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Nonperturbative approach to full Mott behavior
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Though most fermionic Mott insulators order at low temperatures, ordering is ancillary to their insulating
behavior. Our emphasis here is on disentangling ordering from the intrinsic strongly correlated physics of a
doped half-filled band. To this end, we focus on the two-dimensional Hubbard model. Because the charge gap
arises from on-site correlations, we have been refining the nonperturbative approach of Matsumoto and Man-
cini @Phys. Rev. B55, 2095~1997!# which incorporates local physics. Crucial to this method is a self-consistent
two-site dynamical cluster expansion which builds in the nearest-neighbor energy scaleJ. At half-filling, we
find that the spectral function possesses a gap of orderU and is devoid of any coherent quasiparticle peaks
although ordering or charge fractionalization are absent. At low temperatures, local antiferromagnetic correla-
tions emerge. In the doped case, we find that the Fermi surface exceeds the Luttinger volume. The breakdown
of Luttinger’s theorem in the underdoped regime is traced both to the dynamically generated Mott gap as well
to a nonvanishing of the imaginary part of the self-energy at the Fermi level. Spectral weight transfer across the
Mott gap also emerges as a ubiquitous feature of a doped Mott insulator and suggests that high- and low-energy
scales are inseparable. Additionally in the underdoped regime, we find that a pseudogap exists in the single-
particle density of states as well as in the heat capacity. The pseudogap~which is set by the energy scalet2/U)
is argued to be a ubiquitous feature of a lightly doped Mott state and simply represents the fact that hole
transport involves double occupancy. In analogy with the Mott gap and antiferromagnetism, we propose that
ordering may also accompany the formation of a pseudogap. We suggest a current pattern within a one-band
model that preserves translational but breaks time-reversal symmetry along the canonicalx andy axes but not
alongx56y that is consistent with the experimental observations. Finally, we show that the Hall coefficient
in a doped Mott insulator must change sign at a doping levelx,1/3. The sign change is tied to a termination
of strong correlation physics in the doped Mott state.

DOI: 10.1103/PhysRevB.69.245104 PACS number~s!: 71.10.Pm
pe
er
ro
a
rr
th

un
ne
ice
ed
uf
h
tin
l o
e

p
of
x

m

t is
ate
tity
the

the
ow-
a

and.

ry
insu-
iated
the
ott
t the
en-

to
ate,
ant
e

e, is
g?
I. INTRODUCTION

Electronic systems with an odd number of particles
unit cell are typically metallic at zero temperature. Howev
Mott1 proposed that such systems in the presence of st
interactions can insulate at zero temperature without any
companying symmetry breaking process, such as antife
magnetism or charge ordering, which necessarily double
unit cell. Strictly then, a Mott insulator~should it exist! is a
paramagnetic state with an odd number of particles per
cell. Insulating behavior arises from the charge gap ge
ated by the projective mismatch between the sublatt
which have zero or some finite fraction of doubly occupi
sites. When the overlap between such sublattices is s
ciently small, no transport obtains. In bosonic systems wit
single boson per site, a true zero-temperature Mott insula
state is realized in the standard quantum rotor mode
Bose-Hubbard model when the on-site charging energy
ceeds a critical value such that phase coherence
destroyed.2–4 In fact, the recent observation5 that a Bose con-
densate in an optical lattice can be tuned between a su
fluid and a Mott insulator simply by changing the intensity
the laser light places the bosonic Mott insulator on firm e
perimental footing.

However, for fermionic systems, the inherent proble
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with the Mott insulating state of a half-filled band ind.1 is
its proclivity to order at zero temperature. Consequently, i
tempting to equate the Mott insulator with the ordered st
or to assert categorically that the Mott insulator as an en
distinct from a symmetry-broken state never existed in
first place. In the context of highTc in the cuprates, which
are all antiferromagnetic Mott insulators, both views6 have
been strongly expressed. In fact, a large body of work on
cuprates has focused primarily on models that capture l
energy spin physics7–9 at or near an antiferromagnet or
charge-ordered state,10–18 or a classification19,20 of the vari-
ous charge-ordered states that ensue in a half-filled b
Alternatively, low-energy spin liquid models21–28 ~that is,
models with spin translation and spin rotation symmet!
have been proposed as candidates to describe the Mott
lator. In such approaches, the high-energy scale assoc
with the charge gap is argued to be irrelevant, hence
focus exclusively on the spin sector to characterize the M
insulator. Of course such an approach presupposes tha
high- and low-energy degrees of freedom can be dis
tangled.

Should the insulating state in a half-filled band prove
be nothing other than a mean-field broken-symmetry st
then fermionic Mott insulators do not exist. Hence, a relev
question for the Mott insulating state is as follows: If w
subtract the fact that ordering obtains at zero temperatur
there anything left over that is not explained by orderin
©2004 The American Physical Society04-1
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Equivalently, does ordering provide an exhaustive expla
tion of the state proposed by Mott? We refer to whate
might be left over once we subtract the fact that ordering
occurred asMottness. That something might be left over i
immediately evident from the fact that charge- and sp
ordered states all result in a doubling of the unit cell a
hence are adiabatically connected to an insulator with
even number of electrons per unit cell. A typical example
such a system is a band insulator. On the contrary, M
insulators which have an odd number of electrons per
cell are not. Additionally, spin- and charge-ordered states
be described at the level of Hartree-Fock simply by co
structing the correct broken-symmetry ansatz. However
Mott state has no weak coupling or Hartree-Fock coun
part. Hence, although the Mott state might be unstable
ordering at low temperature, some features should be
over which represent the fingerprint of the nonadiabatic
with a band insulator and the fact that this state arises
damentally from strong electron correlation. For examp
experimentally,29,30 it is clear that above any temperature a
sociated with ordering in both the electron and hole-dop
cuprates, a charge gap of order 2 eV is present in the op
conductivity and oxygenK-edge photoemission.31 Hence, the
vanishing of the low-energy (,1 eV) spectral weight a
high temperature is not linked to magnetism or order
of any kind. Further, the electronic bands below a
above the charge gap are not rigid as would be the case
band insulator. To illustrate, as a function of doping, in bo
hole and electron-doped cuprates,29,30 the low-energy spec
tral weight increases at the expense of the high-ene
(.2 eV) spectral weight such that the total integrated o
cal conductivity remains constant up to 4 eV. The same m
sive reshuffling of spectral weight from 2 eV above t
Fermi energy is also observed in one-particle probes suc
oxygen K-edge photoemission31 and angle-resolved photo
electron spectroscopy~ARPES!.32,33 Such spectral weigh
transfer indicates that the total number of low-energy degr
of freedom in the normal state of the cuprates cannot
decoupled from the high-energy scales. What is surpris
about the cuprates is that even when superconductivity
tains, the low- and high-energy degrees of freedom are
coupled. For example, Ru¨bhaussenet al.34 have shown that
changes in the optical conductivity occur at energies 3
~roughly 100D, whereD is the maximum superconductin
gap! away from the Fermi energy atTc , and Bolegra¨f et al.35

have seen an acceleration in the depletion of the high-en
spectral weight accompanied with a compensating incre
in the low-energy spectral weight at and below the superc
ducting transition. Similarly, Bontempset al.36 have directly
observed that in underdoped~but not overdoped! BSCO, the
Glover-Ferrel-Tinkham sum rule is violated and the opti
conductivity must be integrated to 20 000 cm21 to recover
the spectral weight lost upon condensation into the super
ducting state. In a standard BCS superconductor, conde
tion leads to loss of spectral weight at energy scales no m
than ten times the pairing energy. The fact that pair cond
sation perturbs the optical conductivity on energy scales
large as 100D suggests that there is a direct link between
high-energy Mott scale and superconductivity. Further,
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persistence of spectral weight transfer through the super
ducting transition indicates that the properties of the M
state remain intact even in the presence of ordering. W
spin-density wave antiferromagnets also possess two b
with a gap, such a state is insufficient to explain the origin
the spectral weight transfer in the cuprates. The reaso
simple: spectral weight transfer persists well aboveTN and at
a doping level@2%, where antiferromagnetism is absent

Concretely, what the optical conductivity and oxyge
k-edge photoemission experiments on the cuprates lay p
is that regardless of whether ordering obtains at sufficien
low temperatures, the charge degrees of freedom rem
characterized by a distinctly different state than that of a
ordered state or a band insulator. To understand what phy
is entailed by this state, consider the Mott mechanism
generating an insulating state in the one-band Hubb
model. At half-filling, the chemical potential lies in th
middle of the gap separating the lower and upper Hubb
bands, which are dynamically split by the on-site energy
double occupancy. However, half the spectral weight resi
in each of the bands. Consequently, to satisfy the sum
that each state in the first Brillouin Zone~FBZ! carries unit
spectral weight, the spectral function must be integra
across the charge gap not simply up to the chemical po
tial. Hence, the half-filled state is characterized by the Fe
energy lying in a gap but partially occupied states exist. I
this seemingly contradictory state of affairs that is at t
heart of Mottness. Spectral weight transfer cannot obt
without it. For example, if each state below the chemi
potential had unit spectral weight, no state would be av
able for spectral weight transfer from high energies. As
consequence, adding or removing an electron cannot be d
without affecting both high- and low-energy scales. Con
quently, at any doping level, the electronic states describ
the charge carriers can be written as linear combination
excitations living in both the lower Hubbard band~LHB! and
upper Hubbard band~UHB! as will be detailed below. As a
result, in the Mott state, the traditional notion that the chem
cal potential demarcates the boundary between zero and
occupancy fails fundamentally. Of course, in Fermi liquid
the spectral function for eachk state can also have an inco
herent background which can extend to high energies. H
ever, as long as a coherence peak exists, a sharp crite
exists for unit occupancy of each state, namely, whethe
not the coherence peak crosses the Fermi level. In a M
insulator, no such coherence peak exists and conseque
incoherence dominates the Mott state.

Alternatively, one can view the spectral weight transfer
real space by simply counting the number of available sta
for the photoemission and inverse photoemission spectr
demonstrated by Meinders, Eskes, and Sawatzky.37 We re-
count the argument here as it is simple and instructive. C
sider the half-filled one-dimensional chain of one-electr
atoms shown in Fig. 1. Both the electron-removal~photo-
electron! and electron-addition~inverse photoemission! spec-
tral weights are equal toN because at half-filling there areN
ways of adding or subtracting an electron from a site tha
singly occupied. When a single hole is added, both
electron-removal and the electron-addition spectral decre
4-2
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NONPERTURBATIVE APPROACH TO FULL MOTT BEHAVIOR PHYSICAL REVIEW B69, 245104 ~2004!
to N21 as there are nowN21 ways to add or subtract a
electron from sites that are already occupied. Hence, th
are two less states. These states correspond to the sp
and spin-down states of the empty site and hence belon
the LHB. Consequently, the low-energy spectral weig
~LESW!, L(x), has increased by two states. One of t
states must come from the UHB as the high-energy part n
has a spectral weight ofN21. Hence, for a single hole, ther
is a net transfer of one state from high to low energy. T
argument is simply the real-space restatement of the m
general principle that ink space the LHB and UHB are no
static but dynamic and hence necessarily give rise to spe
weight transfer. In general, simple state counting yieldsx
for the growth ofL(x) and 12x for the depletion of the
high-energy sector. In actuality, the dynamical contribut
to the LESW results inL(x).2x. The dynamical LESW
corresponds to virtual excitations to the UHB. Hence, in
strongly correlated system, the phase space available to a
single electron exceeds the nominal number of states initi
present in the low-energy scale, leading thereby to an ins
rability of the low- and high-energy scales.

The ubiquity of spectral weight transfer in the cupra
places extreme restrictions on which low-energy models
valid. Consider the standardt-J model.21 As the t-J model
projects onto the LHB, we can estimate the correspond
LESW exactly by counting the electron-removal states. C
sequently,L(x)52x is exact in thet-J model. However, in
the actual Hubbard model,L(x).2x. Consequently, the
standardt-J model does not have the correct number of lo
energy degrees of freedom to describe the low-energy p
ics. This problem can be corrected,38 however, by using the
full strong-coupling Hamiltonian that results from thet2/U
expansion and replacing all the electron operators by t
projected counterparts. However, the price one pays is
the new projected electron operators do not obey the s

FIG. 1. Spectral weight transfer in a doped Mott insulator. T
photoelectron spectrum~PES! denotes the electron removal stat
while the electron-addition states are located in the inverse ph
electron spectrum~IPES!. The on-site charging energy isU. Re-
moval of a single-electron results in the creation of two sing
particle states at the top of the lower Hubbard band. By s
conservation, one state comes from the lower and the other from
upper Hubbard band and hence spectral weight transfer acros
Mott gap.
24510
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dard fermion commutation relations. That a correct lo
energy theory must give up on either standard fermion co
mutation relations or particle conservation has already b
pointed out by Meinders, Eskes, and Sawatzky.37 Hence, all
standard low-energy fermionic theories do not have the c
rect physics to describe the cuprates primarily because
low-energy degrees of freedom are not fermionic.

