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Though most fermionic Mott insulators order at low temperatures, ordering is ancillary to their insulating
behavior. Our emphasis here is on disentangling ordering from the intrinsic strongly correlated physics of a
doped half-filled band. To this end, we focus on the two-dimensional Hubbard model. Because the charge gap
arises from on-site correlations, we have been refining the nonperturbative approach of Matsumoto and Man-
cini [Phys. Rev. B65, 2095(1997)] which incorporates local physics. Crucial to this method is a self-consistent
two-site dynamical cluster expansion which builds in the nearest-neighbor energyl.séalealf-filling, we
find that the spectral function possesses a gap of dgdand is devoid of any coherent quasiparticle peaks
although ordering or charge fractionalization are absent. At low temperatures, local antiferromagnetic correla-
tions emerge. In the doped case, we find that the Fermi surface exceeds the Luttinger volume. The breakdown
of Luttinger’s theorem in the underdoped regime is traced both to the dynamically generated Mott gap as well
to a nonvanishing of the imaginary part of the self-energy at the Fermi level. Spectral weight transfer across the
Mott gap also emerges as a ubiquitous feature of a doped Mott insulator and suggests that high- and low-energy
scales are inseparable. Additionally in the underdoped regime, we find that a pseudogap exists in the single-
particle density of states as well as in the heat capacity. The pseutlsip is set by the energy scafgU)
is argued to be a ubiquitous feature of a lightly doped Mott state and simply represents the fact that hole
transport involves double occupancy. In analogy with the Mott gap and antiferromagnetism, we propose that
ordering may also accompany the formation of a pseudogap. We suggest a current pattern within a one-band
model that preserves translational but breaks time-reversal symmetry along the caxanigglaxes but not
alongx= *y that is consistent with the experimental observations. Finally, we show that the Hall coefficient
in a doped Mott insulator must change sign at a doping Igvel/3. The sign change is tied to a termination
of strong correlation physics in the doped Mott state.
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[. INTRODUCTION with the Mott insulating state of a half-filled band i1 is
its proclivity to order at zero temperature. Consequently, it is
Electronic systems with an odd number of particles pettempting to equate the Mott insulator with the ordered state
unit cell are typically metallic at zero temperature. However,OF t0 assert categorically that the Mott insulator as an entity
Mott! proposed that such systems in the presence of Strorﬁ,stmct from a symmetry-broken state never existed in the

interactions can insulate at zero temperature without any adiot place.. In the context of higfﬁc in the cuprates, which
P y are all antiferromagnetic Mott insulators, both viéwsave

companying symmetry brez_ikmg process, SUCh. as antncerrQrieen strongly expressed. In fact, a large body of work on the
magnetism or charge ordering, which necessarily double thg, ,a1e5 has focused primarily on models that capture low-
unit cell. Strictly then, a Mott insulatoishould it exist is a energy spin physi¢s® at or near an antiferromagnet or a
paramagnetic state with an odd number of particles per unigharge-ordered stat8;*® or a classificatiol??° of the vari-

cell. Insulating behavior arises from the charge gap genefous charge-ordered states that ensue in a half-filled band.
ated by the projective mismatch between the sublatticedlternatively, low-energy spin liquid modéfs?® (that is,
which have zero or some finite fraction of doubly occupiedmodels with spin translation and spin rotation symmpetry
sites. When the overlap between such sublattices is suffhave been proposed as candidates to describe the Mott insu-
ciently small, no transport obtains. In bosonic systems with dator. In such approaches, the high-energy scale associated

single boson per site, a true zero-temperature Mott insulatin/th the charge gap is argued to be irrelevant, hence the
state is realized in the standard quantum rotor model o cus exclusively on the spin sector to characterize the Mott

. . insulator. Of course such an approach presupposes that the
Bose-Hubbard model when the on-site charging energy e)ﬁﬁigh- and low-energy degreesp%f freegom Egn be disen-
ceeds a critical value such that phase coherence it%mgled.

destroyed™In fact, the recent observatidthat a Bose con-  Shoyid the insulating state in a halffiled band prove to
densate in an optical lattice can be tuned between a SUP&s nothing other than a mean-field broken-symmetry state,
fluid and a Mott insulator simply by changing the intensity of then fermionic Mott insulators do not exist. Hence, a relevant
the laser light places the bosonic Mott insulator on firm ex-question for the Mott insulating state is as follows: If we
perimental footing. subtract the fact that ordering obtains at zero temperature, is
However, for fermionic systems, the inherent problemthere anything left over that is not explained by ordering?
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Equivalently, does ordering provide an exhaustive explanapersistence of spectral weight transfer through the supercon-
tion of the state proposed by Mott? We refer to whateverducting transition indicates that the properties of the Mott
might be left over once we subtract the fact that ordering hastate remain intact even in the presence of ordering. While
occurred asMottness That something might be left over is spin-density wave antiferromagnets also possess two bands
immediately evident from the fact that charge- and spin-with a gap, such a state is insufficient to explain the origin of
ordered states all result in a doubling of the unit cell andthe spectral weight transfer in the cuprates. The reason is
hence are adiabatically connected to an insulator with asimple: spectral weight transfer persists well ab®yeand at
even number of electrons per unit cell. A typical example ofa doping level>2%), where antiferromagnetism is absent.
such a system is a band insulator. On the contrary, Mott Concretely, what the optical conductivity and oxygen
insulators which have an odd number of electrons per unik-edge photoemission experiments on the cuprates lay plain
cell are not. Additionally, spin- and charge-ordered states cais that regardless of whether ordering obtains at sufficiently
be described at the level of Hartree-Fock simply by condow temperatures, the charge degrees of freedom remain
structing the correct broken-symmetry ansatz. However theharacterized by a distinctly different state than that of any
Mott state has no weak coupling or Hartree-Fock countererdered state or a band insulator. To understand what physics
part. Hence, although the Mott state might be unstable tés entailed by this state, consider the Mott mechanism for
ordering at low temperature, some features should be lefjenerating an insulating state in the one-band Hubbard
over which represent the fingerprint of the nonadiabaticitymodel. At half-filling, the chemical potential lies in the
with a band insulator and the fact that this state arises funmiddle of the gap separating the lower and upper Hubbard
damentally from strong electron correlation. For examplebands, which are dynamically split by the on-site energy for
experimentally> it is clear that above any temperature as-double occupancy. However, half the spectral weight resides
sociated with ordering in both the electron and hole-dopedn each of the bands. Consequently, to satisfy the sum rule
cuprates, a charge gap of order 2 eV is present in the opticghat each state in the first Brillouin Zor{EBZ) carries unit
conductivity and oxygeK-edge photoemissiot.Hence, the  spectral weight, the spectral function must be integrated
vanishing of the low-energy<{1 eV) spectral weight at across the charge gap not simply up to the chemical poten-
high temperature is not linked to magnetism or orderingtial. Hence, the half-filled state is characterized by the Fermi
of any kind. Further, the electronic bands below andenergy lying in a gap but partially occupied states exist. It is
above the charge gap are not rigid as would be the case inthis seemingly contradictory state of affairs that is at the
band insulator. To illustrate, as a function of doping, in bothheart of Mottness. Spectral weight transfer cannot obtain
hole and electron-doped cuprafés? the low-energy spec- without it. For example, if each state below the chemical
tral weight increases at the expense of the high-energpotential had unit spectral weight, no state would be avail-
(>2 eV) spectral weight such that the total integrated opti-able for spectral weight transfer from high energies. As a
cal conductivity remains constant up to 4 eV. The same maszsonsequence, adding or removing an electron cannot be done
sive reshuffling of spectral weight from 2 eV above thewithout affecting both high- and low-energy scales. Conse-
Fermi energy is also observed in one-particle probes such agiently, at any doping level, the electronic states describing
oxygen K-edge photoemissidh and angle-resolved photo- the charge carriers can be written as linear combinations of
electron spectroscopyARPES.>** Such spectral weight excitations living in both the lower Hubbard baficHB) and
transfer indicates that the total number of low-energy degreespper Hubbard banUHB) as will be detailed below. As a

of freedom in the normal state of the cuprates cannot beesult, in the Mott state, the traditional notion that the chemi-
decoupled from the high-energy scales. What is surprisingal potential demarcates the boundary between zero and unit
about the cuprates is that even when superconductivity olsccupancy fails fundamentally. Of course, in Fermi liquids,
tains, the low- and high-energy degrees of freedom are stillhe spectral function for eadh state can also have an inco-
coupled. For example, Bhausseret al** have shown that herent background which can extend to high energies. How-
changes in the optical conductivity occur at energies 3 e\ever, as long as a coherence peak exists, a sharp criterion
(roughly 10Q\, whereA is the maximum superconducting exists for unit occupancy of each state, namely, whether or
gap away from the Fermi energy a&t,, and Bolegriet al>®  not the coherence peak crosses the Fermi level. In a Mott
have seen an acceleration in the depletion of the high-energyisulator, no such coherence peak exists and consequently,
spectral weight accompanied with a compensating increasacoherence dominates the Mott state.

in the low-energy spectral weight at and below the supercon- Alternatively, one can view the spectral weight transfer in
ducting transition. Similarly, Bontempet al3® have directly  real space by simply counting the number of available states
observed that in underdopébolut not overdopedBSCO, the for the photoemission and inverse photoemission spectra as
Glover-Ferrel-Tinkham sum rule is violated and the opticaldemonstrated by Meinders, Eskes, and Sawatzkye re-
conductivity must be integrated to 20 000 thto recover  count the argument here as it is simple and instructive. Con-
the spectral weight lost upon condensation into the supercorsider the half-filled one-dimensional chain of one-electron
ducting state. In a standard BCS superconductor, condensatoms shown in Fig. 1. Both the electron-remoyalhoto-

tion leads to loss of spectral weight at energy scales no morelectron and electron-additiofinverse photoemissigrspec-

than ten times the pairing energy. The fact that pair condentral weights are equal thl because at half-filling there ai¢
sation perturbs the optical conductivity on energy scales aways of adding or subtracting an electron from a site that is
large as 100 suggests that there is a direct link between thesingly occupied. When a single hole is added, both the
high-energy Mott scale and superconductivity. Further, theslectron-removal and the electron-addition spectral decrease
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Doped Mott Insulator dard fermion commutation relations. That a correct low-
. . . . . . . . energy theory must give up on either standard fermion com-
- _U S mutation relations or particle conservation has already been
: pointed out by Meinders, Eskes, and SawatZkylence, all
/\1\ : ﬁ\ standard low-energy fermionic theories do not have the cor-
5 rect physics to describe the cuprates primarily because the
PES Ep IPES low-energy degrees of freedom are not fermionic.

Given the ubiquity of spectral weight transfer over a large
- - - - - - - = part of the phase diagram of the cuprates, it is imperative that
. any theory of highT, incorporate the high-energy scale as-
N—lm (\\N—l sociated with the charge gap. Further, because ordering does

not seem to be a requirement for spectral weight transfer, our
focus is on an accurate description of the high-temperature
charge vacuum of the doped Mott insulating state. It is cru-
FIG. 1. Spectral weight transfer in a doped Mott insulator. Thecial in such an approach that the hierarchy of energy scales,
photoelectron spectrufPES denotes the electron removal states U, t, t2/U, for example, emerge. Consequently, we have
while the electron-addition states are located in the inverse photdseen refining the nonperturbative approach of Matsumoto
electron spectrunflPES. The on-site charging energy i8. Re-  and Mancini® to describe the interrelation between the en-
moval of a single-electron results in the creation of two single-ergy scales in a doped Mott insulator. This approach is based
particle states at the top of the lower Hubbard band. By statgyn the experimental observation that the low-energy scales in
conservation, one state comes from the Iower_ and the other from tr@oped Mott insulators are derived from high energies. As a
upper Hubbard band and hence spectral weight transfer across ﬂ?@sult, the beginning point, namely, the Hubbard operators, is
Mott gap. one that is well known to yield the Mott charge gap scale.
Successively smaller energy scales are derived by treating
to N—1 as there are noW—1 ways to add or subtract an local correlations on a small cluster. The self-energy of the
electron from sites that are already occupied. Hence, therattice is then determined self-consistently from the local im-
are two less states. These states correspond to the spin-Rgrity problem. The Matsumoto-Manciliapproach is then
and spin-down states of the empty site and hence belong i the spirit of the cellular dynamical mean-field treatm®ht.
the LHB. Consequently, the low-energy spectral weightWe report here the full details of this approach and catalogue
(LESW), A(x), has increased by two states. One of thethe general results that follow from Mottness. Aside from a
states must come from the UHB as the high-energy part nokESW that exceeds the nominal value obtained from state
has a spectral weight &f— 1. Hence, for a single hole, there counting, we find thafl) Mottness gives rise to broad spec-
is a net transfer of one state from high to low energy. Thigral features in the underdoped regin@) a violation of
argument is simply the real-space restatement of the moreuttinger’s theorem in the underdoped regini@), holelike
general principle that itk space the LHB and UHB are not Fermi surface near half-filling(4) a jump in the chemical
static but dynamic and hence necessarily give rise to spectr@ptential upon doping, ant) a pseudogap in the under-
weight transfer. In general, simple state counting yielsls 2 doped regime without invoking any symmetry breaking. In
for the growth of A(x) and 1—x for the depletion of the general, we find that the pseudogap is due strictly to near-
high-energy sector. In actuality, the dynamical contributionn€ighbor correlations and can be thought of as the nearest-
to the LESW results inA(x)>2x. The dynamical LESw neighbor analogue of the on-site generated Mott gap.
corresponds to virtual excitations to the UHB. Hence, in a
strongly correlated system, the phase space available to add a Il. METHOD
single electron exceeds the nominal number of states initially
present in the low-energy scale, leading thereby to an insep?-
rability of the low- and high-energy scales. 10
The ubiquity of spectral weight transfer in the cuprates _
F H Cio= 77i0+§i0' (1)
places extreme restrictions on which low-energy models are
valid. Consider the standatdd model?* As thet-J model  of two composite excitations that reflect the energetically
projects onto the LHB, we can estimate the correspondinghallenged landscape an electron must traverse in the pres-
LESW exactly by counting the electron-removal states. Conence of a large on-site Coulomb repulsith,Physically, the
sequently A (x) =2x is exact in thet-J model. However, in  operatorsy;,=c;,Ni_, and&,=c;,(1—n;_,) represent an
the actual Hubbard model)l (x)>2x. Consequently, the electron moving on doubly and singly occupied sites, respec-
standard-J model does not have the correct number of low-tively. Because such sites are split Uythe Hubbard opera-
energy degrees of freedom to describe the low-energy physers lead naturally to a gap at half-filing in a paramagnetic
ics. This problem can be correct&however, by using the state, a result which thus far, only two other methods, dy-
full strong-coupling Hamiltonian that results from th& U namical mean-field theorigDMFT) (Ref. 42 and quantum
expansion and replacing all the electron operators by theiMonte Carlo(QMC),****have been able to obtain. Regard-
projected counterparts. However, the price one pays is thaéss of this success, the Hubbard operators have been criti-
the new projected electron operators do not obey the starcized extensively because untested approximations generally

