiel,  is the creation operator

More recently we have demonstrated by Wilson numeri-y¢ 5n electron with spinx in the impurity orbitala=1,2,

cal renormalization group and by bosonization that a twofoldpije Ng=S e d;adaa is the impurity occupation number. We

orbitally degenerate AIM in the presence of inverted Hund'spave defined the orbital pseudospin operators

rules possesses a non-Fermi-liquid unstable fixed point simi-

lar to the two-impurity Kondo model orfeBecause of the Tiz }2 S g g 2
aforementioned reasons, any lattice model that maps by ) ~ =, aaTap b

DMFT into the same AIM should necessarily meet this fixed '

point on the route towards a MIT. We argued that, unlike thewherei=x,y,z and s are the Pauli matrices in the orbital
single-impurity model, those lattice models might spontanespace. We further assume that the conduction band density of
ously generate, by the DMFT self-consistency conditions, states is symmetric with respect to the chemical potential, set
bulk order parameter to get rid of the single-impurity fixed- equal to zero, so that the behavior of the Hamiltonian under
point instability. Since the fixed point is unstable in different @ particle-hole symmetry transformation is controlled by the
particle-hole and particle-particle channels, there exist ifParameterv in Eq. (1). For the time being we will takes
principle several competing bulk instabilities. We speculated™0. Which implies that the Hamiltonian is particle-hole sym-
that, in the absence of nesting or band-structure singularitie§N€tric. Afterwards we will release this constraint. The model
the most likely instability is towards superconductivity. Without the impurity exchange coupligis SU4) invariant.
These predictions have been just recently confirmed on 4 finite J lowers the SW4) symmetry down to SU2)spin
lattice model by a DMFT calculatiohin this paper we pur- < Oari- I this case the total charge, the total spin, and
sue the analysis of that AIM by uncovering the spectral bethe totalz-component of the pseudospin are the only con-
havior across the non-Fermi-liquid fixed point. This is notS€rved guantities.

only interesting of the AIM itself, being one of the few casestheIt iizc;g?evden:ﬁq”;l}ﬁt;t‘\"‘/rt_oour ‘?I\'r;aelysiiﬁg::irt'ir':ythgi Sgﬁggl:;ns of
i L i X ) ' Vy4=0. ,
where non-Fermi-liquid dynamical properties may be ac n.S..T,T%, can be labeled by the occupation number

odel fs also aufficienty simple to alow for an analyical ° SIS, pSCUdoSpIT, and theiz comporentsS* and T
y P y erespectively, with energies

description of the spectral function that reproduces well th
numerical results and provides new physical insights. Actu- U
ally our model spectral function has been quite useful in E(n,SSZ,T,TZ):E(n—2)2+2J[T(T+ 1) -(T»%. (3
guiding the analysis of the DMFT solution presented in Ref.
9. We assumeJ>|J|, so that the impurity ground state with

The paper is organized as follows. In Sec. Il we describev=0 hasn=2. In this case the only configurations allowed by
the two-orbital AIM model. In Sec. Ill we introduce three Pauli principle are a spin triplet pseudospin sing&t,1 and
lattice models that map by DMFT onto the two-orbital AIM: T=0,
(a) a two-band Hubbard model wita® E Jahn-Teller cou- gt
pling to local phonons(b) a two-band Hubbard model in the 2,1,+1,0,0= led21|o>'
presence of single-ion anisotropi) two coupled Hubbard
planes. In Sec. IV we review in more detail the Wilson nu-
merical renormalization group calculations of Ref. 8 and
present an analysis based on Fermi-liquid theory, which we
develop in the Appendix. The results concerning the dynami- e
cal properties are presented in Sec. V. In Sec. VI we extract 2,1,-1,0,0= dud2¢|0>v (4)
from the numerical d{:\ta an analytical expression of the.im'and a spin singlet pseudospin tripl@=0 and T=1. The
purity spectral function. The role of symmetry-breaking latter is split byJ int inalet withT2=0

: ; e . . yJ into a singlet wi ,

terms in particle-hole channels is investigated in Sec. VII.

1
12,1,0,0,0= E(deL - di,dj))|0),

Conclusions are presented in Sec. VIII. 1oy oo
|2,0,0,1,():E(led2l+d2lel)|O>, (5
ll. THE MODEL HAMILTONIAN and a doublet withT2=+1,
The AIM Hamiltonian we consider is 2,0,0,1, +}=d},d] |0),
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|2,0,0,1,- 3= d;Td£L|O>- (6)  astandards=1 two-channel Kondo effect. This is known to
] o o be perfectly screened at low enefgy, yielding a scattering
If >0, the lowest-energy configuration is the spin triplet, yhase shifts=/2 in each spin and orbital channel.
S=1 and T=0, which corresponds to the conventional |n contrast, ifJ<-T, <0, the impurity gets trapped in the
Hund's rules. In contrast, fod<<0, the isolated impurity s=0 T=1, andT?=0 configuration’5). Since Eq(5) is non-
ground state Is the singlgb) with quantum number$=0,  degenerate, the Kondo exchange is ineffective, so that as-
T=1, andT*=0. We postpone to the following section a dis- ymptotically the impurity decouples from the conduction

cussion about physical realization of such inverted Hund'$,ath. This implies a low-energy phase shift0. The main

rules. o . _ question that we try to address is how the model moves
Afinite hybridization,Vy# 0, induces valence fluctuations 4cross the two limiting cases.

within the impurity, which are controlled by the energy scale  As it was pointed out in Ref. 8, this behavior is parallel to
(hybridization width the two S=1/2 impurity Kondo model(2IKM) in the pres-
Ao= Vj pe, (7) ence of a d.irect exchangg between the impurity §pfn$q
that case, if the two spins are strongly ferromagnetically
with p. the conduction electron density of sta(B¥0S) atthe  coupled, the model reduces to &1 two-channel Kondo
chemical potential per spin and band. These fluctuations an@odel, while, if they are strongly antiferromagnetically
suppressed by a strong repulsios> Ay, which we assume  coupled, the two spins bind together into a singlet and de-
throughout this work. Although all our calculations refer to couple from the conduction electrons, exactly as in our
the AIM (1), it is more insightful to discuss some physical model. The two channels correspond in the 2IKM to the
properties in terms of the effective Kondo model which de-symmetric and antisymmetric combinations of the even and
scribes the low-energy behavior wher® Ag: odd scattering channels with respect to the midpoint between
_ the impurities. It was demonstrated in Ref. 4 that, provided a
Her=Hy* He+ Hy, ® peculiar particle-hole symmetry holds, the non-Fermi-liquid
whereH; andH_ have been defined in E¢l) and the Kondo unstable fixed poin{UFP) found in Ref. 2 separates the
exchange Kondo-screened and unscreened regimes. In particular it was
shown that while a particle-hole symmetry-breaking term

He=J| S-S+T-T+4 > W; W |, 9)
HTYE 5Hp—h == Mdz d;adaa - E Mk Claackaai (ll)
with aa k,aa
= 2V§/U. (10) does not wash out the UFP, the latter is instead destabilized

. by the perturbation
Here S, defined by
1 . SHrer == a2 d, dag + H.C. = 2 N C1,C00 * HoC.
S= EE E daa Tap daﬁ, @ ka

a ap (12)
T, which we introduced in Eq2), andWj;, Translated into our two-orbital language, the dangerous sym-
1 o metry that needs to be preserved is just tHe)Q),;: orbital
Wi :ZE > dh, olp Oogs symmetry. Therefore, unlike in the 2IKM, where the two
ab af scattering channels are generically not degenerate, in our

are impurity spin, pseudospin, and spin-orbital operators, re¢ase the instability towards(@)oq, sSymmetry breaking does

spectively, while§, % and W are the corresponding con- correspond to a physical instability. Hence, if orbital symme-

duction electron density operators at the impurity site. The' IS unbroken, we do expect to find an UFP in our model,

impurity operators in Eq(9) act only in the subspace with W't.h similar properties as in the 2IKM. We notice th.at, n
two electrons occupying thorbitals, which, as we showed, spite of the analogies, our model has a larger impurity Hil-

. . . ~" bert space than the 2IKM. In fact th8=0, T=1, andT*
includes six states. The Kondo mod8) contains two com —+1 doublet of Eq.(6) is absent in the 2IKM. where it

peting mechanisms that tend to freeze the leftover impurit)CV L "
. L . “would correspond to doubly occupied impuritigise labels 1
degrees of freedongi) the Kondo exchange, with its associ and 2 for thed orbitals translate in the 2IKM into the two

ated energy scale, the Kondo temperaftge (ii) the intra- o o L
: : - . one-orbital impurities Yet we can perturb our Hamiltonian
impurity exchange splittind. As we already mentioned, the by adding toH of Eq. (1) the term

Kondo exchangd&9) gains energy by letting the impurity

tunnel coherently among all available six configurations, but Hg =G (T?)? (13)
it is hampered byl, which instead tends to trap the impurity G '
into a well-defined state. with G>0, which raises the energy of the doublet.Gf

If J>T>0, the positive exchange splitting dominates > T, , the doublet effectively decouples from the low-energy
and the impurity is essentially frozen into the lowest-energysector, and our model should become equivalent to the
spin-triplet configuration. The Kondo exghgnge projected?|KM. In Sec. IV we show that indeed by increasiGgour
onto the triplet subspad@) is simplyH,=J«S-S, describing UFP smoothly transforms into the 2IKM one.
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Ill. PHYSICAL REALIZATIONS TABLE |. Mapping between the AIM interaction parameters and
the two Hubbard plane parameters.