Given the ubiquity of spectral weight transfer over a lar
part of the phase diagram of the cuprates, it is imperative
any theory of highTc incorporate the high-energy scale a
sociated with the charge gap. Further, because ordering
not seem to be a requirement for spectral weight transfer,
focus is on an accurate description of the high-tempera
charge vacuum of the doped Mott insulating state. It is c
cial in such an approach that the hierarchy of energy sca
U, t, t2/U, for example, emerge. Consequently, we ha
been refining the nonperturbative approach of Matsum
and Mancini39 to describe the interrelation between the e
ergy scales in a doped Mott insulator. This approach is ba
on the experimental observation that the low-energy scale
doped Mott insulators are derived from high energies. A
result, the beginning point, namely, the Hubbard operators
one that is well known to yield the Mott charge gap sca
Successively smaller energy scales are derived by trea
local correlations on a small cluster. The self-energy of
lattice is then determined self-consistently from the local i
purity problem. The Matsumoto-Mancini39 approach is then
in the spirit of the cellular dynamical mean-field treatment40

We report here the full details of this approach and catalo
the general results that follow from Mottness. Aside from
LESW that exceeds the nominal value obtained from s
counting, we find that~1! Mottness gives rise to broad spe
tral features in the underdoped regime,~2! a violation of
Luttinger’s theorem in the underdoped regime,~3! holelike
Fermi surface near half-filling,~4! a jump in the chemical
potential upon doping, and~5! a pseudogap in the unde
doped regime without invoking any symmetry breaking.
general, we find that the pseudogap is due strictly to ne
neighbor correlations and can be thought of as the nea
neighbor analogue of the on-site generated Mott gap.

II. METHOD

Many years ago, Hubbard41 wrote the electron annihila
tion operatorcis as a linear combination

cis5h is1j is ~1!

of two composite excitations that reflect the energetica
challenged landscape an electron must traverse in the p
ence of a large on-site Coulomb repulsion,U. Physically, the
operatorsh is5cisni 2s andj is5cis(12ni 2s) represent an
electron moving on doubly and singly occupied sites, resp
tively. Because such sites are split byU, the Hubbard opera-
tors lead naturally to a gap at half-filling in a paramagne
state, a result which thus far, only two other methods,
namical mean-field theories~DMFT! ~Ref. 42! and quantum
Monte Carlo~QMC!,43,44 have been able to obtain. Regar
less of this success, the Hubbard operators have been
cized extensively because untested approximations gene
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-
te
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B69, 245104 ~2004!
accompany their implementation, and they lead to a Fe
surface which does not preserve the Luttinger volume. Ho
ever, methods that are deemed as reliable,45–48also find that
in the lightly doped regime, Luttinger’s theorem is violate
as is seen experimentally.32 Hence, a violation of Luttinger’s
theorem is not ana priori reason to dismiss the Hubbar
operators. In fact, any violation of Luttinger’s theorem mu
occur in the lightly doped or nonperturbative regime. T
untested or uncontrolled approximations usually arise fr
truncations in the equations of motion. However, such pr
lems can be circumvented by the following procedure. Fi
project all new operators that arise from the Heisenb
equations of motion of the Hubbard operators onto the H
bard basis. Second, write the self-energy exactly in term
the remaining operators which are now orthogonal to
Hubbard basis. Third, use local DMFT methods to calcul
the resultant electron self-energy. The approximation in
duced in the third step is that the self-energy for a fin
cluster is used to determine the self-energy for the interac
lattice. However, such methods have been shown to
strongly convergent and in fact constitute the accepted m
odology for treating strongly correlated systems. In princip
as the cluster size is extended to infinity, such a cluster p
cedure becomes exact. Hence, an implementation of
Hubbard operators coupled with DMFT-type technolo
places the limitations not on truncation in the equations
motion but on the accuracy of the impurity solver and t
size of the finite cluster. It is such a procedure that we out
here. As many of the details have been left out in the pre
ous presentation in the original paper by Mancini a
Matsumoto39 on the two-site cluster and subseque
implementations,49 we will provide a complete derivation o
the method so that anyone reading this paper can implem
it immediately. The key features of this method are its abi
to describe physics on the scale of the Mott gapU as well as
on the the scaleJ't2/U.

A. Dynamical Green function

Our starting point is the on-site Hubbard model

H52 (
i , j ,s

t i j cis
† cj s1U(

i
ni↑ni↓ ~2!

with nearest-neighbor hopping,t i j 5ta i j . We also introduce
the composite operator basis

cs~ i !5S j is

h is
D ~3!

and its associated retarded Green functionS( i , j ,t,t8)
5^^c is ;c j s

† &&5u(t2t8)^$c is(t),c j s
† (t8)%&. Writing the

equations of motion for the Hubbard basis and project
with the Roth50 projector P(O)5( ln^$O,c l

†%&I ln
21cn , we

obtain for the ‘‘current’’ operator the expression

j i~ t !5 i
]

]t
c i5Kc i1P~d j i !1dJi5Ec i1dJi . ~4!

The formal solution for the Green function in Fourier spa
24510
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S~k,v!5
1

v2E~k!2dm~k,v!I21~k!
I ~k!, ~5!

contains the self-energyS(k,v)5dm(k,v)I21 with

dm~k,v!5FT^u~ t2t8!$dJ~ t !,dJ†~ t8!%& I ~6!

where the subscriptI indicates the irreducible part and F
denotes the Fourier transform. We consider the paramagn
case, for which the overlap matrixI is diagonal with I 11
[I 1512n/2 andI 22[I 25n/2.

The primary operational hurdle is the evaluation of t
dynamical correctiondm. The first step is to write the ex
plicit expressions for the operatorsdJ which are ‘‘orthogo-
nal’’ to the basisc. Using the notationt̃ 52dt, d being the
dimensionality of the system, andp̃5p2n2/4, we obtain

dJ1~ i !52 t̃ Fp is1
n

2
cis

a 2e~j isI 1
212h isI 2

21!

2 p̃~j is
a I 1

212h is
a I 2

21!G ~7!

anddJ2( i )52dJ1( i ), where the self-consistent paramete
e andp5 p̃1n2/4 as well as the higher-order composite o
eratorp i are given by

e5^j i
aj i

†&2^h i
ah i

†&,

p5^nisnis
a &1^ci↑

† ci↓~ci↓
† ci↑!a&2^ci↑ci↓~ci↓

† ci↑
† !a&,

t̃ S p i↑
p i↓

D 5(
j

t i j S 2ni↓cj↑1ci↓
† ci↑cj↓2ci↑ci↓cj↓

†

2ni↑cj↓1ci↑
† ci↓cj↑1ci↑ci↓cj↑

† D ~8!

and the superscripta denotes the averaging over neare
neighbor sites. Consequently, we can write the dynam
correction matrixdm in the form

dm~k,v!5Dm~k,v!S 1 21

21 1 D ~9!

and the problem reduces to the determination of the high
order Green function Dm(k)5FT^u(t2t8)
3$dJn(t)dJm

† (t)%& I . BecauseDm(k,v) cannot be evaluated
exactly, we seek a systematic way of calculating the dyna
cal corrections. The simplest approach would be to cons
the single-site approximation. Such an approximation is
the spirit of thed5` ~Ref. 42! methods, in which the self-
energy is momentum independent. An improvement wo
be to consider the dynamics associated with two sites
proposed by Mancini and Matsumoto.39 Evaluation of the
self-energy over successively larger clusters would lead to
exact determination of the dynamical corrections. The
sence of this approach is based on the fact that the physic
strongly correlated electrons emerges mainly from local c
relations: on-site interactions generate the Mott gap, wh
nearest-neighbor interactions generate the scale,t2/U. Suc-
cessively larger clusters build in lower and lower ener
scales. However, due to the fact that transfer of spec
4-4
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weight from high to low energies is characteristic of Mo
insulators, a separation of energy scales in strongly co
lated problems is not possible. Therefore, it is crucial that
the excitations be treated on equal footing and, conseque
local correlations must be included. Following Mancini a
Matsumoto,39 we write the dynamical corrections as a ser

Dm~x,x8!5dx,x8Dm0~x,x8!1(
a

dx1a,x8Dm1~x,x8!1•••

~10!

in increasing cluster size. Here,x andx8 are two representa
tive sites anda indexes all nearest-neighbor sites. In the tw
site approximation, the series is truncated at the level of
site, Dm0, and nearest-neighbor,Dm1 contributions. In
Fourier space, the dynamical corrections can be written

Dm~k,v!'Dm0~v!1a~k!Dm1~v!. ~11!

Here Dm0 and Dm1 involve Green functions of operator
defined on nearest-neighbor sites@see Eq.~7!#. Consequently,
these Green functions contain operators defined on up to
sites. Further simplifications can be made if we assume
o

sit
or
-
ly
to

te

u

ve
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the dominant contributions arise from terms involving
most two nearest-neighbor sitesx and x8. In this case, the
superscripta in Eq. ~7! corresponds to a particular neighbo
ing site instead of an average over all the nearest-neigh
sites. With this assumption, we obtain

Dm0~v!5
1

2d
FT^u~ t2t8!$dJ~ t !,dJ†~ t8!%& I ,

Dm1~v!5
1

2d
FT^u~ t2t8!$dJ~ t !,dJ8†~ t8!%& I , ~12!

where the factor of 1/2d arises from the coordination num
ber, a(k)5(1/d)( lcos(kl), anddJ and dJ8 are centered on
two nearest-neighbor sitesx and x8, respectively. It is
straightforward now to express the Green function in ter
of these quantities,

S~k,v!5
1

S0
21~v!1 t̃a~k!V~v!

, ~13!

where the on-site Green functionS0 is given by
S0
21~v!5I21S ~v1m!I 11 t̃ e2Dm0~v! 2 t̃ e1Dm0~v!

2 t̃ e1Dm0~v! ~v1m!I 11 t̃ e2Dm0~v!
D I21, ~14!

and the nearest-neighbor contribution is

V~v!5S 11@ p̃2 t̃ 21Dm1~v!#I 1
22 12@ p̃2 t̃ 21Dm1~v!#I 1

21I 2
21

12@ p̃2 t̃ 21Dm1~v!#I 1
21I 2

21 11@ p̃2 t̃ 21Dm1~v!#I 1
22 D . ~15!
or
ht
B. The two-site problem: Level operators and resolvents

At this stage, solving our problem entails a calculation
the functionsDm0(v), Dm1(v) and the parameterp̃. To
this end, we express these quantities39 in terms of correlation
functions for the level operators associated with a two-
problem. Let us introduce first the single-site level operat
B( i ), Fs( i ), andD( i ) which annihilate empty, singly occu
pied ~with spin s) and doubly occupied states, respective
In terms of these operators, the original Hubbard opera
can be written asjs5B†Fs and hs5sF2s

† D. As the sys-
tem can be at a given time in one of the possible four sta
the level operators satisfy the condition

Q~ i ![B†~ i !B~ i !1(
s

Fs
†~ i !Fs~ i !1D†~ i !D~ i !51.

~16!

This restriction can be introduced by adding a Lagrange m
tiplier term of the form,«0( iQ( i ), to the original Hamil-
tonian. The level operators for the two-site statesFn are
obtained by taking all the combinations of single-site le
f

e
s

.
rs

s,

l-

l

operators. It is convenient to use the following symmetric
antisymmetric combinations corresponding to eig
fermionic-type statesj:

FBS
s[

1

A2
@Fs~x!B~x8!1B~x!Fs~x8!#,

FDS
s[

1

A2
@Fs~x!D~x8!1D~x!Fs~x8!#,

FBA
s[

1

A2
@Fs~x!B~x8!2B~x!Fs~x8!#,

FDA
s[

1

A2
@Fs~x!D~x8!2D~x!Fs~x8!#, ~17!

and eight bosonic-type states,

BB[B~x!B~x8!, DD[D~x!D~x8!,

FFs[Fs~x!Fs~x8!,
4-5
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FFS[
1

A2
@F↑~x!F↓~x8!1F↓~x!F↑~x8!#,

FFA[
1

A2
@F↑~x!F↓~x8!2F↓~x!F↑~x8!#,

DBS[
1

A2
@D~x!B~x8!1B~x!D~x8!#,

DBA[
1

A2
@D~x!B~x8!2B~x!D~x8!#, ~18!

wherex andx8 are the positions of the two-sites and the sp
indexs takes two values, (115↑) and (215↓). Note that
FFs and FFS correspond to the spin-triplet states, wh
FFA corresponds to the spin-singlet state.

We are interested in solving a two-site problem for a cl
ter embedded in a reservoir, constituted by the rest of
system. Formally, the total Hamiltonian can be divided in
three parts39 describing the two-site subsystem,H0 the res-
ervoir HR , and their interactionH0R ,

H5H01HR1H0R . ~19!

To describe the properties of the two-site system, we in
duce the resolvent

Rnm~ t2t8!5u~ t2t8!
TrR@^0uFn~ t !Fm~ t8!†u0&e2bHR#

TrR@e2bHR#
,

~20!

where the trace is over the degrees of freedom of the re
voir, u0& denotes the vacuum for the two-site problem, a
as usual, b51/kBT. Note that Fnu0&50 and, conse-
quently,H0Ru0&50. The Fourier transform of the resolve
can be expressed using the spectral function,snm(v)
52(1/p)Im Rnm ,

Rnm~v!5E dx
snm~v!

v2x1 id
. ~21!