Many years ago, Hubbattwrote the electron annihila-
n operatorc;,, as a linear combination
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accompany their implementation, and they lead to a Fermi

surface which does not preserve the Luttinger volume. How- S(k,w)= [(k), (5
ever, methods that are deemed as relidbiéalso find that w—E(k)— sm(k,w)1 ~*(k)

in the lightly doped regime, Luttinger’s theorem is violated .yntains the self-energy(k, w) = sm(k, )| ~* with

as is seen experimentafl§Hence, a violation of Luttinger’s ' '

theorem is not ara priori reason to dismiss the Hubbard om(k,w)=FT(8(t—t"){8I(1),83T(t")}), (6)

operators. In fact, any violation of Luttinger’s theorem must L . .
occur in the lightly doped or nonperturbative regime. TheWhere the subscript indicates the irreducible part and FT

untested or uncontrolled approximations usually arise frorﬁjenotes the Eouner transform. We.cqnsu_jer the paramagneﬂc
truncations in the equations of motion. However, such prob-case’ for which the overlap matrixis diagonal withl

lems can be circumvented by the following procedure. First,EIl: 1—r_1/2 and|225|,2:n/2' , .

project all new operators that arise from the Heisenberg The primary operational hurdle is the evaluation of the
equations of motion of the Hubbard operators onto the Hupdynamical correctiodm. The first step is to write the ex-
bard basis. Second, write the self-energy exactly in terms dpliCit expressions for the operatosd which are “orthogo-

the remaining operators which are now orthogonal to théal” to the basisy. Using the notatiort =2dt, d being the
Hubbard basis. Third, use local DMFT methods to calculatedimensionality of the system, anm=p—n?/4, we obtain

the resultant electron self-energy. The approximation intro-

duced in the third step is that the self-energy for a finite L= n ., 1 1

cluster is used to determine the self-energy for the interacting 0da(h)=~ t{ Tigt 3 Ce ol = miol2 )

lattice. However, such methods have been shown to be
strongly convergent and in fact constitute the accepted meth-
odology for treating strongly correlated systems. In principle,
T e B e sty A7 3%:0) 830, where he sslconitnt parametr
Hubbard operators coupled with DMFT-type technology®andp=p-+n?/4 as well as the higher-order composite op-
places the limitations not on truncation in the equations ofratorm; are given by

motion but on the accuracy of the impurity solver and the oot o t

size of the finite cluster. It is such a procedure that we outline e=(&'&) —(ni'm),

here. As many of the details have been left out in the previ- N N T N f ot

ous presentation in the original paper by Mancini and  P={(MiaNix) +{(ciici (ci cip) ) —(ciCi (e ci) ),
Matsumotd® on the two-site cluster and subsequent N t
implementationé? we will provide a complete derivation of ~[ i) ~Mi €y + G| CitCj —CisCi | Cjy
the method so that anyone reading this paper can implement i i\ — niTCjL+CiTTCiLCjT+CiTCiLCjTT
it immediately. The key features of this method are its ability

to describe physics on the scale of the Mott ghps well as  and the superscripi denotes the averaging over nearest-
on the the scald~t2/U. neighbor sites. Consequently, we can write the dynamical

correction matrixom in the form

B 137 PRVl P @)

) ®

Wil

A. Dynamical Green function

1 -1
Our starting point is the on-site Hubbard model 5m(k,w)=Dm(k,w)< 1 1 ) (9)
H= —_2 tijCiTUng—"'Uz niN;,| (20 and the problem reduces to the determination of the higher-
L],o I

order Green function Dm(K)=FT{O(t—t")
with nearest-neighbor hopping; =ta;; . We also introduce  x{8J,(t) 8J5(1)}), . Becausddm(k, ) cannot be evaluated

the composite operator basis exactly, we seek a systematic way of calculating the dynami-
cal corrections. The simplest approach would be to consider
) éis the single-site approximation. Such an approximation is in

%(')=< i ) (3 the spirit of thed= (Ref. 42 methods, in which the self-

energy is momentum independent. An improvement would
and its associated retarded Green functi8i,j,t,t") be to consider the dynamics associated with two sites as
=<<¢ig;¢f‘,)>=0(t—t')<{¢ig(t):¢;ra(t')}>- Writing the  proposed by Mancini and Matsumaotd Evaluation of the
equations of motion for the Hubbard basis and projectingself-energy over successively larger clusters would lead to an
with the Roth° projectorP(O)=E|n<{0,1/;fr})llglz//n, we  exact determination of the dynamical corrections. The es-
obtain for the “current” Operator the expression sence of this approaCh is based on the fact that the phySiCS of
strongly correlated electrons emerges mainly from local cor-
) 9 ) relations: on-site interactions generate the Mott gap, while
JO=1— =K+ P(5])+ 6Ji=E¢i+6Ji. (4 nearest-neighbor interactions generate the s¢&), Suc-
cessively larger clusters build in lower and lower energy
The formal solution for the Green function in Fourier space,scales. However, due to the fact that transfer of spectral
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weight from high to low energies is characteristic of Mott the dominant contributions arise from terms involving at
insulators, a separation of energy scales in strongly corranost two nearest-neighbor sitgsand x’. In this case, the
lated problems is not possible. Therefore, it is crucial that alsuperscriptr in Eq. (7) corresponds to a particular neighbor-
the excitations be treated on equal footing and, consequentling site instead of an average over all the nearest-neighbor
local correlations must be included. Following Mancini andsites. With this assumption, we obtain

Matsumotc®® we write the dynamical corrections as a series

Dmy(w)= e FT(0(t~t'){83(0), 831t}
Dm(x,x")= 5X,X,Dm0(x,x’)+2 Oxrax DMy(X, X" )+--- 2d

(10
in increasing cluster size. Henreandx’ are two representa-
tive sites andh indexes all nearest-neighbor sites. In the two-here the factor of 1/ arises from the coordination num-
site approximation, the series is truncated at the level of onpg, a(k)=(1/d)=,cosk), and 83 and 81’ are centered on
site, Dmy, and nearest-ne|ghbopm1 contrlbutlons. N two nearest-neighbor sitex and x’, respectively. It is
Fourier space, the dynamical corrections can be written as gyrajghtforward now to express the Green function in terms
of these quantities,

1 !
Dmy(w)= 54 FT(O(t—t){3(1), 83 Wiy, 12

Dm(k,w)~Dmy(w)+ a(k)Dm;(w). (11
Here Dmy and Dm; involve Green functions of operators 1
defined on nearest-neighbor sifsee Eq(7)]. Consequently, S(k,w)= Sgl(w)+Ta(k)V(w) ' (13

these Green functions contain operators defined on up to four
sites. Further simplifications can be made if we assume thathere the on-site Green functi@y is given by

) (w+p)l;+te—Dmy(w) ~te+Dmy(w)

Sy Hw)=1""1 - - -1 (14

—te+Dmy(w) (o+ )l +te—Dmy(w)

and the nearest-neighbor contribution is

1+[p-t'Dmy(o)]1;?  1-[p-T'Dmy(w)]I; ;"

V(w)= -~ I o o (15
1-[p—t~'Dmy(w)]l; 'l 1+[p—t 'Dmy(w)]l;
|
B. The two-site problem: Level operators and resolvents operators. It is convenient to use the following symmetric or

At this stage, solving our problem entails a calculation ofaNtiSymmetric  combinations  corresponding  to  eight

the functionsDmg(w), Dm;(w) and the parametep. To fermionic-type states
this end, we express these quantitiés terms of correlation 1
functions for the level operators associated with a two-site FBS=—
problem. Let us introduce first the single-site level operators V2
B(i), F,(i), andD(i) which annihilate empty, singly occu-

pied (with spin o) and doubly occupied states, respectively. 1
In terms of these operators, the original Hubbard operators FDZ=—=[F,(X)D(x")+D(X)F ,(x")],
can be written ag,=B'F, and ngzaFT_UD. As the sys- V2

tem can be at a given time in one of the possible four states,

[Fo(x)B(X") +B(X)Fs(x")],

i iti 1
the level operators satisfy the condition FB= \/E[FU(X)B(X')—B(X)FU(X')],
Q(i)=B"(1)B(i)+ X FL(I)F,(i)+D'(I)D(i)=1. 1
T FDXE_

16 \/E[F,,(X)D(X )=D(X)Fs(x")], (17)

and eight bosonic-type states,
This restriction can be introduced by adding a Lagrange mul-

tiplier term of the form,eq2;Q(i), to the original Hamil- BB=B(x)B(x'), DD=D(x)D(x’),
tonian. The level operators for the two-site states are
obtained by taking all the combinations of single-site level FFI=F (X)F,(x"),
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FFe=

V2

1
FFa= E[FT(X)H(X')— FI0F(x)],

[FiOOF (X)) +F (X)F(x")],

1
—Z[D(X)B(X')Jr B(x)D(x")],

7z
1
V2
wherex andx’ are the positions of the two-sites and the spin
index o takes two values,{1=1) and (—1=). Note that

FF? and FFg correspond to the spin-triplet states, while
FF, corresponds to the spin-singlet state.

DBSE

DBa=—=[D(x)B(x") =B(x)D(x")], (18)

We are interested in solving a two-site problem for a clus-

PHYSICAL REVIEW B59, 245104 (2004

Enm=(0li §d>n<t>c1>*m<t>|0>R (24

and
S (@) =FT(0]6(t—t') 834, (1)834, (t)|0)rr, (25)

whereR indicates that the trace over the reservoir degrees of
freedom has been takehindicates the irreducible part, and
5Jq)n(t)=i(&/at)CDn(t)—EmEnmCDm(t). To proceed, we de-
termine the equations of motion for the level operators. It is
convenient to write first the equations for the single-site op-
erators,

J ~
iEB=sOB—tE clor,,

J ~ ~
i EF(,=(aO—M)FU:thg—tach;D,

ter embedded in a reservoir, constituted by the rest of the

system. Formally, the total Hamiltonian can be divided into

three part¥ describing the two-site subsyster, the res-

ervoir Hg, and their interactiom yr,
H:H0+HR+ HOR' (19)

To describe the properties of the two-site system, we intro
duce the resolvent

Tre[ (0] @ (1) Pr(t')|0)e”#1'R]

Ram(t—t)=6(t—t’) T e P
R

(20

d ~
|ED=(80—2M+U)D—t§U) oF_,c2, (26)
where the arbitrary reference energy will be set toegg

= —u. In fact, the lattice and the two-site cluster had differ-
ing chemical potentials. However, equilibrium between the
two-site system and the lattice requires that both have the
same chemical potential. The equations of motion for the
two-site level operators can be determined directly using the
equations of motion, Eq26) and Eqs(17) and(18). Explic-

itly, these equations are given in Appendix A. From the equa-
tions of motion we can extract the energieg,, for the re-

where the trace is over the degrees of freedom of the resesolvents. Selecting the terms that do not contafrtype

voir, |0) denotes the vacuum for the two-site problem, and
as usual, B=1kgT. Note that ®,/0)=0 and, conse-
quently,Hg|0)=0. The Fourier transform of the resolvent
can be expressed using the spectral function,(w)
—(Y/m)Im Ry,

Onm( )

w—X+id’ @D

Rym(w)= J dx
We also introduce the auxiliary function;nm(w)
=e A?0,m(w). Once we know the resolvents, we can ex-
press any average of operators of the t%zCDLCDn as

1 _
<q)nm>:Zj dwopm(w) (22
with Z=3, fdwo (o).