As we emphasized in the Introduction, our interest in

mode;l(l) plus eventually Eq(13) is mainly mo.tlvated by its AIM Two Hubbard planes
possible relevance for lattice models. In reality a formal cor-

respondence between single-impurity and lattice models u %(U+V)—%\]
holds strictly only in the limit of large lattice coordination. J ‘%13

Nevertheless we believe that this correspondence, at least
close to a Mott transition, may remain valid even beyond that
limit, making the single-impurity analysis of much broader
interest. Therefore, although inversion of Hund’s rules may 2
indeed occur in realistic AIM’s or in artificially designed __ bt + u 2
H=- EEE(Caigcaja+H-C-)+ 22 (ni_z)
I

1
U—V+ZJ

=

quantum dot devices, here we rather focus on lattice models VZam1 o (i

that map within DMFT into our AIM. o
-2] -S+D 2, 16
A. Two-band Hubbard model in the presence of ane® E Hzi 373 2 St (16

Jahn-Teller coupling . .
For J;>0 andD # 0 this model describes a two-band Hub-

Let us start by considering a two-band Hubbard model iny5q model with conventional Hund’s rules, favoring a spin-
which each site undergoes Jahn-Teller coupling to & doublyin et \wo-electron configuration, in the presence of a single-

degenerate phonon. The Hamiltonian reads ion anisotropy that splits the spin triplet into a singlet with
t 2 U $=0 and a doublet witl&*=+1. If D>0, theS*=0 configu-
H=- TE > 2 (Chig Cajo + H.C)+ EE (n-2? ration is favored. Upon interchangin§— T, this model
VZa=1 o (i) ' maps in thez— o limit onto Eq. (1) with
w - — — —
+ 2 LT+ M DX X (9l +pl) I="dw G=D -2y (7
i i a=xy
C. Two coupled Hubbard planes
— 02 (G Ti+ay T, (14)
I

Finally let us consider two coupled single-band Hubbard

. . . .. planes described by the Hamiltonian
Here -t/\z is the hopping matrix element between one site

and itsz neighbors and; >0 is a conventional Hund'’s ex- t z + U 5
changeq, and g, are the phonon coordinates at sifep; H=- _EZ > 2 (Caig Cajo + H.C) + EE (ngi—1)

and p;, their conjugate momentay, the phonon frequency, Veast o ) &l

and g the Jahn-Teller Coupllng. The latter gives rise to a +2~]§_u _§2i +V(ny - ) (ny — 1), (18)
retarded electron-electron interaction whose Fourier trans- i

form is

wherea=1,2labels the two planes and/zis the in-plane
hopping between one site and #sieighbors. In the limiz
—oo, this model maps by DMFT onto an AIM self-
consistently coupled to a bathThe relations between the
If the phonon frequencyy is much larger than the quasipar- interaction parameters of the AIM, E¢{) plus Eq.(13), and
ticle bandwidth, we can safely neglect thedependence at those of Eq(18) are given in Table I.

low energy, so that the phonon-mediated interaction becomes |n reality it is more interesting to consider the mod&s)
unretarded and given by with J=V=0 but in the presence of an interplane hopping

@Y 2 [TH) T 0) + @) T 0)].
L)

i W

io

B i_zz [(T:()Z + (T?’)z] - tlz (C;Ir.ia-CZio'+ H.c). (19

In the limit of large lattice coordination, this model maps
close to the MIT onto a two-orbital AIM with an hybridiza-
tion width at the chemical potential much smaller tHan
Since by Table IG=U, we can safely project out of the
low-energy subspace the doubl@). The effective AIM

. ) . ] ] within the impurity subspace that includes the singtgtand
which may be either positive or negative. The case t0  tne spin triplet is

as well as the starting model realistically including phonons .
; 1 N N N S
has been recently studied by DMEF: Ham = He + 3g(S,+ S) - S+ Sl'Sz‘FJKjT(' (20)
B. Two-band Hubbard model with single-ion anisotropy

Another realization that may also be physically relevant iswhereH. andJx have been defined in Eqgl) and(10), S,
the following lattice model: andS, are the impurity spin operators for the singly occupied

Within DMFT the Hamiltonian maps in the largelimit onto
the same AIM model as in Eql) with
2
I=- o, (15
2(1)0
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orbitals 1 and 2, whileS and T* are, respectively, the ' ' ' '

conduction-electron spin-density operator andomponent

of the pseudospin density operat@rt, at the impurity site.
The impurity antiferromagnetic exchangks 4ti/U, lowers
the energy of the singlgb) with respect to the spin triplet.
ThereforeJ alone might induce an UFP within the phase
diagram, just like in our model as well as in the 2IKM.
Howevert, also introduces &* scattering potential at the
impurity site, the last term on the right-hand side of E2§),
which is known to be relevant at the UFP. In this respect
plays an intriguing role: on one hand it provides a mecha-

nism, the antiferromagnetic exchangeable to stabilize a 0o 5'0 o 5'0 T
nontrivial fixed point, but, in the meantime, it also prevents Tterations

the fixed point from being reachable. Yet we might wonder

whether the critical region around the UFP is completely or FIG. 1. Lowest-energy levels versus the chain $iz&he right/
only partially washed out. In the latter case we should expedeft panels correspond to a deviatiédJ" = +4- 10°3 from the fixed
that the physics of the lattice model close to the MIT is still point valueJ'. The levels are labeled by the quantum numbers
influenced by the UFP, with interesting consequences. W& T%,S), whereQ is one-half of the added charge with respect to
will come back to this issue in Sec. VII. the ground-state value.

(1,1,0) (1,1,0)
©,1,1) (1,0,1) ©,1,1) (1,0,1)

(1/2,1/2,1/2)

opuoy| ou
Kondo

(1,0,0)
©.1,0)0,0,1)

(0,1,0) (0,0,1) (1,0,0)

1/2,1/2,1/2)

©00) ©00)

the N-site spectrum(In our calculations we typically kept up
IV. NUMERICAL RENORMALIZATION GROUP RESULTS to the lowest 2000 states, not counting degeneracies, and

To study the AIM (1) we used the Wilson numerical US€dA between 2 and 3. We did check that these numbers
renormalization grougNRG) method!? This technique is are sufficient to get accurate resuits.

known to provide a detailed description of the low-energy e restrict our analysis to large values 0f where va-

behavior, thus allowing a faithful characterization of the!énce fluctuations on the impurity are substantially sup-
fixed points as well as of their stability domain. In addition, Pressed. Here, as we discussed, the AIM effectively behaves

dynamical properties are also accessible by NRG, which, alke the Kondo mode(8). We fix bothU andA and span the

we are going to show, are of notable interest. phase space by varying the exchange parandeter
Within NRG the conduction band is logarithmically dis-
cretized and mapped onto a one-dimensional chain with A. Low-energy spectrum at the fixed points

nearest neighbor hopping integrals that decrease exponen-
tially along the chain. The Hamiltonian of a chain witth
+1 sites is defined by

First of all we identify the fixed points by analyzing the
low-energy spectrgwith N typically up to one hundred
Since the conventional size dependence of the level spacing

N-1 is absorbed by the factok™2/2 in Eq. (21), the low-lying
Hy= AND29 3 A28 (¢l Cineyaa + Clne 1)aa Cnan) energy levels flow to constant values whenever the model is
n=0 close to a fixed point. Figure 1 shows that there are two
5 different asymptotic regimes separated by a critical value
+AY2(cL d+dl Con) + = (Ng— 2)2 J'<0. In order to facilitate the interpretation of that figure,

we recall that the ground state of a particle-hole symmetric
free chain withN+1 sites is unique ilN is odd and degen-
+ 200792+ (TH?] [ . (21  erate ifN is even. o
For J>J the low-energy spectrum of a chain witiud
_ _ - number,N+ 1, of sites flows towards that of a free chain with
Here U=C, U, J=C, J, AO:C§(2A0/77), [see Eq.(7)], anevennumber of sites and vice versa. This is evident in the
whereC,=(2A/1+A) and all energies are measured in unitsright panel of Fig. 1 where the ground state of the chain with
of half the conduction bandwidth. The rescaling factoroddN becomes asymptotically degenerate as for a chain with
AN-D72 5t the beginning of Eq21) keeps the lowest-energy even N. Apart from the ground-state degeneracy, also the
scale inHy of order one at each iteration. The original low-lying spectrum, i.e., degeneracy and quantum numbers
Hamiltonian is recovered in the limit of infinite chain length: of the levels as well as the level spacings, coincides with that
H= i “1 4 ~(N-1)12 of a free chain. As usual, this is as if the first site of the chain
= NlinxCA A Hi. (22)  were locked to form a spin and orbital singlet configuration
with the impurity, hence becoming unaccessible to the con-
The sizeN of the chain determines the infrared cutoff, e.g.,duction electrons that thus acquiremd2 phase shift per
the temperaturd, on a logarithmic scaléT~A™N?). The  conduction channel. It is a conventional Kondo-screened
method essentially consists of diagonalizing the model on @hase.
finite size chain, e.gN, and iteratively increasing the size by ~ For J<J' the situation is reversed: the low-energy spec-
one site, fromN to N+ 1, keeping only the low-energy part of trum of an odd(ever) chain flows to that of an od¢even
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free chain. Indeed, as shown in the left panel of Fig. 1, the TABLE Il. EnergiesE of the low-energy levels and their degen-

ground state witiN odd remains nondegenerate for lafge  eracy(Deg) at the unstable fixed point. The levels are labeled by