We also introduce the auxiliary functions̄nm(v)
5e2bvsnm(v). Once we know the resolvents, we can e
press any average of operators of the typeFnm5Fm

† Fn as

^Fnm&5
1

ZE dvs̄nm~v! ~22!

with Z5(n*dvs̄nn(v).
A formal solution of the resolvents39 can be obtained us

ing the equation of motion method. We can write

Rnm~v!5S 1

v2E2S~v! D
nm

, ~23!

where the energy matrixE is determined by the levels of a
isolated two-site system and the self-energyS is a measure
of the effects of the reservoir. Explicitly, we have
24510
-
e

-

er-
,

-

Enm5^0u i
]

]t
Fn~ t !Fm

† ~ t !u0&R ~24!

and

Snm~v!5FT^0uu~ t2t8!dJFn
~ t !dJFn

† ~ t8!u0&RI , ~25!

whereR indicates that the trace over the reservoir degree
freedom has been taken,I indicates the irreducible part, an
dJFn

(t)5 i (]/]t)Fn(t)2(mEnmFm(t). To proceed, we de-
termine the equations of motion for the level operators. I
convenient to write first the equations for the single-site o
erators,

i
]

]t
B5«0B2 t̃(

s
cs

†aFs ,

i
]

]t
Fs5~«02m!Fs5 t̃ Bcs

a2 t̃sc2s
†a D,

i
]

]t
D5~«022m1U !D2 t̃(

s
sF2scs

a , ~26!

where the arbitrary reference energy«0 will be set to «0
52m. In fact, the lattice and the two-site cluster had diffe
ing chemical potentials. However, equilibrium between t
two-site system and the lattice requires that both have
same chemical potential. The equations of motion for
two-site level operators can be determined directly using
equations of motion, Eq.~26! and Eqs.~17! and~18!. Explic-
itly, these equations are given in Appendix A. From the eq
tions of motion we can extract the energiesEnm for the re-

solvents. Selecting the terms that do not containcs
ā-type

operators, that is, the terms that do not depend on the deg
of freedom of the reservoir, we obtain

EFBS
52«02m2

t̃

2d
, EFDS

52«023m1U1
t̃

2d
,

EFBA
52«02m1

t̃

2d
, EFDA

52«023m1U2
t̃

2d
,

EBB52«0 , EDD52~«022m1U !,

EFFS
5EFFs5EFFA

52~«02m!,

EDBS
5EDBA

52«022m1U, EDBSFFA
5EFFADBS

5
t̃

d
.

~27!

Employing the standard noncrossing approximation51 and us-
ing the time derivatives of theFn operators from Appendix
A, we compute the self-energiesSnm , Eq. ~25!, of the resol-
vents. The expressions for the self-energies are given in
pendix B.

It is known52 that intersite spin fluctuations, which ar
ignored in the noncrossing approximation, are in fact imp
tant and cannot be neglected at energy scales on the ord
4-6
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NONPERTURBATIVE APPROACH TO FULL MOTT BEHAVIOR PHYSICAL REVIEW B69, 245104 ~2004!
t2/U. Since our attempt is to develop a top-down approa
in which on-site physics as well as nearest-neighbor corr
tions are described accurately, we must include spin fluc
tions. To overcome this problem, we include the effects
spin fluctuations as a higher-order correction to the s
energies of the resolvents. Physically, we can understand
correction by observing that the solution for singlet and tr
let states,FFA andFFS , is sharply peaked at energies sep
rated by

J5E
2`

`

v~sFFS
2sFFA

!dv. ~28!

In the strong coupling limit,J is of order t2/U and, conse-
quently, singlet-triplet mixing cannot be ignored. We co
siderJ to be the coupling constant of an effective antiferr
magnetic interaction which is responsible for the sp
fluctuations. The corrections to the self-energies given
spin fluctuations are given in Appendix C. The energies fr
Eq. ~27!, together with the self-energies given in Appendix
and the corrections from Appendix C constitute the equati
necessary for the evaluation of the two-site resolvents.

C. Self-consistent procedure

The goal of introducing the two-site resolvents is to e
press the dynamical correctionsDm0 and Dm1, as well as
the parameterp̃ in terms of quantities associated with th
two-site problem as depicted in Fig. 2. To this end, let
introduce the quantityZfn

5Z^Fn
†Fn& by

ZFn
5E dvs̄Fn

~v!. ~29!

The two-site occupation numbers for each of the 16 sta
can be written directly in terms ofZFn

. For example, for the

singlet and triplet states, we havenFFA
5ZFFA

/Z and nFFS

53ZFFS
/Z, respectively. Single-site occupation numbe

can also be expressed in terms ofZFn
using Eq.~16! and

writing the identity operator on a neighboring site as18
5Q(x8). For example,

FIG. 2. Self-consistent scheme for the computation of the s
energy.
24510
h
a-
a-
f
f-
is

-
-
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y

s

-

s

s

D†D[D†D185~DB8!†DB81(
s

~DFs8 !†DFs8

1~DD8!†DD8, ~30!

and as a result

nD[^D†D&5Z21@ZFDS
1ZFDA

1 1
2 ZDBS

1 1
2 ZDBA

1ZDD#.
~31!

Similarly, we obtain for the average single occupan
(s^Fs

†Fs&,

nF5Z21@3ZFFS
1ZFFA

1ZFBS
1ZFBA

1ZFDS
1ZFDA

#.
~32!

The electron filling is given by the sum of single occupan
and ~twice! the double occupancy,

n5nF12nD . ~33!

As all the terms inp̃ can be expressed in terms of products
two-site operators, it is straightforward to write this para
eter as

p̃5Z21@ZFDS
1ZFDA

1ZDD1 3
2 ZFFS

2 1
2 ZFFA

2 1
2 ZDBS

1 1
2 ZDBA

#2
n2

4
. ~34!

This represents the self-consistency condition for the par
eter p̃ and obviates the need to employ a decoupling sche
required in the static approximation.41,53

The next step is to determine the dynamical correctio
To this end, we express39 the currentsdJs in terms of two-
site level operators. From Eq.~7! andxi→x andxI

a→x8, we
find that

dJs52 t̃(
m,n

anmFn
†Fm ,

dJs852 t̃(
m,n

anm8 Fn
†Fm , ~35!

whereFn represents the complete set of two-sites level
erators and the coefficientsanm are given in Appendix D. As
dJ8 is obtained fromdJ by exchanging the positionsx and
x8, the coefficientsanm8 will be identical with anm up to a
sign that depends on the symmetry properties of the st
Fm andFn under the exchange ofx andx8. Let us denote by
E the operator that produces the exchange,

EO~x,x8!5O~x8,x!, ~36!

whereO(x,x8) is an arbitrary operator defined on the tw
site cluster. The symmetry properties of the level operat
are given by

EFBS5FBS , EFBA52FBA ,

EFDS5FDS , EFDA52FDA ,

f-
4-7
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EFFS52FFS , EFFs52FFs,

EFFA5FFA ,

EDBS5DBS , EDBA52DBA ,

EBB5BB, EDD5DD. ~37!

Consequently,anm8 5anm if Fn andFm have the same sym
metry andanm8 52anm otherwise. The self-energy contribu
tions can be calculated only approximately. We will use
noncrossing approximation51 which has been proven to b
effective in solving problems with local correlations. Defi
ing Fmn5Fn

†Fm , we have

TrR^0uFmn~ t !Fm8n8
†

~ t8!e2bHu0&

5TrR@^0uFm~ t !Fm8
†

~ t8!u0&^0uFn8~ t8!e2bHFn
†~ t !u0&#

'TrR^0uFm~ t !Fm8
†

~ t8!u0&TrR^0uFn8~ t8!Fn
†~ t1 ib!u0&.

~38!

Consequently, we obtain

^Fmn~ t !Fm8n8
†

~ t8!&'
1

ZE dve2 iv(t2t8)

3E dxsmm8~v1x!s̄n8n~x!,

~39!

which is the formulation of the noncrossing approximati
that we will use systematically in our calculations. Introdu
ing the expansion Eq.~35! in the expression for the dynam
cal corrections, Eq.~12!, and using the noncrossing approx
mation formula@Eq. ~39!#, we obtain

Dm0~v!5
1

2dZE dxdx8 (
n,m,n8,m8

anman8m8
!

3
smm8~x!s̄n8n~x8!1s̄mm8~x!sn8n~x8!

v2x1x81 id

~40!

and

Dm1~v!5
1

2dZE dxdx8 (
n,m,n8,m8

anman8m8
8!

3
smm8~x!s̄n8n~x8!1s̄mm8~x!sn8n~x8!

v2x1x81 id
.

~41!

Detailed expressions forDm0 andDm1 are given in Appen-
dix D.

This concludes the process of writing the components
the Green function, Eq.~5!, which cannot be expressed
terms of the Hubbard basis, in terms of spectral functions
the two-site system. However, for a fully self-consistent c
24510
e

-

f

r
-

culation, we need to determine the reservoir spectral fu
tionsr6(v) that enter into the formulas for the self-energi
of the resolvents~see Appendix B!. The reservoir consists o
the full system from which the two sitesx andx8 have been
excluded. Our goal is to determine the Green functionsḠ

5^^cs
ā ,cs

†ā&& and Ḡ85^^cs
ā ,cs

†ā8&&. We introduce the two-
site full propagator @S#5^^C,C†&& with C†

5@c†(x)c†(x8)# and the irreducible propagator

@S̄#5S S̄ S̄8

S̄8 S̄
D , ~42!

whereS̄5^^cā,c†ā&& andS̄85^^cā,c†ā8&&. From standard
scattering theory, we have that

@S#5@S0#1@S0#@V#@S̄#@V#@S# ~43!

where

@V#5S V 0

0 VD ~44!

and

@S0#215S S0
21 tV

tV S0
21D . ~45!

The solution of these equations is

S̄5V21@S0
212~S2S8S21S8!21#V21,

S̄85V21@ tV1S21S8~S2S8S21S8!21#V21. ~46!

The irreducible Green functions used in the evaluation of
self-energies of the resolvents will be given by

Ḡ5S̄111S̄121S̄211S̄22,

Ḡ85S̄118 1S̄128 1S̄218 1S̄228 , ~47!

and the corresponding spectral functions are

r1~v!52
2

p
Im@Ḡ~v!1Ḡ8~v!#,

r2~v!52
2

p
Im@Ḡ~v!2Ḡ8~v!#. ~48!

III. RESULTS

We now have all the ingredients necessary for the imp
mentation of the self-consistent procedure shown in Fig
Starting with an initial guess for the spectral functionsr6

describing the properties of the environment, we solve
two-site problem iteratively using the expression Eq.~23! for
the resolvents, the energies Eq.~27! and the self-energies
from Appendix B with the spin fluctuation corrections fro
Appendix C. While in principle the cluster and the lattice c
have different chemical potentials as in the previous work
the two-site cluster,39 we have used the more physical r
4-8
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straint that both the cluster and the lattice must have
same chemical potential. However, as a result of Eq.~33!,
the filling in the cluster and the lattice will be different. B
symmetry, however, at half-filling both the cluster and t
lattice will have the same filling. All the frequency
dependent functions are discretized on a grid ofN58192
points fromvmin5220t to vmax520t. To increase the com
putational speed, we performed all the convolutions involv
in the calculation of the self-energies using a fast Fou
transform algorithm. The procedure converges for tempe
tures aboveT50.02t at finite doping andT50.08t at half-
filling, although convergence problems occurred belowT
50.1t. Once we computed the resolvents, the mean-field
rameterp̃ can be determined using Eq.~34!, as well as the
dynamical correctionsDm0 andDm1 from Appendix D. The
mean-field parametere5^jaj†&2^hah†& can be expresse
in terms of the Green function using the general se
consistency condition,

^cm~ i !cn
†~ j !&5

V

~2p!2E d2kdveik•(r i2r j )@12 f ~v!#

3S 21

p D Im Smn~k,v!. ~49!

Within the grand-canonical ensemble, the chemical poten
m is determined by the self-consistent solution to

n52~^jj†12jh†1hh†&!. ~50!

We imposed the constraint that the chemical from Eq.~50!
also equal that for the cluster. We then determined the
Green functionS(k,v) using Eqs.~13!–~15!. Next, new
spectral functionsr6 are determined using Eq.~48! and the
whole procedure@see Fig. 2# is repeated until full conver-
gence is reached.

A. Spectral function at half-filling: Mott insulator

Before we analyze the doped case, we first review49 the
properties of the charge vacuum that determines the ins
ing behavior at half-filling. To reiterate, there are two distin
routes to the insulating state at half-filling. ForU@t, the
charge and spin degrees of freedom are decoupled and
system is an insulator for temperatures smaller thanT0
;U. The spins are coupled due to the super-exchange in
action, uJu'4t2/U. It is this spin exchange interaction th
gives rise to local antiferromagnetic fluctuations and even
ally ordering atT50. This is the antiferromagnetic Mot
insulating state. In general, in the weak coupling regime
metal-insulator transition occurs as a consequence of
Brillouin zone folding generated by magnetic or charge
dering and the corresponding gap is essentially related
antiferromagnetism or some type of charge density wa
This type of transition is referred to as a Slater transition a
the corresponding insulating state should not be confu
with the Mott insulator. Such a regime can be successf
described by conventional many-body approaches.

