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We study by Wilson numerical renormalization group the spectral properties of a two-orbital Anderson
impurity model in the presence of an exchange splitting that follows either regular or inverted Hund’s rules.
The phase diagram contains a non-Fermi-liquid fixed point separating a screened phase, where conventional
Kondo effect occurs, from an unscreened one, where the exchange splitting takes care of quenching the
impurity degrees of freedom. On the Kondo screened side close to this fixed point the impurity density of states
shows a narrow Kondo peak on top of a broader resonance. This narrow peak transforms in the unscreened
phase into a narrow pseudogap inside the broad resonance. Right at the fixed point only the latter survives. The
fixed point is therefore identified by a jump of the density of states at the chemical potential. We also consider
the effect of several particle-hole symmetry-breaking terms. We show that particle-hole perturbations that
simply shift the orbital energies do not wash out the fixed point, unlike those perturbations that hybridize the
two orbitals. Consequently the density-of-state jump at the chemical potential remains finite even away from
particle-hole symmetry. In other words, the pseudogap stays pinned at the chemical potential, although it is
partially filled in. We also discuss the relevance of these results for lattice models that map onto this Anderson
impurity model in the limit of large lattice coordination. Upon approaching the Mott metal-insulator transition,
these lattice models necessarily enter a region with a local criticality that reflects the impurity non-Fermi-liquid
fixed point. However, unlike the impurity, the lattice can get rid of the single-impurity fixed-point instability by
spontaneously developing bulk coherent symmetry-broken phases, which we identify for different lattice
models.
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I. INTRODUCTION

Non-Fermi-liquid behavior may emerge in Anderson and
Kondo impurity models for two distinct reasons. The first
one is that, by construction, the conduction electrons may not
be able to perfectly screen the impurity degrees of freedom
for the Kondo effect. This is realized, for instance, in multi-
channel Kondo models.1

The alternative route towards non-Fermi-liquid behavior
is the presence of an intra-impurity mechanism that splits the
impurity degeneracy favoring a nondegenerate configuration.
The Kondo exchange takes advantage of letting the impurity
tunnel among all available electronic configurations. This
quantum tunneling is hampered by any term that splits the
degeneracy and tends to trap the impurity into a given state.
Therefore either the Kondo exchange overwhelms the intra-
impurity splitting mechanism or vice versa, which leads, re-
spectively, to a Kondo-screened phase or an unscreened
phase. When none of the two effects prevails, a nontrivial
behavior may appear. This is actually what happens in the
two S=1/2 impurity Kondo model in the presence of an
antiferromagnetic direct exchange between impurity spins.2,3

There it is known that, under particular circumstances,4 an
unstable non-Fermi-liquid fixed point separates the Kondo-
screened and unscreened regimes. Since this fixed point re-
quires fine tuning of the model parameters, it is tempting to
conclude that it is of little physical relevance. In reality a
similar competition may be at the heart of strongly correlated

electron lattice models. Here the kinetic energy profits by the
electrons hopping coherently through the whole lattice. In
contrast, the strong correlation tries to optimize on-site
(atomic) energetics, thus opposing the hopping. This may
involve two energy scales. The higher one is the so-called
HubbardU, which tends to suppress on-site valence fluctua-
tions. The lower one, let us call itJ, governs the splitting
among on-site electronic configurations at fixed charge. It
may be controlled by the exchange splitting, by the crystal
field, by local distortion modes, or even by short-range inter-
site correlations. When the lattice model is driven towards a
Mott metal-insulator transition(MIT ), either by increasingU
or by doping at largeU, it necessarily encounters a regime in
which the coherent quasiparticle bandwidthWqp is of the
same order asJ, which we expect is essentially unaffected by
U as it just determines the multiplet splitting at fixed charge.
Since coherent hopping tends to occupy more or less demo-
cratically all multiplets, it opposesJ. Out of this competition
interesting physical properties may emerge, just like in the
Anderson impurity models we discussed before. The analogy
between the impurity and the lattice models can be even put
on firm grounds in the limit of large coordination lattices
through dynamical mean field theory(DMFT).5 In that limit
it is possible to map the lattice model into an effective
Anderson impurity model (AIM ) subject to a self-
consistency condition that relates the impurity Green’s func-
tion to the hybridization with the conduction bath. The qua-
siparticle bandwidth of the lattice model transforms into the
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Kondo temperatureTK of the AIM. Since approaching the
MIT Wqp→0, the effective AIM is necessarily driven into
the regimeTK,J, where the competition among the two
screening mechanisms may result in anomalous physical
properties. Exactly this competition was invoked by Ref. 6 to
explain the appearance of a superconducting pocket, later
shown to have a hugely enhanced superconducting gap,7 just
before the MIT in a model for alkali-metal-doped fullerenes.

More recently we have demonstrated by Wilson numeri-
cal renormalization group and by bosonization that a twofold
orbitally degenerate AIM in the presence of inverted Hund’s
rules possesses a non-Fermi-liquid unstable fixed point simi-
lar to the two-impurity Kondo model one.8 Because of the
aforementioned reasons, any lattice model that maps by
DMFT into the same AIM should necessarily meet this fixed
point on the route towards a MIT. We argued that, unlike the
single-impurity model, those lattice models might spontane-
ously generate, by the DMFT self-consistency conditions, a
bulk order parameter to get rid of the single-impurity fixed-
point instability. Since the fixed point is unstable in different
particle-hole and particle-particle channels, there exist in
principle several competing bulk instabilities. We speculated
that, in the absence of nesting or band-structure singularities,
the most likely instability is towards superconductivity.
These predictions have been just recently confirmed on a
lattice model by a DMFT calculation.9 In this paper we pur-
sue the analysis of that AIM by uncovering the spectral be-
havior across the non-Fermi-liquid fixed point. This is not
only interesting of the AIM itself, being one of the few cases
where non-Fermi-liquid dynamical properties may be ac-
cessed, but also in the context of the DMFT mapping. The
model is also sufficiently simple to allow for an analytical
description of the spectral function that reproduces well the
numerical results and provides new physical insights. Actu-
ally our model spectral function has been quite useful in
guiding the analysis of the DMFT solution presented in Ref.
9.

The paper is organized as follows. In Sec. II we describe
the two-orbital AIM model. In Sec. III we introduce three
lattice models that map by DMFT onto the two-orbital AIM:
(a) a two-band Hubbard model withe^ E Jahn-Teller cou-
pling to local phonons;(b) a two-band Hubbard model in the
presence of single-ion anisotropy;(c) two coupled Hubbard
planes. In Sec. IV we review in more detail the Wilson nu-
merical renormalization group calculations of Ref. 8 and
present an analysis based on Fermi-liquid theory, which we
develop in the Appendix. The results concerning the dynami-
cal properties are presented in Sec. V. In Sec. VI we extract
from the numerical data an analytical expression of the im-
purity spectral function. The role of symmetry-breaking
terms in particle-hole channels is investigated in Sec. VII.
Conclusions are presented in Sec. VIII.

II. THE MODEL HAMILTONIAN

The AIM Hamiltonian we consider is

H = HU + HJ + Hc + Hhyb=
U

2
snd − 2 +nd2 + 2JfsTxd2 + sTyd2g

+ o
kaa

ekckaa
† ckaa + o

kaa

Vdsckaa
† daa + daa

† ckaad. s1d

Here ckaa
† creates a conduction electron in the banda=1,2

with momentumk, spin a, and energyek, measured with
respect to the chemical potential.daa

† is the creation operator
of an electron with spina in the impurity orbitala=1,2,
while nd=oaa daa

† daa is the impurity occupation number. We
have defined the orbital pseudospin operators

Ti =
1

2o
a

o
a=1,2

daa
† t ab

i dba, s2d

wherei =x,y,z andt i’s are the Pauli matrices in the orbital
space. We further assume that the conduction band density of
states is symmetric with respect to the chemical potential, set
equal to zero, so that the behavior of the Hamiltonian under
a particle-hole symmetry transformation is controlled by the
parametern in Eq. (1). For the time being we will taken
=0, which implies that the Hamiltonian is particle-hole sym-
metric. Afterwards we will release this constraint. The model
without the impurity exchange couplingJ is SUs4d invariant.
A finite J lowers the SUs4d symmetry down to SUs2dspin

3Os2dorbit. In this case the total charge, the total spin, and
the total z-component of the pseudospin are the only con-
served quantities.

It is convenient to start our analysis with the spectrum of
the isolated impurity, Vd=0. The impurity eigenstates,
un,S,Sz,T,Tzl, can be labeled by the occupation numbern,
the spinS, pseudospinT, and theirz components,Sz andTz,
respectively, with energies

Esn,S,Sz,T,Tzd =
U

2
sn − 2d2 + 2JfTsT + 1d − sTzd2g. s3d

We assumeU@ uJu, so that the impurity ground state with
n=0 hasn=2. In this case the only configurations allowed by
Pauli principle are a spin triplet pseudospin singlet,S=1 and
T=0,

u2,1, + 1,0,0l = d1↑
† d2↑

† u0l,

u2,1,0,0,0l =
1
Î2

sd1↑
† d2↓

† − d2↑
† d1↓

† du0l,

u2,1,− 1,0,0l = d1↓
† d2↓

† u0l, s4d

and a spin singlet pseudospin triplet,S=0 and T=1. The
latter is split byJ into a singlet withTz=0,

u2,0,0,1,0l =
1
Î2

sd1↑
† d2↓

† + d2↑
† d1↓

† du0l, s5d

and a doublet withTz= ±1,

u2,0,0,1, + 1l = d1↑
† d1↓

† u0l,
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u2,0,0,1,− 1l = d2↑
† d2↓

† u0l. s6d

If J.0, the lowest-energy configuration is the spin triplet,
S=1 and T=0, which corresponds to the conventional
Hund’s rules. In contrast, forJ,0, the isolated impurity
ground state is the singlet(5) with quantum numbersS=0,
T=1, andTz=0. We postpone to the following section a dis-
cussion about physical realization of such inverted Hund’s
rules.