This case corresponds to an unscreened phase with the ifie quantum number®, half of the deviation of the number of

purity asymptotically decoupled from the conduction bath.electrons with respect to the ground st&etotal spin, andr?, total

The phase shift is consequenty0. z component of the pseudospin. _The v_abués the prediction of
Between the Kondo screened and unscreened phases @formal field theory for the two-impurity Kondo modgef. 4.

do find a nontrivial fixed point, as is visible in the interme- Notice the anomaly of the member within tti/2,1/2,1/2 mul-

diate crossover region of the spectrysee Fig. 1. The pe- tiplets identified by an astenslg which was also found in Ref. 4.

culiar non-Fermi-liquid character of this intermediate cou-'N€'€ &N explanation for the discrepancy was proposed.

pling UFP is evident by the nonuniform spacing of the low-

energy levels. A careful analysis of the UFP spectrum reveal® i S X E Deg.
that it is just the same as that found in the particle-holeq 0 0 0 0.00000 1
symmetric 2IKM# In Table 1l we compare the energigsof 1 1 1 3 0.37260 8
the lowest-lying levels of the Wilson chain at the UFP, asé é 21 2 0.49615 3
obtained by NRG, with the predictiox of conformal field 2 :
theory for the 2IKM? The agreement is proof that the UFP is 0 1 0 2 0.49583 2
indeed the same in both models. 1 0 0 3 0.49631 2
_ _ 3 3 3 : 0.88021 8
B. Impurity properties at the UFP 0 0 0 1 0.99714 1
Additional information are provided by the average val- 1.00216 1
ues of the impurity spin<§-§>, pseudospin{f-f}, and itsz 1.00311 1
component{(T??). By symmetry, the impurity density ma- 0 0 1 1 1.00279 3
trix is diagonal in the six two-electron configurations. Theg 1 1 1 1.00248 6
diagonal elements represent the occupation probabilitieg 0 1 1 1.00295 6
P(S,S%,T,T9 of states with quantum numbe® S% T and 1 0 1 1.00264 4
T2 In the largeY limit, where impurity configurations with 1 1 143 1.38880 8
n# 2 have negligible weight, we can write 2 2 2 8 ’
1.38945 8
P(0,0,1,0 = cos4, 1.51556 8
5 5 3 1+3 1.38924 16
P(0,0,1, +1=P(0,0,1, = Zsirf8 sirfe, 2 : 3 1l 138850 8
2 3 5 5 143 1.38957 8
0 0 0 1+3 1.55944 1
P(1,+1,0,0 =P(1,0,0,0 = P(1,- 1,0,0 = ~ sir?¢ coggp, O 0 1 1+3 1.50195 3
3 1.55863 3
(23 1.55983 3
from which we derive N 1.60582 3
0 1 0 1+5 1.50141 2
(S-S =2 sirtg co ¢, 155943 2
1.60467 2
(T-T)=2(cod 0+ sirPg sirt ¢), 0 1 1 1+3 1.55904 6
1 0 0 1+5 1.50222 2
((TH?)=sir? 0 sir’ ¢. (24) 1.55883 2
In Fig. 2 we plot the angleg8 and ¢ as obtained through Eqs. . 1.60636 2
(24) by the numerically calculated average values. The UFP 0 1 1+3 1.55964 6
is characterized by=¢=/4, namely, by the value 1/2 of 1 1 1 1+3 1.55923 12
the occupation probability of the singlet st@fg. The precise
value of the other occupation probabilities, in other words, of _ )
¢, are instead not relevant, apart from the obvious fact that C. Approach to the fixed points
their sum should be 1/2 too. In fact, if we add the tetiBl) As we said the low-energy spectrum both in the Kondo-

with G> 0, we do find the same UFP, the locations of whichscreened and unscreened phases flows to that of a free chain,
now depends also orG, which is still identified by with one less site in the former case. The flow towards the
P(0,0,1,0=1/2, i.e. =m/4, although the weight of the asymptotic spectrum can be described by a free chain in the
spin triplet is enhanced with respect to the doul@t  presence of a local perturbation téfmacting on the first
¢<ml4. For largeG we do recover the 2IKM valueg  available site, denoted as site 0, of the conduction chain,
=7/4 and$=0 (see Fig. 3. which is actually the second site in the Kondo-screened
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/2 , T : . ' ' in the Appendix. Through NRG, one can calculate the Wil-
son ratios related to the conserved quantitfesamely, the

total charge, spin, anzcomponent ofT. If Sy; is the varia-
tion of the susceptibility with respect to the valyewithout
000 the impurity, wherey;=xc, xs. andﬂ are the charge, spin,
wal =ae i and TZ susceptibilities, then the Wilson ratié% are defined
through

oGy

R; .
Xi oCy

04 s ' s ' s ' s j On the other hand, Fermi-liquid theory implies also that
Il R=1-A, (26)

FIG. 2. (Color onling The anglesy and ¢ as defined through whereA, is the dimensionless quasiparticle scattering ampli-
Eq. (24). Notice that the fixed point is identified b= ¢=m/4. tude in channei defined in Eq(A11) through the scattering
vertex at low incoming and outgoing frequencies and the
phase. By symmetry considerations this local term can be ifuasiparticle density of states at the chemical poterjsae
general written as Eqg. (A8)]. In general, we can introduce a scattering ampli-
tude for each particle-hole and particle-particle channel. In
particular, besideg\, Ag, andA@, we consider the particle-
hole scattering amplitudes in ti& channel, which is degen-
o erate with theTY channel A7, as well as in the spin orbital
+ 30Ty - To— 2(0s + I1:)(Tp)>. (25 channelsST? AL, andST*¥), AL, In addition we introduce
the amplitudes in the particle-particle channels, nam&iyn

We choose this particular form because it has the advantaqﬁe spin-triplet orbital-singlet Cooper channel amgiandAo
that the energy of the center of gravity of each multiplet Wlthin the spin-singlet orbital-triplet channels with?=0 anid

given chargen is justU-(no-2)2/2. Upon approaching the T?=+1, respectively. As shown in the Appendix, all particle-

UFP on both sides, we find thal. ~Js=y— +%, Jn.~  hgje scattering amplitudes can be expressed through the
—-5y— —o, andt. ~ 3y/8— +o. The behavior of. implies a particle-particle amplitudes:

divergence of the impurity contribution to the specific heat

U« - >
SHe = = 1.2 (€l Cran + H.C) + ?(no - 2)?+3580 - So
aa

coefficient. Namely, if6C, is the variation of the specific 1, 0 0
heat with respect to its valu@, in the absence of the impu- Ac=7(BAT+2A45+44,), (27
rity, then
oC 1
Y~ et o0, Ag= = (241 - 243-4.49), (28)
Cv 4
In reality, it is more convenient to analyze the NRG re-
sults by invoking the Fermi-liquid theory, which we present 1
u y invoking i-liqui y, which we p A4=Z(—6A1—2A8+4A2), (29
/2 T T
A= 1(— BA +2.49) (30)
000 T4 o
Rty
1
/4406660 © o) AQTZ 4_1(_ 24+ 2A8‘ 4Ag), (30)
L1 1 0
Agr= Z(_ 2A°=2Ap). (32
0 : : ' . )
0 10 20 Since we are able to calculate by NRG the three Wilson
GZ/|J*| ratios R, which is zero in the Kondo limitRg, and R@, we