Shown in Fig. 3 is the total electron spectral function,
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A~k,v!52~1/p!Im$S11~k,v!12S12~k,v!1S22~k,v!%

~51!

for the 2D half-filled Hubbard model withU58t and T
50.15t. Clearly visible are the upper and lower Hubba
bands with an energy gap of orderU and flatness of the ban
near the (p,0) point. The chemical potential (v50) lies in
the middle of the gap and hence the system is an insula
However, no symmetry is broken as is evident because
periodicity is 2p rather thanp as would be the case if th
Brillouin zone had doubled. In addition, spin and charge
not fractionalized.26 The insulating behavior arises becau
the charge gap has splintered the spectral weight of eack
state into ‘‘bonding’’ and ‘‘antibonding’’ pieces. Conse
quently, there is a fundamental breakdown of what is me
by an electronic state. In fact, the electronic states the
selves have fractionalized. To make contact with the re
space picture shown in Fig. 1, we note that the PES and IP
spectra are determined by the spectral weight in the lo
and upper Hubbard bands, respectively. In general, the u
and lower Hubbard bands carry total spectral weightn/2 and
12n/2, respectively, which of course reduces to 1/2 at ha
filling. However, A(k,v) is strongly momentum dependen
as illustrated in Fig. 3. For the lower Hubbard band, t
maximum in the spectral weight is peaked at (0,0) and
creases as the (p,0) point is reached and becomes vanis
ingly small at (p,p). In fact, the states at (p,p) in the lower
Hubbard band carry almost none of the spectral weig
However, the decrease in the occupancy of eachk state is a
continuous function, as depicted in Fig. 4, rather than a d
continuous one as would be the case in a Fermi liquid wit
well-defined Fermi surface. In the strict sense, the disco
nuity in nk in a Fermi liquid occurs atT50. Although we
cannot reachT50 in our approach, we find no indicatio
that a discontinuity develops innk as the temperature de
creases. In fact, the continuous behavior we have obta
here is consistent with the exact result38

nk5
1

2
12

ek

U K Si•Si 1d2
1

4L ~52!

FIG. 3. Momentum and energy dependence of the electron s
tral function for a half-filled 2D system withU58t and T
50.15t. From top to bottom, the curves correspond to (kx ,ky)
5(0,0)→(p,p)→(p,0)→(0,0).
4-9
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for the occupancy in eachk state projected into the LHB o
a half-filled Hubbard model. Note all thek dependence is
determined by the single-particle energies,

ek52t(
d

eik•(Ri2Ri 1d). ~53!

For a paramagnetic state, the term in the angle bracke
exactly,21/4. Hence,nk is a continuously decreasing func
tion from (0,0) to (p,p) as found here forU58t.

Although nk,1, each state satisfies the sum rule,

E
2`

`

A~k,v!dv51. ~54!

In a band insulator the upper cutoff on the energy is sim
the chemical potential. This does not mean that in a b
insulator or in a Fermi liquid, a broad incoherent backgrou
cannot be present which extends to high energies. In fac
a Fermi liquid,nk can be less than unity. However, in Ferm
liquids, a coherent quasiparticle peak always exists reg
less of the momentum. Hence, the criterion for occupanc
a single-particle state is simply whether or not the coher
peak lies above or below the chemical potential. In a M
insulator not only is the spectral weight split over an ene
scale ofU but there is an absence of coherent quasiparti
as evidenced by the broad spectral features. Hence, the
no sharp criterion for unit occupancy of a single-partic
state. The broadness of the spectral features stems from
local correlations on neighboring sites not the Mott gap
self. Without the dynamical corrections, the spectral funct
would simply be a sum ofd-function peaks at the lower an
upper Hubbard bands.

The bifurcation of the spectral weight of eachk state
above and below the charge gap can be modeled as foll
Consider, for example,gks

† 5ukjks
† 1vkhks

† , with coeffi-
cients uk and vk are determined by the projection of th
spectral function onto the lower and upper Hubbard ban
respectively. Hence, the antisymmetrized state formed f
such excitations

uMI &5(
P

~21!P )
kPFBZ

gk↑
† gk↓

† u0& ~55!

is a candidate for describing the elusive paramagnetic M
insulator. Provided magnetic frustration is present so that

FIG. 4. Occupancy of each momentum state withkx5ky for the
spectral function shown in Fig. 3. The occupancy is peaked at (
and decreases continuously to a minimum value at (p,p) without
the discontinuity indicative of a Fermi liquid.
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dering is preempted, Eq.~55! should be theT50 Mott insu-
lating state. The sum over all permutationsP is necessary as
the gks operators obey the nonfermionic commutation re
tions,

$gk↑
† ,gq↓

† %5(
i

e2 i (k1q)r i~ukvq2uqvk!ci↑
† ci↓

† ~56!

and $gks
† ,gqs

† %5$gks
† ,gqs8%50. Whenuk5vk , gk↑

† gk↓
† u0&

generates the completely doubly occupied state. Howe
because the right-hand side of the anticommutation rela
in Eq. ~56! is identically zero foruk5vk , the zero state
results upon summation over all permutations. Conseque
Eq. ~55! completely projects out the fully doubly occupie
state.

1. Singlet formation: local antiferromagnetism

A crucial test of the correctness of the method we ha
used here is whether or not short-range antiferromagn
correlations are present at low temperatures. Such corr
tions do not signal that long-range magnetic order obtain
T50 but rather that the ground state atT50 is a liquid of
nearest-neighbor singlet states as in the resonating vale
bond~RVB! state proposed by Anderson.21 We are able with
our two-site formalism to probe the existence of local ma
netic order by computing the nearest-neighbor singlet
triplet occupation numbersnFFA

5ZFFA
/Z and nFFS

53ZFFS
/Z, respectively. From Fig. 5 we find that, at hig

temperatures, triplet excitations dominate. However, t
trend is reversed below some temperature and the sin
occupancy becomes of order unity. Hence, the lo
temperature properties of the insulating state we have c
puted here are consistent with a liquid of nearest-neigh
singlet states as in the RVB state. In fact, atT50 the liquid
state we have found here persists because we have impo
paramagnetic solution.

A final diagnostic of the insulating state we have fou
here is the behavior of the effective exchange interaction
function ofU. In the Mott state, a super-exchange interact
is self-generated which should scale as 1/U. It is this ex-
change interaction that sets the scale for the Nee´l tempera-

0)

FIG. 5. Singlet (nFFA
) and triplet (nFFS

) occupation numbers a
a function of temperature forU58t in two dimensions. The fact
that nFFA

.nFFS
asT→0 is consistent with local antiferromagnet

order.
4-10
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NONPERTURBATIVE APPROACH TO FULL MOTT BEHAVIOR PHYSICAL REVIEW B69, 245104 ~2004!
ture. Using Eq.~28!, we computed the effective exchang
interaction shown in Fig. 6 for both 1D and 2D. Note fir
thatJ is always positive as a consequence of the fact that
singlet state is lower in energy than the triplet. This is
further indication of antiferromagnetic correlations in t
ground state. As expected,J is well approximated by 4t2/U
in the strong-coupling regime. However, asU decreases, de
viations from this behavior are observed.

B. Doped Mott insulators

1. Chemical potential

Two scenarios are possible for the doping dependenc
the chemical potential:~1! the chemical potential remain
pinned and mid-gap states are generated by some phy
mechanism, or~2! the chemical potential jumps to the top
the LHB or the bottom of the UHB upon hole or electro
doping, respectively. Our results shown in Fig. 7 demonst
that the chemical potential jumps upon hole or electron d
ing, indicating an absence of mid-gap states. The magni
of the jump is set by the Mott gap which is fully develope
at T50. While at some finite temperature, the chemical p
tential may appear to evolve smoothly, atT50, the chemical

FIG. 6. Effective exchange interaction coupling constantJ as a
function of U/t for T50.15t.

FIG. 7. Doping dependence of the chemical potential in the
Hubbard model computed using the local cluster approach foT
50.15t ~dashed line! andT50.07t ~solid line!. The inset shows the
imaginary part of the self-energy evaluated at a Fermi momen
(0.3,2.10) forn50.97, (0.3,1.84) forn50.8 and (0.3,1.06) forn
50.3.
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potential should jump discontinuously. That is, we find th
doping a Mott insulator leads to a continuous depletion
the spectral weight in the first Brillouin zone. Our finding
consistent with the exact result for the 1D Hubbard mode54

as well as quantum Monte-Carlo simulations43,44 in two di-
mensions. However, ind5`, the chemical potentia
exhibits55 a jump but one that is smaller than the gap. Hen
mid-gap states are generated.55 It would appear then thatd
5` is vastly different from an actual finite-dimensional sy
tem and the 2D Hubbard model is quite similar to its 1
counterpart at least as far as the chemical potential is c
cerned. The possible source of the discrepancy is the form
the self-energy. A chemical potential jump requires a la
imaginary part of the self-energy at the chemical potent
thereby indicating an absence of well-defined quasipartic
Mid-gap states are resonance states and hence are rem
cent of the Brinkman/Rice56 mechanism for the insulator
metal transition in the doped Mott state. The inset in Fig
indicates that ImS in the underdoped regime is large an
nonzero at the Fermi energy. Such behavior points to
absence of well-defined quasiparticles. In the overdoped
gime, the characteristicv2 dependence appears, indicative
a Fermi liquid. Consequently, the method we use here
capable of recovering Fermi liquid theory in the overdop
regime.

Experimentally, whether the chemical potential is pinn
or moves upon doping appears to be cuprate dependent
example, in La22xSrxCuO4 ~Ref. 57! ~LSCO!, the chemical
potential remains pinned roughly at 0.4 eV above the top
the LHB, while for Nd22xCexCuO4 ~NDCO!,58

Bi2Sr2Ca12xRxCu2O81y ~BSCO!,59–62 and Na-doped
Ca2CuO2Cl2 ~Ref. 33! ~CACLO! the chemical potentia
jumps upon doping by an amount in accordance with half
Mott gap and scales roughly asd2 as obtained here. Becaus
stripes or macroscopic phase separation require the chem
potential to be pinned, they have been invoked63 to explain
the origin of mid-gap states in LSCO. The pseudogap in
underdoped cuprates has also been attributed63 to stripes.
However, becauseDmÞ0 for most of the cuprates, for ex
ample, NDCO, BSCO, and CACLO, if the pseudogap ha
universal origin, stripes are not its cause. The precise or
of the pseudogap will be discussed extensively in a la
section.

2. Spectral function

Shown in Fig. 8 is the electron spectral function at hi
temperature,T50.25t for n50.97, n50.90, n50.80, and
n50.60. Several features are evident:~1! the chemical po-
tential moves further into the LHB as the filling decreas
~2! no coherent peaks exist near the chemical potential in
lightly doped regime, 0.9,n,1, ~3! in the dense or weakly
interacting regime, sharper features appear,~4! each state in
the FBZ has spectral weight both above and below
chemical potential as dictated by Mottness,~5! the Mott gap
remains intact but moves to higher energy as the dop
increases, and~6! at (p,p), the UHB carries most of the
spectral weight regardless of the filling. In the underdop
regime, the characteristic width of eachk state is of ordert
and even much larger near (p,0). Such broad spectral fea
tures in the underdoped regime are seen experimentally60 and

m
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B69, 245104 ~2004!
arise in this context because ImS(eF)Þ0 as shown in Fig.
7. As a consequence, there is no sharp criterion for unit
cupancy of each state in the FBZ. Because the total spe
weight of eachk state is unity, however, and each state liv
both below and above the chemical potential, the charge
ried by the piece of the state lying below the chemical p
tential is less than unity. That is, each electronic state
fractionalized. In the heavily overdoped regime, the splitt
of the spectral weight above and below the Mott gap,
highly suppressed. As illustrated in Fig. 8, most of the sp
tral weight resides in the LHB for a filling ofn50.60. As a
consequence, Mottness vanishes in the overdoped regim
addition, in the heavily overdoped regime, ImS acquires the
characteristicv2 dependence indicative of a Fermi liquid
Hence, with our method we are able to recover the key c
acteristics to the transition to the traditional Fermi liqu
state, namely,~1! a vanishing of spectral weight in the UH
and ~2! Im S'v2 near the chemical potential.

Does new physics emerge at low temperatures? Figu
depicts the spectral function computed atT50.07t. At this
relatively low temperature, two new features emerge. Fi
in the underdoped regime, the spectral weight appears t
suppressed at the chemical potential. Whether this gives
to a pseudogap will be investigated in the following sectio
Second, atn'0.8 especially in the vicinity of the (p,0)
point, the band becomes almost dispersionless and seem
split into two subbands. Instead of a strong coherence p

FIG. 8. Doping dependence of the spectral function in the
Hubbard model computed using the local cluster approach foT
50.25t and fillings ofn50.97, n50.90, 0.80, andn50.60.