A finite hybridization,VdÞ0, induces valence fluctuations
within the impurity, which are controlled by the energy scale
(hybridization width)

D0 = p Vd
2 rc, s7d

with rc the conduction electron density of states(DOS) at the
chemical potential per spin and band. These fluctuations are
suppressed by a strong repulsionU@D0, which we assume
throughout this work. Although all our calculations refer to
the AIM (1), it is more insightful to discuss some physical
properties in terms of the effective Kondo model which de-
scribes the low-energy behavior whenU@D0:

Hef f = HJ + Hc + HK, s8d

whereHJ andHc have been defined in Eq.(1) and the Kondo
exchange

HK = JKFSW ·SW + TW ·TW + 4 o
i,j=x,y,z

Wij Wi jG , s9d

with

JK = 2Vd
2/U. s10d

HereSW, defined by

SW =
1

2o
a

o
ab

daa
† sW ab dab,

TW , which we introduced in Eq.(2), andWij ,

Wij =
1

4o
ab

o
ab

daa
† t ab

i s ab
j dbb,

are impurity spin, pseudospin, and spin-orbital operators, re-

spectively, whileSW , TW , andWi j are the corresponding con-
duction electron density operators at the impurity site. The
impurity operators in Eq.(9) act only in the subspace with
two electrons occupying thed orbitals, which, as we showed,
includes six states. The Kondo model(8) contains two com-
peting mechanisms that tend to freeze the leftover impurity
degrees of freedom:(i) the Kondo exchange, with its associ-
ated energy scale, the Kondo temperatureTK; (ii ) the intra-
impurity exchange splittingJ. As we already mentioned, the
Kondo exchange(9) gains energy by letting the impurity
tunnel coherently among all available six configurations, but
it is hampered byJ, which instead tends to trap the impurity
into a well-defined state.

If J@TK.0, the positive exchange splitting dominates
and the impurity is essentially frozen into the lowest-energy
spin-triplet configuration. The Kondo exchange projected

onto the triplet subspace(4) is simplyHK=JKSW ·SW , describing

a standardS=1 two-channel Kondo effect. This is known to
be perfectly screened at low energy,1,10 yielding a scattering
phase shiftd=p /2 in each spin and orbital channel.

In contrast, ifJ!−TK,0, the impurity gets trapped in the
S=0, T=1, andTz=0 configuration(5). Since Eq.(5) is non-
degenerate, the Kondo exchange is ineffective, so that as-
ymptotically the impurity decouples from the conduction
bath. This implies a low-energy phase shiftd=0. The main
question that we try to address is how the model moves
across the two limiting cases.

As it was pointed out in Ref. 8, this behavior is parallel to
the two S=1/2 impurity Kondo model(2IKM ) in the pres-
ence of a direct exchange between the impurity spins2–4. In
that case, if the two spins are strongly ferromagnetically
coupled, the model reduces to anS=1 two-channel Kondo
model, while, if they are strongly antiferromagnetically
coupled, the two spins bind together into a singlet and de-
couple from the conduction electrons, exactly as in our
model. The two channels correspond in the 2IKM to the
symmetric and antisymmetric combinations of the even and
odd scattering channels with respect to the midpoint between
the impurities. It was demonstrated in Ref. 4 that, provided a
peculiar particle-hole symmetry holds, the non-Fermi-liquid
unstable fixed point(UFP) found in Ref. 2 separates the
Kondo-screened and unscreened regimes. In particular it was
shown that while a particle-hole symmetry-breaking term

dHp-h = − mdo
aa

daa
† daa − o

k,aa

m k ckaa
† ckaa, s11d

does not wash out the UFP, the latter is instead destabilized
by the perturbation

dHrel = − hdo
a

d1a
† d2a + H.c. −o

k,a
hk ck1a

† ck2a + H.c.

s12d

Translated into our two-orbital language, the dangerous sym-
metry that needs to be preserved is just the Os2dorbit orbital
symmetry. Therefore, unlike in the 2IKM, where the two
scattering channels are generically not degenerate, in our
case the instability towards Os2dorbit symmetry breaking does
correspond to a physical instability. Hence, if orbital symme-
try is unbroken, we do expect to find an UFP in our model,
with similar properties as in the 2IKM. We notice that, in
spite of the analogies, our model has a larger impurity Hil-
bert space than the 2IKM. In fact theS=0, T=1, andTz

= ±1 doublet of Eq.(6) is absent in the 2IKM, where it
would correspond to doubly occupied impurities(the labels 1
and 2 for thed orbitals translate in the 2IKM into the two
one-orbital impurities). Yet we can perturb our Hamiltonian
by adding toH of Eq. (1) the term

HG = G sTzd2, s13d

with G.0, which raises the energy of the doublet. IfG
@TK, the doublet effectively decouples from the low-energy
sector, and our model should become equivalent to the
2IKM. In Sec. IV we show that indeed by increasingG our
UFP smoothly transforms into the 2IKM one.
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III. PHYSICAL REALIZATIONS

As we emphasized in the Introduction, our interest in
model(1) plus eventually Eq.(13) is mainly motivated by its
possible relevance for lattice models. In reality a formal cor-
respondence between single-impurity and lattice models
holds strictly only in the limit of large lattice coordination.
Nevertheless we believe that this correspondence, at least
close to a Mott transition, may remain valid even beyond that
limit, making the single-impurity analysis of much broader
interest. Therefore, although inversion of Hund’s rules may
indeed occur in realistic AIM’s or in artificially designed
quantum dot devices, here we rather focus on lattice models
that map within DMFT into our AIM.

A. Two-band Hubbard model in the presence of ane‹E
Jahn-Teller coupling

Let us start by considering a two-band Hubbard model in
which each site undergoes Jahn-Teller coupling to a doubly
degenerate phonon. The Hamiltonian reads

H = −
t

Îz
o
a=1

2

o
s

o
ki j l

scais
† cajs + H.c.d+

U

2 o
i

sni − 2d2

+ 2JHo
i

fsTi
xd2 + sTi

yd2g+
v0

2 o
i

o
a=x,y

sqia
2 + pia

2 d

− go
i

sqix Ti
x + qiy Ti

yd. s14d

Here −t /Îz is the hopping matrix element between one site
and itsz neighbors andJH.0 is a conventional Hund’s ex-
change.qix and qiy are the phonon coordinates at sitei, pix
and piy their conjugate momenta,v0 the phonon frequency,
and g the Jahn-Teller coupling. The latter gives rise to a
retarded electron-electron interaction whose Fourier trans-
form is

g2o
i

v0

v2 − v0
2fTi

xsvdTi
xs− vd + Ti

ysvdTi
ys− vdg.

If the phonon frequencyv0 is much larger than the quasipar-
ticle bandwidth, we can safely neglect thev dependence at
low energy, so that the phonon-mediated interaction becomes
unretarded and given by

−
g2

v0
o

i

fsTi
xd2 + sTi

yd2g.

Within DMFT the Hamiltonian maps in the large-z limit onto
the same AIM model as in Eq.(1) with

J = JH −
g2

2v0
, s15d

which may be either positive or negative. The case withJ,0
as well as the starting model realistically including phonons
has been recently studied by DMFT.9,11

B. Two-band Hubbard model with single-ion anisotropy

Another realization that may also be physically relevant is
the following lattice model:

H = −
t

Îz
o
a=1

2

o
s

o
ki j l

scais
† cajs + H.c.d +

U

2 o
i

sni − 2d2

− 2JH o
i

SW i ·SW i + Do
i

sSi
zd2. s16d

For JH.0 andDÞ0 this model describes a two-band Hub-
bard model with conventional Hund’s rules, favoring a spin-
triplet two-electron configuration, in the presence of a single-
ion anisotropy that splits the spin triplet into a singlet with
Sz=0 and a doublet withSz= ±1. If D.0, theSz=0 configu-

ration is favored. Upon interchangingSW ↔TW , this model
maps in thez→` limit onto Eq. (1) with

J = − JH, G = D − 2JH. s17d

C. Two coupled Hubbard planes

Finally let us consider two coupled single-band Hubbard
planes described by the Hamiltonian

H = −
t

Îz
o
a=1

2

o
s

o
ki j l

scais
† cajs + H.c.d +

U

2 o
a,i

snai − 1d2

+ o
i

JSW1i ·SW2i + Vsn1i − 1dsn2i − 1d, s18d

wherea=1,2 labels the two planes and −t /Îz is the in-plane
hopping between one site and itsz neighbors. In the limitz
→`, this model maps by DMFT onto an AIM self-
consistently coupled to a bath.5 The relations between the
interaction parameters of the AIM, Eq.(1) plus Eq.(13), and
those of Eq.(18) are given in Table I.

In reality it is more interesting to consider the model(18)
with J=V=0 but in the presence of an interplane hopping

− t'o
is

sc1is
† c2is + H.c.d. s19d

In the limit of large lattice coordination, this model maps
close to the MIT onto a two-orbital AIM with an hybridiza-
tion width at the chemical potential much smaller thanU.
Since by Table IG=U, we can safely project out of the
low-energy subspace the doublet(6). The effective AIM
within the impurity subspace that includes the singlet(5) and
the spin triplet is

HAIM = Hc + JKsSW1 + SW2d ·SW+ J SW1 ·SW2 + JK
t'

U
T x, s20d

whereHc andJK have been defined in Eqs.(1) and (10), SW1

andSW2 are the impurity spin operators for the singly occupied

TABLE I. Mapping between the AIM interaction parameters and
the two Hubbard plane parameters.

