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We report highly accurate measurements for the low-order Fourier components of the crystal potential in
copper. These were obtained by transmission electron diffraction using a small probe and multiple scattering
analysis. They were used to refine the Cu 3d radial wave function. An accurate charge-deformation map and a
3d orbital radial wave function were obtained by using a multipole refinement of the structure factors obtained
from combined quantitative electron diffraction andg-ray diffraction measurements. The results show a large
change in the 3d orbital radial function fromd-band formation andd-s band crossing(d-s hybridization).
Band theory calculations are in excellent agreement with the measurements and show that the charge defor-
mation in Ag is very similar to that in Cu. Our findings are in general agreement with the monovalent
description of these metals.
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I. INTRODUCTION

The measurement of valence electron radial wave func-
tions and charge densities has long been recognized as a
challenging problem. It requires highly accurate Fourier
components of charge density and a sound multipole refine-
ment model. The Fourier components of charge density are
equal to the x-ray structure factors, whose amplitude, in prin-
ciple, can be obtained experimentally by measuring the dif-
fraction intensities. In simple inorganic materials like copper,
it is difficult to obtain the crucial low-order structure factors
by kinematic photon(x-ray or g-ray) diffraction with suffi-
cient accuracy for charge density analysis due to uncertain-
ties in extinction corrections and other factors.1 Recently,
g-ray diffraction at energies up to 400 kV has been used with
radiation whose wavelength is about the sames0.03 Åd as
that used for electron diffraction. Primary extinction is re-
duced when the extinction distance(which increases with
beam energy) exceeds the mosaic block size. Secondary ex-
tinction is also reduced, but not eliminated. The extinction
correction method proposed by Palmeret al.2 using multi-
wavelength extinction-affected Bragg intensities is used,
based on the two beam dynamical diffraction model of Za-
charisenet al..3 This extrapolates Bragg intensities to zero
wavelength, and claims to provide an extinction-free mea-
surement, which has been applied to several crystals.2,4,5 It’s
accuracy has been questioned by Streltsovet al.,5 who has
applied this method on Al2O3. For strong low order reflec-
tions, they conclude for Al2O3 that “extrapolation is gener-
ally not unique, and extended extrapolation of multiwave-
length Bragg intensities to the zero-interaction limit is only
of limited accuracy.”5 Electron diffraction, on the other hand,
is inherently more sensitive for small scattering vectors, and
is free from extinction effects, so that low order structure
factors can be obtained with much higher accuracy.1 The

consistency of the quantitative convergent-beam electron dif-
fraction technique(QCBED) method has been tested for
rutile.6,7 This work showed that QCBED is a robust method
for accurate low order structure factor measurement. Using a
combination of electron(for low order) and x-ray(for higher
order) diffraction data, detailed information about the va-
lence electron distributions has recently been obtained in
several simple inorganic crystals.5,7–11

Here we present our recent results for Cu and Ag, using
experimental electron diffraction, band theory calculations,
and multipole analysis. We find that a large change in the
d-orbital radial wave function is required in the multipole
model to account for the differences in x-ray structure factors
of crystals, and that obtained by superimposing spherical at-
oms. Brewer’s hypothesis,12 that the binding energy per elec-
tron is approximately constant for metals, is also discussed.

II. METHOD

In the multipole model, the atomic charge density in a
crystal is expanded into three parts; the spherical inner-shell
electrons(core electrons), spherical valence shells(mono-
poles), and a series of nucleus-centered local symmetry-
adapted spherical harmonic functions which reflect the small
but important nonspherical valence charge distribution
(higher order multipoles). The x-ray structure factors are fit-
ted by adjusting the refinement parameters(monopoles and
multipoles). Following Hansen and Coppens,13 the charge of
a pseudoatom is described as