A formal solution of the resolverit$can be obtained us-
ing the equation of motion method. We can write

B

where the energy matrik is determined by the levels of an
isolated two-site system and the self-enelyys a measure
of the effects of the reservoir. Explicitly, we have

1

w—E-2(w) 23

an(w) = (

operators, that is, the terms that do not depend on the degrees
of freedom of the reservoir, we obtain

EFDS: 280_ 3,LL+ U+

t
EFBSZZSO_M_Ei 2d

2d’

EFBAZZSO_M+ 2d1

EFDA:28O_3M+U -

EBB:2801 EDD:2(80_2,LL+U),

EFFS: Erpe= EFFA: 2(eq—p),

t
Epsgr,=ErF,pB.= FE

(27)

Employing the standard noncrossing approximatiamd us-

ing the time derivatives of thé,, operators from Appendix

A, we compute the self-energi&s,,,, Eq.(25), of the resol-
vents. The expressions for the self-energies are given in Ap-
pendix B.

It is knowrP? that intersite spin fluctuations, which are

ignored in the noncrossing approximation, are in fact impor-
tant and cannot be neglected at energy scales on the order of

EDBS: EDBA:280_2M+U,
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self—consistent

Sm) N\ ) D'D=D'D1’'=(DB’)'DB'+ >, (DF/)'DF’
2—site cluster + (DD,)TDD,, (30)
Ral) and as a result

np=(D'D)=Z"YZep+Zep,+ 3Zpp+ 3208, + ZoD]-

‘ (self—consistent scheme)

(32)

S(k,®) R () Similarly, we obtain for the average single occupancy,
n
> (FIF.),
k) Ng= 2_1[3ZFFS+ Zrr, tZrs t Zrs, T Zrp t Zrp, |-

(lattice self energy) (32)

FIG. 2. Self-consistent scheme for the computation of the self-1 h€ electron filling is given by the sum of single occupancy
energy. and (twice) the double occupancy,
t?/U. Since our attempt is to develop a top-down approach N=nNg+2np. (33)

in which on-site physics as well as nearest-neighbor correla 35 all the terms ifp can be expressed in terms of products of

tions are described accurately, we must include spin fluctug- Wwo-site operators, it is straightforward to write this param-
tions. To overcome this problem, we include the effects Ol ter as

spin fluctuations as a higher-order correction to the self-
energies of the resolvents. Physically, we can understand this

=71 3 _1 _1
correction by observing that the solution for singlet and trip- P=Z2"1Zrogt Zro, T Zoot 2 Zrrs~ 2ZrF, ~ 2208

let statesFF, andFFg, is sharply peaked at energies sepa- n2
rated by +3Zp8,)~ 7 (34
AT 4
J= Jx w(0pr,~ ofr,)do. (2g8)  This represents the self-consistency condition for the param-
_ S A

eterp and obviates the need to employ a decoupling scheme

In the strong coupling limitJ is of ordert?U and, conse- reduired in the static approximatiéh™® _ _
quently, singlet-triplet mixing cannot be ignored. We con- Th_e next step is to determine the dynam|cal corrections.
siderJ to be the coupling constant of an effective antiferro- T this end, we expre$the currentssJ,, in terms of two-
magnetic interaction which is responsible for the spinSite level operators. From E(7) andx;—x andx{—x’, we
fluctuations. The corrections to the self-energies given byind that
spin fluctuations are given in Appendix C. The energies from
Eq.(27), togethgr with the self—en'ergies givgn in Appendi>§ B 8,= > a, D
and the corrections from Appendix C constitute the equations
necessary for the evaluation of the two-site resolvents.
r 7 ’ +
C. Self-consistent procedure 0de=" th’n AP P, (35

The goal of introducing the two-site resolvents is 0 eX-\yhered, represents the complete set of two-sites level op-
press the dynamical correctiolm, andDmy, as well as  grators and the coefficients, , are given in Appendix D. As
the parametep in terms of quantities associated with the §J’ is obtained froms. by exchanging the positionsand
two-site problem as depicted in Fig. 2. To this end, let usy’  the coefficientsa,, will be identical witha,y, up to a

introduce the quantity =Z(d}d,) by sign that depends on the symmetry properties of the states
®,, andd, under the exchange afandx’. Let us denote by
Zs :f dw;(l, (). (29) £ the operator that produces the exchange,
EO(X,x")=0(x',x), (36)

The two-site occupation numbers for each of the 16 states
can be written directly in terms (ﬂq, For example, for the whereO(x,Xx") is an arbitrary operator defined on the two-

singlet and triplet states, we hanlFA ZFFA/Z and Nerg site cluster. The symmetry properties of the level operators

=SZFFS/Z, respectively. Single-site occupation numbers®'® given by

can also be expressed in terms&f using Eq.(16) and EFBs=FBg, &FBa=—FB,,
writing the identity operator on a neighboring site &'s

=Q(x"). For example, EFDg=FDg, EFDp=—FD,,
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EFFs=—FFg, EFF7=—FF°, culation, we need to determine the reservoir spectral func-
tionsp. (w) that enter into the formulas for the self-energies
EFFA=FF,, of the resolventgsee Appendix B The reservoir consists of
the full system from which the two sitesandx’ have been
EDBs=DBg, EDBa=—DB,, excluded. Our goal is to determine the Green functiGns

_ _ ={(c%,cloy) and5’=<(cﬁ,c£“/)>. We introduce the two-
¢BB=BB, ¢DD=DD. @) site Tl propagator [S]=((¥,¥")) with W'
Consequentlya;,,=anm if ®, and®, have the same sym- =[¢"(x)¢"(x")] and the irreducible propagator

metry anda/,,,= — anm otherwise. The self-energy contribu- = =
tions can be calculated only approximately. We will use the [§]— S S 42)
noncrossing approximatidhwhich has been proven to be g g/
effective in solving problems with local correlations. Defin- o _ o N
ing ®,,=®'d,,, we have whereS=({4*,¢'%)) andS’'={((y*,4"*")). From standard
. scattering theory, we have that
Trr(0| @ ()P, (E) e[ 0) _
Ol 00T (0[O0l (¢ DL H[0 [SI=[So] + [SHIVI[SIIVILS] (43
= Trl(0]P (1) Py (11)[0)(0] @y (1) Mdf(D]0)]
=~ Tra(0]® (1)@, (1) 0) Tr(O D (1) (141 8)]0). v o
(38) [V]=( 0 v) (44)
Consequently, we obtain and
T 1 —iw(t—t' 561 tVv
(P OP Ly (1))~7 | doe 1) [Sol 2= @5
tv §)°
xf dxgmm,(w+x);n,n(x), The solution of these equations is
(39 S=VSt-(S-8'sTis) VY

which is the formulation of the noncrossing approximation = -1 e P P
that we will use systematically in our calculations. Introduc- S'=VItVESTS(S-S'STS) IV (49
ing the expansion Eq35) in the expression for the dynami- The irreducible Green functions used in the evaluation of the
cal corrections, Eq.12), and using the noncrossing approxi- self-energies of the resolvents will be given by
mation formulaEq. (39)], we obtain -
1 G=S11+ St Sp1+ S,
DmO(w)_ 2dzf dde,n,m,En;,m’ anman'm' Gr:Sil+SiZ+S£l+sé21 (47)

- - and the corresponding spectral functions are
XUmm’(x)o'n'n(x,)+O'mm’(x)o'n’n(x,) P 9sp

—X+x'+i8 2 — —
@ pi(w)=—=IMG(w)+G ()],
(40) ™
and 2 _ _
p-(@)==—IM[G(w)~G'(w)]. (48
1
Dml(w)=—JdXdX' > Ay
2dz nmn’m’ Ill. RESULTS

X‘Tmm/(x)(r”'”(x )+ T (X) T ra(X7) . We now have all the ingredients necessary for the imple-
w—X+X'+id mentation of the self-consistent procedure shown in Fig. 2.
(41) Starting with an initial guess for the spectral functigns
describing the properties of the environment, we solve the
Detailed expressions fddm, andDm, are given in Appen- two-site problem iteratively using the expression EXp) for
dix D. the resolvents, the energies EQ7) and the self-energies
This concludes the process of writing the components ofrom Appendix B with the spin fluctuation corrections from
the Green function, Eq(5), which cannot be expressed in Appendix C. While in principle the cluster and the lattice can
terms of the Hubbard basis, in terms of spectral functions fohave different chemical potentials as in the previous work on
the two-site system. However, for a fully self-consistent cal-the two-site clustef’ we have used the more physical re-
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straint that both the cluster and the lattice must have the
same chemical potential. However, as a result of B8), 2D
the filling in the cluster and the lattice will be different. By
symmetry, however, at half-filling both the cluster and the
lattice will have the same filling. All the frequency-
dependent functions are discretized on a gridNof 8192
points fromw ,i,= — 20t 10 wy,4,= 20t. TO increase the com-
putational speed, we performed all the convolutions involved
in the calculation of the self-energies using a fast Fourier
transform algorithm. The procedure converges for tempera-
tures abovelr =0.02 at finite doping andlr =0.08 at half- 10 -6 -2 2 6 10
filling, although convergence problems occurred beldw
=0.1t. Once we computed the resolvents, the mean-field pa- FIG. 3. Momentum and energy dependence of the electron spec-
rameterﬁ can be determined using E(4), as well as the tral function for a half-filled 2D system withU=8t and T
dynamical correction®my andDm; from Appendix D. The ~=0.1%. From top to bottom, the curves correspond tg k)
mean-field parametez=(£°¢™)—(5*5") can be expressed =(0,0)—(m,m)—(m,0)—(0,0).

in terms of the Green function using the general self-

Spectral Function

consistency condition, Ak, @)= = (1m)Im{S;y(K,w) + 2S5k, ) + Sp(k, @)}
(52)
<¢fm<i>w*<1>>=if d*kdwe™* (171 f(w)]
" (2m)? for the 2D half-filled Hubbard model withJ=8t and T
- =0.15. Clearly visible are the upper and lower Hubbard
x| —|ImS,,(k,w). (49) bands with an energy gap of or_dérand fIat_ness of the b_and
near the r,0) point. The chemical potentialo=0) lies in

- . . . t]he middle of the gap and hence the system is an insulator.
W|_th|n the gr and-canonical enser_nble, the chemlcal potent'aHowever, no symmetry is broken as is evident because the
p Is determined by the self-consistent solution to periodicity is 2 rather thans as would be the case if the
_ t t + Brillouin zone had doubled. In addition, spin and charge are
n=2((&&'+2&n" + nn')). (50) not fractionalized® The insulating behavior arises because
the charge gap has splintered the spectral weight of &ach
ptate into “bonding” and “antibonding” pieces. Conse-
quently, there is a fundamental breakdown of what is meant
by an electronic state. In fact, the electronic states them-
selves have fractionalized. To make contact with the real-
space picture shown in Fig. 1, we note that the PES and IPES
spectra are determined by the spectral weight in the lower
. o ) and upper Hubbard bands, respectively. In general, the upper
A. Spectral function at half-filling: Mott insulator and lower Hubbard bands carry total spectral weigBtand
Before we analyze the doped case, we first refielve ~ 1—n/2, respectively, which of course reduces to 1/2 at half-
properties of the charge vacuum that determines the insulafilling. However, A(k,w) is strongly momentum dependent
ing behavior at half-filling. To reiterate, there are two distinctas illustrated in Fig. 3. For the lower Hubbard band, the
routes to the insulating state at half-filling. For>t, the ~ maximum in the spectral weight is peaked at (0,0) and de
charge and spin degrees of freedom are decoupled and tkeeases as them(,0) point is reached and becomes vanish-
system is an insulator for temperatures smaller tign ingly small at (=, 7). In fact, the states atf, ) in the lower
~U. The spins are coupled due to the super-exchange inteHubbard band carry almost none of the spectral weight.
action, |J|~4t?/U. It is this spin exchange interaction that However, the decrease in the occupancy of dastate is a
gives rise to local antiferromagnetic fluctuations and eventucontinuous function, as depicted in Fig. 4, rather than a dis-
ally ordering atT=0. This is the antiferromagnetic Mott continuous one as would be the case in a Fermi liquid with a
insulating state. In general, in the weak coupling regime, avell-defined Fermi surface. In the strict sense, the disconti-
metal-insulator transition occurs as a consequence of theuity in n, in a Fermi liquid occurs al =0. Although we
Brillouin zone folding generated by magnetic or charge or-cannot reachil=0 in our approach, we find no indication
dering and the corresponding gap is essentially related tthat a discontinuity develops in, as the temperature de-
antiferromagnetism or some type of charge density wavegreases. In fact, the continuous behavior we have obtained
This type of transition is referred to as a Slater transition andhere is consistent with the exact redtlt
the corresponding insulating state should not be confused
with the Mott insulator. Such a regime can be successfully
described by conventional many-body approaches.
Shown in Fig. 3 is the total electron spectral function,

We imposed the constraint that the chemical from &)
also equal that for the cluster. We then determined the ful
Green functionS(k,w) using Egs.(13)—(15). Next, new
spectral functiong .. are determined using E¢48) and the
whole procedurdsee Fig. 2 is repeated until full conver-
gence is reached.