FIG. 9. Doping dependence of the spectral function in the
Hubbard model computed using the local cluster approach foT
50.07t and fillings ofn50.97, n50.90, 0.80, andn50.60.
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at the chemical potential we observe a weak maximum a
cent to a region with depleted spectral weight which form
‘‘channel’’ immediately above the chemical potential. To u
derstand the importance of the low-temperature features,
expedient to compute the density of states.

3. Pseudogap without preformed pairs or global symmetry
breaking

To investigate the possibility of a pseudogap64 in the
lightly doped regime, we integrate the spectral function o
momentum to obtain the single-particle density of sta
~DOS! at high and low temperatures. Displayed in Fig. 10
the DOS forT50.25t andT50.07t for several fillings. As is
evident, no local minimum of DOS exists at the chemic
potential at high temperature,T50.25t. Features which
emerge even at high temperature are the reshuffling of s
tral weight from above the charge gap to below as the fill
is changed and also a movement of the Mott gap to hig
energies. Note that even atn50.30 the Mott gap is still
present, though almost all of the spectral weight now resi
in the LHB which closely resembles the noninteracting de
sity of states. This is further evidence that we correctly
cover Fermi liquid theory asn→0. What about low tempera
ture? The lower panel of Fig. 10 demonstrates tha
pseudogap forms in the DOS ford'0. The vertical line at 0
indicates that the pseudogap occurs precisely at the chem
potential. Similar qualitative results based on a clus
method have been obtained by Maieret al.,65 except their
pseudogap is slightly displaced aboveEF . In contrast, in the
analysis of Hauleet al.,66 the DOS has a negative slop
throughEF ~as dictated by the proximity to the Mott gap! but
never acquires a local minimum atEF indicative of a true
pseudogap. Because the pseudogap exists below some

FIG. 10. Density of single-particle states forT50.25t and T
50.07t, U58t for the fillings shown. No pseudogap exists at hig
temperature. At lowT and low doping levels, a pseudogap emerg
at the chemical potential but moves above it at an intermed
doping level. In the overdoped regime, the pseudogap vanishes
tirely and a weakly interacting system is recovered.
4-12
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NONPERTURBATIVE APPROACH TO FULL MOTT BEHAVIOR PHYSICAL REVIEW B69, 245104 ~2004!
acteristic temperature and vanishes at higher doping, the
sult obtained here is nontrivial and highly reminiscent
experimental observations in the cuprates.67 What is its ori-
gin? Incoherence (ImSÞ0 atEF) is central, though it is not
a sufficient condition66 @see Fig. 2# for a pseudogap. From
Fig. 10, the pseudogap remains intact up tod50.20 but sim-
ply moves to higher energies as does the Mott gap. Thi
telling because ind5`, no55 pseudogap exists but a Mo
gap is present. Absent fromd5` but present in any lattice
of finite connectivity are true short-range correlations. W
argue then that the pseudogap is the nearest-neighbor a
of the on-site generated Mott gap. The energy scale
nearest-neighbor interactions scales ast2/U. Hence, if our
hypothesis is correct, we expect the pseudogap to dimi
asU increases. The evolution shown in Fig. 11 indeed de
onstrates that, at finite temperature, the pseudogap does
ish asU increases. Hence, we can assert with certainty
correlations on neighboring sites do in fact create a deple
in the density of states. The energy scalet2/U is typically
associated with antiferromagnetic spin fluctuations. To
plore whether such processes have the right doping de
dence to explain the origin of the pseudogap, we display
Fig. 13 thex dependence ofJ computed from Eq.~28!. As is
evident, J is only weakly doping dependent in the unde
doped regime and hence lacks the strong doping depend
needed to explain the pseudogap. This trend is consis
with that of Jarrell and co-workers65 who have observed tha
the pseudogap persists even if antiferromagnetism is kil
Figure 13 also indicates thatJeff computed as the energ
difference between the nearest-neighbor singlet and tri
states vanishes atx50.8. This is not an accident. Neares
neighbor spin fluctuaions should desist when no near
neighbor sites remain singly occupied. On average, this
tains at a filling of 1/5 orx50.8, precisely the doping valu
found here. Hence, it is not a surprise that the doping dep
dence ofJ is weak in the underdoped regime.

What then is the cause of the physics of the pseudog
Any two-step process involving the UHB scales ast2/U.
Consider the explicit three-site terms that appear away f
half-filling

FIG. 11. Density of single-particle states forT50.1t, for n
50.95 and three values of the on-site interaction:U512t, U
58t, and U54t. The gradual vanishing of the pseudogap asU
increases offers direct confirmation that the energy scale for
pseudogap is set byt2/U.
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idÞd8,s

~ c̃i 1d,s
† h̃ i ,i 1d8s,2s2 c̃i 1d,2s

† p̃ i ,i 1d8,s!

~57!

in an expansion int/U, where the tilde represents full pro
jection onto the LHB. It is precisely these terms that thw
the equivalence between the so-calledt-J and Hubbard mod-
els in the largeU limit away from half-filling.38 This term
represents the motion~strictly in the LHB! of a hole in a spin
background. We argue that such terms are involved in
pseudogap. The mechanism is as follows. Consider placi
single hole in a Mott insulator. Unlike a site neighboring t
hole, a singly occupied site two lattice sites away must te
porarily doubly occupy one of its neighbors if it is to mov
to the hole. For this to be possible, the electrons on ne
boring sites must have opposite spins. The matrix elem
for such a two-step process ist2/U and described by the
three-site terms written above. For sites with the incorr
spin alignment, a local spin fluctuation must obtain for t
three-site hopping to occur. The energy barrier for this p
cess ist2/U. It is from those local three-site configurations
which the spins are incorrectly aligned that the pseudo
arises as illustrated in Fig. 12. Simply invoking spin fluctu
tions is insufficient to explain the origin of the pseudogap
spin fluctuations alone cannot give rise to transport. Ho
ever, spin fluctuations can make it possible for an elect
two sites away from a hole to transport. Hence, spin fluct
tions in the context of three-site hopping can overcome
local spin blockade~or spin gap! that exists in doped Mott
insulators. As this effect is entirely local, the pseudogap
the nearest-neighbor analog of the Mott gap: neighbor
sites with a parallel arrangement of the spins experience
energy barrier equal tot2/U for charge transport. Can th
doping value at which this process vanishes be estima
On this account, the pseudogap should be related to the
probability that a neighboring three-site configuration co
sisting of a hole and two sites with spin parallel electro
exists. The minimum constraint however is simply that ea
site has on average one hole as its immediate neigh

e

FIG. 12. Local three-site configurations in which spin-blocki
leads to a pseudogap. In the upper state, transport directly betw
the up spin two sites away from the hole and the hole is not p
sible. Only hole transport via a two-step process is possible. As
amplitude for hole transport is a superposition of all such proces
a pseudogap develops. The only way to overcome the spin-bloc
is for the spin neighboring the hole to flip. This process costs
energyt2/U. Once the spin is flipped, there is no barrier for tran
port.
4-13
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B69, 245104 ~2004!
roughlyx50.25 for a square lattice. Hence, the pseudoga
of the form t2/UP(x), whereP(x) determines the probabil
ity that hole transport involves double occupancy and con
quently, is a steadily decreasing function ofx vanishing at
xcrit . From the estimate given above, it is likely thatxcrit is
closer to the end of the superconducting dome than it is
optimal doping.

It is common38,68 to approximate the three-site terms co
sidered here asxKJ, whereK is treated as the lattice con
nectivity. Consequently, the effective nearest-neighbor
change interaction is doping dependent and given byJeff
5J(12xK) which vanishes atxcrit51/K'0.25~Ref. 68! for
a square lattice. However, as Fig. 13 demonstrates,Jeff van-
ishes atx50.8 notx50.25. It is likely that the discrepanc
found here arises from the fact that the three-body term
Eq. ~57! cannot, in any real sense, be rewritten as an ef
tive spin exchange. In fact, atx50.8, every site has on av
erage four neighboring holes. At this concentration, near
neighbor spin fluctuations are not possible; hence,Jef f
should vanish, as seen in Fig. 13.

4. Heat capacity

Evidence for the pseudogap is also found from the h
capacity.69 We computed the heat capacity numerically fro
the internal energy

C~T!5
1

N

dE

dT
. ~58!

The energy per site is the sum of the kinetic term and
interaction term

E

N
522t^ci

†cia&1U^ni↑ni↓&, ~59!

where t52dt0 (t54t0 in two dimensions!. The double oc-
cupancy can be expressed as

FIG. 13. Effective nearest-neighborJ as a function of filling.J
vanishes when four out of five sites are empty. Beyond this conc
tration, nearest-neighbor spin fluctuations are not possible.
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2
2^h iscis

† &. ~60!

The correlations can be expressed in terms of the Gr
function as

E

N
5

n

2
U1E dv

2pE d2k

~2p!2
@12 f ~v!#F2ta~k!

21

p

3Im~S1112S121S22!2U
21

p
Im~S121S22!G .

~61!

Equivalently, we can use the equation of motion for t
Green function̂ ^h i(t),cj

†(t8)&& and we obtain an alternat
expression

E

N
5

n

2
U2S 12

n

2Dm2E dv

2pE d2k

~2p!2
@12 f ~v!#

3@v2ta~k!#
21

p
Im~S1112S121S22! ~62!

for the energy per particle. We found that the difference
tween Eqs.~61! and ~62! was within our numerical errors
Consequently, in our final calculations of the heat capac
shown in Fig. 14, we averaged the two results. In the 1D a
2D Hubbard models at half-filling,49 two peaks exist in the
heat capacity. The high temperature peak correspond
charge excitations and the low-tempeature peak to spin p
ics. As is evident, the same separation of energy scales
sists even in the doped case. However, forn,0.9, we find
that the spin peak vanishes and merges with the charge
citation spectrum. This dramatic change represents a pos
termination of Mott-dominated physics and the onset
more Fermi liquid behavior. Bonca and Prelovsek70 observed
the identical trend in their exact diagonalization study o
434 system. This agreement lends further credence to
method. Another trend evident from Fig. 14 is that the e
trapolatedT50 value of the heat capacity in the underdop

n-

FIG. 14. Heat capacity computed for three fillings computed
numerically differentiating the internal energy obtained from t
average of Eqs.~61! and ~62!. For all three fillings shown,U
58t.
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NONPERTURBATIVE APPROACH TO FULL MOTT BEHAVIOR PHYSICAL REVIEW B69, 245104 ~2004!
regime,n.0.9 is lower than that atn50.85. This represent
a loss of spectral weight at low energies as would be the c
once a pseudogap opens. Hence, the thermodynamics
corroborate the existence of a pseudogap.

5. Possible time-reversal symmetry breaking

We have shown that in general, a pseudogap exists
doped Mott insulator without invoking symmetry breaking
any kind. Nonetheless, we entertain the possibility that
analogy with antiferromagnetism and the Mott gap, perh
some broken symmetry state obtains at lower temperatur
a result of the pseudogap found here. Our argument sh
be construed as a conjecture and hence is entirely spe
tive. It by no means underlies the calculations we presen
here. Loram and colleagues69 have argued that forx,xcrit , a
glassy phase with an Edwards-Anderson order paramete
tains. While the experimental evidence for a glassy ph
extending to xcrit is not clear, recent circular dichroism
experiments71 point to time-reversal as the relevant symm
try that is broken in the pseudogap phase. However,
symmetry is broken only along the (p,0) and (0,p) direc-
tions and not along (p,p). Should these results endure, th
will provide a benchmark for measuring the validity of th
numerous proposals for the pseudogap.72–76In the context of
the view put forth here, we must determine how pure
nearest-neighbor correlations can give rise to a breakin
time-reversal symmetry only along the canonicalx and y
axes but not alongx5y. Consider the three-body term in E
~57!. This term generates correlated motion of a hole am
nearest-neighbor sites, that is, local currents. In analogy w
the local moments that order antiferromagnetically atT50
as a result of the Mott gap, we propose that the currents
order in the pseudogap phase belowT* . Experimentally,71

translational symmetry is preserved in the pseudogap ph
Hence, staggered orbital currents are not possible as
automaticaly result in a doubling of the unit cell within
single-band model.71 Further, experimentally,77–79there is no
evidence that physics beyond a single-band is relevant to
cuprates. Consequently, any current pattern must pres
translational symmetry within a single-band model. Only o
option remains: the currents order below some character
temperatureT* along the canonicalx andy axes. To ensure
that the net current alongx5y vanishes, a compensatin
diagonal current must be present as depicted in Fig. 15.
current pattern can be obtained from the most recently p
posed pattern of Simon and Varma80 by simply integrating
out the oxygen sites. Hence, despite claims to the contra80

it is entirely possible to generate a translationally invari
current pattern within a one-band model that is consis
with the experimental observations. In the corrected pat
of Varma and Simon,80 the oxygen sites do nothing exce
produce a diagonal current which ensures that the total
rent in each plaquette vanishes. That the oxygen sites ca
integrated out is certainly consistent with the now well a
cepted work of Zhang and Rice.81 Nonetheless, our work
does not hinge on the current pattern shown in Fig. 15 be
the origin of the pseudogap. However, insofar as such a
tern obtains entirely from local nearest-neighbor physics,
consistent with our finding that the pseudogap is the near
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neighbor analog of the Mott gap. Should further experime
confirm the presence oft violation, then a more microscopi
investigation of the origin of the current pattern shown
Fig. 15 will be warranted. Of course, a current pattern of
type proposed here can only be obtained~if at all! from a
Hubbard model if next-nearest-neighbor hopping is includ

6. Spectral weight transfer

To quantify the spectral weight transfer evident in Fig. 1
we compute the high and low spectral weight by integrat
the DOS from a value of the energy inside the Mott g
which minimizes the DOS tò (2` for electron doping!
and from m to that fixed energy, respectively. The resu
shown in Fig. 16 demonstrate that the initial spectral wei
in the UHB which is 1/2 atn51 all moves to low energies a
the filling decreases, as is observed experimentally.29,30 The
integrated spectral weight has been normalized per spin.
same is true for electron doping (n.1). Further, the curva-
ture of the low-energy spectral weight is positive as a fu
tion of doping in agreement with earlier results38 on the 1D
Hubbard model. This signifies that the integrated low-ene
spectral weight increases faster than 2x. The additional low-
energy spectral weight above that dictated by state coun

FIG. 15. Current pattern for the motion a hole in a doped M
insulator that preservest-reversal symmetry alongx56y but vio-
lates it along the canonicalx and y axes. Each lattice represents
copper site. Hence, translational symmetry is preserved. The d
onal current is chosen such that the net current in each plaqu
vanishes.