can also determine the three unknown particle-particle scat-

FIG. 3. (Color onling The UFP values of and ¢ along the path ~ tering amplitudes through Eq&26)—<29), which we plot in
parametrized by the couplinG from our model to the 2IKM  Fig. 4.
model. The first thing to notice is that approaching the UFP,
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limit of large lattice coordination onto the AIM1) with
J<0. If the model is driven towards a Mott metal-insulator
transition, the effective AIM is necessarily pushed into a re-
gime in whichTx ~|J|, namely, in the critical region around
the UFP. As shown in Fig. 4, trewave scattering amplitude
* A3 as well as the equally relevaat and AQT are strongly
* o A2 — attractive in an entire interval around the UFP. This suggests
% x Al i that the impurity fixed-point instability might transform by
% A0 DMFT self-consistency into a whole pocket where the model
g generates spontaneously a bulk symmetry-breaking order pa-
* ] rameter along one of the relevant channels. As we argued in
-3 L KX P PR Ref. 8, if nesting or Van Hove singularities are absent, it is
-2 -1 0 5 10 15 20 most probable that the dominant instability will occur in the
J/|J Cooper channel, the only one which is singular in any di-
mensions and for any band structure with a finite quasiparti-
FIG. 4. (Color onling The scattering amplitudes in the various cle density of states at the chemical potential. This has been
particle-particle channels as a functionJaheasured in units of the  jndeed confirmed by very recent DMFT calculations in Refs.
UFPJ". Notice the agreement with the values predicted by generay and 11.
arguments presented in the Appendix at the UFR’|=-1, at the The other interesting observation is that in the conven-
SU(4) point, J/\J*Lzo, and in the limit of theS=1 two-channel  {jonal Hund’s regime, the Kondo-screened phase With,
Kondo model J/|J'|> 1. an attraction in the spin-tripleT=0 channel develops,
A= pt=pl -3 A<0. In realistic lattice models that map onto the AIM
0 T ST ’ with J>0 in the limit of large lattice coordination, spin-
while all the otherA’s tend to 1, implying vanishing Wilson triplet superconductivity would compete with bulk magne-
ratios. The fixed point seems therefore to display a largdism. Yet, if magnetism is frustrated, spin-triplet supercon-
hidden symmetry, actually a SO as identified by Ref. 4. ductivity might emerge. In particular, since increasing the
The UFP is equally unstable in treewave Cooper channel HubbardU in the lattice model implies decreasiig in the
with S=0, T=1, andT?=0, as well as in the particle-hole AIM, which is the same as increasing the effective strength
TX¥ and STZ channel$:13 All of them correspond to physi- 0f J>0, we should expect that spin-triplet superconductivity
cal instabilities as we anticipated, unlike what happens in thés enhanced near the MIT. This has been recently observed
2IKM. In contrast any external field in the other channels doby DMFT.X! However, the enhancement of the spin-triplet
not spoil the UFP, in particular, in the charge, spin, &4d amplitude is not as dramatic as for the spin-singlet amplitude
particle-hole channels, which refer to conserved quantities.near the UFP ad<0. This situation would change in the
The physics around and right at the UFP has been represence of a single-ion anisotropy that favors, e.g., spin-
vealed by conformal field theory and bosonizatidr$.2415 triplet pairing with §=0 [see the model, Eq16)]. As we
Due to the existence of two energy scales, the Kondo temshowed, this model is equivalent to K@) upon interchang-
peratureTy and the exchange splitting the quenching of ing the role ofT with S. This suggests that the lattice model
the impurity degrees of freedom takes place in two stepshat maps by DMFT onto Eq16) with D>0 would still
First, around an energy scale ~maxT,|J|), most of the  enter a local critical regime before the MIT. Here the ten-
In 6 entropy of the two-electron impurity multiplets is re- dency towards spontaneous generation of a bulk order pa-
moved, leaving behind a residual entropy2n which gets  rameter should be dramatically enhanced in the particle-hole

quenched only below a lower energy scdle~1/y. The  channelsst &/, and TS as well as in the spin-triplet Cooper
latter depends quadratically upon the deviation from the.nannel withs=0: C‘er C;L_CZT CL_

UFP, namelyT_~|J-J'[>/T,. The entropy has a low energy

[

o

Scattering Amplitudes

I@near behavior,S(T)_~ T/T_, followed abpveT_ b_y another V. IMPURITY SPECTRAL FUNCTION

linear one,S(T)—Iny2~T/T,.415 At the fixed point, T_=0, _ _ _ _

there is a finite residual entrog(0)=Iny2 andS(T)-S(0) The impurity DOS p(e), is defined through

~T/T,. A perturbation in any of the relevant channels 1

washes out the fixed point, cutting off the infrared singulari- (e =——Iim[G(e+in) -G(e-in)] (33
ties close to the UFP on an energy scale that depends qua- T 7—0

dratically upon the strength of the perturbation. In Sec. Vil hereG(ie,) is the impurity Green’s function in Matsubara
we analyse more explicitly the sta_lblllty_or ms_tablllty of the frequencies, which, by symmetry, is diagonal in spin and
UFP towards symmetry-breaking fields in particle-hole chany piio, indices, and independent of them. In general,

nels.
Glie) t=ie,— Aliey) —2(ie,) =Golie) ™t - 2liey),
D. Influences of the single-impurity behavior (i) &~ Allen) =2 (i) = Goli€n) (i€
in a DMFT calculation (34)

Let us now instead discuss the above results in connectiowhere Gy(ie,) is the noninteracting=J=0, Green’s func-
with DMFT. Suppose there is a lattice model that maps in theion,
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1

|En_€k

Alie) =Vg> (35)
k

is the hybridization function, and(ie,) the impurity self-

energy. Let us follow the behavior of the DOS as the inter-

action is switched on. We will imagine increasing slowly

bothU and|J] at fixedU/|J|> 1 with J<0. WhenU is small,

one can show by perturbation theory that

Im3(e) ~ €,

which is the standard result that the quasiparticle decay rate
vanishes faster than the frequency. Therefore at the chemical
potential,e=0, the impurity DOS is not affected by a weak
interaction, since

p(0)=—llimlm G(O+i7;)=—llim Im Gy(0 +in)

O 1 L L 1
™70 70 002 -001 0 001 002
1
= . = po, (36) FIG. 5. (Color online Impurity DOS in the presence of particle-
T30 hole symmetry across the fixed point. The temperature is set by the

where Ag=—Im A(0+i7) was introduced in Eq(7), and p, length of the chain; it is practically zero. In the upper panel we draw

denotes the noninteracting DOS at the chemical potential. e DOS’s(;NeILlnsselSﬁ*tEg sond: scrﬁinfdApklegj‘J(G:? ano(ljt;ne
a single-orbital AIM, the above result remains valid even'">¢"¢€n€d Pha =5.79. Here U=2, Ao= ™, and S

. L tyrns out to be=-0.0035, all in units of half the conduction band-
when the interaction is very large. In our case we may expect

that thi trivial should instead Indeed width. Notice the narrow peak, which transforms into a narrow
. a some Ing nontrivial shouid nstea occur.. n ee', uF)Orﬁseudoga\p. In the lower panel we show in more detail the behavior
increasingU, the AIM enters the Kondo regime, with a

. . of the low-energy DOS across the UFRfErom top to bottom,
Kondo temperature exponentially decreasing withThere- 3,5 o g59 0_93/45 0.988 1.002 1.031':@;_146_ P

fore at some critical., when Tk~ |J|, the AIM has to cross
the non-Fermi-liquid UFP. Namely the UFP of our AIM can
also be attained by increasing the interaction strength, sign
ing a breakdown of the conventional perturbation theory. W
now discuss how this criticality shows up in the spectral
properties.

The impurity DOS can be obtained by NRG by directly
evaluating the spectral function

)seudogap disappear, leaving aside only the broad resonance.
he calculated DOS at the chemical potential seems to be
alf of its noninteracting valuésee Fig. 5. In other words,

our numerical results point to a DOS at the chemical poten-

tial that jumps across the UFP, beip@) =p, everywhere in

the Kondo-screened phase(0)=0 in the unscreened one,

L and p(0)=py/2 right at the UFP.