1 €y 1
nk=§+2U<$'$+a—Z> (52
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FIG. 4. Occupancy of each momentum state Witk k, for the
spectral function shown in Fig. 3. The occupancy is peaked at (0,0) 00 02 o ol
and decreases continuously to a minimum valuemgta() without ’ T/t :

the discontinuity indicative of & Fermi liquid. FIG. 5. Singlet OFFA) and triplet @FFS) occupation numbers as

§ a function of temperature fod =8t in two dimensions. The fact
thatnFFA> Nep asT—0 is consistent with local antiferromagnetic
order.

for the occupancy in eadk state projected into the LHB o
a half-filled Hubbard model. Note all thie dependence is
determined by the single-particle energies,

. dering is preempted, E§55) should be thel =0 Mott insu-
e=—1>, e Ri~Riry) (53 lating state. The sum over all permutatidPss necessary as
° the vy, operators obey the nonfermionic commutation rela-

For a paramagnetic state, the term in the angle brackets H#9ns,
exactly, — 1/4. Hencen, is a continuously decreasing func-
tion from (0,0) to @r,7) as found here folJ =8t. Tt —i(k+a)r; T At
e , =2, e i(Uwg—Uu Ci:C; 56
Although n,<1, each state satisfies the sum rule, RERLE Z (Uwg~UguilCiciy - (56)

- and{vl, . v} ={Vke Yoo} =0. Whenu,=vy, v, % /0)

f mA(k"*’)dwzl- (54) generates the completely doubly occupied state. However,
because the right-hand side of the anticommutation relation

In a band insulator the upper cutoff on the energy is simplyin Eq. (56) is identically zero foru,=v,, the zero state

the chemical potential. This does not mean that in a bandesults upon summation over all permutations. Consequently,

insulator or in a Fermi liquid, a broad incoherent backgroundeg. (55) completely projects out the fully doubly occupied

cannot be present which extends to high energies. In fact, istate.

a Fermi liquid,n, can be less than unity. However, in Fermi

liquids, a coherent quasiparticle peak always exists regard- 1. Singlet formation: local antiferromagnetism

less of the momentum. Hence, the criterion for occupancy of A crucial test of the correctness of the method we have

a single-particle state is simply whether or not the coherentsy pere is whether or not short-range antiferromagnetic

peak lies above or below the chemical potential. In a I\/loncorrelations are present at low temperatures. Such correla-

insulator not only is .the spectral weight split over an enérgiqons do not signal that long-range magnetic order obtains at
scale ofU but there is an absence of coherent qua5|part|cle§,:O but rather that the ground state B0 is a liquid of

as ewdenceql b_y the broa_d spectral features. I_—|ence, th.ereﬂgarest—neighbor singlet states as in the resonating valence-
no sharp criterion for unit occupancy of a single-particle ond (RVB) state proposed by Andersdhwe are able with
state. The broadness of the spectral features stems from the "\ <o formalism to probe the existence of local mag-

local correlations on neighboring sites not the Mott gap it'netic order by computing the nearest-neighbor singlet and
self. Without the dynamical corrections, the spectral function_ . ;
y P n[rlplet occupation numbersnFFAzzppA/Z and NEFg

would simply be a sum of-function peaks at the lower and ) ) _ .
upper Hubbard bands. =3ZFFS/Z, respectively. From Fig. 5 we find that, at high
The bifurcation of the spectral weight of eaghstate temperatures, triplet excitations dominate. However, this
above and below the charge gap can be modeled as followend is reversed below some temperature and the singlet
Consider, for exampleyﬁgzukﬂfwkﬂﬁw with coeffi-  occupancy become_s of ord_er un_lty. Hence, the low-
cientsuy and vy are determined by the projection of the temperature properties of the insulating state we have com-
spectral function onto the lower and upper Hubbard bandgPuted here are consistent with a liquid of nearest-neighbor

respectively. Hence, the antisymmetrized state formed fronginglet states as in the RVB state. In factTat0 the liquid
such excitations state we have found here persists because we have imposed a

paramagnetic solution.
b + 4 A final diagnostic of the insulating state we have found
IMI) = ; (=1 kl—F[BZ Yt Ykt 10) (59 here is the behavior of the effective exchange interaction as a
© function ofU. In the Mott state, a super-exchange interaction
is a candidate for describing the elusive paramagnetic Motis self-generated which should scale abl 14t is this ex-
insulator. Provided magnetic frustration is present so that orehange interaction that sets the scale for thél Nempera-
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potential should jump discontinuously. That is, we find that
T=0.15t doping a Mott insulator leads to a continuous depletion of
I . the spectral weight in the first Brillouin zone. Our finding is
’ . consistent with the exact result for the 1D Hubbard m¥del
.. 1D as well as quantum Monte-Carlo simulatiéh¥' in two di-
Z 06 mensions. However, ind=o, the chemical potential
E exhibits® a jump but one that is smaller than the gap. Hence,
2D mid-gap states are generaf@dt would appear then thad
0.4 = s vastly different from an actual finite-dimensional sys-
tem and the 2D Hubbard model is quite similar to its 1D
0.2} . - : . counterpart at least as far as the chemical potential is con-

U/t

cerned. The possible source of the discrepancy is the form of

the self-energy. A chemical potential jump requires a large
imaginary part of the self-energy at the chemical potential,
thereby indicating an absence of well-defined quasiparticles.
Mid-gap states are resonance states and hence are reminis-
ture. Using Eq.(28), we computed the effective exchange cent of the Brinkman/Ri¢8 mechanism for the insulator-
interaction shown in Fig. 6 for both 1D and 2D. Note first metal transition in the doped Mott state. The inset in Fig. 7
thatJ is always positive as a consequence of the fact that thindicates that Ink, in the underdoped regime is large and
singlet state is lower in energy than the triplet. This is anonzero at the Fermi energy. Such behavior points to an
further indication of antiferromagnetic correlations in the absence of well-defined quasiparticles. In the overdoped re-
ground state. As expectedljs well approximated by #/U gime, the characteristio? dependence appears, indicative of
in the strong-coupling regime. However, dsdecreases, de- & Fermi liquid. Consequently, the method we use here is
viations from this behavior are observed. capable of recovering Fermi liquid theory in the overdoped
regime.

Experimentally, whether the chemical potential is pinned
or moves upon doping appears to be cuprate dependent. For
example, in La_,Sr,CuQ, (Ref. 57 (LSCO), the chemical

Two scenarios are possible for the doping dependence ¢fotential remains pinned roughly at 0.4 eV above the top of
the chemical potential(1) the chemical potential remains the LHB, while for Ng_ ,CeCuQ; (NDCO),*®

. d . R 59-62
pinned and mid-gap states are generated by some physiddl2SCa—xRCl0g,y  (BSCO, and Na-doped
mechanism, of2) the chemical potential jumps to the top of C&CuQCl, (Ref. 33 (CACLO) the chemical potential
the LHB or the bottom of the UHB upon hole or electron jJumps upon doping by an amount in accordance with half the
doping, respectively. Our results shown in Fig. 7 demonstratdott gap and scales roughly @8 as obtained here. Because
that the chemical potential jumps upon hole or electron dopstripes or macroscopic phase separation require the chemical
ing, indicating an absence of mid-gap states. The magnitudeotential to be pinned, they have been invdRed explain
of the jump is set by the Mott gap which is fully developed the origin of mid-gap states in LSCO. The pseudogap in the
atT=0. While at some finite temperature, the chemical pounderdoped cuprates has also been attriftitei stripes.
tential may appear to evolve smoothlyTat 0, the chemical However, becausé u#0 for most of the cuprates, for ex-
ample, NDCO, BSCO, and CACLO, if the pseudogap has a
4 universal origin, stripes are not its cause. The precise origin
8t of the pseudogap will be discussed extensively in a later
: section.

FIG. 6. Effective exchange interaction coupling consthas a
function of U/t for T=0.15%.

B. Doped Mott insulators

1. Chemical potential

2. Spectral function
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: Shown in Fig. 8 is the electron spectral function at high
s 5 0B oS temperatureT=0.2% for n=0.97, n=0.90, n=0.80, and
n=0.60. Several features are evide(it) the chemical po-
2 tential moves further into the LHB as the filling decreases,
(2) no coherent peaks exist near the chemical potential in the
0 lightly doped regime, 0.&n<1, (3) in the dense or weakly
: interacting regime, sharper features appégreach state in
the FBZ has spectral weight both above and below the
chemical potential as dictated by Mottne&s), the Mott gap
FIG. 7. Doping dependence of the chemical potential in the 2D/€Mains intact but moves to higher energy as the doping
Hubbard model computed using the local cluster approachTfor increases, and6) at (,w), the UHB carries most of the
=0.1% (dashed linpandT=0.0% (solid line). The inset shows the Spectral weight regardless of the filling. In the underdoped
imaginary part of the self-energy evaluated at a Fermi momentuniegime, the characteristic width of eaklstate is of ordet
(0.3,2.10) forn=0.97, (0.3,1.84) fon=0.8 and (0.3,1.06) fon and even much larger neatr(0). Such broad spectral fea-
=0.3. tures in the underdoped regime are seen experime’ftaityl
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FIG. 8. Doping dependence of the spectral function in the 2D
Hubbard model computed using the local cluster approachr for
=0.2% and fillings ofn=0.97,n=0.90, 0.80, anah=0.60.

DOS

arise in this context because Efeg) #0 as shown in Fig.

7. As a consequence, there is no sharp criterion for unit oc-
cupancy of each state in the FBZ. Because the total spectral
\kl)v()etlf?rge?;V\e/?nH(; Zt)ag\e/elsthueng{err:?i\(l:vaelvggt:r?tcijale?ﬁz iLa;?glév(?;:. 0.07, U=28t for the fillings shown. No pseudogap exists at high
. . . ’ . [emperature. At lowl and low doping levels, a pseudogap emerges
rled_by_the piece of th? state Iyllng below the chgmlcal po.'at the chemical potential but moves above it at an intermediate
tent'fil 'S_Iess than unlty._ That is, each el_eCtron'C St&}tg I%loping level. In the overdoped regime, the pseudogap vanishes en-
fractionalized. In the heavily overdoped regime, the sphttmgtirmy and a weakly interacting system is recovered.

of the spectral weight above and below the Mott gap, is

highly suppressed. As illustrated in Fig. 8, most of the specat the chemical potential we observe a weak maximum adja-
tral weight resides in the LHB for a filling ai=0.60. Asa  cent to a region with depleted spectral weight which forms a
consequence, Mottness vanishes in the overdoped regime. 1ghannel” immediately above the chemical potential. To un-

addition, in the heavily overdoped regime, Emacquires the  derstand the importance of the low-temperature features, it is
characteristicw? dependence indicative of a Fermi liquid. expedient to compute the density of states.