FIG. 16. High (WH) and low (WL) spectral weight as a function
of filling. WNI is the spectral weight in the noninteracting system
4-15
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B69, 245104 ~2004!
~see Fig. 1! arises from virtual excitations between the low
and upper Hubbard bands. Such virtual transitions arise f
the three-site terms discussed previously. That the numbe
low-energy degrees of freedom arise from such high-ene
processes further attests to the inseparability of the low-
high-energy degrees of freedom in a strongly correlated
tem. For contrast, the spectral weight transfer for a nonin
acting system (WNI) is shown as well. This behavior is ex
pected for a doped band insulator. That Mottness lead
such a drastic deviation from the noninteracting result i
direct consequence of state fractionalization. That is, e
state has spectral weight both above and below the chem
potential~see Fig. 16!.

7. Hall coefficient

Experimentally, the Hall coefficient in the cuprates is
general positive in the lightly hole-doped regime, scales
1/x in the vicinity of half-filling but falls off faster than 1/x
for x'0.1 and in some instances changes sign82–84 typically
aroundx50.25. Although the Hall coefficient is in gener
temperature dependent as emphasized extensively
Anderson,85 the Takagiet al. experiments83 indicate that the
zero-crossing doping level in La22xSrxCuO4 ~LSCO! is only
weakly temperature dependent. Consequently, we will fo
solely on the doping dependence of the Hall coefficient si
the existence of the zero crossing is only weakly dop
dependent. Nonetheless, because the sign change is no
versally observed in all the cuprates, the general conditi
under which a sign change of the Hall coefficient should
observed in a doped Mott insulator have not been form
lated. In addition, there have been numerous theore
treatments of the Hall coefficient. For example, perturbat
schemes82,86–88lead to a sign change ofRH and hence offer
a possible explanation for the deviation from 1/x. However,
because perturbation theory is constrained by Lutting
theorem89 to yield a Fermi surface occupying half the FBZ
half-filling, such approaches fail to recover the experime
tally observed82 divergence ofRH at half-filling. In strong-
coupling calculations, some have obtained a sign change90–92

while others93 predict thatRH,0 for all hole dopings. In
addition, others94,95have reached the counterintuitive concl
sion that RH does change sign, but the Fermi surface
closed for allx.0. In such studies, it was assumed that
doped Mott insulator is described by doping the diamo
shaped Fermi surface of the weakly-interacting system
assumption clearly not borne out by experiment.77,78,96

On simple grounds, however, the general doping dep
dence of the Hall coefficient can be easily deduced. Cons
a lightly doped Mott insulator in which the Hall coefficient
initially positive. In the heavily overdoped regime where t
system is weakly interacting, the Fermi surface must
closed and hence electronlike; thusRH,0. We can deduce
the doping level at which the transition from an open to
closed Fermi surface occurs by appealing to the spec
function of a Mott insulator. As Figs. 3 and 4 illustrate,
half-filling every k state in the FBZ has some spectr
weight. Because the chemical potential@see Fig. 7# simply
moves down through the LHB upon doping, hole dopi
simply depletes the spectral weight in the LHB. When h
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the spectral weight in the LHB is removed, the surface se
rating occupied from empty states must have zero curvat
As this surface defines the Fermi surface, then its curva
should be related to the sign of the Hall coefficient. Con
quently, the critical doping level at whichRH50 is deter-
mined by the doping level at which half the spectral weig
in the LHB is depleted. Consider theU5` limit in which
the spectral function is momentum independent. Each s
in the LHB carries the weight 12n/2. Consequently, the
fraction of the spectral weight depleted upon hole doping
n/2/(12n/2). When this quantity equals 1/2,RH should van-
ish. The solution to

n/2

12n/2
5

1

2
~ lower limit on the filling at which RH50!

~63!

is n52/3 which is a strict lower bound fornc and is precisely
what simulations as well as complicated series expansion
the infinite-U limit 92,94 obtain. Consequently, if a Mott insu
lator possess a sign change in the Hall coefficient, it m
occur forx,0.333.

Shown in Fig. 17 is the spectral function in the FB
evaluated at the chemical potential forU58t and T
50.25t. The upper panel corresponds ton50.97 and the
lower ton50.3. As is clear, in the lightly doped regime, th
Fermi surface is holelike and the spectral features are br
indicating an absence of well-defined quasiparticles indi
tive of an incoherent metal as is seen experimentally.77,78The
source of the incoherence stems from the self-energy sh
in Fig. 7 which remains constant at the Fermi level atn
50.97. This leads necessarily to a violation of Luttinge
theorem. In fact, the Fermi surface~defined by the maximum
in the spectral function! volume atn50.97 is roughly 30%
larger than the Luttinger volume. In the overdoped regim
the self-energy has the characteristicv2 dependence of a
Fermi liquid and hence we recover Luttinger’s theorem
the sharp spectral features in Fig. 17 reveal forn50.30. Our
results indicate a smooth crossover between the lig
doped regime and overdoped regimes where Lutting
theorem is reinstated.

However, broad spectral features are not the only c
tributor to the violation of Luttinger’s theorem. Consider th
static approximation in which the self-energy in Eq.~5! is
explicitly set to zero. The details of this level of theory a
derived in Appendix E. At this level of theory, the spectr
function for the LHB and UHB’s correspond to a series ofd
functions. Nonetheless, the bands generated do not des
Fermi liquid quasiparticles because eachk state still has
spectral weight both below and above the Fermi level. Re
tive to the dynamical results, we find that the topology a
volume of the Fermi surface do not change as revealed
Fig. 18. The solid line corresponds toU58t, dashed line to
U51000t and dashed-dotted toU50. Clearly shown in Fig.
18 is the evolution from a hole to an electronlike Fer
surface at critical doping levels of 0.791 forU58t and 0.668
for U51000t. The critical concentrations at which the cu
vature of the Fermi surface changes sign corresponds txc
50.668 and 0.791 forU51000t andU58t, respectively. As
4-16
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anticipated, these values are less thanxc52/3. While for U
58t, xc is remarkably close to thexcrit50.19 of Loram,69 it
is unclear whether the closing of the pseudogap is alw
accompanied with a sign change of the Hall coefficie
However, a sudden sign change would certainly explain
appearance of the peak in the density of states shown in
10 once the pseudogap vanishes. Three additional fea
are apparent. First, at small concentrations, regardless oU,
all Fermi surfaces are electronlike and coincide with the n
interacting limit. An analytical proof of this result is given i
Appendix E. Second, at intermediate fillings, the Fermi s
face ~FS! in the interacting system is holelike as opposed
electronlike in the noninteracting system. Finally, the area
the FS forU58t and n512x50.97 is clearly larger than
that dictated by Luttinger’s theorem, 2p2(12x)51.94p2.
From the maximum in the spectral function, we find that t
experimental value for the FS area in LSCO~Ref. 79! for
n50.97 is 2.06p2 which represents a nontrivial 8% devia
tion from the Luttinger result. Such a large deviation can

FIG. 17. Spectral function in the first Brillouin zone evaluated
the chemical potential for a filling ofn50.97 ~top panel! and n
50.30~bottom panel! with U58t andT50.25t. In the underdoped
regime, the spectral function has broad features at the Fermi le
A sharp Fermi surface emerges in the overdoped regime.
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be attributed to experimental uncertainty~at most 2–3%!.97

Hence, while the FS computed here is clearly larger (2.5p2)
than the experimental value, both are in qualitative agr
ment that Luttinger’s theorem is violated in the underdop
regime. Of course, improved quantitative agreement with
periment can be obtained by including band parameters s
as a next-nearest-neighbor hopping interaction,t8 and a dop-
ing dependentU. Hence, we see that even though the UH
and LHB’s are sharp, the Luttinger volume is not preserv
In Appendix E, we show explicitly that the source of th
breakdown stems from the bifurcation of the spectral wei
of each k state into a high- and low-energy part. Cons
quently, removing a single electron is no longer acco
plished simply by removing a singlek state as a result of the
breakdown of the band insulator sum rule. Hence, a key c
sequence of Mottness in two dimensions is a violation
Luttinger’s theorem fornÞ1 as additional extensive numer
cal work attests.45–48,98In the heavily overdoped regime@see
Fig. 18#, the spectral lies predominantly in the LHB an
hence one hole5onek state and Luttinger’s theorem is rein
stated. Consequently, under hole doping, the hole and e
tron regimes are fundamentally asymmetrical as emphas
by Hirsch.99

To compute the Hall coefficient,

RH5sxyz/sxx
2 ~64!

we work within Boltzmann transport theory in which100

sxyz5
e3t2

\Vc (
k

vx~v3¹k!zvyS 2
] f

]ek
D , ~65!

sxx5
e2t

V (
k

vx
2S 2

] f

]ek
D . ~66!

Here, 1/t is the scattering rate,V the volume, andf the
Fermi distribution function. Our use of the Boltzmann equ

t

el.

FIG. 18. Fermi surface in the static approximation for four fi
ings as indicated and three different values ofU: ~1! solid line, U
58t, ~2! dashed line,U51000t, and ~3! dashed-dotted line,U
50, the noninteracting limit.
4-17
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B69, 245104 ~2004!
tion should suffice as long as the interactions domin
which is certainly true in the case of interest,T!U. In using
the Boltzmann approach, it is easiest to work in the largeU
limit because in this case, the spectral function is indep
dent of momentum. Consequently, we used the static en
bands forU51000t and computeRH using Eqs.~64!–~66!.
Figure 19 demonstrates that the sign of the Hall constan
consistent with the curvature of the Fermi surfaces show
Fig. 18. In addition, the deviation from 1/x in the region
close toxc5120.668 is tied to the impending sign chang
As the inset illustrates,RH diverges at half-filling and
changes sign for both electron and hole doping in contras
weakly interacting scenarios which can yield at most o
sign change~dashed line! and no divergence atn51. Of
course, the static approximation does not include
pseudogap found earlier. Note that regardless of wh
model is used for the pseudogap, the (p,0) regions of the
Fermi surface become gapped. Unless the curvature of
Fermi surface is modified by the removal of the (p,0) re-
gions, the pseudogap cannot change the sign of the Hal
efficient nor eliminate the divergence at half-filling. In fac
at the doping level (x'xc) at which the removal of the
(p,0) regions is most likely to affect the curvature of the F
the pseudogap vanishes.