Aa() = 23 [mld], )8 = (Eq = E))(67Fn+ e7Fn).

m,n VI. MODELING THE IMPURITY DENSITY OF STATES

(37) It is possible to infer an analytical expression of the im-
For any finite chainA(w) is a discrete sum ob peaks. A purity DOS. First of all we notice that the values at the
smooth DOS is obtained by broadening the peaks, which wehemical potential in the screened and in the unscreened

do following Ref. 16 through the transformation Kondo regimes are compatible with general scattering
a 5 theory. In both phases the impurity has disappeared at low
_ e _(nw-1In oy energy, either because it has been absorbed by the conduc-
Sw-—wpy) > ——=exp-———— |, : _ _
b wnm\ T b2 tion sea or becauskhas taken care of quenching the impu-

(38) rity spin and orbital degrees of freedom. This in turns means
that what remains at low energy is just a potential scattering

where w,=E,—E,, andb=0.55 forA=2. experienced by the conduction electrons plus a local

In Fig. 5 we show the outcome of the numerical calcula-electron-electron interaction term. The on-st@lnatrix at

tion. On the Kondo-screened side of the UFP, the DOShe chemical potential has, in general, elastic and inelastic

shows a narrow Kondo-resonance on top of a broader ongontributions(see Ref. 1y. At zero temperature only the

The height at the chemical potentiald€0)=p,, as expected former survives. Since we considered jgsvave scattering,

in a Kondo-screened phase. In contrast, in the unscreendtie elastic component of tfig@matrix is given by

side of the UFP, the narrow peak transforms into a narrow _ . _

pseudogap within the broad resonance. Numerically we find S(0) =1 - 2ipcT(0) = 1 = 2mAep(0), (39)

that p(e) ~ €%. As discussed before, this implies that the con-where p, is the conduction electron DOS at the chemical

ventional behavior Ik (e) ~ €2 breaks down across the UFP. potential per spin and band, and tfiematrix is defined

Exactly at the fixed point, both the narrow peak and thethrough the conduction electron Green'’s funct@iy

245114-9



LORENZO DE LEO AND MICHELE FABRIZIO PHYSICAL REVIEW B69, 245114(2004)

— 7 A L G AL AL DL IR IR LR
G=Go+ Gy T Go. i C@m 00 O——IO’Z O OCoooam (¢
On the other hand, th8 matrix is related to the scattering A
phase shift by B T 10
: = q .4
S(0) =90, (40) 10
| . -5
In the Kondo-screened phase, we know th#§0)=1/2, 106
which, through Eqgs(40) and (39), implies p(0)=1/mA,, B T
namely its noninteracting valyg. On the other hand, in the |- -+ 107

unscreened regim&0)=0 and hence(0)=0, as we indeed
find. It has been proposed that at the non-Fermi-liquid fixed|
point of the overscreenes=1/2 two-channel Kondo model |- -1 15
the S matrix is instead purely inelas#é®® That would im- | 1o i
ply a vanishing elastic contributioi§0)=0 in Eqg.(39), and

in turn a DOS at the UFP,

2107 o107

k

1 1
- _ o (41) 8J/T

0 FIG. 6. (Color onling Fit values ofT, andT_ close to the UFP.
which is indeed compatible with our numerical reséf¥et  The lines are quadratic fit,_=A(8J)%. The Hamiltonian param-
there is a difference between the UFP of our model, equivaeters have the same values as in Fig. 5.
lently of the 2IKM, and the non-Fermi-liquid fixed point of
the S=1/2 two-channel Kondo model. While in the latter the _ _ 1 2A0T,T.
specific heat has a singular temperature behavior right at the i€~ 2 (ie) =~ T ToT (46)
UFP, in our model it has a conventional linear behavior. The € 1+7 -

above observation suggests the following simple analyticainaly, at the fixed point the self-energy is finite at zero

p(0) =

expression of the low-energy impurity DOS: frequency, being given by
2 2
_pof TE  TZ .
ps(€) = 2<62+T3162+T3>, (42) 6= Su(ie) =idg———", (47)

T
where the plus sign refers to the Kondo-screened phase an

the minus to the unscreened one. The two energy scales ha¥ Nave checked that the model self-energy gives indeed a

the same meaning as in the preceding section. In particulag,OOd representation of the actual numerical results. In Fig. 6

T_ controls the deviations from the UFP, so that right at the'® draw the fit values o, andT. around the UFP.

UEP. whenT_=0. the DOS is We can further test the consistency of the approach by
’ - invoking the scattering theory, which, by Friedel’'s sum rule,
Po T2 allows us to identify the scattering phase shifts through
p*(e)ZE 2,72 (43
€Tl 8(e) = Im In G(e+i0"). (48)
The model DOS42) also implies a model impurity Green’s ) ) _
function in Matsubara frequencies: By means of our ansatz for the impurity Green's function
(44) we readily find that the expression of the low-energy
. 1 T, T phase shifts is
G.lie) = —1| - - *- . .
20Ag\i€, +iT, sQrg, e, +iT_ sgre, 1 1
a € a
Sle)=—+-|—+—|=—+ 49
(44) . (€) > 2<T+ T_) 5 tase (49)

The fixed point Green’s functiorG:(ie,), is identified by o _
T_=0. The impurity self-energy can then be extracted by theVithin the Kondo-screened regime, and
relation

1 1
S.(ie)) =ie,+iAg sgne, — G,(ie,) . o(e) =€ (T_+ + {) = a_€, (50)

In particular, at low frequency we find that in the pseudogap unscreened phase, consistent with our start-

1 1 ing assumption. Moreover, by the energy dependence of the

(T_ + T_) (45) phase shifts, we can calculate the impurity correction to the
- specific heat:

in the Kondo-screened phase, hence a standard linear behav-

ior. In contrast, in the unscreened regime the self-energy is Cy _ P (51)

singular: Cy mpc

A
ie,—2.(ie) = ien?O
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VII. PARTICLE-HOLE SYMMETRY-BREAKING TERMS ™~ T T
In this section we analyze more in detail various
symmetry-breaking terms in the particle-hole channel. In 0,10 (1,1,0)
. . . . (0,1,1) (1,0,1) (0,1,1) (1,0,1)
particular we are going to consider the three following per- S W
turbations to the original Hamiltoniafl) with »=0: = REATAT) GURTAY: —§
h %- (1,0,0) Q
é’Hp—h =y U nd = Ez_hndv (52) o 0,1,0)(0,0,1) (1,0,0)(0,1,0)(0.0,1)
(1/2,1/2,1/2) (1/2,1/2,1/2)
SH,=h, T?, (53
) | ) I(0,0,0)I ‘(O,O,O)I ) |
_ X 150 100 50 0 50 100 150
SHx=h T". (54) Iterations

The term(52) breaks particle-hole symmetry trying to oc-
cupy the impurity with 2-v electrons instead of twizee Eq.
(1)]. The other termg53) and (54) split the orbital degen-
eracy. It is convenient to decompose the orbitéa2)Gsym-
metry into the continuous @) symmetry related to proper
rotations around the axis, and a discret&,, corresponding
to interchanging the two orbitals. Théhl, breaks the orbital
Z, while 6H, breaks the orbital (1). Among them, only the
latter, 5H,, is predicted to be relevant and wash out the fixe
point, at least according to bosonizatfoActually this looks

a bit strange if one invokes naively the argument of Ref. 4 t
demonstrate the existence of an UFP in the absence of a
particle-hole symmetry-breaking term. This argument is
based on the observation that, wherf28,,; symmetry
holds, the phase shifts in both orbital channels have to b
equal,s,=6,. By general particle-hole symmetry, this further
implies that ,=26,=0 mod ). Since forJ>T,>0 we
know that 8,=6,=m/2, while for J<-T«<0, §=5,=0, Re S,(0) = cos 25,(0) =1 — 27Ayp,4(0). (55)

the[gtmgsgggjrizsigx ?ﬁa? t];_)éf ?eﬁ)r?:r(lgg; It; etv::seght and Let us assume that, across the UFP, the zero-frequency phase
P shifts still jump by /2. In other words, if we denote as

follow Ref. 4 to demonstrate that the necessary condition for
the existence of an intermediate fixed point does not hold o_4(0) =&, (56)
anymore. Since E(52) is absent, there is still a residual
particle-hole symmetry according to which

61+ 5220 mo({’ﬂ)

FIG. 7. Lowest-energy levels versus the chain dizén the
presence of a finites=0.05. The right/left panels correspond to a
deviation8J/J = +3 X 107° from the fixed point valug". The lev-
els are labeled by the quantum numbé@ T%,9) as in Fig. 1.
Notice that as a consequenceof 0 some degeneracies found in
the particle-hole symmetric case are lost.

dsition from a sharp crossover. Even though we did check that
upon varyingJ we can approach as close as we want the
c)UFP, eventually flowing in either of the two stable fixed
ints, we have found it more convenient to resort to an
ternative proof that seems freer of numerical uncertainties.
Let us go back to Eq39) and try to guess how would it
8hange in the presence of E&§2) and/or Eq.(53). We now
mtroduce oneS matrix for each channelS, with a=1,2,
satisfying

the phase shift in the unscreened phase, in the Kondo-
screened phase the phase shift should be

o
If 5,=—5, then the two limiting cases3,=5,=0 and 5,= 0 a0)= 0+ 5

-6,=l2, can be smoothly connected without requiring any , ) .
critical point in between. This argument thus proves that arl "rough Eq(55) this would imply a jump of the DOS at the

intermediate fixed point does not need to exist, yet it doe§hemical potential given by

not demonstrate its nonexistence. Indeed we know by 1

bosonization and we now show by NRG that both E§8) P+a(0) = p-4(0) = A C0S 24 po COS 2. (57)
and(54) do not wash out the UFP. In contrasTaterm (54) 0

does destabilize the fixed point, as shown later. The above scenario predicts that although the pseudogap in