Hence, with our method we are able to recover the key char-
acteristics to the transition to the traditional Fermi liquid 3. Pseudogap without preformed pairs or global symmetry
state, namely(1) a vanishing of spectral weight in the UHB breaking

and(2) Im 3.~ near the chemical potential. . To investigate the possibility of a pseudo@%\m the
Does new physics emerge at low temperatures? Figure I|9 htly doped regime, we integrate the spectral function over
depicts the spectral function computedTat 0.0%. At this ghtly dop gime, 9 P

. . _.momentum to obtain the single-particle density of states
relatwely low temperat.ure, two new featurgs emerge. First DOS) at high and low temperatures. Displayed in Fig. 10 is
in the underdoped regime, the spectral weight appears to k{ e DOS forT=0.25 andT=0.07 for several fillings. As is
suppressed at the chemical potential. Whether this gives rise : ) )

. . . . . - _“evident, no local minimum of DOS exists at the chemical
to a pseudogap will be investigated in the following section. . . .
Secopnd amg~8.8 especially |?1 the vicinity of thgﬁ 0) potential at high temperaturel=0.2%. Features which

point, the band becomes almost dispersionless and seems 10 9¢ even at high temperature are the reshuffling of spec-

L ral weight from above the charge gap to below as the filling
split into two subbands. Instead of a strong coherence pealkS changed and also a movement of the Mott gap to higher

energies. Note that even at=0.30 the Mott gap is still
present, though almost all of the spectral weight now resides
in the LHB which closely resembles the noninteracting den-
sity of states. This is further evidence that we correctly re-
cover Fermi liquid theory as— 0. What about low tempera-
ture? The lower panel of Fig. 10 demonstrates that a
pseudogap forms in the DOS fér=0. The vertical line at O
indicates that the pseudogap occurs precisely at the chemical
potential. Similar qualitative results based on a cluster
method have been obtained by Maktral,®® except their
pseudogap is slightly displaced abdee. In contrast, in the
analysis of Hauleet al,’¢ the DOS has a negative slope
FIG. 9. Doping dependence of the spectral function in the 2DthroughEg (as dictated by the proximity to the Mott gelput
Hubbard model computed using the local cluster approachrfor never acquires a local minimum & indicative of a true
=0.0% and fillings ofn=0.97,n=0.90, 0.80, anah=0.60. pseudogap. Because the pseudogap exists below some char-

FIG. 10. Density of single-particle states foe=0.2% and T

Spectral Function
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1 T O ( leads to pseudogap)

DOS

? * O (no gap for transport)

FIG. 12. Local three-site configurations in which spin-blocking
leads to a pseudogap. In the upper state, transport directly between

FIG. 11. Density of single-particle states faor=0.1t, for n the up spin two sites away from the hole and the hole is not pos-
=0.95 and three values of the on-site interactidh=12t, U sible. Only hole transport via a two-step process is possible. As the
=8t, andU=4t. The gradual vanishing of the pseudogaplas amplitude for hole transport is a superposition of all such processes,
increases offers direct confirmation that the energy scale for tha pseudogap develops. The only way to overcome the spin-blockade
pseudogap is set /U is for the spin neighboring the hole to flip. This process costs an
energyt?/U. Once the spin is flipped, there is no barrier for trans-

acteristic temperature and vanishes at higher doping, the r8"
sult obtained here is nontrivial and highly reminiscent of
experimental observations in the cuprdté®Vhat is its ori-
gin? Incoherence (Ir& #0 atEg) is central, though it is not

a sufficient conditiof? [see Fig. 2 for a pseudogap. From (57

T T
E (Ci+6,0'77i,i+5’a’,70'_Ci+5,70'77i,i+5’,0)
i6+£68 0

L

Hig=—

.in an expansion /U, where the tilde represents full pro-
_ : c . %ction onto the LHB. It is precisely these terms that thwart
telling because ird=ce, ng™® pseudogap exists but a Mott yho oquivalence between the so-calletland Hubbard mod-
gap is present. Absent fromi=cc but present in any latticé g|s in the largeU limit away from half-filling 38 This term
of finite connectivity are true short-range correlations. Werepresents the motigistrictly in the LHB) of a hole in a spin
argue then that the pseudogap is the nearest-neighbor analggckground. We argue that such terms are involved in the
of the on-site generated Mott gap. The energy scale fopseudogap. The mechanism is as follows. Consider placing a
nearest-neighbor interactions scalest@$). Hence, if our  single hole in a Mott insulator. Unlike a site neighboring the
hypothesis is correct, we expect the pseudogap to diminishole, a singly occupied site two lattice sites away must tem-
asU increases. The evolution shown in Fig. 11 indeed demporarily doubly occupy one of its neighbors if it is to move
onstrates that, at finite temperature, the pseudogap does van-the hole. For this to be possible, the electrons on neigh-
ish asU increases. Hence, we can assert with certainty thaboring sites must have opposite spins. The matrix element
correlations on neighboring sites do in fact create a depletiofor such a two-step process i4/U and described by the
in the density of states. The energy scel&U is typically  three-site terms written above. For sites with the incorrect
associated with antiferromagnetic spin fluctuations. To exspin alignment, a local spin fluctuation must obtain for the
plore whether such processes have the right doping depethree-site hopping to occur. The energy barrier for this pro-
dence to explain the origin of the pseudogap, we display irtess i2?/U. Itis from those local three-site configurations in
Fig. 13 thex dependence af computed from Eq(28). Asis  which the spins are incorrectly aligned that the pseudogap
evident, J is only weakly doping dependent in the under- arises as illustrated in Fig. 12. Simply invoking spin fluctua-
doped regime and hence lacks the strong doping dependentiens is insufficient to explain the origin of the pseudogap as
needed to explain the pseudogap. This trend is consistespin fluctuations alone cannot give rise to transport. How-
with that of Jarrell and co-worketswho have observed that ever, spin fluctuations can make it possible for an electron
the pseudogap persists even if antiferromagnetism is killedwo sites away from a hole to transport. Hence, spin fluctua-
Figure 13 also indicates thal,s computed as the energy tions in the context of three-site hopping can overcome the
difference between the nearest-neighbor singlet and tripldbcal spin blockaddor spin gap that exists in doped Mott
states vanishes at=0.8. This is not an accident. Nearest- insulators. As this effect is entirely local, the pseudogap is
neighbor spin fluctuaions should desist when no nearesthe nearest-neighbor analog of the Mott gap: neighboring
neighbor sites remain singly occupied. On average, this obsites with a parallel arrangement of the spins experience an
tains at a filling of 1/5 ox=0.8, precisely the doping value energy barrier equal t¢?/U for charge transport. Can the
found here. Hence, it is not a surprise that the doping deperdoping value at which this process vanishes be estimated?
dence of] is weak in the underdoped regime. On this account, the pseudogap should be related to the joint
What then is the cause of the physics of the pseudogapsrobability that a neighboring three-site configuration con-
Any two-step process involving the UHB scales t25U. sisting of a hole and two sites with spin parallel electrons
Consider the explicit three-site terms that appear away fronexists. The minimum constraint however is simply that each
half-filling site has on average one hole as its immediate neighbor,
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— T=0.25t
0.35F | - -- T=0.07t
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0.2f

Heat Capacity

0.15f

0.11

0.05 | 0 - . . . .
Y 05 Tbmperhture T /t)%° ¢
0 L : : '

0 0.2 0.4 il 0.6 0.8 1 FIG. 14. Heat capacity computed for three fillings computed by
n (filling) numerically differentiating the internal energy obtained from the
average of Eqs(61) and (62). For all three filings shownU

FIG. 13. Effective nearest-neighbdras a function of filling.J
vanishes when four out of five sites are empty. Beyond this concen= 8t.
tration, nearest-neighbor spin fluctuations are not possible.

n
. X <ni(rni;>:<ci-r(r77i(r>: §_<77i(rci‘r(r>' (60)
roughlyx=0.25 for a square lattice. Hence, the pseudogap is
of the formt?/UP(x), whereP(x) determines the probabil- The correlations can be expressed in terms of the Green
ity that hole transport involves double occupancy and consefunction as
quently, is a steadily decreasing function>of/anishing at
Xoit- From the estimate given above, it is likely thaf; is E_ Qu+f do [ d%k
closer to the end of the superconducting dome thanitisto N 2 2
optimal doping.
It is commori®®to approximate the three-site terms con- -1
sidered here agKJ, whereK is treated as the lattice con- XIM(Syy+ 285+ Sp5) —U 7Im(812+ 822)}-
nectivity. Consequently, the effective nearest-neighbor ex-
change interaction is doping dependent and givenJhy (61)
=J(1—xK) which vanishes at.;=1/K~0.25(Ref. 6§ for =~ Equivalently, we can use the equation of motion for the
a square lattice. However, as Fig. 13 demonstratgsyan- Green functior‘<<77i(7-),cl.T(7-’)>> and we obtain an alternate
ishes atx=0.8 notx=0.25. It is likely that the discrepancy expression
found here arises from the fact that the three-body terms in
Eqg. (57) cannot, in any real sense, be rewritten as an effec- E n U ( n) f dw d
N
1

) (2m)?

~1
[1-f()]| 2ta(k) —

2k
tive spin exchange. In fact, at=0.8, every site has on av- N 2 1- 2 o (277)2[1_f(w)]
erage four neighboring holes. At this concentration, nearest-

neighbor spin fluctuations are not possible; hendg; -

should vanish, as seen in Fig. 13. X[o=ta(k) ] ——IM(Sy+ 28+ Sp) (62)

4. Heat capacity for the energy per particle. We _fOL_Jnd that the d_iﬁerence be-

. ) tween Egs.(61) and (62) was within our numerical errors.
Evidence for the pseudogap is also found from the heagonsequently, in our final calculations of the heat capacity
capacity”® We computed the heat capacity numerically fromghown in Fig. 14, we averaged the two results. In the 1D and

the internal energy 2D Hubbard models at half-fillin§’ two peaks exist in the
heat capacity. The high temperature peak corresponds to
c(T)= E d_E (58) charge excitations and the low-tempeature peak to spin phys-
NdT’ ics. As is evident, the same separation of energy scales per-

sists even in the doped case. However, rier0.9, we find
The energy per site is the sum of the kinetic term and thghat the spin peak vanishes and merges with the charge ex-
Interaction term citation spectrum. This dramatic change represents a possible
termination of Mott-dominated physics and the onset of
more Fermi liquid behavior. Bonca and Prelovdatbserved
the identical trend in their exact diagonalization study of a
4x 4 system. This agreement lends further credence to our
wheret=2dt, (t=4t, in two dimensions The double oc- method. Another trend evident from Fig. 14 is that the ex-
cupancy can be expressed as trapolatedl =0 value of the heat capacity in the underdoped

E
N=—2t(CiTCia>+U<niTnil>, (59)

245104-14



NONPERTURBATIVE APPROACH TO FULL MOTT BEHAVIOR PHYSICAL REVIEW B59, 245104 (2004

regime,n>0.9 is lower than that ai=0.85. This represents i L/
a loss of spectral weight at low energies as would be the case
once a pseudogap opens. Hence, the thermodynamics also
corroborate the existence of a pseudogap.

5. Possible time-reversal symmetry breaking A A

We have shown that in general, a pseudogap exists in a
doped Mott insulator without invoking symmetry breaking of
any kind. Nonetheless, we entertain the possibility that in
analogy with antiferromagnetism and the Mott gap, perhaps - -
some broken symmetry state obtains at lower temperature as ) )
a result of the pseudogap found here. Our argument should FIG. 15. Current pattern for the motion a hole in a dopepl Mott
be construed as a conjecture and hence is entirely specul@Sulator that preservesreversal symmetry along=*y but vio-
tive. It by no means underlies the calculations we presentefics 't long the canonicalandy axes. Each lattice represents a
here. Loram and Colleaglf@shave argued that for<x, a copper site. Hence, translational symmetry is pregerved. The diag-
glassy phase with an Edwards-Anderson order parameter Oepa_l Eurrent is chosen such that the net current in each plaquette
tains. While the experimental evidence for a glassy phaseanls es:
extending toX.i IS not clear, recent circular dichroism )
experiment8' point to time-reversal as the relevant symme-neighbor analog of the Mott gap. Should further experiments
try that is broken in the pseudogap phase. However, thi§onfirm the presence dfviolation, then a more microscopic
symmetry is broken only along ther(0) and (Or) direc- |n_vest|gat_|on of the origin of the current pattern shown in
tions and not along#, 7). Should these results endure, they Fig. 15 will be warranted. Of course, a_CL_Jrrent pattern of the
will provide a benchmark for measuring the validity of the tyPe proposed here can only be obtair(édat all) from a
numerous proposals for the pseudod@peIn the context of Hubbard model if next-nearest-neighbor hopping is included.
the view put forth here, we must determine how purely
nearest-neighbor correlations can give rise to a breaking of 6. Spectral weight transfer
time-reversal symmetry only along the canonizabndy

To quantify the spectral weight transfer evident in Fig. 10,

axes but not along=y. Consider the three-body term in Eq. we compute the high and low spectral weight by integratin
(57). This term generates correlated motion of a hole among, . DOSp from a v%lue of the gnergy insi%e trile Moq[t gag

nearest-neighbor sites, that is, local currents. In analogy witQ,hiCh minimizes the DOS toe (— for electron dopingy
the local moments that order antiferromagneticallyratO and from u to that fixed energy, respectively. The results

asa re_s“'t of the Mott gap, we propose that the currentf, Ma%hown in Fig. 16 demonstrate that the initial spectral weight
order in the pseudogap phase belGw. Experimentally, in the UHB which is 1/2 ah=1 all moves to low energies as

translational symmetry is preserved in the pseudogap phasg, filling decreases, as is observed experimentafiyThe

Hence, staggered orbital currents are not possible as then){ : - ;
i . . ! s tegrated spectral weight has been normalized per spin. The
automaticaly result in a doubling of the unit cell within a g b g Per sp

) . . i f I i 1). Furth h -
single-band modeél: Further, experimentalif/~"*there isno oo 1 true for electron doping£ 1). Further, the curva