IV. FINAL REMARKS

We have explored here a dynamical method which inc
porates the local physics of a doped Mott insulator. The su
mary of our findings is catalogued in Fig. 20. Physics on
Mott gap scaleU as well as the nearest-neighbor interacti
scaleJ play several key roles. The Mott scale,U, sets the
energy range for spectral weight transfer and leads t
breakdown of the band insulator sum rule. This ultimat
leads to a Fermi surface volume that exceeds that dictate

FIG. 19. Hall coefficient as a function of doping using the sta
approximation for the Hubbard operators withU51000t. The inset
shows that there is an antisymmetry between electron and hole
ing. In the inset, the solid line corresponds toU51000t and the
dashed line toU50. Both show clearly that the deviation from 1/x
is induced by the sign change rather than a liberation of charg
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Luttinger’s theorem in the underdoped regime. Reinsta
ment of the Luttinger volume in the overdoped regime poi
to a fundamental asymmetry between holes and electron
a hole-doped Mott insulator. An additional role played by t
Mott scale is the generation of a hierarchy of interactions
increasing range. The most important of these is the nea
neighbor interaction,J't2/U. Spectral weight transfe
across the Mott gap points to an inseparability of high- a
low-energy scales. Hence, it is unclear in what sense a
low-energy theory can be formulated for a doped Mott ins
lator. We propose that the antiferromagnet that forms in
Mott insulator is distinct from a spin-density wave antiferr
magnet. Finally, we have found that theJ is also responsible
for the pseudogap. The pseudogap simply reflects the
stricted phase space that strongly correlated excitations
neighboring sites encounter. The current pattern shown
Fig. 15 arises from such neighboring correlations and co
explain the origin of the direction-dependentt-reversal sym-
metry breaking observed in the normal states of the cupra
Three-site correlations, which lead to a doping depend
spin exchange interaction, are crucial to the vanishing of
pseudogap atxcrit . Because this state of affairs obtains b
yond xopt, our proposal resonates with that of Loram a
colleagues.69 Finally, our work suggests that doping a Mo
insulator gives rise to a heirarchy of energy scales all deri
from the Mott gapU. Hence, the Mott state found here h
the high-energy scale needed to explain the spectral we
transfer from 2 eV to the Fermi energy when supercond
tivity obtains.34–36 Whether the emergence of successive
lower-energy scales as a function of doping can be form
lated within a renormalization group scheme remains
open question in strongly correlated electron physics. No
theless, it is along these lines that our current work is
rected.

p-

FIG. 20. Heirarchy of energy scales and the correspond
physical processes that obtain in a doped Mott insulator. AF re
sents antiferromagentic order.
4-18
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APPENDIX A: EQUATIONS OF MOTION FOR THE TWO-
LEVEL OPERATORS

Consider the orthogonalized basis for the two-site pr
lem Fn Eqs.~17! and ~18!. The equations of motion

i
]

]t
Fn5@Fn ,H#, ~A1!

where H is the Hubbard Hamiltonian, can be easily obtain
using the equations of motion for the single-site level ope
tors, Eq.~26!. Assuming thatFn is defined onx and x8, a
superscriptā will indicate a sum over all the nearest neig
bors ofx with the exception ofx8 divided by the total num-
ber of nearest neighbors. Similarly,ā8 will include all the
nearest neighbors ofx8 with the exception ofx. Explicitly,
we have

i
]

]t
FBS

s5S 2«02m2
t̃

2d
DFBS

s2
t̃

A2
~cs

ā1cs
ā8!BB

2
t̃

A2
~cs

†ā2cs
†ā8!FFs2

t̃

2
~c2s

†ā 2c2s
†ā8!FFS

1
t̃

2
~c2s

†ā 1c2s
†ā8!FFA2

s t̃

2
~c2s

†ā 1c2s
†ā8!DBS

2
s t̃

2
~c2s

†ā 2c2s
†ā8!DBA , ~A2!

i
]

]t
FBA

s5S 2«02m1
t̃

2d
DFBA

s2
t̃

A2
~cs

ā2cs
ā8!BB

1
t̃

A2
~cs

†ā2cs
†ā8!FFs1

t̃

2
~c2s

†ā 1c2s
†ā8!FFS

2
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2
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†ā8!FFA2

s t̃

2
~c2s

†ā 2c2s
†ā8!DBS

2
s t̃

2
~c2s

†ā 1c2s
†ā8!DBA , ~A3!

i
]

]t
FDS

s5S 2«023m1U1
t̃

2d
DFDS

s2
s t̃

A2
~c2s

†ā 1c2s
†ā8!DD

2
s t̃

A2
~c2s

†ā 2c2s
†ā8!FFs1

s t̃

2
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ā 2c2s
ā8 !FFS

2
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2
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~ct
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†ā8!FDA

s , ~A8!

i
]

]t
FFS52~«02m!FFS2

t̃

2 (
t

~c2t
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†ā8!FDA
t . ~A12!

APPENDIX B: SELF-ENERGIES FOR THE TWO-SITE
RESOLVENTS

The resolvents associated with the two-site operatorsFn
can be expressed in the form

RFnFm
~v!5@v2EFnFm

2SFnFm
~v!#21. ~B1!

For the diagonal components, we use the notationXFnFm

[XFn
, whereX is R, E, or S. We evaluate the self-energie

SFnFm
(v) within a one-loop approximation. Using the spe

tral functionsr1 andr2 , Eq. ~48!, of the irreducible propa-
gators, we obtain

SFBS
~v!5

t̃ 2

4 E dx$2r1~x!@12 f ~x!#RBB~v2x!

2r1~x! f ~x!RFFADBS
~v1x!

1r1~x! f ~x!RDBS
~v1x!1r2~x! f ~x!

3RDBA
~v1x!13r2~x! f ~x!RFFS

~v1x!

1r1~x! f ~x!RFFA
~v1x!%, ~B2!

SFBA
~v!5

t̃ 2

4 E dx$2r2~x!@12 f ~x!#RBB~v2x!

1r2~x! f ~x!RFFADBS
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1r2~x! f ~x!RDBS
~v1x!1r1~x! f ~x!

3RDBA
~v1x!13r1~x! f ~x!RFFS

~v1x!

1r2~x! f ~x!RFFA
~v1x!%, ~B3!
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SFDS
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t̃ 2

4 E dx$2r1~x! f ~x!RDD~v1x!
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3RDBA
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SFFADBS
~v!5SDBSFFA

~v!, ~B12!

SDBS
~v!5SFFA

~v!. ~B13!

APPENDIX C: SELF-ENERGIES CORRECTIONS DUE TO
SPIN FLUCTUATION

We include the effects of spin fluctuation as higher-ord
corrections to the self-energies of the resolvents. The spe
functions associated with local singlet and triplet states
sharply peaked at well-defined energies separated by th
fective antiferromagnetic coupling constant

J5E
2`

`

v~sFFS
2sFFA

!dv. ~C1!

The effects of spin fluctuations with the environment can
approximately described by the effective antiferromagne
interaction

dHe f f5
1
2 Jnna, ~C2!

wheren5c†sc is the spin density,s i are the Pauli matrices
andc†5(c↑

† ,c↓
†). Although a proper account of the single

triplet mixing can be given by considering vertex corre
tions, we can use a simpler two-step approach:~1! Working
in the basis formed by the eigenstates of the two-site pr
lem ~as we, in fact, do! we take care of the spin fluctuation
for the cluster without a bath. As we introduce the bath,
additional singlet-triplet mixing occurs which is not captur
by NCA ~as shown by the very sharp features in the FFA a
the FFS resolvents!. We try to approximate this mixing by a
effective spin-spin interaction. As a result of this mixing, t
FFA and FFS states are broadened.~2! Due to the the self-
consistency of the approach, this spin-spin interaction is a
present between the cluster and the bath. The corrections
we introduce are the effect of this additional effective int
action with the bath on the self-energies of the resolve
Consequently, some of the equations of motion for the tw
site level operatorsFn ~see Appendix A!, will be modified.
Explicitly we have

i
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ā2n3
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A2
~n2s

ā 2n2s
ā8 !FFs

1
1

A2
~n2s

ā 2n2s
ā8 !FF2sG1•••, ~C9!

where we used the notationns5n11 isn2. These terms will
determine the self-energy corrections

dSFBS
~v!5E dx

3

2
J2$w1~x!@12 f ~x!#RFBS

~v2x!

1w2~x!@12 f ~x!#RFBA
~v2x!%, ~C10!

dSFBA
~v!5E dx

3

2
J2$w2~x!@12 f ~x!#RFBS

~v2x!

1w1~x!@12 f ~x!#RFBA
~v2x!%, ~C11!

dSFDS
~v!5E dx

3

2
J2$w1~x!@12 f ~x!#RFDS

~v2x!

1w2~x!@12 f ~x!#RFDA
~v2x!%, ~C12!

dSFDA
~v!5E dx

3

2
J2$w2~x!@12 f ~x!#RFDS

~v2x!

1w1~x!@12 f ~x!#RFDA
~v2x!%, ~C13!
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dSFFS
~v!5E dx 2J2$2w1~x!@12 f ~x!#RFFS

~v2x!

1w2~x!@12 f ~x!#RFFA
~v2x!%, ~C14!

dSFFA
~v!5E dx 6J2w2~x!@12 f ~x!#RFFS

~v2x!,

~C15!

wherew6(v)5w(v)6w8(v) and

w~v!5FT^$n3
ā ,n3

ā%&5 1
2 FT^$n2s

ā ,n2s
ā %&, ~C16!
24510
w8~v!5FT^$n3
ā ,n3

ā8%&5 1
2 FT^$n2s

ā ,n2s
ā8 %&.

Note becausew(v) and w8(v) are expressed in terms o
functions defined onā and a 8̄ which denote the neares
neighbors of the two sites in the cluster, we have avoid
double counting the spin fluctuations on the cluster. T
functionsw(v) andw8(v) are computed within a noncross
ing approximation, taking into account the only domina
contributions ~containing products of on-site and neare
neighbor operators!. Introducing the coordination factorsl
5(2d21)/(2d)2 andl85(2d22)/(2d)2, we obtain
ral, the
w~v!'
l

ZE dxH 1

2
@sFBS

~x!s̄FBS
~v2x!1s̄FBS

~x!sFBS
~v2x!#1

1

2
@sFBS

~x!s̄FBA
~v2x!1s̄FBS

~x!sFBA
~v2x!#

1
1

2
@sFBA

~x!s̄FBS
~v2x!1s̄FBA

~x!sFBS
~v2x!#1

1

2
@sFBA

~x!s̄FBA
~v2x!1s̄FBA

~x!sFBA
~v2x!#

1
1

2
@sFDS

~x!s̄FDS
~v2x!1s̄FBS

~x!sFBS
~v2x!#1

1

2
@sFDS

~x!s̄FDA
~v2x!1s̄FBS

~x!sFBA
~v2x!#

1
1

2
@sFDA

~x!s̄FDS
~v2x!1s̄FBA

~x!sFBS
~v2x!#1

1

2
@sFDA

~x!s̄FDA
~v2x!1s̄FBA

~x!sFBA
~v2x!#

12@sFFS
~x!s̄FFS

~v2x!1s̄FFS
~x!sFFS

~v2x!#1sFFS
~x!s̄FFA

~v2x!1s̄FFS
~x!sFFA

~v2x!

1sFFA
~x!s̄FFS

~v2x!1s̄FFA
~x!sFFS

~v2x!J , ~C17!

w8~v!'
l8

Z E dxH 1

2
@sFBS

~x!s̄FBS
~v2x!1s̄FBS

~x!sFBS
~v2x!#2

1

2
@sFBS

~x!s̄FBA
~v2x!2s̄FBS

~x!sFBA
~v2x!#

2
1

2
@sFBA

~x!s̄FBS
~v2x!2s̄FBA

~x!sFBS
~v2x!#1

1

2
@sFBA

~x!s̄FBA
~v2x!1s̄FBA

~x!sFBA
~v2x!#

1
1

2
@sFDS

~x!s̄FDS
~v2x!1s̄FBS

~x!sFBS
~v2x!#2

1

2
@sFDS

~x!s̄FDA
~v2x!2s̄FBS

~x!sFBA
~v2x!#

2
1

2
@sFDA

~x!s̄FDS
~v2x!2s̄FBA

~x!sFBS
~v2x!#1

1

2
@sFDA

~x!s̄FDA
~v2x!1s̄FBA

~x!sFBA
~v2x!#

12@sFFS
~x!s̄FFS

~v2x!1s̄FFS
~x!sFFS

~v2x!#2sFFS
~x!s̄FFA

~v2x!2s̄FFS
~x!sFFA

~v2x!

2sFFA
~x!s̄FFS

~v2x!2s̄FFA
~x!sFFS

~v2x!J . ~C18!

Note that in these equations, it is the Fermi function which appears not the Bose distribution function. In gene
expression for the self-energy depends on which form one uses for the spectral function. We used FT/$n3(t),n3(t8)%
^5w(v). Usually the pectral function is defined by FT^@n3(t),n3(t8)#&5r(v). They are related asw(v)5@(ebv

11)/(ebv21)#r(v). The loop contains
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E dv8r~v81v!R~2v8!
eb(v1v8)

eb(v1v8)21
~C19!

which, in terms ofw, becomes

E dv8w~v81v!R~2v8!
eb(v1v8)

eb(v1v8)11
, ~C20!

thereby justifying the Fermi function in the self-energy co
rections.

APPENDIX D: LEVEL OPERATOR REPRESENTATION OF
dJ AND EXPLICIT EXPRESSIONS FOR Dm0 AND

Dm1

With the assumption used to derive Eq.~12!, we find that
the the dynamical correction operatordJ, Eq. ~7!, can be
expressed in terms of two-site level operators,

dJs52 t̃(
m,n

anmFn
†Fm . ~D1!