rpseudoatomsrWd = Pc * rcoresrd + Pv * k3 * rvalenceskrd

+ o
l=1

lmax

Rlsalrdo
m=0

l

Plmdlm±su,fd. s1d

The first and second terms represent the spherical atomic
core, which is well described by atomic modeling and is
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fixed in our multipole refinement, and the spherical(mono-
pole) valence charge density, respectively. The third term is a
summation over the multipoles. It should be noted that the
first two terms are real charge densities, while the third term
only redistributes valence density nonspherically in real
space. The volume integration of this term is zero. Slater
type orbitals(STO) calculated by multiconfiguration Dirac–
Fock (MCDF)14 were used for the density functions of the
core, rcoresrd, and valence electron monopole,rvalenceskrd.
The valence shell can be further divided into two monopoles
to simulate charge transfer between different orbitals on the
same atom site(orbital hybridization effect) or the orbital
deformation effect. The multipole radial functions,Rlsard,
are calculated using single exponential functions, or an
atomic orbital product. This simple model can produce
meaningful information on bonding, as demonstrated in sev-
eral cases, such as TiO2, MgO, Cu2O, and Si.7,10,11,15In the
copper refinement, the radial function of the hexadecapole is
constructed from a 3d*3d orbital wave function self-
product. In this case, the radial scaling factork is refined.
For copper, there is only one cubic harmonics left. Thus, Eq.
(1) can be written for copper as

rpseudoatomsrWd = Pc * rcoresrd + P3d * k3d
3 * r3dsk3drd

+ P4s * k4s
3 * r4ssk4srd

+ Phex* k3d
3 * r3dsk3drd * K41, s2d

whereK41 is a fourth-order cubic harmonic. The refinement
parameters are the valence electron radial function scaling
factor, k3d and k4s, and the multipole populations,Phex. In
Sec. III, we discuss this formula again to show that the sec-
ond term needs further modification to fit experimental mea-
surement.

Accurate measurements of the low-order structure factors
were made using the QCBED method that we have devel-
oped recently.16 The experiment was performed using a
LEO-912 in-columnV-energy-filtering transmission electron

microscope (TEM) with a Gatan liquid nitrogen cooled
sample holder. The TEM specimen used is a Cu foil sample
prepared by electrolytic polishing and cooled down to 105 K
to reduce phonon scattering. The electron beam-heating ef-
fect was considered and refined to be about 5 K.8 A 10 eV
energy-filtering slit was placed around the zero-loss peak to
remove the contribution from inelastically scattered elec-
trons, which form a background due to plasmon and other
loss processes. Off-zone-axis systematic diffraction patterns
were collected for seven low order reflections and recorded
on a Gatan CCD camera. The “EXTAL” software package16

was used for CBED refinement—this takes full account of
multiple scattering and “absorption” in the Bloch-wave for-
malism. The small electron probe size(about 10 nm diam-
eter) ensures that the data are collected within a single mo-
saic block.

Band theory calculations were performed using the aug-
mented plane wave plus local orbital methodsAPW+lod,17

as implemented in the programWIEN2K.18 Exchange and cor-
relation effects are treated within density functional theory,
using the generalized gradient approximation(GGA).19 We
used fully relativistic calculations for core electrons, and sca-
lar relativistic for valence electrons. The muffin tin(MT)
radius was 2.0 a.u. The Brillouin-zone integration was per-
formed using a modified tetrahedron method.20 The k-point
convergence was tested using a total of 10 000k points in
the unit cell with Rmt* Kmax equal to 7.0. Basis size is 71
(with 12 local orbitals) for Cu and 78(with 13 local orbitals)
for Ag. Spin–orbit(SO) coupling was also tested for Ag, but
it was found that the resulting changes in structure factors
were less than 0.01% for low order reflections. Hence we
consider the spin–orbit effect unimportant in Ag, and it is not
considered.