. ) : . ture of the low-ener tral weight i itiv func-
evidence that physics beyond a single-band is relevant to tr}u € o the low-energy spectra’ Weight 1S posyiive as a func

tes. C i { patt ¢ fon of doping in agreement with earlier resdftsn the 1D
cuprates. Lonsequently, any currént pattern must preseryg, 4 model. This signifies that the integrated low-energy
translational symmetry within a single-band model. Only ONCpectral weight increases faster than Zhe additional low-

option remalrls: the currents 0rq|er below some characteristi nergy spectral weight above that dictated by state counting
temperaturel’* along the canonicat andy axes. To ensure

that the net current along=y vanishes, a compensating

diagonal current must be present as depicted in Fig. 15. This :

current pattern can be obtained from the most recently pro-

posed pattern of Simon and Varffidy simply integrating 0.8 ey /WN' W

out the oxygen sites. Hence, despite claims to the corftfary, - \

it is entirely possible to generate a translationally invariant % 06

current pattern within a one-band model that is consistent 2

with the experimental observations. In the corrected pattern g RN

of Varma and Simof? the oxygen sites do nothing except o4 w, RO N 4

produce a diagonal current which ensures that the total cur- i \

rent in each plaquette vanishes. That the oxygen sites can be 0.2
integrated out is certainly consistent with the now well ac- L SN
cepted work of Zhang and Rié&.Nonetheless, our work ob==""" : T
does not hinge on the current pattern shown in Fig. 15 being 0 0.5 Fi"i:]q n 1.5 2

the origin of the pseudogap. However, insofar as such a pat-
tern obtains entirely from local nearest-neighbor physics, itis FIG. 16. High (V) and low (W,) spectral weight as a function
consistent with our finding that the pseudogap is the nearesbf filling. Wy, is the spectral weight in the noninteracting system.
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(see Fig. ]l arises from virtual excitations between the lower the spectral weight in the LHB is removed, the surface sepa-
and upper Hubbard bands. Such virtual transitions arise fromating occupied from empty states must have zero curvature.
the three-site terms discussed previously. That the number @fs this surface defines the Fermi surface, then its curvature
low-energy degrees of freedom arise from such high-energghould be related to the sign of the Hall coefficient. Conse-
processes further attests to the inseparability of the low- anduently, the critical doping level at whicRy=0 is deter-
high-energy degrees of freedom in a strongly correlated sysnined by the doping level at which half the spectral weight
tem. For contrast, the spectral weight transfer for a noninterin the LHB is depleted. Consider tHé=cc limit in which
acting system\{Vy,) is shown as well. This behavior is ex- the spectral function is momentum independent. Each state
pected for a doped band insulator. That Mottness leads tim the LHB carries the weight 4n/2. Consequently, the
such a drastic deviation from the noninteracting result is draction of the spectral weight depleted upon hole doping is
direct consequence of state fractionalization. That is, each/2/(1—n/2). When this quantity equals 1/R,, should van-
state has spectral weight both above and below the chemic@h. The solution to

potential(see Fig. 16

n/2 1
7. Hall coefficient = (lower limit on the filling at which R;=0)

1-n/2 2

Experimentally, the Hall coefficient in the cuprates is in (63)
general positive in the lightly hole-doped regime, scales as
1/x in the vicinity of half-filling but falls off faster than ¥/  isn=2/3 which is a strict lower bound far, and is precisely
for x~0.1 and in some instances changes &dfittypically ~ What simulations as well as complicated series expansions in
aroundx=0.25. Although the Hall coefficient is in general the infinitel limit®*** obtain. Consequently, if a Mott insu-
temperature dependent as emphasized extensively Hgtor possess a sign change in the Hall coefficient, it must
Andersorf® the Takagiet al. experiment®’ indicate that the occur forx<0.333.
zero-crossing doping level in La,Sr,CuQ, (LSCO) is only Shown in Fig. 17 is the spectral function in the FBZ
weakly temperature dependent. Consequently, we will focu¢valuated at the chemical potential fd/J=8t and T
solely on the doping dependence of the Hall coefficient since=0.2%. The upper panel corresponds ne-0.97 and the
the existence of the zero crossing is only weakly dopingower ton=0.3. As is clear, in the lightly doped regime, the
dependent. Nonetheless, because the sign change is not uhirmi surface is holelike and the spectral features are broad
versally observed in all the cuprates, the general conditionidicating an absence of well-defined quasiparticles indica-
under which a sign change of the Hall coefficient should béive of an incoherent metal as is seen experimentaif§The
observed in a doped Mott insulator have not been formusource of the incoherence stems from the self-energy shown
lated. In addition, there have been numerous theoreticah Fig. 7 which remains constant at the Fermi levelnat
treatments of the Hall coefficient. For example, perturbative=0.97. This leads necessarily to a violation of Luttinger’s
scheme®%-%ead to a sign change &, and hence offer theorem. In fact, the Fermi surfa¢gefined by the maximum
a possible explanation for the deviation fronx.1However, in the spectral functionvolume atn=0.97 is roughly 30%
because perturbation theory is constrained by Luttinger'sarger than the Luttinger volume. In the overdoped regime,
theoreni® to yield a Fermi surface occupying half the FBZ at the self-energy has the characterisi®é dependence of a
half-filling, such approaches fail to recover the experimen+ermi liquid and hence we recover Luttinger’s theorem as
tally observelf divergence ofR, at half-filling. In strong-  the sharp spectral features in Fig. 17 revealrfer0.30. Our
coupling calculations, some have obtained a sign cHdntfe results indicate a smooth crossover between the lightly
while other$® predict thatR,<0 for all hole dopings. In doped regime and overdoped regimes where Luttinger's
addition, other&**have reached the counterintuitive conclu- theorem is reinstated.
sion thatR, does change sign, but the Fermi surface is However, broad spectral features are not the only con-
closed for allx>0. In such studies, it was assumed that thetributor to the violation of Luttinger’s theorem. Consider the
doped Mott insulator is described by doping the diamond-Static approximation in which the self-energy in E§) is
shaped Fermi surface of the weakly-interacting system, agxplicitly set to zero. The details of this level of theory are
assumption clearly not borne out by experimért-*° derived in Appendix E. At this level of theory, the spectral

On simple grounds, however, the general doping deperfunction for the LHB and UHB’s correspond to a seriessof
dence of the Hall coefficient can be easily deduced. Considdkinctions. Nonetheless, the bands generated do not describe
a lightly doped Mott insulator in which the Hall coefficient is Fermi liquid quasiparticles because edchstate still has
initially positive. In the heavily overdoped regime where thespectral weight both below and above the Fermi level. Rela-
system is weakly interacting, the Fermi surface must bdive to the dynamical results, we find that the topology and
closed and hence electronlike; thRg<<0. We can deduce Vvolume of the Fermi surface do not change as revealed by
the doping level at which the transition from an open to aFig. 18. The solid line corresponds tb=8t, dashed line to
closed Fermi surface occurs by appealing to the spectrd) =100G and dashed-dotted td=0. Clearly shown in Fig.
function of a Mott insulator. As Figs. 3 and 4 illustrate, at 18 is the evolution from a hole to an electronlike Fermi
half-filling every k state in the FBZ has some spectral surface at critical doping levels of 0.791 fdr= 8t and 0.668
weight. Because the chemical potenfiake Fig. T simply  for U=100G. The critical concentrations at which the cur-
moves down through the LHB upon doping, hole dopingvature of the Fermi surface changes sign corresponds to
simply depletes the spectral weight in the LHB. When half=0.668 and 0.791 fod = 100G andU = 8t, respectively. As
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FIG. 18. Fermi surface in the static approximation for four fill-
ings as indicated and three different valuedJbof(1) solid line, U
=8t, (2) dashed line,U=100Q, and (3) dashed-dotted linelJ
=0, the noninteracting limit.

be attributed to experimental uncertairigt most 2—3%°’
Hence, while the FS computed here is clearly larger£2)5
than the experimental value, both are in qualitative agree-
ment that Luttinger’s theorem is violated in the underdoped
regime. Of course, improved quantitative agreement with ex-
periment can be obtained by including band parameters such
as a next-nearest-neighbor hopping interactiorand a dop-
ing dependent. Hence, we see that even though the UHB
and LHB's are sharp, the Luttinger volume is not preserved.
In Appendix E, we show explicitly that the source of this
breakdown stems from the bifurcation of the spectral weight
of eachk state into a high- and low-energy part. Conse-
quently, removing a single electron is no longer accom-
plished simply by removing a singlestate as a result of the
FIG. 17. Spectral function in the first Brillouin zone evaluated atyregkdown of the band insulator sum rule. Hence, a key con-
the chemical potential for a filling of=0.97 (top panel andn  gequence of Mottness in two dimensions is a violation of
=0.30(bottom panslwith U =8t andT=0.23. In the underdoped | \inger's theorem fon+ 1 as additional extensive numeri-
regime, the spectral function has broad features at th_e Fermi Ieve&al work attesté5-48.98| the heavily overdoped reginjeee
A sharp Fermi surface emerges in the overdoped regime. Fig. 18], the spectral lies predominantly in the LHB and
hence one hote onek state and Luttinger’s theorem is rein-
stated. Consequently, under hole doping, the hole and elec-
on regimes are fundamentally asymmetrical as emphasized
y Hirsch®®
To compute the Hall coefficient,

anticipated, these values are less thg#s 2/3. While for U
=8t, X, is remarkably close to the;;=0.19 of Loram®® it

is unclear whether the closing of the pseudogap is alway
accompanied with a sign change of the Hall coefficient.
However, a sudden sign change would certainly explain the
appearance of the peak in the density of states shown in Fig. 5

10 once the pseudogap vanishes. Three additional features Ru=0xyzl 0« (64)
are apparent. First, at small concentrations, regardless of o _ _

all Fermi surfaces are electronlike and coincide with the nonWe Work within Boltzmann transport theory in whicth
interacting limit. An analytical proof of this result is given in

Appendix E. Second, at intermediate fillings, the Fermi sur- e3r? of

face (FS) in the interacting system is holelike as opposed to Ixv7" 1 0c ; UX(VXVk)zUy( P (69
electronlike in the noninteracting system. Finally, the area of

the FS forU=8t andn=1—-x=0.97 is clearly larger than )

that dictated by Luttinger’s theorem,m3(1—x)=1.94x2. P vz( _ ‘”) 66)
From the maximum in the spectral function, we find that the 0K de’

experimental value for the FS area in LSQRef. 79 for
n=0.97 is 2.06r> which represents a nontrivial 8% devia- Here, 1f is the scattering ratef) the volume, and the
tion from the Luttinger result. Such a large deviation cannot~ermi distribution function. Our use of the Boltzmann equa-
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The Full Mottness
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FIG. 19. Hall coefficient as a function of doping using the static
approximation for the Hubbard operators with= 100G. The inset t—violation
. . (model dependent) ?
shows that there is an antisymmetry between electron and hole dop-
ing. In the inset, the solid line correspondslo=100G and the
dashed line taJ =0. Both show clearly that the deviation fronx1/
is induced by the sign change rather than a liberation of charge.

FIG. 20. Heirarchy of energy scales and the corresponding
physical processes that obtain in a doped Mott insulator. AF repre-
sents antiferromagentic order.

tion should suffice as long as the interactions dominat(?_uttinger’s theorem in the underdoped regime. Reinstate-

which is certainly true in the case of interestU. In using : . . )
ment of the Luttinger volume in the overdoped regime points

the Boltzmann approach, it is easiest to work in the ldige .
limit because in this case, the spectral function is indepent© & fundamental asymmetry between holes and electrons in

dent of momentum. Consequently, we used the static energ?;lhc’le'd()p?d Mott insulator. An additional role played by the
bands forU=100G and computeRy using Eqs.(64)—(66). Mot scale is the generatlon.of a hierarchy of interactions of
Figure 19 demonstrates that the sign of the Hall constant i§icreasing range. The most important of these is the nearest-
consistent with the curvature of the Fermi surfaces shown imeighbor interaction,J~t?/U. Spectral weight transfer
Fig. 18. In addition, the deviation from x/in the region across the Mott gap points to an inseparability of high- and
close tox,=1—0.668 is tied to the impending sign change. low-energy scales. Hence, it is unclear in what sense a true
As the inset illustratesR, diverges at half-filling and low-energy theory can be formulated for a doped Mott insu-
changes sign for both electron and hole doping in contrast ttator. We propose that the antiferromagnet that forms in a
weakly interacting scenarios which can yield at most oneMott insulator is distinct from a spin-density wave antiferro-
sign change(dashed ling and no divergence at=1. Of = magnet. Finally, we have found that thés also responsible
course, the static approximation does not include thdor the pseudogap. The pseudogap simply reflects the re-
pseudogap found earlier. Note that regardless of whicltricted phase space that strongly correlated excitations on
model is used for the pseudogap, the,q) regions of the neighboring sites encounter. The current pattern shown in
Fermi surface become gapped. Unless the curvature of thgig. 15 arises from such neighboring correlations and could
Fermi surface is modified by the removal of the,0) re-  explain the origin of the direction-dependesnversal sym-
gions, the pseudogap cannot change the sign of the Hall conetry preaking observed in the normal states of the cuprates.
efficient nor eliminate the d|vergepce at half-filling. In fact, Three-site correlations, which lead to a doping dependent
at the doping level X~x.) at which the removal of the g,y exchange interaction, are crucial to the vanishing of the
(7,0) regions is most likely to affect the curvature of the FS’pseudogap at.;. Because this state of affairs obtains be-

the pseudogap vanishes. yond Xop, OUr proposal resonates with that of Loram and
colleague$® Finally, our work suggests that doping a Mott
IV EINAL REMARKS insulator gives rise to a heirarchy of energy scales all derived

from the Mott gapU. Hence, the Mott state found here has
We have explored here a dynamical method which incorthe high-energy scale needed to explain the spectral weight
porates the local physics of a doped Mott insulator. The sumtransfer from 2 eV to the Fermi energy when superconduc-
mary of our findings is catalogued in Fig. 20. Physics on theivity obtains3*~2¢ Whether the emergence of successively
Mott gap scaldJ as well as the nearest-neighbor interactionlower-energy scales as a function of doping can be formu-
scaleJ play several key roles. The Mott scald, sets the lated within a renormalization group scheme remains an
energy range for spectral weight transfer and leads to apen question in strongly correlated electron physics. None-
breakdown of the band insulator sum rule. This ultimatelytheless, it is along these lines that our current work is di-
leads to a Fermi surface volume that exceeds that dictated bgcted.
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APPENDIX A: EQUATIONS OF MOTION FOR THE TWO-
LEVEL OPERATORS