AIM Two Hubbard planes

U 1
2sU+Vd− 1

8J

J −1
4J

G U−V+ 1
4J

LORENZO DE LEO AND MICHELE FABRIZIO PHYSICAL REVIEW B69, 245114(2004)

245114-4



orbitals 1 and 2, whileSW and T x are, respectively, the
conduction-electron spin-density operator andx component

of the pseudospin density operator,TW , at the impurity site.
The impurity antiferromagnetic exchange,J=4t '

2 /U, lowers
the energy of the singlet(5) with respect to the spin triplet.
ThereforeJ alone might induce an UFP within the phase
diagram, just like in our model as well as in the 2IKM.
However t' also introduces aT x scattering potential at the
impurity site, the last term on the right-hand side of Eq.(20),
which is known to be relevant at the UFP. In this respectt'

plays an intriguing role: on one hand it provides a mecha-
nism, the antiferromagnetic exchangeJ, able to stabilize a
nontrivial fixed point, but, in the meantime, it also prevents
the fixed point from being reachable. Yet we might wonder
whether the critical region around the UFP is completely or
only partially washed out. In the latter case we should expect
that the physics of the lattice model close to the MIT is still
influenced by the UFP, with interesting consequences. We
will come back to this issue in Sec. VII.

IV. NUMERICAL RENORMALIZATION GROUP RESULTS

To study the AIM (1) we used the Wilson numerical
renormalization group(NRG) method.12 This technique is
known to provide a detailed description of the low-energy
behavior, thus allowing a faithful characterization of the
fixed points as well as of their stability domain. In addition,
dynamical properties are also accessible by NRG, which, as
we are going to show, are of notable interest.

Within NRG the conduction band is logarithmically dis-
cretized and mapped onto a one-dimensional chain with
nearest neighbor hopping integrals that decrease exponen-
tially along the chain. The Hamiltonian of a chain withN
+1 sites is defined by

HN = LsN−1d/2Ho
n=0

N−1

L−n/2jnscnaa
† csn+1daa + csn+1daa

† cnaad

+ D̃0
1/2sc0aa

† daa + daa
† c0aad +

Ũ

2
snd − 2d2

+ 2J̃fsTxd2 + sTyd2gJ . s21d

Here Ũ=CL U, J̃=CL J, D̃0=CL
2 s2D0/pd, [see Eq. (7)],

whereCL=s2L /1+Ld and all energies are measured in units
of half the conduction bandwidth. The rescaling factor
LsN−1d/2 at the beginning of Eq.(21) keeps the lowest-energy
scale in HN of order one at each iteration. The original
Hamiltonian is recovered in the limit of infinite chain length:

H = lim
N→`

CL
−1L−sN−1d/2HN. s22d

The sizeN of the chain determines the infrared cutoff, e.g.,
the temperatureT, on a logarithmic scalesT,L−N/2d. The
method essentially consists of diagonalizing the model on a
finite size chain, e.g.,N, and iteratively increasing the size by
one site, fromN to N+1, keeping only the low-energy part of

theN-site spectrum.(In our calculations we typically kept up
to the lowest 2000 states, not counting degeneracies, and
usedL between 2 and 3. We did check that these numbers
are sufficient to get accurate results.)

We restrict our analysis to large values ofU, where va-
lence fluctuations on the impurity are substantially sup-
pressed. Here, as we discussed, the AIM effectively behaves
like the Kondo model(8). We fix bothU andD and span the
phase space by varying the exchange parameterJ.

A. Low-energy spectrum at the fixed points

First of all we identify the fixed points by analyzing the
low-energy spectra(with N typically up to one hundred).
Since the conventional size dependence of the level spacing
is absorbed by the factorLsN−1d/2 in Eq. (21), the low-lying
energy levels flow to constant values whenever the model is
close to a fixed point. Figure 1 shows that there are two
different asymptotic regimes separated by a critical value
J* ,0. In order to facilitate the interpretation of that figure,
we recall that the ground state of a particle-hole symmetric
free chain withN+1 sites is unique ifN is odd and degen-
erate ifN is even.

For J.J* the low-energy spectrum of a chain withodd
number,N+1, of sites flows towards that of a free chain with
anevennumber of sites and vice versa. This is evident in the
right panel of Fig. 1 where the ground state of the chain with
oddN becomes asymptotically degenerate as for a chain with
even N. Apart from the ground-state degeneracy, also the
low-lying spectrum, i.e., degeneracy and quantum numbers
of the levels as well as the level spacings, coincides with that
of a free chain. As usual, this is as if the first site of the chain
were locked to form a spin and orbital singlet configuration
with the impurity, hence becoming unaccessible to the con-
duction electrons that thus acquire ap /2 phase shift per
conduction channel. It is a conventional Kondo-screened
phase.

For J,J* the situation is reversed: the low-energy spec-
trum of an odd(even) chain flows to that of an odd(even)

FIG. 1. Lowest-energy levels versus the chain sizeN. The right/
left panels correspond to a deviationdJ/J* = ±4·10−3 from the fixed
point value J* . The levels are labeled by the quantum numbers
sQ,Tz,Sd, whereQ is one-half of the added charge with respect to
the ground-state value.
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free chain. Indeed, as shown in the left panel of Fig. 1, the
ground state withN odd remains nondegenerate for largeN.
This case corresponds to an unscreened phase with the im-
purity asymptotically decoupled from the conduction bath.
The phase shift is consequentlyd=0.

Between the Kondo screened and unscreened phases we
do find a nontrivial fixed point, as is visible in the interme-
diate crossover region of the spectrum(see Fig. 1.) The pe-
culiar non-Fermi-liquid character of this intermediate cou-
pling UFP is evident by the nonuniform spacing of the low-
energy levels. A careful analysis of the UFP spectrum reveals
that it is just the same as that found in the particle-hole-
symmetric 2IKM.4 In Table II we compare the energiesE of
the lowest-lying levels of the Wilson chain at the UFP, as
obtained by NRG, with the predictionx of conformal field
theory for the 2IKM.4 The agreement is proof that the UFP is
indeed the same in both models.

B. Impurity properties at the UFP

Additional information are provided by the average val-

ues of the impurity spin,kSW ·SWl, pseudospin,kTW ·TW l, and itsz
component,ksTzd2l. By symmetry, the impurity density ma-
trix is diagonal in the six two-electron configurations. The
diagonal elements represent the occupation probabilities
PsS,Sz,T,Tzd of states with quantum numbersS, Sz, T and
Tz. In the large-U limit, where impurity configurations with
nÞ2 have negligible weight, we can write

Ps0,0,1,0d = cos2u,

Ps0,0,1, + 1d = Ps0,0,1,− 1d =
1

2
sin2u sin2f,

Ps1, + 1,0,0d = Ps1,0,0,0d = Ps1,− 1,0,0d =
1

3
sin2u cos2f,

s23d

from which we derive

kSW ·SWl = 2 sin2u cos2f,

kTW ·TW l = 2scos2u + sin2u sin2fd,

ksTzd2l=sin2u sin2f. s24d

In Fig. 2 we plot the anglesu andf as obtained through Eqs.
(24) by the numerically calculated average values. The UFP
is characterized byu=f=p /4, namely, by the value 1/2 of
the occupation probability of the singlet state(5). The precise
value of the other occupation probabilities, in other words, of
f, are instead not relevant, apart from the obvious fact that
their sum should be 1/2 too. In fact, if we add the term(13)
with G.0, we do find the same UFP, the locations of which
now depends also onG, which is still identified by
Ps0,0,1,0d=1/2, i.e. u=p /4, although the weight of the
spin triplet is enhanced with respect to the doublet(6),
f,p /4. For largeG we do recover the 2IKM valuesu
=p /4 andf=0 (see Fig. 3).

C. Approach to the fixed points

As we said the low-energy spectrum both in the Kondo-
screened and unscreened phases flows to that of a free chain,
with one less site in the former case. The flow towards the
asymptotic spectrum can be described by a free chain in the
presence of a local perturbation term12 acting on the first
available site, denoted as site 0, of the conduction chain,
which is actually the second site in the Kondo-screened

TABLE II. EnergiesE of the low-energy levels and their degen-
eracysDeg.d at the unstable fixed point. The levels are labeled by
the quantum numbersQ, half of the deviation of the number of
electrons with respect to the ground state,S, total spin, andTz, total
z component of the pseudospin. The valuex is the prediction of
conformal field theory for the two-impurity Kondo model(Ref. 4).
Notice the anomaly of the member within thes1/2,1/2,1/2d mul-
tiplets identified by an asterisk, which was also found in Ref. 4.
There an explanation for the discrepancy was proposed.

Q Tz S x E Deg.

0 0 0 0 0.00000 1
1
2

1
2

1
2

3
8 0.37260 8

0 0 1 1
2 0.49615 3

0 1 0 1
2 0.49583 2

1 0 0 1
2 0.49631 2

1
2

1
2

1
2

7
8 0.88021 8

0 0 0 1 0.99714 1

1.00216 1

1.00311 1

0 0 1 1 1.00279 3

0 1 1 1 1.00248 6

1 0 1 1 1.00295 6

1 1 0 1 1.00264 4
1
2

1
2

1
2 1+ 3

8 1.38880 8

1.38945 8

1.51556* 8
1
2

1
2

3
2 1+ 3

8 1.38924 16
1
2

3
2

1
2 1+ 3

8 1.38859 8
3
2

1
2

1
2 1+ 3

8 1.38957 8

0 0 0 1+ 1
2 1.55944 1

0 0 1 1+ 1
2 1.50195 3

1.55863 3

1.55983 3

1.60582 3

0 1 0 1+ 1
2 1.50141 2

1.55943 2

1.60467 2

0 1 1 1+ 1
2 1.55904 6

1 0 0 1+ 1
2 1.50222 2

1.55883 2

1.60636 2

1 0 1 1+ 1
2 1.55964 6

1 1 1 1+ 1
2 1.55923 12
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phase. By symmetry considerations this local term can be in
general written as

dH* = − t*o
aa

sc0aa
† c1aa + H.c.d +

U*

2
sn0 − 2d2 + JS*SW 0 ·SW 0

+ JT*TW0 ·TW0 − 2sJS* + JT*dsT 0
zd2. s25d

We choose this particular form because it has the advantage
that the energy of the center of gravity of each multiplet with
given chargen0 is just U*sn0−2d2/2. Upon approaching the
UFP on both sides, we find thatU* ,JS* =g→ +`, JT* ,
−5g→−`, andt* ,3g /8→ +`. The behavior oft* implies a
divergence of the impurity contribution to the specific heat
coefficient. Namely, ifdCV is the variation of the specific
heat with respect to its valueCV in the absence of the impu-
rity, then

dCV

CV
, rc t* → `.