III. RESULTS AND DISCUSSION

We have measured the seven lowest-order inequivalent
structure factors for copper using QCBED. These are re-
ported in Table I. Also reported in the table are the results of
band theory calculation and multipole models. It is seen that

TABLE I. Measured(QCBED) and calculated structure factors for Cu. The column headed 3d 104s is a multipole refinement with fixed
orbital occupation and using neutral atom orbitals for 3d and 4s; the column headed 3dcrystal

104s is a multipole refinement with 3dcrystal

orbital (3dcrystal=3d10−n4sn with 3d orbital wave function from Cu2+ and 4s from neutral atom, and gives the best refined value ofn
=1.27). The residualR calculated for the seven structure factors listed shows the agreement of theory with QCBED experiment. The
experimental structure factors are converted to their 0 K static values. The unit of x-ray structure factors is electrons per cell.

hkl or R s=sinsud /l QCBED
DFT theory

(GGA)
Neutral atom

model
3d 104s multipole

refinement
3dcrystal

104s multipole
refinement

111 0.240 86.76(16) 86.80 88.18 87.94 86.81

200 0.278 81.76(16) 81.52 82.71 82.47 81.67

220 0.393 66.72(12) 66.70 66.99 66.74 66.75

311 0.460 58.94(08) 59.02 59.00 58.77 58.99

222 0.481 56.96(32) 56.89 56.80 56.58 56.84

400 0.555 49.80(40) 49.93 49.68 49.49 49.82

440 0.785 35.41(16) 35.44 35.27 35.17 35.40

Rs%d 0.15 0.71 0.64 0.08
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theory and experiment are in excellent agreement. This is an
important observation as the experimental results come with
(small) error bars and they thus serve to provide limits on the
possible errors of the theory.

The QCBED data were merged withg-ray diffraction
measurements21,22 for the higher orders(where electron dif-
fraction is less accurate than x ray), and the combination
subject to multipole refinement using the programVALRAY .23

To combine the two data sets, the first seven measured elec-
tron structure factors were transformed to their correspond-
ing static x-ray structure factors at 0 K, and then used to
replace theg-ray diffraction values reported by Petrilloet
al..21 The refinement parameters are the electron populations
in the valence shell orbitals(monopoles), one cubic hexade-
capole, with corresponding radial scaling parameters. It is
seen from Table I that there are significant differences be-
tween the multipole fits and QCBED/theory for low orders.
To understand the origin of these differences, the scattering
factors of Cu orbitals are plotted in Fig. 1.

We see that the 4s orbital affects reflections belows
=0.2 Å−1 (s=sin u /l is the scattering vector), and contrib-
utes to small negative values betweens=0.2 and s=0.4,
while the 3d orbital contributes at higher scattering angles up
to s=0.8. This analysis suggests that the differences in the
x-ray structure factors for(111) ss=0.24 Å−1d, (200), (220),
and(311) cannot be attributed to changes in the 4s orbital. A
large deformation in the 3d orbital radial wave function must
be responsible for these differences. To find a suitable model
for multipole refinement, we see that for the low order re-
flections, the measured x-ray structure factors are systemati-
cally lower than those for neutral atoms, indicating partial
delocalization of the 3d orbital electrons. We suggest that the
3d orbital radial wave function has a tail that does not con-
tribute significantly to the measured reflections. We simulate
this effect by using a 3dcrystal orbital function constructed
from 3d orbitals of neutral or ionic atom plus a delocalized
tail. Thus, the 3d radial wave function in copper is written in
two parts, with one localized and one diffuse, such as