With the notation

a15eI1
21 , b15

n

2
2 p̃I 1

21 ,

a25eI2
21 , b25

n

2
1 p̃I 2

21 , ~D2!

we obtain for the coefficientsanm :

aBB FB
S
s5

21

A2
~a12b1!, aFD

S
2s DD5

2s

A2
~12a22b2!,

aBB FB
A
s5

21

A2
~a11b1!, aFD

A
2s DD5

s

A2
~11a22b2!,

aFB
S
2s FFS

5
1

2
~a11b1!, aFFSFD

S
s5

2s

2
~11a22b2!,
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aFB
A
2s FFS

5
21

2
~a12b1!, aFFSFD

A
s5

2s

2
~12a22b2!,

aFB
S
s FFs5

1

A2
~a11b1!,

aFF2s FD
S
2s5

2s

A2
~11a22b2!,

aFB
A
s FFs5

21

A2
~a12b1!,

aFF2s FD
A
2s5

2s

A2
~12a22b2!,

aFB
S
2s FFA

5s~11a12b1!, aFFAFD
S
s5 1

2 ~11a21b2!,

aFB
A
2s FFA

5s~12a12b1!, aFFAFD
A
s5 1

2 ~12a21b2!,

aDBSFD
S
s5

21

2
~21a12b1!, aFB

S
2s DBS

5
s

2
~11a21b2!,

aDBS FD
A
s5

1

2
~22a12b1!, aFB

A
2s DBS

5
2s

2
~12a21b2!,

aDBAFD
S
s5

1

2
~a11b1!, aFB

S
2s DBA

5
s

2
~11a22b2!,

aDBAFD
A
s5

1

2
~a12b1!, aFB

A
2s DBA

5
2s

2
~12a22b2!.

~D3!

Using these coefficients, we can write explicitly the dynam
cal correctionsDm0 andDm1. From Eq.~12!, we have
Dm0~v!5
t̃ 2

Z E dxdx8
1

v2x1x81 id
$aBBFBS

2 @sFBS
~x!s̄BB~x8!1s̄FBS

~x!sBB~x8!#1aBBFBA

2 @sFBA
~x!s̄BB~x8!

1s̄FBA
~x!sBB~x8!] 1aFDSDD

2 @sDD~x!s̄FDS
~x8!1s̄DD~x!sFDS

~x8!#1aFDADD
2 @sDD~x!s̄FDA

~x8!

1s̄DD~x!sFDA
~x8!] 1~aFBSFFS

2 1aFBSFFs
2

!@sFFS
~x!s̄FBS

~x8!1s̄FFS
~x!sFBS

~x8!#1~aFBAFFS

2 1aFBAFFs
2

!

3@sFFS
~x!s̄FBA

~x8!1s̄FFS
~x!sFBA

~x8!#1~aFFSFDS

2 1aFFs FDS

2
!@sFDS

~x!s̄FFS
~x8!1s̄FDS

~x!sFFS
~x8!#

1~aFFSFDA

2 1aFFsFDA

2
!@sFDA

~x!s̄FFS
~x8!1s̄FDA

~x!sFFS
~x8!#1aFBSFFA

2 @sFFA
~x!s̄FBS

~x8!1s̄FFA
~x!sFBS

~x8!#

1aFBAFFA

2 @sFFA
~x!s̄FBA

~x8!1s̄FFA
~x!sFBA

~x8!#1aFFAFDS

2 @sFDS
~x!s̄FFA

~x8!1s̄FDS
~x!sFFA

~x8!#
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1aFFAFDA

2 @sFDA
~x!s̄FFA

~x8!1s̄FDA
~x!sFFA

~x8!#12aFBSDBS
aFBSFFA

@sDBSFFA
~x!s̄FBS

~x8!

1s̄DBSFFA
~x!sFBS

~x8!#12aFBADBS
aFBAFFA

@sDBSFFA
~x!s̄FBA

~x8!1s̄DBSFFA
~x!sFBA

~x8!#

12aDBSFDS
aFFAFDS

@sFDS
~x!s̄DBSFFA

~x8!1s̄FDS
~x!sDBSFFA

~x8!#12aDBSFDA
aFFAFDA

@sFDA
~x!s̄DBSFFA

~x8!

1s̄FDA
~x!sDBSFFA

~x8!#1aFBSDBS

2 @sDBS
~x!s̄FBS

~x8!1s̄DBS
~x!sFBS

~x8!#1aFBADBS

2 @sDBS
~x!s̄FBA

~x8!

1s̄DBS
~x!sFBA

~x8!#1aDBSFDS

2 @sFDS
~x!s̄DBS

~x8!1s̄FDS
~x!sDBS

~x8!#1aDBSFDA

2 @sFDA
~x!s̄DBS

~x8!

1s̄FDA
~x!sDBS

~x8!#1aFBSDBA

2 @sDBA
~x!s̄FBS

~x8!1s̄DBA
~x!sFBS

~x8!#1aFBADBA

2 @sDBA
~x!s̄FBA

~x8!

1s̄DBA
~x!sFBA

~x8!#1aDBAFDS

2 @sFDS
~x!s̄DBA

~x8!1s̄FDS
~x!sDBA

~x8!#1aDBAFDA

2 @sFDA
~x!s̄DBA

~x8!

1s̄FDA
~x!sDBA

~x8!#%. ~D4!

Similarly, for Dm1 we obtain

Dm1~v!5
t̃ 2

Z E dxdx8
1

v2x1x81 id
$aBBFBS

2 @sFBS
~x!s̄BB~x8!1s̄FBS

~x!sBB~x8!#2aBBFBA

2 @sFBA
~x!s̄BB~x8!

1s̄FBA
~x!sBB~x8!#1aFDSDD

2 @sDD~x!s̄FDS
~x8!1s̄DD~x!sFDS

~x8!#2aFDADD
2 @sDD~x!s̄FDA

~x8!

1s̄DD~x!sFDA
~x8!#2~aFBSFFS

2 1aFBSFFs
2

!@sFFS
~x!s̄FBS

~x8!1s̄FFS
~x!sFBS

~x8!#1~aFBAFFS

2 1aFBAFFs
2

!

3@sFFS
~x!s̄FBA

~x8!1s̄FFS
~x!sFBA

~x8!#2~aFFSFDS

2 1aFFs FDS

2
!@sFDS

~x!s̄FFS
~x8!1s̄FDS

~x!sFFS
~x8!#

1~aFFSFDA

2 1aFFs FDA

2
!@sFDA

~x!s̄FFS
~x8!1s̄FDA

~x!sFFS
~x8!#1aFBSFFA

2 @sFFA
~x!s̄FBS

~x8!

1s̄FFA
~x!sFBS

~x8!#2aFBAFFA

2 @sFFA
~x!s̄FBA

~x8!1s̄FFA
~x!sFBA

~x8!#1aFFAFDS

2 @sFDS
~x!s̄FFA

~x8!

1s̄FDS
~x!sFFA

~x8!#2aFFAFDA

2 @sFDA
~x!s̄FFA

~x8!1s̄FDA
~x!sFFA

~x8!#

12aFBSDBS
aFBSFFA

@sDBSFFA
~x!s̄FBS

~x8!1s̄DBSFFA
~x!sFBS

~x8!#22aFBADBS
aFBAFFA

@sDBSFFA
~x!s̄FBA

~x8!

1s̄DBSFFA
~x!sFBA

~x8!#12aDBSFDS
aFFAFDS

@sFDS
~x!s̄DBSFFA

~x8!1s̄FDS
~x!sDBSFFA

~x8!#

22aDBSFDA
aFFAFDA

@sFDA
~x!s̄DBSFFA

~x8!1s̄FDA
~x!sDBSFFA

~x8!#1aFBSDBS

2 @sDBS
~x!s̄FBS

~x8!

1s̄DBS
~x!sFBS

~x8!#2aFBADBS

2 @sDBS
~x!s̄FBA

~x8!1s̄DBS
~x!sFBA

~x8!#1aDBSFDS

2 @sFDS
~x!s̄DBS

~x8!

1s̄FDS
~x!sDBS

~x8!#2aDBSFDA

2 @sFDA
~x!s̄DBS

~x8!1s̄FDA
~x!sDBS

~x8!#2aFBSDBA

2 @sDBA
~x!s̄FBS

~x8!

1s̄DBA
~x!sFBS

~x8!#1aFBADBA

2 @sDBA
~x!s̄FBA

~x8!1s̄DBA
~x!sFBA

~x8!#2aDBAFDS

2 @sFDS
~x!s̄DBA

~x8!

1s̄FDS
~x!sDBA

~x8!#1aDBAFDA

2 @sFDA
~x!s̄DBA

~x8!1s̄FDA
~x!sDBA

~x8!#%. ~D5!
p-

is
at

c-

rier
APPENDIX E: STATIC APPROXIMATION

We show explicitly in this appendix that the Hubbard o
erator technique in the static approximation101 correctly re-
covers the noninteracting or Fermi liquid limit whenU50
regardless of the filling and asn→0 for any U. Conse-
quently, the violation of Luttinger’s theorem found here
not an artifact of the method. Consider the Hubbard oper
24510
or

basis,c15j is andc25h is and the associated Green fun
tions Sab5^^ca ;cb&&. Within the static approximation,101

the expression for the retarded Green function in Fou
space becomes

Sab~k,v!5(
j 51

2 sab
( j ) ~k!

v2e j~k!1 id
. ~E1!
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The dispersion relations for the two bands are given
e1,2(k)5R(k)6Q(k) with

R~k!5
1

2
U2m2

1

2I 1I 2
@m~k!18ta~k!I 1I 2#, ~E2!

Q~k!5
1

2
Ag2~k!1

4m2~k!

I 1I 2
, ~E3!

where I 1512n/2 and I 25n/2 and a(k)5 1
2 @cos(kx)

1cos(ky)# and we used the notationm(k)54t@e1a(k)(p
2I 2)# and g(k)52U1(12n)/@ I 1I 2m(k)# where e
5^j is

† j is
a &2^h is

a h is& and p5^nisnis
a &1^SiSi

†a&2^bibi
†a&

with Si5ci↓
† ci↑ , bi5ci↑ci↓ anda indicates a sum over nea

est neighbors of sitei. The explicit expressions for the spe
tral functionssab

( j ) (k) are given by

sjj
(1)~k!5

I 1

2 F11
g~k!

2Q~k!G , sjj
(2)~k!5

I 1

2 F12
g~k!

2Q~k!G ,
sjh

(1)~k!5
m~k!

2Q~k!
, sjh

(2)~k!52
m~k!

2Q~k!
,

shh
(1)~k!5

I 2

2 F12
g~k!

2Q~k!G , shh
(2)~k!5

I 2

2 F11
g~k!

2Q~k!G .
~E4!

Note the fact that the spectral functions arek dependent and
they also depend on the doping level, throughI 1 andI 2, and
temperature, due to the self-consistent parameterse andp. At
half-filling, the spectral function for the lower Hubbard ban
os
lt-

ad

s.

24510
ydetermines the amplitudes inuMI & through s15(uk

1vk)
2/2. In the strong-coupling limit,U@t, the only depen-

dence that remains is on filling. In this limitsjj
(1)5I 1 , shh

(2)

5I 2 and all the other functions vanish. All of our calcula
tions of the Hall coefficient were performed in this limit.

Consider now the two weak-coupling limits in whic
Fermi-liquid theory should hold: Case~a! n→0 and Case~b!
U→0. In the first case,g→2U12m/n, Q→ugu/2, the cor-
relations inp become independent and hencep}n2, e}n
implying thatm(k)}n. Consequently, the dispersion for th
lower Hubbard band reduces exactly to that of the nonin
acting limit,e1(k)52m24ta(k)5e0(k). Moreover, all the
spectral weight resides in this band because asn→0, g/2Q
51 andm(k)→0, implying thats (1)51 ands (2)50. That
the static approximation reduces to the correct noninterac
limit is not unexpected as Figs. 1 and 2 illustrate that
Fermi surface is independent ofU as n→0. In the U→0
limit, g(k)→(12n)m(k)/I 1I 2 and as a consequence,Q
5um(k)u/2I 1I 2. As a result, the band dispersion relations a
e1,25e0(k)2@m(k)7um(k)u#/2I 1I 2 with spectral weights
s (1,2)51/26m(k)/@2um(k)u# which are either unity or zero
Consequently, although two bands still exist, only the fr
particle dispersion carries unit spectral weight because
um(k)u terms enter with opposite signs. Hence, the sta
approximation correctly reproduces the noninteracting lim
whenU→0.102 As a consequence, the violation of Lutting
er’s theorem seen here is not an artifact of the approxima
scheme but stems fundamentally from the splitting of
spectral weight over two bands although no symmetries
broken, the hallmark of Mottness.
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34M. Rübhausen, A. Gozar, M.V. Klein, P. Guptasarma, D.G. Hin
Phys. Rev. B63, 224514~2001!.

35H.J.A. Molegraaf, C. Presura, D. van der Marel, P.H. Kes, M.
Science295, 2239~2002!.

36A.F. Santander-Syro, R.P. Lobo, N. Bontemps, Z. Konstantino
Z.Z. Li, and H. Raffy, Europhys. Lett.62, 568 ~2003!.

37M.B.J. Meinders, H. Eskes, and G.A. Sawatzky, Phys. Rev. B48,
3916 ~1993!.

38H. Eskes and R. Eder, Phys. Rev. B54, 14 226~1996!; H. Eskes,
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