In reality, it is more convenient to analyze the NRG re-
sults by invoking the Fermi-liquid theory, which we present

in the Appendix. Through NRG, one can calculate the Wil-
son ratios related to the conserved quantities,12 namely, the

total charge, spin, andz component ofTW . If dxi is the varia-
tion of the susceptibility with respect to the valuexi without
the impurity, wherexi =xC,xS,andxT

uu are the charge, spin,
andTz susceptibilities, then the Wilson ratiosRi are defined
through

Ri =
dxi

xi

CV

dCV
.

On the other hand, Fermi-liquid theory implies also that

Ri = 1 −Ai , s26d

whereAi is the dimensionless quasiparticle scattering ampli-
tude in channeli defined in Eq.(A11) through the scattering
vertex at low incoming and outgoing frequencies and the
quasiparticle density of states at the chemical potential,[see
Eq. (A8)]. In general, we can introduce a scattering ampli-
tude for each particle-hole and particle-particle channel. In
particular, besidesAC, AS, andAT

uu, we consider the particle-
hole scattering amplitudes in theTx channel, which is degen-
erate with theTy channel,AT

', as well as in the spin orbital

channelsSWTz, AST
uu , andSWTxsyd, AST

' . In addition we introduce
the amplitudes in the particle-particle channels, namelyA1 in
the spin-triplet orbital-singlet Cooper channel andA0

0 andA±
0

in the spin-singlet orbital-triplet channels withTz=0 and
Tz= ±1, respectively. As shown in the Appendix, all particle-
hole scattering amplitudes can be expressed through the
particle-particle amplitudes:

AC =
1

4
s6A1 + 2A0

0 + 4A±
0d, s27d

AS=
1

4
s2A1 − 2A0

0 − 4A±
0d, s28d

AT
uu =

1

4
s− 6A1 − 2A0

0 + 4A±
0d, s29d

AT
' =

1

4
s− 6A1 + 2A0

0d, s30d

AST
uu =

1

4
s− 2A1 + 2A0

0 − 4A±
0d, s31d

AST
' =

1

4
s− 2A1 − 2A0

0d. s32d

Since we are able to calculate by NRG the three Wilson
ratiosRC, which is zero in the Kondo limit,RS, andRT

uu, we
can also determine the three unknown particle-particle scat-
tering amplitudes through Eqs.(26)–(29), which we plot in
Fig. 4.

The first thing to notice is that approaching the UFP,

FIG. 2. (Color online) The anglesu and f as defined through
Eq. (24). Notice that the fixed point is identified byu=f=p /4.

FIG. 3. (Color online) The UFP values ofu andf along the path
parametrized by the couplingG from our model to the 2IKM
model.
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A0
0 . AT

' . AST
uu . − 3,

while all the otherAi’s tend to 1, implying vanishing Wilson
ratios. The fixed point seems therefore to display a large
hidden symmetry, actually a SO(7) as identified by Ref. 4.
The UFP is equally unstable in thes-wave Cooper channel
with S=0, T=1, andTz=0, as well as in the particle-hole
Txsyd andSWTz channels.8,13 All of them correspond to physi-
cal instabilities as we anticipated, unlike what happens in the
2IKM. In contrast any external field in the other channels do
not spoil the UFP, in particular, in the charge, spin, andTz

particle-hole channels, which refer to conserved quantities.
The physics around and right at the UFP has been re-

vealed by conformal field theory and bosonization.3,4,8,14,15

Due to the existence of two energy scales, the Kondo tem-
peratureTK and the exchange splittingJ, the quenching of
the impurity degrees of freedom takes place in two steps.
First, around an energy scaleT+,maxsTK , uJud, most of the
ln 6 entropy of the two-electron impurity multiplets is re-
moved, leaving behind a residual entropy lnÎ2, which gets
quenched only below a lower energy scaleT−,1/g. The
latter depends quadratically upon the deviation from the
UFP, namelyT−,uJ−J* u2/T+. The entropy has a low energy
linear behavior,SsTd,T/T−, followed aboveT− by another
linear one,SsTd−lnÎ2,T/T+.4,15 At the fixed point,T−=0,
there is a finite residual entropySs0d=lnÎ2 andSsTd−Ss0d
,T/T+. A perturbation in any of the relevant channels
washes out the fixed point, cutting off the infrared singulari-
ties close to the UFP on an energy scale that depends qua-
dratically upon the strength of the perturbation. In Sec. VII
we analyse more explicitly the stability or instability of the
UFP towards symmetry-breaking fields in particle-hole chan-
nels.

D. Influences of the single-impurity behavior
in a DMFT calculation

Let us now instead discuss the above results in connection
with DMFT. Suppose there is a lattice model that maps in the

limit of large lattice coordination onto the AIM(1) with
J,0. If the model is driven towards a Mott metal-insulator
transition, the effective AIM is necessarily pushed into a re-
gime in whichTK,uJu, namely, in the critical region around
the UFP. As shown in Fig. 4, thes-wave scattering amplitude
A0

0 as well as the equally relevantAT
' and AST

uu are strongly
attractive in an entire interval around the UFP. This suggests
that the impurity fixed-point instability might transform by
DMFT self-consistency into a whole pocket where the model
generates spontaneously a bulk symmetry-breaking order pa-
rameter along one of the relevant channels. As we argued in
Ref. 8, if nesting or Van Hove singularities are absent, it is
most probable that the dominant instability will occur in the
Cooper channel, the only one which is singular in any di-
mensions and for any band structure with a finite quasiparti-
cle density of states at the chemical potential. This has been
indeed confirmed by very recent DMFT calculations in Refs.
9 and 11.

The other interesting observation is that in the conven-
tional Hund’s regime, the Kondo-screened phase withJ.0,
an attraction in the spin-tripletT=0 channel develops,
A1,0. In realistic lattice models that map onto the AIM
with J.0 in the limit of large lattice coordination, spin-
triplet superconductivity would compete with bulk magne-
tism. Yet, if magnetism is frustrated, spin-triplet supercon-
ductivity might emerge. In particular, since increasing the
HubbardU in the lattice model implies decreasingTK in the
AIM, which is the same as increasing the effective strength
of J.0, we should expect that spin-triplet superconductivity
is enhanced near the MIT. This has been recently observed
by DMFT.11 However, the enhancement of the spin-triplet
amplitude is not as dramatic as for the spin-singlet amplitude
near the UFP atJ,0. This situation would change in the
presence of a single-ion anisotropy that favors, e.g., spin-
triplet pairing with Sz=0 [see the model, Eq.(16)]. As we
showed, this model is equivalent to Eq.(1) upon interchang-

ing the role ofTW with SW. This suggests that the lattice model
that maps by DMFT onto Eq.(16) with D.0 would still
enter a local critical regime before the MIT. Here the ten-
dency towards spontaneous generation of a bulk order pa-
rameter should be dramatically enhanced in the particle-hole

channelsSx, Sy, andTWSz as well as in the spin-triplet Cooper
channel withSz=0: c1↑

† c2↓
† −c2↑

† c1↓
† .

V. IMPURITY SPECTRAL FUNCTION

The impurity DOS,rsed, is defined through

rsed = −
1

2p
lim
h→0

fGse + ihd − Gse − ihdg, s33d

whereGsiend is the impurity Green’s function in Matsubara
frequencies, which, by symmetry, is diagonal in spin and
orbital indices, and independent of them. In general,

Gsiend−1 = ien − Dsiend − Ssiend = G0siend−1 − Ssiend,

s34d

whereG0siend is the noninteracting,U=J=0, Green’s func-
tion,

FIG. 4. (Color online) The scattering amplitudes in the various
particle-particle channels as a function ofJ measured in units of the
UFPJ* . Notice the agreement with the values predicted by general
arguments presented in the Appendix at the UFP,J/ uJ* u=−1, at the
SUs4d point, J/ uJ* u=0, and in the limit of theS=1 two-channel
Kondo model,J/ uJ* u@1.
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Dsiend = Vd
2o

k

1

ien − ek
s35d

is the hybridization function, andSsiend the impurity self-
energy. Let us follow the behavior of the DOS as the inter-
action is switched on. We will imagine increasing slowly
bothU anduJu at fixedU / uJu@1 with J,0. WhenU is small,
one can show by perturbation theory that

ImSsed , e2,

which is the standard result that the quasiparticle decay rate
vanishes faster than the frequency. Therefore at the chemical
potential,e=0, the impurity DOS is not affected by a weak
interaction, since

rs0d = −
1

p
lim
h→0

Im Gs0 + ihd = −
1

p
lim
h→0

Im G0s0 + ihd

=
1

pD0
= r0, s36d

whereD0=−Im Ds0+ihd was introduced in Eq.(7), andr0

denotes the noninteracting DOS at the chemical potential. In
a single-orbital AIM, the above result remains valid even
when the interaction is very large. In our case we may expect
that something nontrivial should instead occur. Indeed, upon
increasingU, the AIM enters the Kondo regime, with a
Kondo temperature exponentially decreasing withU. There-
fore at some criticalUc, whenTK,uJu, the AIM has to cross
the non-Fermi-liquid UFP. Namely the UFP of our AIM can
also be attained by increasing the interaction strength, signal-
ing a breakdown of the conventional perturbation theory. We
now discuss how this criticality shows up in the spectral
properties.