rs3dcrystald=rs3d10−nd+rs3ddiffused
n d (n is a refinement param-

eter), using small changes in the radial scaling factors to
simulate the 3d radial wave-function deformation effects in
the crystal. When compared with the 3d orbital in a neutral
atom,rs3ddiffusedd is a much more diffuse function than the
rs3dd orbital wave function in a Cu neutral atom. This func-
tion must satisfy two conditions: to keep the total crystal
charge neutral, and to spread the 3d orbital electrons out to a
larger distance from the nucleus. For simplicity, we can use a
kappa-modified 4s orbital of the Cu neutral atom for
3ddiffused. By writing 3dcrystal in this form frs3dcrystald
=rs3d10−nd+rs4sndg, we treat the 4s orbital in the crystal and
the delocalized part of 3dcrystal together, using a single kappa
parameter. This is a convenient way of doing multipole re-
finement and eliminates one kappa parameter in the refine-
ment. Note especially, however, that the numbern measures
the degree of 3d orbital electron spreading in real space, but
has no physical meaning regarding 3d to 4s orbital promo-
tion. Thus, Eq.(2) can be further modified by considering 3d
orbital deformation as follows:

rpseudoatomsrWd = Pc * rcoresrd + s10 −nd * k3d
3 * r3dsk3drd

+ n * k4s
3 * r4ssk4srd + P4s * k4s

3 * r4ssk4srd

+ Phex* k3d
3 * r3dsk3drd * K41, s3d

where the second and third terms represent the deformed 3d
orbital, and the third and fourth terms can be combined to-
gether in the refinement. There are four refinement param-
eters, the numbersn, k4s, k3d, andPhex, as shown in Table II.
k3d andn are related to the 3d orbital, and so they affect low
order reflections up tos=0.8. There are more than 10 reflec-
tions up tos=0.8, thereforek3d andn are overdetermined and
refined very accurately. On the other hand,k4s andPhex affect
very few low order reflections, and produce results with a
much larger percentage error.Phex is smaller from multipole
refinement, almost zero. We also evaluated a multipole

FIG. 1. Scattering factors of Cu 3d and 4s orbitals. The scatter-
ing angles of the lowest order reflections are shown. Note that the
contribution to these reflections from the 4s orbital is small.

TABLE II. Multipole refinement results for Cu and Ag. Refine-
ments use the ion core, plus ad orbital from ad9 configuration(d
orbital in Cu+2 or Ag+2 ion) and 4s or 5s orbitals from neutral
atoms. Multipoles up to fourth order are chosen for refinement. The
allowed multipoles are selected according to the index-picking rules
of Kurki-Suonio(Ref. 30). Thed-orbital deformation is included in
the refinement(by refiningn). The 4s or 5s electron populationsPsd
is fixed at one. The corresponding kappa for monopoles or multi-
poles is refined.[Note, Dawson normalization is used for multipole
populations, seeVALRAY manual for details(Ref. 23).]

Parameters Cu Ag

n 1.27(6) 1.35(1)

kd 1.006(5) 1.0083(7)

ks 1.1(1) 1.15(1)

Phex −0.0004s7d 0.08(2)

R 0.06% 0.02%
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refinement without thePhex term. The change in residual was
very small. Thus the,Phex term is not important, and can be
omitted in our multipole refinement.

This has proved to be a good approximation, as shown by
the multipole refinement results given in Table I. The results
are given for a neutral-atoms3d 104sd model (only radial
scale parameters are refined); for a 3dcrystal

104s model
(where refinement includes 3d orbital deformation), and an
agreement indexR factor (residual), calculated from the
seven QCBED measurements alone. It is found that a 3dcrystal
function constructed from thed orbital of the d9 electron
configuration(3d orbital in Cu+2 ion) produces a better fit in

the multipole refinement, indicating that the localized 3d or-
bitals are more like 3d orbitals in Cu+2 ions, due to the re-
duced screening effect of delocalized 3d electrons. For the
3d 104s model,R=0.64% and the fit is outside the range of
experimental error[note especially(111) and(200)]. For the
3dcrystal

104s model, R=0.08% (8 times less) and all calcu-
lated values agree with experiment within experimental er-
ror. The refined value ofn is 1.27(6) (Table II).