Consider the orthogonalized basis for the two-site prob-
lem ®, Egs.(17) and(18). The equations of motion

2 Pa=[Dy H], (AD

where H is the Hubbard Hamiltonian, can be easily obtained
using the equations of motion for the single-site level opera-
tors, EQ.(26). Assuming thai®,, is defined onx andx’, a

superscriptr will indicate a sum over all the nearest neigh-
bors ofx with the exception ok’ divided by the total num-
ber of nearest neighbors. Similarlg’ will include all the
nearest neighbors of’ with the exception ok. Explicitly,
we have

d t t - -
J— o_ o, o__ a+ (43
'gtFBS (280 M 2d)FBS \/E(Co c, )BB

T T
_ _ (pta_ ATa o_ _(~ta _  Ta
\/E(CU' C(r )FF Z(Cf(r Cf(r)FFS
’:E Ta ta! ~ ta ta'
+§( stc’ )FFA——(c ,+c,)DBg
at ta _ ta’
- (cl%,—cl%)DBy, (A2)
rgr=|2 T t FBY t o BB
IE AT o™ M 2d A E(Co’ Co’)
T Ta N ta ta'
+E(C” o\ EFO 4 o (c ' +cT)FFg
T - = ot — -
= 5 (el el )FFA— - (cl%—c!%,)DBg

——(cT“ +CT“ )DBa, (A3)

J f
IEFDS=(280—3,LL+U+E

FDZ- (CT“ +cf')pD

\/_

__(C_aa_ a)FF(r+ U)FFS

V2

2(_‘7

ot @ ;/ t o«
- 7(C_U+C_U)FFA— E(C +c -)DBs

(c®,—c® )DBy, (Ad)

—ag

+

N |

ot

—FF=2(gg— u)FF7—
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t Tir
FDx— —(c —c,“(,)DD

S V2
ta ta! o_ a o
+ — +

\/_(c c)FF 5 (ct,+ct )FFg

O:E ; ;/ Af ; ;r
+ ?(C—U_C—O')FFA_ E(C—U_C—U)DBS

Tf - =
+5(c%,+c%,)DBy, (A5)

Jd t Ti Tir
|EBB=ZsOBB—— (c,“+c,” )FBg

N
_TE (cT“ T“ )FBj, (AB)
DD =2(sy—2u+U)DD t S r(c® +c* )FDL
I— — - — C_ C_
€p M \/E - 7! T T S
t e _ @ enr
_EE 7(c® —c* )FDZ, (A7)

T . v
—5(c5—cyFBY
\/E S
—(ci+cs ——(c!% —c'
V2 b2 >

i

(cT”‘ +cte * )FDY, (A8)

) (7 t - =
i~ FFs=2(so— n)FFs— 3 > (c*,—c* )FBg

T = o ¥ o
+5 > (e, +c? )FBL+ > > w(cle—cle)
XFDI- > r(ci*+c!*)FDE, (A9)

t - —
FFA 2(go— ,u)FFAJr ] DBS+ 5 > (e +cY)
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¥ t t —
I—-DBs=(260—2u+U)DBs+ FFa— 5 > (e,

= t - =
+c¥ )FBL— = >, 7(c*,—c* )FB;

htd > o
LS (el g

t T_ T_/
—52 (cl*—cl*yFD3, (A11)

. d t -
i--DBa=(269—2u+U)DBa— 5 > 7(c*.—c¥)FBE

E 7(c? + c‘i’,)FB,Q

T

+2 > (cl*—cl*')FD

N =l N ~1 N —

> (cl*+cl*)FDE. (A12)

T

+

APPENDIX B: SELF-ENERGIES FOR THE TWO-SITE
RESOLVENTS

The resolvents associated with the two-site operafgys
can be expressed in the form

Ro o (®)=[0—Eg o —Zo.o (@)1  (BD)

For the diagonal components, we use the notab'(q;1n¢m
=Xo,, whereX is R, E, or 3. We evaluate the self-energies

2q>n¢)m(w) within a one-loop approximation. Using the spec-

tral functionsp, andp_, Eq.(48), of the irreducible propa-
gators, we obtain

EFBS(w)=t4—2f dx{2p . (x)[1—f(x)]Rea(@—X)
=P+ (O (O Rer,ppg@+X)
+p+ ()T (X)Rpp(@+X)+p_(X)f(x)
X Rpg,(0+X)+3p_(X)F(X)Ree (@0+X)
+p (O F(ORee, (0+X)}, (B2)
’EZ

EFBA(w)=Zf dx{2p_(x)[1—f(x)]Res(®—X)
+p-(X)F(X)Rer,pp(@+X)
+p-(X)F(X)Rpp(@+X)+p(X)f(X)
X Rpg,(0+X)+3p, () F(X)Ree (0+X)

+p- (X FOReg, (0 +Xx)}, (B3)

PHYSICAL REVIEW B59, 245104 (2004

EFDS<w>=t4—2 [ axi2p,00100Rop(0+)
(O[T IRer oy 0= X)+p 4 (X)
X[1=1(X)Rosg(@=X)+p_([1= ()]
XRos,(0=X)+3p_ ([ 1~ F(0]Rer (0X)

+p (O[1=FO)IRee, (0 =X}, (B4)

T2

EFDA(w)=Zf dx{2p- () F(X)Rpp(@+X)
= p-()[L= (%) Rer,pp(@=X) +p(X)
X[1=F(0)IRps(@=X) +p+ ()[1=F(x)]
XRpp,(@=X)+3p (X)[1~T(X) IRer (0 —X)

+p-(0[1= () IRep, (@ =X}, (B5)

2pp(w) =72f dx{p+ () f(X)Rep (@ +X)

+p-(0)F(X)Reg, (0 +X)]}, (B6)

Spp(@) =12 f dx{p (X)[1—F(X)IRep(@—X)

+p-()[1= () ]Rep (0 —X)}, (B7)
12
Srp(w)= jf dx{p-(X)f(X)Rep(@+X)

+p+(X)F(X)Rep, (0 +X)
+p-(X)[1-f(X) R (@—X)
T+ (X[1=f(X)]Rep, (0 +x)},  (B8)

EFF"(“)):EFFS(‘U):EDBA(w)y (B9)

7['2

EFFA(W): ff dX{P+(X)f(X)RFDS(w+X)
+p-(X)F(X)Rep, (@ +X)
Tp+([1-F(X)]Rep (0 —X)

+p,(x)[1—f(x)]RFBA(erx)}, (B10)

12
Srr,pB (@)= EJ dx{p (X)F(X)Rep(@+X)
—p-(X)f(X)Rep, (0 +X)

_P+(X)[1_f(x)]RFBS(w_X)

+p-(0[1=F(X)]Rep, (0 +Xx)}, (B11)
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s ©)=3 ©), B12 9 J - o - 5 -
P08l @) = 2 0ngrr () (812 i FDg=3[o(ng+ng FDE+a(ni—ng )FDZ+(n",

355 (0)=2p,(0). (B13) +n )FDg"+(n®,—n® )FDA ]+ -,

(CH
APPENDIX C: SELF-ENERGIES CORRECTIONS DUE TO
SPIN FLUCTUATION . d J - - -
|EFDZ=§[a(n§—n§ JFDZ+o(ng+n3 )FDa+(n%,
We include the effects of spin fluctuation as higher-order
corrections to the self-energies of the resolvents. The spectral o —0 (na o -0
: : X . . — + + +oe-
functions associated with local singlet and triplet states are N=o)FDs "+ (N, +n=,)FD,"] '
sharply peaked at well-defined energies separated by the ef- (Co6)

fective antiferromagnetic coupling constant

d - = 1 - -
w i—FF"=J{o(n§+n§)FF”+—(n“ +n? )FFg
0’)t g g
J= f_ w(O',:FS— (T,:,:A)dw. (Cl) \/E
(NN )FFy |+ ()
—_— — n7 —_ n7 ey,
The effects of spin fluctuations with the environment can be N oA
approximately described by the effective antiferromagnetic
interaction p - 1 B
) iEFFS=J{a(n§‘—n§)FFA+ E(nﬂ_”anLnZU)FF"
SHgt=3 Inn?, (C2
1 - - B
wheren=c'ac is the spin densityy; are the Pauli matrices + E(niﬁ”fa)':': e (CY

andc'=(c,c]). Although a proper account of the singlet-
triplet mixing can be given by considering vertex correc-
tions, we can use a simpler two-step approddhWorking

in the basis formed by the eigenstates of the two-site prob-
lem (as we, in fact, dpwe take care of the spin fluctuations
for the cluster without a bath. As we introduce the bath, an 1 - -
additional singlet-triplet mixing occurs which is not captured +—=(n%,—n% )FF 7
by NCA (as shown by the very sharp features in the FFA and V2

the FFS resolventsWe try to approximate this mixing by an . . .
effective spin-spin interaction. As a result of this mixing, theWhere we used the notatian, = ny+iony. These terms will
FFA and FFS states are broaden&).Due to the the self- determine the self-energy corrections

consistency of the approach, this spin-spin interaction is also
present between the cluster and the bath. The corrections that
we introduce are the effect of this additional effective inter-
action with the bath on the self-energies of the resolvents.
Consequently, some of the equations of motion for the two- +to-(0[1- f(x)]RFBA(‘”—X)}’ (C10
site level operator®,, (see Appendix A will be modified.
Explicitly we have

- = 1 - =
o(ng—n3 JFFg— —(n% —n% )FF’

V2

'(gFF =]
gt AT

+., (Cg)

3
52F35(w)=f dx §J2{<P+(X)[1—f(X)]RFBS(w—X)

3
52FBA(w)=f dx EJZ{‘Pf(X)[l_f(X)]RFBS(w_X)

Jd \] T - i
i FBg=>5[o(ng+ng )FBg+o(ns—n3 )FBL+(n?, T+ (N[1=-f(X)]Rep, (0 —x)}, (C1y

+”?g)FB‘UJr(ni—nz,)FB‘“]Jr..., 3
s A 3 5EFDS(w)=f dx 532{¢+(X)[1_f(X)]RFDS(w—X)

+o_(O[1—f()]Rep, (0—X)},  (C12

J \] = - 7
iﬁFBX: E[a(ng—ng YJFBZ+ o(ng+ng )FBR+(n%

3
- - 5EFDA(w)=f dx 532{¢-(X)[1—f(X)]RFDS(w—X)
-n% )FBg’+(n% _+n% )FB, 7]+ -+,

4 +6,(0[1-F()]Rep,(@=x)},  (C13
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52FFS<w>=:J.dX 23426 ()[1~f(X)]Ree (0= X) ¢’ (©)=FT({ng,n§ })=3FT({n,,n%}).