The impurity DOS can be obtained by NRG by directly
evaluating the spectral function

Aaasvd =
1

Z
o
m,n

zmudaa
† unlz2d„v − sEn − Emd…se−bEn + e−bEmd.

s37d

For any finite chainAsvd is a discrete sum ofd peaks. A
smooth DOS is obtained by broadening the peaks, which we
do following Ref. 16 through the transformation

dsv − vnmd → e−b2/4

b vnm
Îp

expF−
sln v − ln vnmd2

b2 G ,

s38d

wherevnm=En−Em andb=0.55 forL=2.
In Fig. 5 we show the outcome of the numerical calcula-

tion. On the Kondo-screened side of the UFP, the DOS
shows a narrow Kondo-resonance on top of a broader one.
The height at the chemical potential isrs0d=r0, as expected
in a Kondo-screened phase. In contrast, in the unscreened
side of the UFP, the narrow peak transforms into a narrow
pseudogap within the broad resonance. Numerically we find
that rsed,e2. As discussed before, this implies that the con-
ventional behavior ImSsed,e2 breaks down across the UFP.
Exactly at the fixed point, both the narrow peak and the

pseudogap disappear, leaving aside only the broad resonance.
The calculated DOS at the chemical potential seems to be
half of its noninteracting value(see Fig. 5). In other words,
our numerical results point to a DOS at the chemical poten-
tial that jumps across the UFP, beingrs0d=r0 everywhere in
the Kondo-screened phase,rs0d=0 in the unscreened one,
andrs0d=r0/2 right at the UFP.

VI. MODELING THE IMPURITY DENSITY OF STATES

It is possible to infer an analytical expression of the im-
purity DOS. First of all we notice that the values at the
chemical potential in the screened and in the unscreened
Kondo regimes are compatible with general scattering
theory. In both phases the impurity has disappeared at low
energy, either because it has been absorbed by the conduc-
tion sea or becauseJ has taken care of quenching the impu-
rity spin and orbital degrees of freedom. This in turns means
that what remains at low energy is just a potential scattering
experienced by the conduction electrons plus a local
electron-electron interaction term. The on-shellS-matrix at
the chemical potential has, in general, elastic and inelastic
contributions (see Ref. 17). At zero temperature only the
former survives. Since we considered justs-wave scattering,
the elastic component of theS matrix is given by

Ss0d = 1 − 2pircTs0d = 1 − 2pD0rs0d, s39d

where rc is the conduction electron DOS at the chemical
potential per spin and band, and theT matrix is defined
through the conduction electron Green’s functionG by

FIG. 5. (Color online) Impurity DOS in the presence of particle-
hole symmetry across the fixed point. The temperature is set by the
length of the chain; it is practically zero. In the upper panel we draw
the DOS’s well inside the Kondo screened phasesJ/J* =0d and the
unscreened phasesJ/J* =5.75d. Here U=2, D0=U / s6pd, and J*

turns out to be.−0.0035, all in units of half the conduction band-
width. Notice the narrow peak, which transforms into a narrow
pseudogap. In the lower panel we show in more detail the behavior
of the low-energy DOS across the UFP.(From top to bottom,
J/J* =0,0.859,0.945,0.988,1.002,1.031,1.146.)
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G = G0 + G0 T G0.

On the other hand, theS matrix is related to the scattering
phase shift by

Ss0d = e2ids0d. s40d

In the Kondo-screened phase, we know thatds0d=p /2,
which, through Eqs.(40) and (39), implies rs0d=1/pD0,
namely its noninteracting valuer0. On the other hand, in the
unscreened regimeds0d=0 and hencers0d=0, as we indeed
find. It has been proposed that at the non-Fermi-liquid fixed
point of the overscreenedS=1/2 two-channel Kondo model
the S matrix is instead purely inelastic3,18,19. That would im-
ply a vanishing elastic contribution,Ss0d=0 in Eq.(39), and
in turn a DOS at the UFP,

rs0d =
1

2pD0
=

1

2
r0, s41d

which is indeed compatible with our numerical results.20 Yet
there is a difference between the UFP of our model, equiva-
lently of the 2IKM, and the non-Fermi-liquid fixed point of
theS=1/2 two-channel Kondo model. While in the latter the
specific heat has a singular temperature behavior right at the
UFP, in our model it has a conventional linear behavior. The
above observation suggests the following simple analytical
expression of the low-energy impurity DOS:

r±sed =
r0

2
S T+

2

e2 + T+
2 ±

T−
2

e2 + T−
2D , s42d

where the plus sign refers to the Kondo-screened phase and
the minus to the unscreened one. The two energy scales have
the same meaning as in the preceding section. In particular,
T− controls the deviations from the UFP, so that right at the
UFP, whenT−=0, the DOS is

r*sed =
r0

2

T+
2

e 2 + T+
2 . s43d

The model DOS(42) also implies a model impurity Green’s
function in Matsubara frequencies:

G±siend =
1

2D0
S T+

ien + iT+ sgnen
±

T−

ien + iT− sgnen
D .

s44d

The fixed point Green’s function,G*siend, is identified by
T−=0. The impurity self-energy can then be extracted by the
relation

S±siend = ien + iD0 sgnen − G±siend−1.

In particular, at low frequency we find that

ien − S+siend . ien
D0

2
S 1

T+
+

1

T−
D , s45d

in the Kondo-screened phase, hence a standard linear behav-
ior. In contrast, in the unscreened regime the self-energy is
singular:

ien − S−siend . −
1

ien

2D0T+T−

T+ − T−
. s46d

Finally, at the fixed point the self-energy is finite at zero
frequency, being given by

ien − S*siend = iD0
T+ + 2en

T+
. s47d

We have checked that the model self-energy gives indeed a
good representation of the actual numerical results. In Fig. 6
we draw the fit values ofT+ andT− around the UFP.

We can further test the consistency of the approach by
invoking the scattering theory, which, by Friedel’s sum rule,
allows us to identify the scattering phase shifts through

dsed = Im ln Gse + i0+d. s48d

By means of our ansatz for the impurity Green’s function
(44) we readily find that the expression of the low-energy
phase shifts is

d+sed .
p

2
+

e

2
S 1

T+
+

1

T−
D ;

p

2
+ a+e s49d

within the Kondo-screened regime, and

d−sed . e S 1

T+
+

1

T−
D ; a−e, s50d

in the pseudogap unscreened phase, consistent with our start-
ing assumption. Moreover, by the energy dependence of the
phase shifts, we can calculate the impurity correction to the
specific heat:

dCV

CV
=

a±

prc
. s51d

FIG. 6. (Color online) Fit values ofT+ andT− close to the UFP.
The lines are quadratic fits,T−=AsdJd2. The Hamiltonian param-
eters have the same values as in Fig. 5.
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VII. PARTICLE-HOLE SYMMETRY-BREAKING TERMS

In this section we analyze more in detail various
symmetry-breaking terms in the particle-hole channel. In
particular we are going to consider the three following per-
turbations to the original Hamiltonian(1) with n=0:

dHp−h = n U nd ;
hp−h

2
nd, s52d

dHz = hz Tz, s53d

dHx = hx Tx. s54d

The term(52) breaks particle-hole symmetry trying to oc-
cupy the impurity with 2−n electrons instead of two[see Eq.
(1)]. The other terms(53) and (54) split the orbital degen-
eracy. It is convenient to decompose the orbital O(2) sym-
metry into the continuous U(1) symmetry related to proper
rotations around thez axis, and a discreteZ2, corresponding
to interchanging the two orbitals. ThendHz breaks the orbital
Z2 while dHx breaks the orbital U(1). Among them, only the
latter,dHx, is predicted to be relevant and wash out the fixed
point, at least according to bosonization.8 Actually this looks
a bit strange if one invokes naively the argument of Ref. 4 to
demonstrate the existence of an UFP in the absence of any
particle-hole symmetry-breaking term. This argument is
based on the observation that, when Os2dorbit symmetry
holds, the phase shifts in both orbital channels have to be
equal,d1=d2. By general particle-hole symmetry, this further
implies that 2d1=2d 2=0 modspd. Since for J@TK.0 we
know that d1=d 2=p /2, while for J!−TK,0, d1=d 2=0,
there must necessarily be a fixed point in between.

Let us assume now that theTz term (53) is present and
follow Ref. 4 to demonstrate that the necessary condition for
the existence of an intermediate fixed point does not hold
anymore. Since Eq.(52) is absent, there is still a residual
particle-hole symmetry according to which

d1 + d 2 = 0 modspd.

If d1=−d 2 then the two limiting cases,d1=d 2=0 andd1=
−d2=p /2, can be smoothly connected without requiring any
critical point in between. This argument thus proves that an
intermediate fixed point does not need to exist, yet it does
not demonstrate its nonexistence. Indeed we know by
bosonization and we now show by NRG that both Eqs.(53)
and(54) do not wash out the UFP. In contrast aTx term (54)
does destabilize the fixed point, as shown later.