The resulting valence charge density difference map
shown in Fig. 2 shows a spherical charge deficiency region
(0.9 Å in radius) around the copper atom and a charge sur-
plus region between atoms. The charge surplus in the inter-
stitial region is about 0.05e/Å3, or a 25% increase in va-
lence electron density, which shows a similar feature to band
theory calculations. Note the small hexadecapole population,
which indicates a very small nonspherical charge deforma-
tion (see Table II). Charge redistribution due to this is less
than 10−6 e/Å3 between nearest-neighbor atoms, much
smaller than the valence electron density, which is about
0.2 e/Å3. Thus, the covalent contribution to bonding can be
neglected. This finding agrees with the theoretical results of
Ogataet al.,24 who concluded that Cu has a homogeneous
charge distribution with little bond directionality.

FIG. 2. Valence charge-density deformation map on the(110)
plane of copper. The map shows the difference between an experi-
mental valence charge density or theoretical valence charge density
and a promolecule valence model as reference.(The promolecule is
an artificial crystal made up of superimposed neutral atoms.) The
dashed lines are contours withDr,0, the solid lines are contours
with Dr.0; the increment between contours is 0.01e/Å3. (a)
QCBED measurement[valence charge density–neutral atom model
of Suet al. (Ref. 14)]. (b) Band theory calculation(GGA) [valence
charge density(GGA calculation)–neutral atom model(GGA calcu-
lation)]. Note, features on both maps are quite similar. There is
about 0.05e/Å3 charge efficiency in the interstitial regions.

FIG. 3. Cu 3d and Ag 4d orbital radial probability distribution
plots. The valenced orbitals in the crystal spread outward, owing to
d-band formation andd-s band hybridization. This kind of defor-
mation cannot be simulated by refining scaling parameters in the
multipole model. This charge density is obtained using the second
and third terms in Eq.(3). The charge density peak of the 4s or 5s
orbitals at the nucleussr =0d is omitted to construct 3dcrystal or
4dcrystal orbitals which conform to the requirement that thed orbital
approach zero atr =0. This has a negligible effect on scattering
factors.
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There are two possible interpretations of the refined num-
ber n. Brewer12 has proposed that the electronic configura-
tion in copper is 3d10−n4s14pn, with n=1.5. This hypothesis,
with 3d electrons being promoted into 4p free-electron-like
orbitals, is used to explain the strong cohesion in noble met-
als, such as Cu,Ag,Au, but has been questioned by several
researchers.25 This first possible explanation of our refine-
ment would assumedsp hybridization, with 1.27 electrons
promoted from the 3d to the 4sp orbital. However, owing to
the eg and t2g energy splitting(about 1 eV) in that case, the
charge deformation density would be nonspherical, there
would be intense white lines in L3-edge electron energy-loss
spectra(EELS) and x-ray absorption spectra(XAS), and the
3d orbital holes would be expected to give rise to magnetic
properties similar to those of the lighter 3d metals. However
experimental results show that EELS and XAS spectra have
no white lines,26 copper is a weakly diamagnetic metal,25 and
our charge density refinement shows a spherical deformation
density. The ratio of theeg and t2g orbital electron popula-
tions is 1.999 94s14d /3 calculated from the multipole
population,8 equal to 4/6 within error. Thus, the nonspherical
charge deformation is negligible, in strong contrast
to the highly nonspherical distribution found for the formal
d10 shell of Cu in Cu2O.10 Further evidence in support
of a monovalent model in copper comes from the
free-electron plasma oscillations. The number of free elec-
trons per atom contributing to the plasmon is 1.04(4),
[n=sm*«0Vcell/"2e2dEp

2, where m* is the electron effective
mass andEp is the plasmon energy], as calculated using the
free-electron model from the first plasmon energy, usingEp
=9.3 eV from measured optical properties and the free-
electron mass.27 This is in agreement with a monovalent de-
scription of Cu. An additional plasmon peak, however, also
occurs atEp=19.3 eV(not due to double scattering),28 and if
we use the free-electron plasmon model we then obtain 3.4
electrons per atom contributing to the bulk plasmon from this
second peak. These 3.4 electrons may however stem from
the relatively delocalized 3d electrons. The two volume plas-
mon energies in copper thus reflect the different properties of
free electrons, and those of delocalized 3d electrons.