A direct way to prove that a particle-hole symmetry- the unscreened phase is partly filled away from particle-hole
breaking perturbation of the forn62) does not spoil the symmetry, the DOS has a finite jump across the UFP. This is
UFP is to analyze the low-energy spectrum. We show in Figindeed confirmed by NRG. In Fig. 8 we plot the DOS at
7 the analogy of Fig. 1 in the presence of a finite0.05, fixed »=0.05,[see Eq(52)], across the UFP, clearly showing
which breaks particle-hole symmetry. In spite of that, we stillthe jump. We notice that if only Eq52) is present, then
find evidences of an UFP separating the Kondo-screened, =48, in Eq. (56). If Eq. (52) is absent but Eq(53) is
from the unscreened regimes. Needless to say, this fixegresent, thens;=-5,, yet the behavior across the UFP is
point is identified by the same spectrum we find in thesimilar, which is the reason why we just show the results
particle-hole symmetric case, as can be realized by compawith finite v. This behavior is also compatible with the NRG
ing the intermediate crossover region in Fig. 7 with that inresult that the charge aricf Wilson ratios vanish around the
Fig. 1. Yet one might object that this is not a rigorous proofUFP. Actually they all suggest that the model can absorb a
since numerically it is not possible to distinguish a true tran-chemical potential shift, equal or different in the two chan-
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0 ! . " !
-0.02 0 0.02

FIG. 8. (Color online Impurity DOS across the UFP in the FIG. 9. (Color onling Impurity DOS upon increasing the
presence of a finite=0.05, which breaks particle-hole symmetry. strength of particle-hole symmetry breakingtarting from the un-
From top to bottomJ/J =0,0.28,0.57,0.86,1.14,1.43,1.71. No- screened pseudogap pha¢e=0,0.05,0.]1 up to the Kondo-
tice that the DOS at the chemical potential is always finite, althougtpcreened phase=0.15,0.2. In the left inset it is shown the low-

very small and hence not visible in the figuté.andA, have the ~ energy part across the UFRfrom top to bottom v
same values as in Fig. 5. =0.2,0.175,0.15,0.125,0.1,0.075,0.0p siotice the analogy with

the p-h symmetric case in Fig. 5. In the right inset we explicitly

. show the gradual filling of the pseudogap upon increasinghe
nels 1 and 2, on a high-energy scale, at least of ofider values ofU and A, are those of Fig. 5.

without having to modify what takes place at lower energies
of orderT_: a kind of Anderson’s compensation principle for |4 conclusion we find that the UFP extends away from the
our conserved quantities. Following these observations, Wgarticle-hole symmetric pointy=0, giving rise to a whole
argue that the DOS for orbital=1,2 in thepresence of any yitical line, J.(v,A0,U)<0 such that ford>J.(v,Aq,U)

of the two perturbationg52) and(53), assumed to be weak, complete Kondo screening takes place while for

can be modeled as J<J.(v,Aq,U) the impurity is in the unscreened pseudogap
T24 2 T2 regime. Let us briefly discuss the fate of this critical line as
ps.a(€) = Pa %icos 25a2—‘2} (58)  particle-hole asymmetry becomes very large. We find that

2] (e+ pea)™+ TS € +T J.(v,Aq,U) decreases by increasing being of order ¥

, i w==0 and becoming of orderU-for large|v|, thus even-
where again the plus refers to the Kondo-screened phase aﬁi‘"y going outside the regiot>|J[, A, we are interested

the minus to the unscreened phaags p. ,(0) is the value of in. This result can also be physically understood. Let us sup-

wﬁileDOS at the chemical potential in the screened reglmepose for instance that the average impurity occupancy is

fixed as one. Still we keep assumibig> A, thus preventing
the occupancy from freely fluctuating around its mean value.
We notice that the effective Hubbard repulsidh;, acting
According to the model DO$58), the narrow peak and on the impurity is by definitiotJg= Eq(0) + Eq(2) - 2E4(1),
pseudogap remain pinned at the chemical poten&al), = where Ey(n) is the ground-state energy forelectron con-
while only the broad resonance moves away from particlefigurations. 1fJ<0, then=2 ground state ha8=0,T=1, and
hole symmetry. T,=0 [see Eq(5)], and we findUg;;=U—2|J|. Therefore, if

Let us now study what happens if, starting from theUs>|J|, the impurity effectively behaves like a sp8r1/2
particle-hole symmetric pseudogap phase, we move away nd pseudospifi=1/2 moment, which, as we said, is Kondo
increasingy, keeping all other Hamiltonian parameters fixed. screened. In contrast, ¥<-U, Ug;;<0 and hence the im-
As shown in Fig. 9,v is able to drive the model across the purity prefers to oscillate bewteen zero and double occu-
UFP. This result could be foreseen. Indeeébrces the im-  pancy to take full advantage of the inverted Hund'’s rules. In
purity to accomodate 2r electrons. Ifv=1, the impurity  this unconventional mixed-valence regime inducedlpthe
tends to be singly occupied. Therefore in the Kondo limit itDOS actually develops a pseudogap at the chemical poten-
behaves like a spiB=1/2 andpseudospinf=1/2 moment, tial. Therefore the critical line transforms for large particle-
which can be perfectly screened for the Kondo effect and iiole asymmetry into the critical point, which separates the
moreover stable with respect to little changesvofiith re-  local moment from thel-induced mixed valence regime.
spect tov=1. Hence, if the model is at=0 in the pseudogap A completely different behavior occurs if we introduce
phase, it has to cross a fixed point to reach the large-instead ar* perturbation of the forni54). Here, as expected,
Kondo-screened regime. This behavior is quite interesting inve do not find any jump of the DOS, as clear in Fig. 10
connection with DMFT lattice calculations, since it implies where we compare the DOS at the chemical potential in the
that the lattice-model local critical regime, which reflects thepresence either of E¢52), h,.,# 0, or Eq.(54), hy# 0. This
single-impurity UFP, may also be attained by doping, as redemonstrates that a perturbation in the particle-hole channel
cently confirmed. that breaks the orbital (1) symmetry is relevant at the UFP,

Wi a= =T, SIN 25,.
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p-h 0 .
-0.005 0 0.005
€
(}1.2 '"'—} ' 0.8 FIG. 11. (Color onling Impurity DOS ofdg,, pe(€), for the AIM
'l Eq.(20). The different curves correspond from the top to the bottom

to values ofAy=0.5,0.47,0.45,0.4,0.3 with, =0.05 andU=8.
These values correspondip=0.08,0.075,0.072,0.064,0.049 and
J=4t> /U=0.00125. We notice the remnant of an asymmetric
pseudogap of ordet.

FIG. 10. (Color online Comparison of the DOS values at the
chemical potential as function dfeither in the presence of a finite
particle-hole symmetry breaking, p,, p(0,hy_p), or of a T* sym-
metry breakingh,, p(0,h,), normalized to their values dt=0. No-
tice thath,, although three orders of magnitude smaller than, alone is able to drive the model very close to the UFP. In
washes out the DOS jump, contraryhg . other words, the width of the critical region is larger than the

energy scale that cuts off the fixed-point singularities, al-
unlike Eq.(52) and (53), which instead do not break the though both are generated by the same
U(D)orpie Symmetry.

Finally let us discuss what happens in the AIM, which VIIl. CONCLUSIONS
corresponds within DMFT to two Hubbard planes coupled
by a transverse hopping, Ed.8), with J=VV=0 plus the term
(19). We already noticed thadt plays an ambiguous role. It
generates an antiferromagnetic exchan@eﬁ,lti/ U, which
may stabilize an UFP, but it also induces a relevehper-
turbation[see EQ.(20)]. Since the UFP is never reachable,
the model always flows to a Fermi-liquid fixed point. In the
presence of, it is more appropriate to introduce the even
and odd combinations of the orbitals 1 and 2:

In this work we have analyzed the spectral properties of
the two-orbital Anderson impurity model, E¢L), which in-
cludes an exchange splittiny which favors, if negative, a
nondegenerate impurity configuration. This model was al-
ready shown in Ref. 8 to possess a non-Fermi-liquid fixed
point that separates a phase where conventional Kondo
screening takes place from an unscreened phase in which
takes care of quenching the impurity degrees of freedom.

The impurity density of states has the following behavior

1 across the fixed point in the presence of particle-hole sym-
ey = =(dy, + dpp), metry. In the Kondo-screened phase it displays a conven-
V2 tional very narrow Kondo resonance on top of a broader
resonance. In contrast, in the unscreened phase a narrow
pseudogap appears within the broad resonance. At the fixed
(diy — dao), point only the latter survives. Away from half-filling, the

=

dog =

/

\

N

and correspondingly the even and odd conduction-electron 0.1 : , ;
scattering channels. According to what we said at the begin-
ning of this section, we expect the phase shiffs -5, to be
smooth functions of. If there were no remnant of the UFP,
the DOS'’s should simply show a resonance, the even channel
above the chemical potential and the odd channel below it. In
reality the behavior of the DOS remains strongly influenced
by the UFP, even though never reachable. This is evident in
Fig. 11, where we draw the DOS df,, p¢(€) (the odd one is —01 s | .
simply obtained by reflection around zero engrgy fixedt | -0.002 0 0.002
upon varying the hybridization width,. There is no point at €

V_VhiCh the DOS.jumps at the Chem,ical potgntial, yet a partly FIG. 12. (Color onling Off-diagonal spectral functiomd;,(e),
filled asymmetric pseudogap remains. In Fig. 12 we draw thgi, ¢ =0.05. The different solid curves correspond from the top to
low-energy difference between the even and odd DOS'Sye pottom fore> 0 to values 0fAy=0.47,0.45,0.4,0.3, while the
which is also the off-diagonal spectral functidi,(e). Ayx(€) dashed curve correspondsAg=0.5. We notice that the low-energy
shows a low-energy feature that has a nonmonotonic behayeature first moves towards zero energy wheyincreases from 0.3
ior in Ag and almost develops into a singularity aroufigl  to 0.47, but from 0.47 to 0.5 it goes back again. Moreover, around
=0.47. We think that these results bring to the fore that A;,=0.47,A,5(e) is almost singular.