A direct way to prove that a particle-hole symmetry-
breaking perturbation of the form(52) does not spoil the
UFP is to analyze the low-energy spectrum. We show in Fig.
7 the analogy of Fig. 1 in the presence of a finiten=0.05,
which breaks particle-hole symmetry. In spite of that, we still
find evidences of an UFP separating the Kondo-screened
from the unscreened regimes. Needless to say, this fixed
point is identified by the same spectrum we find in the
particle-hole symmetric case, as can be realized by compar-
ing the intermediate crossover region in Fig. 7 with that in
Fig. 1. Yet one might object that this is not a rigorous proof
since numerically it is not possible to distinguish a true tran-

sition from a sharp crossover. Even though we did check that
upon varyingJ we can approach as close as we want the
UFP, eventually flowing in either of the two stable fixed
points, we have found it more convenient to resort to an
alternative proof that seems freer of numerical uncertainties.

Let us go back to Eq.(39) and try to guess how would it
change in the presence of Eq.(52) and/or Eq.(53). We now
introduce oneS matrix for each channel,Sa with a=1,2,
satisfying

Re Sas0d = cos 2das0d = 1 − 2pD0ras0d. s55d

Let us assume that, across the UFP, the zero-frequency phase
shifts still jump byp /2. In other words, if we denote as

d−,as0d ; da s56d

the phase shift in the unscreened phase, in the Kondo-
screened phase the phase shift should be

d+,as0d = da +
p

2
.

Through Eq.(55) this would imply a jump of the DOS at the
chemical potential given by

r+,as0d − r−,as0d =
1

pD0
cos 2da = r0 cos 2da. s57d

The above scenario predicts that although the pseudogap in
the unscreened phase is partly filled away from particle-hole
symmetry, the DOS has a finite jump across the UFP. This is
indeed confirmed by NRG. In Fig. 8 we plot the DOS at
fixed n=0.05,[see Eq.(52)], across the UFP, clearly showing
the jump. We notice that if only Eq.(52) is present, then
d1=d2 in Eq. (56). If Eq. (52) is absent but Eq.(53) is
present, thend1=−d2, yet the behavior across the UFP is
similar, which is the reason why we just show the results
with finite n. This behavior is also compatible with the NRG
result that the charge andTz Wilson ratios vanish around the
UFP. Actually they all suggest that the model can absorb a
chemical potential shift, equal or different in the two chan-

FIG. 7. Lowest-energy levels versus the chain sizeN in the
presence of a finiten=0.05. The right/left panels correspond to a
deviationdJ/J* = ±3310−5 from the fixed point valueJ* . The lev-
els are labeled by the quantum numberssQ,Tz,Sd as in Fig. 1.
Notice that as a consequence ofnÞ0 some degeneracies found in
the particle-hole symmetric case are lost.
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nels 1 and 2, on a high-energy scale, at least of orderT+,
without having to modify what takes place at lower energies
of orderT−: a kind of Anderson’s compensation principle for
our conserved quantities. Following these observations, we
argue that the DOS for orbitala=1,2 in thepresence of any
of the two perturbations(52) and(53), assumed to be weak,
can be modeled as

r±,ased =
ra

2
F T+

2 + m±,a
2

se + m±,ad2 + T+
2 ± cos 2da

T−
2

e 2 + T−
2G , s58d

where again the plus refers to the Kondo-screened phase and
the minus to the unscreened phase,ra=r+,as0d is the value of
the DOS at the chemical potential in the screened regime,
while

m±,a = ± T+ sin 2da.

According to the model DOS(58), the narrow peak and
pseudogap remain pinned at the chemical potential,e=0,
while only the broad resonance moves away from particle-
hole symmetry.

Let us now study what happens if, starting from the
particle-hole symmetric pseudogap phase, we move away by
increasingn, keeping all other Hamiltonian parameters fixed.
As shown in Fig. 9,n is able to drive the model across the
UFP. This result could be foreseen. Indeedn forces the im-
purity to accomodate 2−n electrons. Ifn=1, the impurity
tends to be singly occupied. Therefore in the Kondo limit it
behaves like a spinS=1/2 andpseudospinT=1/2 moment,
which can be perfectly screened for the Kondo effect and is
moreover stable with respect to little changes ofn with re-
spect ton=1. Hence, if the model is atn=0 in the pseudogap
phase, it has to cross a fixed point to reach the large-n
Kondo-screened regime. This behavior is quite interesting in
connection with DMFT lattice calculations, since it implies
that the lattice-model local critical regime, which reflects the
single-impurity UFP, may also be attained by doping, as re-
cently confirmed.9

In conclusion we find that the UFP extends away from the
particle-hole symmetric point,n=0, giving rise to a whole
critical line, J*sn ,D0,Ud,0 such that forJ.J*sn ,D0,Ud
complete Kondo screening takes place while for
J,J*sn ,D0,Ud the impurity is in the unscreened pseudogap
regime. Let us briefly discuss the fate of this critical line as
particle-hole asymmetry becomes very large. We find that
J*sn ,D0,Ud decreases by increasingn, being of order −TK

for m.0 and becoming of order −U for large unu, thus even-
tually going outside the regionU@ uJu ,D0 we are interested
in. This result can also be physically understood. Let us sup-
pose for instance that the average impurity occupancy is
fixed as one. Still we keep assumingU@D0, thus preventing
the occupancy from freely fluctuating around its mean value.
We notice that the effective Hubbard repulsion,Uef f, acting
on the impurity is by definitionUef f;E0s0d+E0s2d−2E0s1d,
whereE0snd is the ground-state energy forn-electron con-
figurations. IfJ,0, then=2 ground state hasS=0, T=1, and
Tz=0 [see Eq.(5)], and we findUef f=U−2uJu. Therefore, if
U@ uJu, the impurity effectively behaves like a spinS=1/2
and pseudospinT=1/2 moment, which, as we said, is Kondo
screened. In contrast, ifJ!−U, Uef f!0 and hence the im-
purity prefers to oscillate bewteen zero and double occu-
pancy to take full advantage of the inverted Hund’s rules. In
this unconventional mixed-valence regime induced byJ, the
DOS actually develops a pseudogap at the chemical poten-
tial. Therefore the critical line transforms for large particle-
hole asymmetry into the critical point, which separates the
local moment from theJ-induced mixed valence regime.

A completely different behavior occurs if we introduce
instead aTx perturbation of the form(54). Here, as expected,
we do not find any jump of the DOS, as clear in Fig. 10
where we compare the DOS at the chemical potential in the
presence either of Eq.(52), hp-hÞ0, or Eq.(54), hxÞ0. This
demonstrates that a perturbation in the particle-hole channel
that breaks the orbital U(1) symmetry is relevant at the UFP,

FIG. 8. (Color online) Impurity DOS across the UFP in the
presence of a finiten=0.05, which breaks particle-hole symmetry.
From top to bottomJ/J* =0,0.28,0.57,0.86,1.14,1.43,1.71. No-
tice that the DOS at the chemical potential is always finite, although
very small and hence not visible in the figure.U and D0 have the
same values as in Fig. 5.

FIG. 9. (Color online) Impurity DOS upon increasing the
strength of particle-hole symmetry breakingn starting from the un-
screened pseudogap phasesn=0,0.05,0.1d up to the Kondo-
screened phasesn=0.15,0.2d. In the left inset it is shown the low-
energy part across the UFP(from top to bottom n
=0.2,0.175,0.15,0.125,0.1,0.075,0.05,0); notice the analogy with
the p-h symmetric case in Fig. 5. In the right inset we explicitly
show the gradual filling of the pseudogap upon increasingn. The
values ofU andD0 are those of Fig. 5.
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unlike Eq. (52) and (53), which instead do not break the
Us1dorbit symmetry.

Finally let us discuss what happens in the AIM, which
corresponds within DMFT to two Hubbard planes coupled
by a transverse hopping, Eq.(18), with J=V=0 plus the term
(19). We already noticed thatt' plays an ambiguous role. It
generates an antiferromagnetic exchange,J=4t'

2 /U, which
may stabilize an UFP, but it also induces a relevantTx per-
turbation [see Eq.(20)]. Since the UFP is never reachable,
the model always flows to a Fermi-liquid fixed point. In the
presence oft' it is more appropriate to introduce the even
and odd combinations of the orbitals 1 and 2:

des =
1
Î2

sd1s + d2sd,

dos =
1
Î2

sd1s − d2sd,

and correspondingly the even and odd conduction-electron
scattering channels. According to what we said at the begin-
ning of this section, we expect the phase shiftsde=−do to be
smooth functions ofJ. If there were no remnant of the UFP,
the DOS’s should simply show a resonance, the even channel
above the chemical potential and the odd channel below it. In
reality the behavior of the DOS remains strongly influenced
by the UFP, even though never reachable. This is evident in
Fig. 11, where we draw the DOS ofdes, resed (the odd one is
simply obtained by reflection around zero energy), at fixedt'

upon varying the hybridization widthD0. There is no point at
which the DOS jumps at the chemical potential, yet a partly
filled asymmetric pseudogap remains. In Fig. 12 we draw the
low-energy difference between the even and odd DOS’s,
which is also the off-diagonal spectral functionA12sed. A12sed
shows a low-energy feature that has a nonmonotonic behav-
ior in D0 and almost develops into a singularity aroundD0
=0.47. We think that these results bring to the fore thatt'

alone is able to drive the model very close to the UFP. In
other words, the width of the critical region is larger than the
energy scale that cuts off the fixed-point singularities, al-
though both are generated by the samet'.

VIII. CONCLUSIONS

In this work we have analyzed the spectral properties of
the two-orbital Anderson impurity model, Eq.(1), which in-
cludes an exchange splittingJ, which favors, if negative, a
nondegenerate impurity configuration. This model was al-
ready shown in Ref. 8 to possess a non-Fermi-liquid fixed
point that separates a phase where conventional Kondo
screening takes place from an unscreened phase in whichJ
takes care of quenching the impurity degrees of freedom.