+go,(x)[1—f(x)]RFFA(w—x)}, (C14) Note.becausiep(w) aﬂd ¢’ (w) are. expressed in terms of
functions defined omx and «’ which denote the nearest
neighbors of the two sites in the cluster, we have avoided
52FFA(w)=f dx 6J2<p,(x)[1—f(x)]RFFS(w—x), double counting the spin fluctuations on the cluster. The
(C15 functions¢(w) and ¢’ (w) are computed within a noncross-
ing approximation, taking into account the only dominant
whereg . (0) = ¢(w) * ¢’ (w) and contributions (containing products of on-site and nearest-
- = - = neighbor operatojs Introducing the coordination factops
¢(0)=FT({ng,ng})=3FT({n%,,n% }),  (C16  =(2d—1)/(2d)2 and\’'=(2d—2)/(2d)?, we obtain

A — — 1 _ _
p(w)~ Zf dX(E[UFBS(X)UFBS(w_X)+UFBS(X)(TFBS(CU_X)]"' E[UFBS(X)O'FBA(“)_X)+O'FBS(X)O'FBA((‘)_X)]
1 — — 1 —_ _
+ E[UFBA(X)UFBS(“)_X)+0FBA(X)UFBS(w_X)]+ E[UFBA(X)UFBA(w_X)+UFBA(X)UFBA((H—X)]
_ _ 1 _ _
+5lorp (¥ Trp(@=X)+ o (X) Tra (@ =X) ]+ S[orp(X) Trp, (0= X) + 0rp(X) 0rp, (0= X)]
1 — — 1 — _
+ E[UFDA(X)UFDS(‘U_X)"_O'FBA(X)O'FBS(“)_X)]+ E[UFDA(X)UFDA(‘U_X)"_UFBA(X)UFBA((‘)_X)]
+2[re () Trr (0= X) + TR () Trr (0= X) ]+ Ope (X) Opr, (0= X) + Ter (X) Ter, (@ —X)

+O'FFA(X);FFS(“)_X)+;FFA(X)0'FFS(U)_X) , (C17

! 1 — — 1 _ _
¢'(w)~ ?f dx[E[UFBS(X)O'FBS(“)_X)+0'FBS(X)0'FBS(‘U_X)]_ E[UFBS(X)UFBA(CU_X)_O'FBS(X)UFBA(")_X)]
_ _ 1 _ _
- E[UFBA(X)UFBS((U—X)_O'FBA(X)O'FBS((‘)_X)]+ E[UFBA(X)UFBA(Q’_X)+UFBA(X)UFBA(w—X)]
1 — — 1 — _
+ E[UFDS(X)O'FDS(‘U_X)+0'FBS(X)O'FBS(‘U_X)]_ E[UFDS(X)UFDA(“)_X)_O'FBS(X)O'FBA((U—X)]

— — 1 — —
- E[UFDA(X)UFDS(Q’_X)_UFBA(X)O'FBS(C"_X)]+ E[UFDA(X)UFDA(“)_X)+UFBA(X)C"FBA((J’)_X)]
+2Lorr (X) Trr (0= X) + Tre (X) Trr (0~ X) ]~ Opr (X) OFr, (0= X) — Trr (X) Trp (0= X)

_UFFA(X);FFS(Q’_X)_;FFA(X)O'FFS(LU_X) : (C19

Note that in these equations, it is the Fermi function which appears not the Bose distribution function. In general, the
expression for the self-energy depends on which form one uses for the spectral function. We ust,(BTn;(t')}
(=¢(w). Usually the pectral function is defined by fis(t),n3(t")])=p(w). They are related asp(w)=[(e’®
+1)/(eP*—1)]p(w). The loop contains
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eﬁ(“”’w/) -1 -0
do'p(o0'+0)R(—w')———F (C19 arg 7 Fr.= 5 (817 b1),  arrgpr= 5 (1—a,—by),
p eﬁ(w+w,)_ 1 A S 2 ST YA 2
which, in terms ofp, becomes 1
eBloto’) ArBg FFo= E(aﬁ‘ by),
’ ! N
f do'¢(o'+0)R(—w )—eﬁ(‘”“”)-l-l, (C20
-0
ther_eby justifying the Fermi function in the self-energy cor- AFF-0 FD o= T(1+a2—b2),
rections. 2
APPENDIX D: LEVEL OPERATOR REPRESENTATION OF -1
53 AND EXPLICIT EXPRESSIONS FOR Dmy AND arBy FFo= E(al_blﬁ

Dm;y

With the assumption used to derive Ef2), we find that Sy
the the dynamical correction operatéd, Eq. (7), can be arp-o FD;FT(l—az—bz),
expressed in terms of two-site level operators, 2

~ — _ -1
83,= -1, an @D, (D1) ars o Fr,=0(1+a1=D1), @, ppz=z(1+az+by),
m,n
With the notation arg, FFA:(T(l_al_bl)y AFF,FDI™ 3 (1-ay+by),
_ n - _
a;=el; ", b1:§_p|1lv -1

g
ApBFpy= & (2+a1701),  app o DB~ 5 (1+ a2+ by),

n -
a1 _ 1
a,=el, ", b2—§+p|2 , (D2) 1 o
apBgFDY ™ E(Z_al_bl)x rB,” DBg~ 5 (1-aythy),

we obtain for the coefficienta,:

_ — 1 a
o
agp [:Bg: E(al_bl)a a[:Dng DD= E(l_az_bz), aDBAFDg: E(al—i_bl): a-FBg‘T DBA: §(1+a2_b2)1
-1 7 a o=—(a;—by), apg-- =_—U(l—a —b,)
agB FBI = \/E(al—i'bl)a aFp,” DDZE(l_'—aZ_bZ)a DBAFD, ™ 2191 F1/» GFB,7 DBy 9 27 M2)

(D3)

1 g Using these coefficients, we can write explicitly the dynami-
e 7 Frg~ 5 (1T D1),  aprgppr= (148,70, g : piety Y

cal correctiond®m, andDm;. From Eq.(12), we have

12 — — —
Dmg(w)= EJ dxdx {aéBFBS[UFBS(X)O'BB(X’)+O'FBS(X)O'BB(X’)]+aéBFBA[UFBA(X)O-BB(X’)

w—X+X'+id
_ ) _ _ ) _
+org,(X)ope(X")] +aFp ppl oop(X) 0D (X') + 0pp(X)0rD(X') ]+ 8Fp ,ppl DD (X) TFD, (X)

- 2 2 - - 2 2
+0opp(X) 0, (X)] + (BFsrr T Arp pro) [Orr(X) 0ra(X') + 0re (X) 0ra(X") ]+ (BFp rr T 8Fg Fro)
_ _ ) 5 _ _
X[opp(X)opp,(X") +orr(X)oFp, (X)) ]+ (@r ot appo FDS)[UFDS(X)UFFS(X,)+ Orp(X)orr(X")]
2 2 - — 2 — —
+(akegp, + aFFvFDA)[‘TFDA(X)UFFS(X')+ 0rp,(X) Orr(X') ]+ arggr [ Orr,(X) orp (X") + 0rr, (X) 0rp(X')]
2 — — 2 — —

tagg,rr,[Orr,(X)0rp, (X)) + o, (X) 0rp, (X)) ]+ 8Ee, pp [ OFD(X) 0k, (X') + 0rp (X) 0Rg, (X')]
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) _ _ _
tage,rp, [ 0D, (X) 0Fr (X') + 0rp , (X) 0k, (X') ]+ 28rp pBAFBFF,[ TDBGFF,(X) TFB(X")
+opegr,(X)ors(X') ]+ 28rs,pB FB,FF [ ODBSFF,(X) OFR, (X") + 0D fF,(X)0Fp,(X')]
) ’ . ’ ) ’

+2appgparF,Fod 0D (X) 0pBFF,(X') + 0rp (X)0DBFF,(X') ]+ 28pBFD,8FF D[ OFD,(X) 0DBFF,(X)

_ ) — — ) _
+0rp,(X)opprr, (X )]+ 8k pe TpB(X) 0re(X') + 0D (X) TR (X') ]+ aFg, pe  TDB(X) OFE,(X')

_ ) _ _ ) _
topp(X) o, (X)) ]+ aperp ] orp(X) oD (X') + 0rp (X)0pE(X) ]+ aDpgp [ 0FD,(X) 0DR(X")

— ) — — , _
+0rp,(X)opp(X') ]+ argpe,[0DB,(X)0rp(X") + 0pp,(X) 0 (X') ]+ aFg,pB,[ 0DB,(X) OB, (X")

_ ) _ — ) —
+opp,(X)ore, (X" )]+ aps,ro [ OFD(X)0pB,(X") + orp(X)0pp,(X") ]+ @D, Fp, [ 0FD,(X) 0DB,(X")
+opp,(X)ope,(X")]}. (D4)

Similarly, for Dm; we obtain

12 — _ —
Dmy(w)= ?f dxdx {aéBFBS[UFBS(X)O'BB(X,)+O'FBS(X)O'BB(X,)]_aéBFBA[UFBA(X)UBB(X,)

w—X+X'+ié
+;FBA(X)0'BB(X’)] + aIZZDSDD[O-DD(X);FDS(X,) +;DD(X)O'FDS(X,)] - aIZZDADD[O'DD(X);FDA(X,)
+0pp(X)ep, (X )]~ (8fpgr + arp pro) [ Orr (X Tra (X ) + 0re (X 0s (X )]+ (8fg,rr + 8Fp o)
X[or(X) 0, (X')+ Tre(X) o, (X )]~ (8fe gp + Atpr rp [ TrDLX)Tre(X )+ 0D (X)Trr (X)]

+ (aFZZFSFDA+ a|2:|:rr FDA)[UFDA(X);FFS(X') +;FDA(X)UFFS(X’)] + aIZZBSFFA[O-FFA(X);FBS(X’)

+oer, (N ore(X) ] afg ¢ [Ore () Tes,(X) + e, (N ope, (X )]+ ae pp [Trp (X o, (X')

+ 0rp(X)0re, (X )]~ 8Fe, p0, [ TR0, (X) 0rr, (X )+ 0kD, (X) 7, (X)]

+ ZaFBSDBSaFBSFFA[UDBSFFA(X);FBS(X,) +;DBSFFA(X)O'FBS(X,)] - ZaFBADBSaFBAFFA[UDBSFFA(X);FBA(X,)
+;DBSFFA(X)UFBA(X/)] + ZaDBSFDSaFFAFDS[O'FDS(X);DBSFFA(X/)+;FDS(X)O'DBSFFA(X/)]

- 2aDBSFDAaFFAFDA[UFDA(X);DBSFFA(X')+;FDA(X)fTDBSFFA(X')] + aIZZBSDBS[UDBS(X);FBS(X,)
+;DBS(X)0'FBS(X,)] - aIZZBADBS[O'DBS(X);FBA(X,)+;DBS(X)O'FBA(X,)] + azDBSFDS[UFDS(X);DBS(X,)
+;FDS(X)0'DBS(X’)] - a%BSFDA[O-FDA(X);DBS(X/) +;FDA(X)UDBS(X/)] - aIZZBSDBA[UDBA(X);FBS(X,)

+ e, (X) Tea (X' )]+ afg pa,[ 0B, (X) Tre,(X) + 0pp,(X) ore, (X )] = aFg rp [ Trp(X) ops, (X')

+oep(X)ope,(X') ]+ 85e rp,[ 07D, (X) 0pE, (X ) + TEp,(X) Tpe, (X ) 1} (D5)

APPENDIX E: STATIC APPROXIMATION basis, ¥, = ¢, and ¢»= 7;, and the associated Green func-
tions S,5=({,:¥s)). Within the static approximatiotf

the expression for the retarded Green function in Fourier
space becomes

We show explicitly in this appendix that the Hubbard op-
erator technique in the static approximatitincorrectly re-
covers the noninteracting or Fermi liquid limit whéh=0

regardless of the filling and as—0 for any U. Conse- 2 o (k)
quently, the violation of Luttinger’s theorem found here is S, ak,w)=> — (ED
not an artifact of the method. Consider the Hubbard operator “h =1 0o—€(k)+id
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The dispersion relations for the two bands are given byjetermines the amplitudes idMI) through o

1K) =R(k) = Q(k) with

1
R(k)——U AT [m(k)+8ta(k)l1l.], (E2
1/, 4m?(k)
Q) =5V oK+ —7— (E3
1'2
where 1;,=1-n/2 and |,=n/2 and a(k)=3[cosk,)

+cosk)] and we used the notatiom(k) =4t[e+ a(k)(p
—1,)] and g(k)=—U+(1—n)/[I41,m(k)] where e
=(&l,&0) —(niyms) and p=(ni,nf,)+(SS“)—(bib/*)
with S =CiTlCiT , bi=c¢;j;¢i; anda indicates a sum over near-
est neighbors of site The explicit expressions for the spec-
tral functionso})(k) are given by

A (k)
oAW0=3|1 q0) oB0751 g
(1) _ m( ) (2) _ m(k)
"= 20050 77 20w
o) ~9(k) } e L9k }
o= 51 s o= Haata,

Note the fact that the spectral functions &rdependent and
they also depend on the doping level, througtandl,, and
temperature, due to the self-consistent parametarslp. At

PHYSICAL REVIEW B59, 245104 (2004

= (U
+vy)2/2. In the strong-coupling limitJ>t, the only depen-
dence that remains is on filling. In this limit{Y=1,, o!?)
=1, and all the other functions vanish. All of our calcula-
tions of the Hall coefficient were performed in this limit.
Consider now the two weak-coupling limits in which
Fermi-liquid theory should hold: Cage) n—0 and Caséb)
U—0. In the first caseg— — U +2m/n, Q—|g|/2, the cor-
relations inp become independent and hengen?, exn
implying thatm(k)en. Consequently, the dispersion for the
lower Hubbard band reduces exactly to that of the noninter-
acting limit, €1 (k) = — u—4ta(k) = €5(k). Moreover, all the
spectral weight resides in this band becausa-a®, g/2Q
=1 andm(k)—0, implying thato")=1 ando(®=0. That
the static approximation reduces to the correct noninteracting
limit is not unexpected as Figs. 1 and 2 illustrate that the
Fermi surface is independent &f asn—0. In theU—0
limit, g(k)—(1—n)m(k)/l11l, and as a consequenc®
=|m(k)|/2l1,. As a result, the band dispersion relations are
€1.0,= €o(k) —[m(k) ¥|m(k)|]/21 11, with spectral weights
o12=1/2+m(k)/[2|m(k)|] which are either unity or zero.
Consequently, although two bands still exist, only the free
particle dispersion carries unit spectral weight because the
Im(k)| terms enter with opposite signs. Hence, the static
approximation correctly reproduces the noninteracting limit
whenU—0.19? As a consequence, the violation of Lutting-
er’s theorem seen here is not an artifact of the approximation
scheme but stems fundamentally from the splitting of the
spectral weight over two bands although no symmetries are
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