A (e)
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pseudogap remains pinned at the chemical potential, akreases(see Fig. 4 for increasingJ>0. This suggests that
though it gets partly filled. Yet there is still a fixed point the instability towards spin-triplet superconductivity may ac-
across which the density of states at the chemical potentialially be enhanced by strong correlations, compatible with
jumps. Finally we have explicitly shown that the intermedi- recent DMFT calculation¥: In addition, we would expect
ate fixed point is unstable towards physical symmetry breakthat, in the presence of a single-ion anisotrdpy; 0 in Eq.

ing fields, which include both particle-hole and particle- (16), the enhancement of spin-triplet superconductivity
particle channels. The relevance of this impurity model formight be even more dramatic.

dynamical mean field theory calculations has been already
emphasized in Ref. 8 and confirmed by Refs. 9 and 11. Here
we would like to clarify some aspects in view of the newly ACKNOWLEDGMENTS

discovered spectral properties.

As discussed in Ref. 8, any lattice model that maps by We are very grateful to G. Zarand, M. Sindel, and C.
DMFT onto the impurity mode(1) plus(13) should encoun- Castellani for their useful advice. We thank M. Capone, P.
ter the unstable fixed point before the Mott transition,Noziéres, G.E. Santoro, and E. Tosatti for helpful discus-
namely, when the effective quasiparticle bandwidth becomesijons. This work has been partly supported by MIUR COFIN
of the order of|J|. However the instability of the single- and FIRB RBAUO17S8R004.
impurity fixed point should likely transform into a bulk in-
stability through the DMFT self-consistency conditions. As
we showed there are several competing physical instabilities APPENDIX. FERMI-LIQUID THEORY OF THE
around the fixed point, in the particle-hole and particle- ANDERSON IMPURITY MODEL
particle channels. In the absence of nesting or van Hove ) ) . S
singularities, we argued in Ref. 8 that the particle-particle In this appendix we build up a Fermi-liquid theory of our
channel dominates, leading to a superconducting pocket juéM closely following the conventional approadisee for
before the Mott transition, which has been indeed observedistance Ref. 2l Our purpose is twofold. First the Fermi-
by DI\/”:T9 However, there m|ght be phys|ca”y relevant |IqUId theory pI’OVIdeS afra.mework to a..na.lyze the NRG data.
cases where those band-structure singularities occur, whidforeover, it allows us to introduce within DMFT the con-
would favor a uniform or modulated order parameter in onecept of a local Fermi-liquid description in addition to the
of the particle-hole unstable channels. What should we exconventional one, which refers instead to low-frequency and
pect upon moving away from these peculiar cases, for inmomentum scattering amplitudes. o
stance by doping? Clearly the band-structure singulariies Let us consider more generally a multiorbital Anderson
weakens upon doping. Yet the fixed point is not washed outmpurity model. As in our case, we assume that besides spin
away from particle-hole symmetry. We showed in fact thatotational symmetry also orbital degeneracy is preserved, so
the pseudogap remains pinned at the chemical potential. Waat the fully interacting impurity Green’s functions are di-
believe that this would result in competition betweenagonal and independent of both spin and orbital indices.
particle-hole and particle-particle channels that gradually The variation of the electron number with orbital symme-
turns in favor of the latter, thus predicting a particle-hole!ry @ and spina associated with the presence of the impurity
order parameter that dies out upon doping in favor of a sulS given byt
perconducting one. dz

Equally interesting is what we find for the Anderson im- AN = jg —.f(z)iln G..(2)

. . cL- aa aa 1
purity model, which corresponds within DMFT to two Hub- 2 4
bard planes, with large in-plane coordination, coupled by
hopping termt , Eq. (18), with J=V=0 plus the term(19).
Here the physics is not as transparent as in the mgdel
essentially becausg provides at the same time a mecha-
nism for the existence of a fixed point as well as for its
instability. However, the numerical renormalization group re-
sults for the single-impurity show evidence that an almost 1f° g af(e)

€

Where the integration contour encloses the real axis clock-
wise, f(z) is the Fermi distribution function in the complex
plane, ands,, the impurity single-particle Green'’s function.
Since the Green'’s function has a branch cut on the real axis,
the above expression is also equal to

critical region does exist, in spite of the fact that the non- Ang, = - ?Im In Goo(e+i6), (Al)
trivial fixed point can never be attained. This suggests that

the physics of the two coupled Hubbard planes close to thgjith 5 an infinitesimal positive number. The impurity density
Mott transition may still be influenced by the single-impurity of states is further determined through
fixed point.

Finally, we briefly comment what our results would imply
for the model with conventional Hund'’s rul¢see Eq(16)].
This case in the absence of single-ion anisotropy corresponds o o
to a Kondo-screened regime where, as we showed in Fig. 47 We introduce a source field in the Hamiltonian by
the spin-triplet Cooper channel is attractive. By increasing SE1 = ~S'h
the HubbardU in the lattice model, the Kondo temperature - =~ aa Naa
of the effective AIM decreases, which implies that the spin-
triplet dimensionless scattering amplitude gradually also dewhere

1
Pac(€)=——Im Gy (iw, — €+id). (A2)
T
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Let us assume that there exists a set of conserved opera-

_ T T
Nao = E Ck aaCk aa + daadaw
K tors

then MO=3 Dl MD)Fe e+ D dl, (MD)2Ed,

. 1 . i . k abaB abaf
Gagliwn) ™™ = Twn+ g = Agu(iwn, y,) = 2, wnv{hbﬁ})' ~ . . . .
whereM® are Hermitean matrices and the suffidentifies
where the particular conserved operator. For convenience we adopt
1 the normalization TIM®-M®)=1. Then, if we add a source

Agalion,hy,) = 2 |Vk|2i field
k

wn = €+ hyy
0= —hO A0

is the hybridization function in the presence of the source. oH = —hEMT,

Therefore the derivative with respect to the external field ofye can use the basis that diagonaliad® and apply the

the variation of the electron number associated with the imygye results to find the variation GM®) associated with

purity is given by the presence of the impurity at first order in the applied field.
JAn “ dedf(e) Going back to the original basis, we would find the following
(—a“> :f — Im(G(e+ i5) expression of the differencgy!") between the susceptibilities
INpg /h=o J oo T € in the presence and absence of the impurity:
dA(z 0]
S R
Jz Z=€+i d. &h(') h=0
9 3g,(€+10) * dedf aA(i
() Jl e s g o)
bB h=0 e T JE€ dle ie=e+is
whereX, (iwp,) is the impurity self-energy and we made use 1
of + _E E E Fbﬁ,dﬁ;Cy,aa(€+ i9,i€i€n €+10)
n abcdapBys
3 Ay, (z,h, )) dA(2) .
a a =5 5a ' ~ D @B (i . (9A(|Em)
( Ihg g P 02 X(MNBMDN 2 Gliey)? (1 BT )” (A5)
m

A(z) being the hybridization function in the absencenoOn .
the other hand, Hereafter we drop the subscript One can demonstrate

that the following Ward identities hold for the impurity:
d i 1 o . "
(M) S S spaioniemiemion  [Slietio)=(6] M
h=0

dhpg Bm b 1
SA( === D TadscypslieHimieie +iw,ie)
XG(iE,T])Z(l—#), (A4) B'n cays i
€
" XM Gliey+iw)Glie)[io— Aliey +iw) + Aiey)].
where we used the property that,let0, the Green’s func- (AB)
tion does not depend anande. The interaction vertex is the
reducible one. It then follows that
|
ax(ie) .z 1 . 1
WMag: = =202 D Tandseyppli€iensienielM2g Glie) >~ iI|m01[—32 > Tandseypplietioiesie, +io,ie)
n cd yé w— n cdyd
-Alie,+iw) + Al
X M2? Glie, +i)Gliey) 206 i“’) (ien)]
w
1 dA(i
== =2 2 X Tagseyppli€ienieni ML G(ien>2(1 - ﬁ)
Bh ) o dle€,
- dE’ &f(e’) H ! HENA) HEVA
+f_mZTC%(sFaa‘dac%bﬂ(le,e -8 ;€ +idie)
X(MD)SG (MD)EeG(e' +i8)G(e' —id)Im[A(e' —i8') = A(e' +id)]. (A7)