The impurity density of states has the following behavior
across the fixed point in the presence of particle-hole sym-
metry. In the Kondo-screened phase it displays a conven-
tional very narrow Kondo resonance on top of a broader
resonance. In contrast, in the unscreened phase a narrow
pseudogap appears within the broad resonance. At the fixed
point only the latter survives. Away from half-filling, the

FIG. 10. (Color online) Comparison of the DOS values at the
chemical potential as function ofJ either in the presence of a finite
particle-hole symmetry breakinghp−h, rs0,hp−hd, or of a Tx sym-
metry breakinghx, rs0,hxd, normalized to their values atJ=0. No-
tice thathx, although three orders of magnitude smaller thanhp−h,
washes out the DOS jump, contrary tohp−h.

FIG. 11. (Color online) Impurity DOS ofdes, resed, for the AIM
Eq. (20). The different curves correspond from the top to the bottom
to values ofD0=0.5,0.47,0.45,0.4,0.3 witht'=0.05 andU=8.
These values correspond toJK=0.08,0.075,0.072,0.064,0.049 and
J=4t'

2 /U=0.00125. We notice the remnant of an asymmetric
pseudogap of orderJ.

FIG. 12. (Color online) Off-diagonal spectral function,A12sed,
with t'=0.05. The different solid curves correspond from the top to
the bottom fore.0 to values ofD0=0.47,0.45,0.4,0.3, while the
dashed curve corresponds toD0=0.5. We notice that the low-energy
feature first moves towards zero energy whenD0 increases from 0.3
to 0.47, but from 0.47 to 0.5 it goes back again. Moreover, around
D0=0.47,A12sed is almost singular.
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pseudogap remains pinned at the chemical potential, al-
though it gets partly filled. Yet there is still a fixed point
across which the density of states at the chemical potential
jumps. Finally we have explicitly shown that the intermedi-
ate fixed point is unstable towards physical symmetry break-
ing fields, which include both particle-hole and particle-
particle channels. The relevance of this impurity model for
dynamical mean field theory calculations has been already
emphasized in Ref. 8 and confirmed by Refs. 9 and 11. Here
we would like to clarify some aspects in view of the newly
discovered spectral properties.

As discussed in Ref. 8, any lattice model that maps by
DMFT onto the impurity model(1) plus (13) should encoun-
ter the unstable fixed point before the Mott transition,
namely, when the effective quasiparticle bandwidth becomes
of the order of uJu. However the instability of the single-
impurity fixed point should likely transform into a bulk in-
stability through the DMFT self-consistency conditions. As
we showed there are several competing physical instabilities
around the fixed point, in the particle-hole and particle-
particle channels. In the absence of nesting or van Hove
singularities, we argued in Ref. 8 that the particle-particle
channel dominates, leading to a superconducting pocket just
before the Mott transition, which has been indeed observed
by DMFT.9 However, there might be physically relevant
cases where those band-structure singularities occur, which
would favor a uniform or modulated order parameter in one
of the particle-hole unstable channels. What should we ex-
pect upon moving away from these peculiar cases, for in-
stance by doping? Clearly the band-structure singularities
weakens upon doping. Yet the fixed point is not washed out
away from particle-hole symmetry. We showed in fact that
the pseudogap remains pinned at the chemical potential. We
believe that this would result in competition between
particle-hole and particle-particle channels that gradually
turns in favor of the latter, thus predicting a particle-hole
order parameter that dies out upon doping in favor of a su-
perconducting one.

Equally interesting is what we find for the Anderson im-
purity model, which corresponds within DMFT to two Hub-
bard planes, with large in-plane coordination, coupled by a
hopping termt', Eq. (18), with J=V=0 plus the term(19).
Here the physics is not as transparent as in the model(1),
essentially becauset' provides at the same time a mecha-
nism for the existence of a fixed point as well as for its
instability. However, the numerical renormalization group re-
sults for the single-impurity show evidence that an almost
critical region does exist, in spite of the fact that the non-
trivial fixed point can never be attained. This suggests that
the physics of the two coupled Hubbard planes close to the
Mott transition may still be influenced by the single-impurity
fixed point.

Finally, we briefly comment what our results would imply
for the model with conventional Hund’s rules[see Eq.(16)].
This case in the absence of single-ion anisotropy corresponds
to a Kondo-screened regime where, as we showed in Fig. 4,
the spin-triplet Cooper channel is attractive. By increasing
the HubbardU in the lattice model, the Kondo temperature
of the effective AIM decreases, which implies that the spin-
triplet dimensionless scattering amplitude gradually also de-

creases,(see Fig. 4) for increasingJ.0. This suggests that
the instability towards spin-triplet superconductivity may ac-
tually be enhanced by strong correlations, compatible with
recent DMFT calculations.11 In addition, we would expect
that, in the presence of a single-ion anisotropy,D.0 in Eq.
(16), the enhancement of spin-triplet superconductivity
might be even more dramatic.
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APPENDIX. FERMI-LIQUID THEORY OF THE
ANDERSON IMPURITY MODEL

In this appendix we build up a Fermi-liquid theory of our
AIM closely following the conventional approach(see for
instance Ref. 21). Our purpose is twofold. First the Fermi-
liquid theory provides a framework to analyze the NRG data.
Moreover, it allows us to introduce within DMFT the con-
cept of a local Fermi-liquid description in addition to the
conventional one, which refers instead to low-frequency and
momentum scattering amplitudes.

Let us consider more generally a multiorbital Anderson
impurity model. As in our case, we assume that besides spin
rotational symmetry also orbital degeneracy is preserved, so
that the fully interacting impurity Green’s functions are di-
agonal and independent of both spin and orbital indices.

The variation of the electron number with orbital symme-
try a and spina associated with the presence of the impurity
is given by21

Dnaa = R dz

2pi
fszd

]

] z
ln Gaaszd,

where the integration contour encloses the real axis clock-
wise, fszd is the Fermi distribution function in the complex
plane, andGaa the impurity single-particle Green’s function.
Since the Green’s function has a branch cut on the real axis,
the above expression is also equal to

Dnaa = −
1

p
E

−`

`

de
] fsed

] e
Im ln Gaase + idd, sA1d

with d an infinitesimal positive number. The impurity density
of states is further determined through

raased = −
1

p
Im Gaasivn → e + idd. sA2d

If we introduce a source field in the Hamiltonian by

dĤ = − o
aa

haa naa,

where
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naa = o
k

ck aa
† ck aa + daa

† daa,

then

Gaasivnd−1 → ivn + haa − Daasivn,haad − Saasivn,hhbbjd,

where

Daasivn,haad = o
k

uVku2
1

ivn − ek + haa

,

is the hybridization function in the presence of the source.
Therefore the derivative with respect to the external field of
the variation of the electron number associated with the im-
purity is given by

S ] Dnaa

] hbb
D

h=0
=E

−`

` de

p

] fsed
] e

ImSGse + idd

3HdabdabF1 −S ] Dszd
] z

D
z=e+id

G
− S ] Saase + idd

] hbb
D

h=0
JD , sA3d

whereSaasivnd is the impurity self-energy and we made use
of

S ] Daasz,haad
] hbb

D
h=0

= dabdab

] Dszd
] z

,

Dszd being the hybridization function in the absence ofh. On
the other hand,

S ] Saasivnd
] hbb

D
h=0

= −
1

b
o
m

o
bb

Gaa,bb;bb,aasivn,iem; iem,ivnd

3Gsiemd2S1 −
] Dsiemd

] iem
D , sA4d

where we used the property that, ath=0, the Green’s func-
tion does not depend ona anda. The interaction vertex is the
reducible one.

Let us assume that there exists a set of conserved opera-
tors

Msid = o
k

o
abab

ckaa
† sM̂siddab

abck bb + o
abab

daa
† sM̂siddab

abdbb,

whereM̂sid are Hermitean matrices and the suffixi identifies
the particular conserved operator. For convenience we adopt
the normalization TrsM̂sid ·M̂sidd=1. Then, if we add a source
field

dĤ = − hsidMsid,

we can use the basis that diagonalizesM̂sid and apply the
above results to find the variation ofkMsidl associated with
the presence of the impurity at first order in the applied field.
Going back to the original basis, we would find the following
expression of the differencedxsid between the susceptibilities
in the presence and absence of the impurity:

dxsid = dS ] kMsidl
] hsid D

h=0

=E
−`

` de

p

] fsed
] e

Im HGse + idd 3 F1 −S ] Dsied
] ie

D
ie=e+id

+
1

b
o
n

o
abcd

o
abgd

Gbb,dd;cg,aase + id,ien; ien,e + idd

3sM̂siddab
absM̂siddcd

gd Gsiend2 S1 −
] Dsiemd

] iem
DGJ . sA5d

Hereafter we drop the subscripti. One can demonstrate
that the following Ward identities hold for the impurity:

fSsie + ivd − Ssiedg Mab
ab

=−
1

b
o
n

o
cd;gd

Gaa,dd;cg,bbsie + iv,ien; ien + iv,ied

3Mcd
gd Gsien + ivdGsiendfiv − Dsien + ivd + Dsiendg.

sA6d

It then follows that

] Ssied
] ie

Mab
ab = −

1

b
o
n

o
cd

o
gd

Gaa,dd;cg,bbsie,ien; ien,iedMcd
gd Gsiend2− lim

iv→0

1

b
o
n

o
cd;gd

Gaa,dd;cg,bbsie + iv,ien; ien + iv,ied

3Mcd
gd Gsien + ivdGsiend

f− Dsien + ivd + Dsiendg
iv

=−
1

b
o
n

o
cd

o
gd

Gaa,dd;cg,bbsie,ien; ien,iedMcd
gd Gsiend2S1 −

] Dsiend
] ien

D
+E

−`

` de8

2p

] fse8d
] e8

o
cd;gd

Gaa,dd;cg,bbsie,e8 − id8;e8 + id8,ied

3sMsiddgd
cd sMsiddba

baGse8 + id8dGse8 − id8dImfDse8 − id8d − Dse8 + id8dg. sA7d

Let us define the quantity
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r̄* =E
−`