The second interpretation possible is that the Cu 3d or-
bital has large deformation, and so becomes much more dif-
fuse compared with the neutral-atom ground state 3d orbital.
Our discussions of the preceding four paragraphs support
this interpretation. Multipole refinement quantitatively mea-
sures the 3d-band orbital radial wave function in Cu, which

is shown in Fig. 3. It is constructed from the 3d10−n4sn elec-
tron configuration(with k3d=1.006,k4s=1.1, see Table II).
We see that the 3d orbital in Cu has a long tail, and electrons
are delocalized. Experimental Slater orbital parameters were
fitted and are given in Table III. This kind of deformation
cannot be simulated by refining radial scaling factors alone
in the multipole model. That is the reason for the failure of
the ground state neutral-atom model. It has been proposed
that 3d band electrons contribute substantially to the cohe-
sive energy of Cu byd–s orbital hybridization.29 Thus of
the total cohesive energy of 0.26 Ry, the calculated contri-
bution from the 4s band is 0.11 Ry and thusd–s orbital
hybridization contributes significantly to the cohesive energy
of Cu (note that the renormalization energy is −0.04 Ry for
Cu, therefore, d–s orbital hybridization contributes
0.19 Ry).29

We have also completed a multipole refinement for silver,
to measure the 4d orbital deformation. Calculated x-ray
structure factors were used and refined using similar refine-
ment procedures. The results are listed in Table II. We con-
clude that charge deformation is again spherical(from the
small multipole population) and the 4d orbital in silver has a
similar amount of deformation to the 3d orbital in copper.
The ratio of theeg to t2g orbital electron populations is
2.013s3d /3, and again the charge deformation is very close
to spherical. The Ag 4d orbital radial wave function is shown
in Fig. 3 and the Slater orbital parameters are given in Table
III. The number of free electrons, from the plasmon energy
sEp=9.2 eVd is 1.0.27 We conclude that Ag is a monovalent
metal.

It is important to point out that the orbital radial wave
functions are deduced from the charge density refinement
based on an atomic model. It is well known however, that
electrons form bands in crystals and so lose their individual-
ity. Our refinement thus provides an example of how a one-
electron model can nevertheless retain useful validity in the
transition metals. We expect that this method can also be
used in the transition metal compounds, where valenced
orbitals formd bands.

IV. SUMMARY

Accurate low order electron structure factors have been
measured for copper by quantitative convergent-beam

TABLE III. Slater orbital parameters of Cu 3d and Ag 4d radial wave functions. The radial wave functionRnlsrd is defined byRnlsrd
=oicixisrd, wherexisrd=s2ni ! d−1/2s2zidni+1/2rni−1e−zir. See Clementiet al. (Ref. 31) for details.

Crystal Parameters Values

Cu n 3 3 3 3 3

c 0.029 47 0.158 22 0.529 16 0.335 76 0.236 00

z 1.800 63 9.011 60 4.811 77 2.377 01 0.913 09

Ag n 3 3 3 3 4 4 4 4

c 0.006 32 0.096 93 0.308 63 −0.457 37 0.071 10 −0.558 14 −0.307 14 −0.105 01

z 34.018 46 15.420 14 7.718 13 5.101 49 13.671 76 3.493 71 1.707 72 0.800 52
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electron diffraction. Charge density deformation maps
refined using a multipole model show a spherical charge
deformation in copper and silver. Valenced orbital radial
wave functions obtained from multipole refinement, show
a large deformation when compared with neutral atoms.
Results support the monovalent metal model in Cu
and Ag.
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