Let us define the quantity
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o= [ deof@ sl (209 (439
p*_f—x” Je lm{G(Eﬂﬁ){l ( die )iﬁﬁia ( die )ieﬂe+i5:|}, (A8)

which plays the role of the quasiparticle DOS at the chemical potential. Then, througtAElA7), and(A8), the following
equation is readily found:

7= 2 X (MOLMOE
ab ap
. 1 (” df(e) of(e) . ) ) ) .
=5y -—| dede ———=Im!G(e+id r +id,€ =08 € +i8 e+id
X 2772 . €de Jde d€ (6 )|:C§y§ aa,dé‘,Cy,bﬂ(e € € € )

X (MDY MD)BaG(e" +i6")G(e' —i6")Im[A(e' —i8") - A€ + ia’)]”

:5X(i)+if dede’—af(e)&f(e)
2w ) _., Jde

ple) >, Fagdscypple€+id e —i6" € +id',e+i0)

Je€ cd;yé
X (MDY (MD)EaG(e' +i6")G(e —i6")Im[A(e' —i8") — A(e' +i8")]. (A9)
[
The last expression is obtained by noticing that only the ) L 1
imaginary part ofG(e+id) contributes, where InG(e+id) Glien— +i07) =

—eg*iAy
=-mp(e). Equation(A9) allows us to express any suscepti- d 0

bility to fields coupled to conserved quantities. If the hybrid-wheree;=e.” +Re3(0) is the actual position of the reso-

ization function is smooth at low energies, then nance. Then, through E¢A2),
1 A A
A(€ =i8") = A€ +i8") = 2iA,, p(0) = =5—===G(i0MG(i07). (A1)
Tegt Ay T
and hence we can rewritd\9) as follows: Analogously
_ p0) 1 (azaa)
R Ay (7 af G w=—, o=l
SV :p*ll -=2 f dede’ﬁp(e)L,) P zZ Z di€e Jic_io+
pmJ s Jde Jde
s and hence
X Fandocypple+i0,€ —id" € +i5',e+i0) L L
cciyo A= 2 2 (22T anascynp(0,0;0,0 (M) (M),
abcd aBysd
X(MD)ZAMD)BaG(e +i8")G(e -i6") |, (A13)

which is the more conventional expression of the Landau
parameters! Although the above equation is a particular
case of the general on@&11), to simplify the notations in
which allows us to identify local Landa parameters what follows we will use Eq(A13) as a shorthand expres-

plL-A] (A10)

through sion of Eq.(A11).
A= _A—Of dEdermp(E)m IX. Application to the twofold orbitally degenerate AIM
T J —oo J de
p-m € € Let us now apply the above results to our model. An
X2 T dscnb incoming pair can be a spin triplet, orbital singlet, with a
cdys aadocybp scattering vertex at zero incoming and outgoing frequencies
_ , iven b
X(e+ise —i8" ;€ +i8",e+iS)MD)LMO)E given by
. . 1 1
XG(e' +i8')G(e' —id'). (A11) I — Ty 202010 =1 T

2 10',2—0';2-0',10'_2 1lo,2-0;1-0,20*

The above expression is quite general but simplifies substatdere 1 and 2 label the two orbitals witfr=+1/2 andT?
tially when the imaginary part of the impurity self-energy =-1/2, respectively. Alternatively it can be a spin singlet,
vanishes at low real frequency. In this case orbital triplet with T?=0, with scattering vertex
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o 1 1 3A=1. The Wilson ratios for the conserved quantities are
Iy— §F10,2—0;2—0,10'+ EFlU,Z—U;l—U,ZUl defined trough
. . . (i)
or with T?’=+1, in which case R-:£&:1—A-
| R
Xo oCy

Fg - 1—‘Ila',l—(r;l—(r,lo'! FZU,Z—(T;Z—(r,Z(r' . . X
where 5y has been defined ifA5), xo=p, and Cy are,

In reality it is more convenient to introduce the dimension-regpectively, the conduction-electron susceptibility and spe-
less scattering vertices: cific heat in the absence of the impurity, and
Ar=72p.T,=Zp(O)T?, >
6CV = _Cv,
Pc
is the variation of the specific heat due to the impurity.
Hence all Wilson ratios have a universal value,

RS:RT:RST:]._A:4/3, (A21)

A§=27%p.I'=Zp(0)T'g,

A%=7%5.1%=27p(0)TY. (A14)

As we previously showed, only the susceptibilities of con-
served quantities can be expressed in terms of the Landan agreement with conformal field theory.
parameter$A13), which are simply connected with the scat-  (2) If J>T,>0 the impurity gets frozen in the Kondo
tering vertices at zero frequency. Yet we can still define Lan{imit into a spin S=1. Then bothAc=1 andA@zl, which
dau parameters for nonconserved quantities, which, althougmplies

they do not serve to calculate susceptibilities, may provide a

0_
gualitative estimate of their magnitude. Therefore we are go- A=1,
ing to introduce the Landau parameters for the chafge, o )
spin Ag, the z component of the pseudospin Al all being Ag=-3A"

related to conserved quantities, but also forxt@dy com-  y5\yever one expects that, the spin triplet being an orbital
ponents ofT, Ar, as well as for the spin-orbital components, singlet, the S(2) orbital symmetry gets restored at the fixed
AlrandAdy. In terms of the dimensionless amplitud@d4)  point, much in the same way as spin anisotropy is irrelevant
they can be shown, after some lengthy algebra, to have thg the Kondo fixed point. This further implies that
following expressions:

A3=-34=1,

1
Ac= Z(GAl +2A0+4A9), (A15)  namely, As=-5/3, with a Wilson ratioRs=8/3, in agree-
ment with known results.
(3) Let us now suppose we are close to the UFP within
Ag= }(2,41— 249-449), (A16)  the Kondo-screened regime. As usual the charge degrees of
4 B freedom are suppressed already beldwso that we can still
assumeA-=1. Moreover, we expect that the spin and the
1 1 0 o orbital degrees of freedom relatedTé get quenched below
Ar= Z(_ 6A%-2A5+4A,), (A17) T,, while the remaining ones only below. <T,. Therefore
at very low temperature§<T_, we can safely assume that

1 T
AT =5 (641424, (A18) Toxs~ T-dxr~ 7~ 0,
L1 namerAs=A4=1. As a result we find that
—Z_oyl 0_ 440
Asr= 4( 2A7+2A5-4A)), (A19) A= At=1, (A22)
1 AJ=-3. A23
Adr==(- 241 - 24)9). (A20) 0 (A23)
4 Equation(A23) implies a strongly attractive-wave singlet
Let us consider several possib]e cases. channel. The other Landau parameters are thus given by
— 1— 40— 40
=A leading to
Ac=3A, Asr=1. (A25)

This further proves that the fixed point is equally unstable in
the sswave Cooper channdld, as well as in tha, TY, and

In the s-d limit, when the AIM maps onto a Si4) Kondo  ST?Z particle-hole channels. We finally notice that, although
model, the charge compressibility in negligible, leading tothe LandauA parameters would suggest that the susceptibili-

As= A@ =A7 = AQTZ Asr=—A.
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ties in the unstable channels, all of which correspond to non- _ 1T, +T.

conserved quantities, diverge asT1/in reality they only PPE_TT (A27)
diverge logarithmically®:141® This is not incompatible with .

Fermi-liquid theory, which allows us to express in terms Ofeven though the impurity DOS vanishes. In conclusion,
the A parameters only those response functions related t@ithin the pseudogap phase the Landau parameters have the

conserved quantities. following expression
Let us now use our model self-energy to extract some
additional information. Through E@45), we find that in the T, T.(T,-T)) (7 Laf(e) af(e') |
Kondo screened regime the expressi@i3) holds with a i = 2 T, +T02 |, dede Je ple) P p(€)
quasiparticle residue
1 Ao( 1 1) X 2 Faaydac%bﬁ(eﬂﬁ,e'—i5’;e’+i5',e+i5)
—=—\=—*t=. (AZG) cd;yd
Z 2\T, T _ _
X (M) YamD)pe, (A28)

IndeedZ~2T_/Ay;— 0 upon approaching the unstable fixed

point. In spite of the anomalous impurity Green’s function, the low-
On the contrary, the general expressi@il) has to be energy behavior should still be described within a local

used inside the non-Kondo screened pseudo-gap phaseermi-liquid scenario by finite Landau parametehss.

Through Eq.(44) for G_(ie,) we find that at low frequency Therefore, since the impurity DOS vanishes quadratically in

the pseudogap phase, then the scattering vertices must dis-

1 E(T,-T)? ; .
G(e+i6)G(e-i0) = —S——FH—7 — play a singular behavior
4AZ  T2T?
1
:ip (6)T+_T—_ I(e € ;€,6) ~ —,
20,7 T, T (e+€)
By Eq. (46) the quasiparticle DOS at the chemical potentialto compensate for the vanishing DOS’s and provide finite
turns out to be finite, A’s.
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