` de

p

] fsed
] e

ImHGse + iddF1 −S ] Dsied
] ie

D
ie→e+id

− S ] Ssied
] ie

D
ie→e+id

GJ , sA8d

which plays the role of the quasiparticle DOS at the chemical potential. Then, through Eqs.(A5), (A7), and(A8), the following
equation is readily found:

r̄* = o
ab

o
ab

r̄*sM̂siddba
basM̂siddab

ab

= dxsid −
1

2p2E
−`

`

de de8
] fsed

] e

] fse8d
] e8

ImHGse + iddF o
cd;gd

Gaa,dd;cg,bbse + id,e8 − id 8;e8 + id 8,e + idd

3sMsiddcd
gdsMsiddba

baGse8 + id 8dGse8 − id 8dImfDse8 − id 8d − Dse8 + id 8dgGJ
=dxsid +

1

2p
E

−`

`

de de8
] fsed

] e

] fse8d
] e8

rsed o
cd;gd

Gaa,dd;cg,bbse + id,e8 − id 8;e8 + id 8,e + idd

3sMsiddcd
gd sMsiddba

baGse8 + id 8dGse8 − id 8dImfDse8 − id 8d − Dse8 + id 8dg. sA9d

The last expression is obtained by noticing that only the
imaginary part ofGse+ idd contributes, where ImGse+ idd
=−prsed. Equation(A9) allows us to express any suscepti-
bility to fields coupled to conserved quantities. If the hybrid-
ization function is smooth at low energies, then

Dse8 − id 8d − Dse8 + id 8d . 2iD0,

and hence we can rewrite(A9) as follows:

dxsid = r̄*F1 −
D0

r̄*p
E

−`

`

de de8
] fsed

] e
rsed

] fse8d
] e8

3 o
cd;gd

Gaa,dd;cg,bbse + id,e8 − id 8;e8 + id 8,e + idd

3sMsiddcd
gdsMsiddba

baGse8 + id 8dGse8 − id 8dG,

; r̄*f1 − Aig, sA10d

which allows us to identify local LandauA parameters
through

Ai =
D0

r̄*p
E

−`

`

de de8
] fsed

] e
rsed

] fse8d
] e8

3 o
cd;gd

Gaa,dd;cg,bb

3se + id,e8 − id 8;e8 + id 8,e + iddsMsiddcd
gdsMsiddba

ba

3Gse8 + id8dGse8 − id8d. sA11d

The above expression is quite general but simplifies substan-
tially when the imaginary part of the impurity self-energy
vanishes at low real frequency. In this case

Gsien → ± i0+d =
1

− ed ± iD0
,

whereed=ed
s0d+ReSs0d is the actual position of thed reso-

nance. Then, through Eq.(A2),

rs0d =
1

p

D0

ed
2 + D0

2 =
D0

p
Gsi0+dGsi0−d. sA12d

Analogously

r̄* =
rs0d

Z
,

1

Z
= 1 −S ] Ssied

] ie
D

ie→i0+

and hence

Ai = o
abcd

o
abgd

fZ2r̄*Gaa,dd;cg,bbs0,0;0,0dgsM̂siddba
basM̂siddcd

gd,

sA13d

which is the more conventional expression of the Landau
parameters.21 Although the above equation is a particular
case of the general one(A11), to simplify the notations in
what follows we will use Eq.(A13) as a shorthand expres-
sion of Eq.(A11).

IX. Application to the twofold orbitally degenerate AIM

Let us now apply the above results to our model. An
incoming pair can be a spin triplet, orbital singlet, with a
scattering vertex at zero incoming and outgoing frequencies
given by

G1 → G1s,2s;2s,1s,
1

2
G1s,2−s;2−s,1s −

1

2
G1s,2−s;1−s,2s.

Here 1 and 2 label the two orbitals withTz= +1/2 andTz

=−1/2, respectively. Alternatively it can be a spin singlet,
orbital triplet with Tz=0, with scattering vertex
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G0
0 → 1

2
G1s,2−s;2−s,1s +

1

2
G1s,2−s;1−s,2s,

or with Tz= ±1, in which case

G±
0 → G1s,1−s;1−s,1s, G2s,2−s;2−s,2s.

In reality it is more convenient to introduce the dimension-
less scattering vertices:

A1 = Z2r̄*G1 = Zrs0dG1,

A0
0 = Z2r̄*G0

0 = Zrs0dG0
0,

A±
0 = Z2r̄*G±

0 = Zrs0dG±
0. sA14d

As we previously showed, only the susceptibilities of con-
served quantities can be expressed in terms of the Landau
parameters(A13), which are simply connected with the scat-
tering vertices at zero frequency. Yet we can still define Lan-
dau parameters for nonconserved quantities, which, although
they do not serve to calculate susceptibilities, may provide a
qualitative estimate of their magnitude. Therefore we are go-
ing to introduce the Landau parameters for the charge,AC,

spin AS, the z component of the pseudospinTW , AT
uu, all being

related to conserved quantities, but also for thex andy com-

ponents ofTW , AT
', as well as for the spin-orbital components,

AST
uu andAST

' . In terms of the dimensionless amplitudes(A14)
they can be shown, after some lengthy algebra, to have the
following expressions:

AC =
1

4
s6A1 + 2A0

0 + 4A±
0d, sA15d

AS=
1

4
s2A1 − 2A0

0 − 4A±
0d, sA16d

AT
uu =

1

4
s− 6A1 − 2A0

0 + 4A±
0d, sA17d

AT
' =

1

4
s− 6A1 + 2A0

0d, sA18d

AST
uu =

1

4
s− 2A1 + 2A0

0 − 4A±
0d, sA19d

AST
' =

1

4
s− 2A1 − 2A0

0d. sA20d

Let us consider several possible cases.
(1) If J=0, SUs4d symmetry holds. ThenA1=A0

0=A±
0

=A, leading to

AC = 3A,

AS= AT
uu = AT

' = AST
uu = AST

' = − A.

In the s-d limit, when the AIM maps onto a SUs4d Kondo
model, the charge compressibility in negligible, leading to

3A=1. The Wilson ratios for the conserved quantities are
defined trough

Ri =
dxsid

x0

CV

dCV
= 1 −Ai ,

where dxsid has been defined insA5d, x0=rc and CV are,
respectively, the conduction-electron susceptibility and spe-
cific heat in the absence of the impurity, and

dCV =
r̄*

rc
CV,

is the variation of the specific heat due to the impurity.
Hence all Wilson ratios have a universal value,

RS= RT = RST= 1 −A = 4/3, sA21d

in agreement with conformal field theory.
(2) If J@TK.0 the impurity gets frozen in the Kondo

limit into a spin S=1. Then bothAC=1 andAT
uu =1, which

implies

A±
0 = 1,

A0
0 = − 3A1.

However one expects that, the spin triplet being an orbital
singlet, the SUs2d orbital symmetry gets restored at the fixed
point, much in the same way as spin anisotropy is irrelevant
at the Kondo fixed point. This further implies that

A0
0 = − 3A1 = 1,

namely,AS=−5/3, with a Wilson ratioRS=8/3, in agree-
ment with known results.

(3) Let us now suppose we are close to the UFP within
the Kondo-screened regime. As usual the charge degrees of
freedom are suppressed already belowU, so that we can still
assumeAC=1. Moreover, we expect that the spin and the
orbital degrees of freedom related toTz get quenched below
T+, while the remaining ones only belowT−!T+. Therefore
at very low temperaturesT,T−, we can safely assume that

T−dxS, T−dxT
uu ,

T−

T+
, 0,

namelyAS=AT
uu =1. As a result we find that

A±
0 = A1 = 1, sA22d

A0
0 = − 3. sA23d

EquationsA23d implies a strongly attractives-wave singlet
channel. The other Landau parameters are thus given by

AT
' = AST

uu = − 3, sA24d

AST
' = 1. sA25d

This further proves that the fixed point is equally unstable in
the s-wave Cooper channelG0

0, as well as in theTx, Ty, and

SWTz particle-hole channels. We finally notice that, although
the LandauA parameters would suggest that the susceptibili-
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ties in the unstable channels, all of which correspond to non-
conserved quantities, diverge as 1/T−, in reality they only
diverge logarithmically.4,14,15 This is not incompatible with
Fermi-liquid theory, which allows us to express in terms of
the A parameters only those response functions related to
conserved quantities.

Let us now use our model self-energy to extract some
additional information. Through Eq.(45), we find that in the
Kondo screened regime the expression(A13) holds with a
quasiparticle residue

1

Z
=

D0

2
S 1

T+
+

1

T−
D . sA26d

IndeedZ,2T−/D0→0 upon approaching the unstable fixed
point.

On the contrary, the general expression(A11) has to be
used inside the non-Kondo screened pseudo-gap phase.
Through Eq.(44) for G−siend we find that at low frequency
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By Eq. (46) the quasiparticle DOS at the chemical potential
turns out to be finite,
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even though the impurity DOS vanishes. In conclusion,
within the pseudogap phase the Landau parameters have the
following expression
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In spite of the anomalous impurity Green’s function, the low-
energy behavior should still be described within a local
Fermi-liquid scenario by finite Landau parametersAi’s.
Therefore, since the impurity DOS vanishes quadratically in
the pseudogap phase, then the scattering vertices must dis-
play a singular behavior

Gse,e8;e8,ed ,
1

se + e8d4 ,

to compensate for the vanishing DOS’s and provide finite
A’s.
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