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We introduce a spectral density-functional theory which can be used to compute energetics and spectra of
real strongly correlated materials using methods, algorithms, and computer programs of the electronic structure
theory of solids. The approach considers the total free energy of a system as a functional of a local electronic
Green function which is probed in the region of interest. Since we have a variety of notions of locality in our
formulation, our method is manifestly basis-set dependent. However, it produces the exact total energy and
local excitational spectrum provided that the exact functional is extremized. The self-energy of the theory
appears as an auxiliary mass operator similar to the introduction of the ground-state Kohn-Sham potential in
density-functional theory. It is automatically short ranged in the same region of Hilbert space which defines the
local Green function. We exploit this property to find good approximations to the functional. For example, if
electronic self-energy is known to be local in some portion of Hilbert space, a good approximation to the
functional is provided by the corresponding local dynamical mean-field theory. A simplified implementation of
the theory is described based on the linear muffin-tin orbital method widely used in electronic structure
calculations. We demonstrate the power of the approach on the long standing problem of the anomalous
volume expansion of metallic plutonium.
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[. INTRODUCTION local-density and generalized gradient approximatioDA
and GGA, for computing ground-state propertiedhese

Strongly correlated electron systems display remarkablyechniques can be successfully used as starting points for
interesting and puzzling phenomena, such as highperturbative computation of one-electron spectra, for ex-
temperature superconductivity, colossal magnetoresistancample using the GW methddThey have also been success-
heavy fermion behavior, huge volume expansions, and colfully used to compute the strength of the electron-phonon
lapses to name a few. These properties need to be exploredupling and the resistivity of simple metafs.
with modern theoretical methods. Unfortunately, the strongly When the electrons are very far apart, a real-space de-
correlated systems are complex materials with electrons occription becomes valid. A solid is viewed as a regular array
cupying active 8, 4f, or 5f orbitals, (and sometimep  of atoms where each element binds an integer number of
orbitals as in many organic compounds and in Bucky-ballselectrons. These atoms carry spin and orbital quantum num-
based systemsHere, the excitational spectra over a wide bers giving rise to a natural spin and orbital degeneracy.
range of temperatures and frequencies cannot be describedTransport occurs with the creation of vacancies and doubly
terms of well-defined quasiparticles. Therefore, the design ofccupied sites. Atomic physics calculations together with
computational methods and algorithms for quantitative deperturbation theory around the atomic limit allow us to de-
scription of strongly correlated materials is a great intellecrive accurate spin-orbital Hamiltonians. The one-electron
tual challenge, and an enormous amount of work has adspectrum of the Mott insulators is composed of atomic exci-
dressed this problem in the past? tations which are broaden to form bands that have no single-

At the heart of the strong-correlation problem is the com-particle character. The one-electron Green functions show at
petition between localization and delocalization, i.e., bedeast two polelike features known as the Hubbard badhds,
tween the kinetic energy and the electron-electron interacand the wave functions have an atomiclike character, and
tions. When the overlap of the electron orbitals amonghence require a many-body description.
themselves is large, a wavelike description of the electron is The scientific frontier, one would like to explore, is a
natural and sufficient. Fermi-liquid theory explains why in a category of materials which falls in between the atomic and
wide range of energies systems, such as alkali and nobleand limits. These systems require both a real-space and a
metals, electrons behave as weakly interacting fermions, i.emomentum-space description. To treat these systems one
they have a Fermi surface, linear specific heat and a constanteds a many-body technique which is able to treat Kohn-
magnetic susceptibility. The one-electron spectra form quaSham bands and Hubbard bands on the same footing, and
siparticles and quasihole bands and the one-electron spectsghich is able to interpolate between well separated and well
functions shows functions like peaks corresponding to the overlapping atomic orbitals. The solutions of many-body
one-electron excitations. We have powerful quantitative techequations have to be carried out on the level of the Green
niques such as the density-functional thedBfFT) in the  functions which contain necessary information about the to-
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tal energy and the spectrum of the solid. LDA energy bands or angular momentum resolved LDA den-

The development of such techniques has a long history isities of states for the electrons which are believed to be
condensed matter physics. Studies of strongly correlated syserrelated are performed. Constrained density-functional
tems have traditionally focused on model Hamiltonians usingheory?® is used to find the screened on-site Coulothand
techniques such as diagrammatic methbdeantum Monte exchange parametdr This information is used in the down-
Carlo simulation$, exact diagonalizations for finite-size folded model Hamiltonian with only active degrees of free-
clusters’ density-matrix renormalization group methdds, dom to explore the consequences of correlations. Such tech-
and so on. Model Hamiltonians are usually written for anique is useful, since it allows us to study real materials
given solid-state system based on physical grounds. In thalready at the present stage of development. A more ambi-
electronic-structure community, the developments of LDAtious goal is to build a general method which treats all bands
+U (Ref. 7 and self-interaction correctBenethods , many- and all electrons on the same footing, determines both hop-
body perturbative approaches based on GW and itpings and interactions internally using a fully self-consistent
extensiong,as well as time-dependent version of the densityprocedure, and accesses both energetics and spectra of cor-
functional theory have been carried out. Some of these techtelated materials.
niques are already much more complicated and time— Several ideas to provide a theoretical underpinning to
consuming comparing to the standard LDA based algothese efforts have been proposed. The effective action ap-
rithms, and the real exploration of materials is frequentlyproach to strongly correlated systems has been used to give
performed by its simplified versions by utilizing such, e.g.,realistic DMFT an exact functional formulatii.Approxi-
approximations as plasmon—pole form for the dielectricmations to the exact functional by performing truncations of
function.® omitting self—consistency within Gf#\br assum-  the Baym-Kadanoff functional have been discus€egimul-
ing locality of the GW self-energ}f taneous treatment of the density and the local Green function

In general, diagrammatic methods are most accurate if the functional formulation has been proposédiotal-
there is a small parameter in the calculation, say, the ratio oénergy calculations using LDADMFT have recently ap-
the on-site Coulomb interactidd to the band widthV. This  peared in the literaturé>* DMFT corrections have been
does not permit the exploration of real strongly correlatedcalculated and added to the LDA total energy in order to
situations, i.e., whet)/W~ 1. Systems near Mott transition explain the isostructural volume collapse transition in*€e.
is one of such examples, where strongly renormalized quaskully self-consistent calculations of charge density, excita-
particles and atomiclike excitations exist simultaneously. Intion spectrum and total energy of th& phase of metallic
these situations, self-consistent methods based on the dplutonium have been carried out to address the problem of
namical mean—field based thed®MFT),*® and its cluster its anomalous volume expansidhThe extensions of the
generalizations such as dynamical cluster approximdfion, method to compute phonon spectra of correlated systems
or cellular dynamical mean-field theof£-DMFT),*%*%are  with the applications to Mott insulatéts and high-
the minimal many-body techniques which have to be emiemperature phases of Bthave been also recently devel-
ployed for exploring real materials. oped.

Thus, a combination of the DMFT based methods with In this paper we discuss the details of this unified ap-
the electronic-structure techniques is promising, because groach which computes both total energies and spectra of
realistic material-specific description where the strength omaterials with strong correlations and present our applica-
correlation effects is not knowa priori can be achieved. tions for Pu. We utilize the effective action free-energy ap-
This work is in its beginning stages of development butproach to strongly correlated systéth®and write down the
seems to have a success. The development was $tdnied functional of the local Green function. Thus, a spectral
introducing so-called LDA DMFT method and applying it density-functional theorySDFT) is obtained. It can be used
to the photoemission spectrum of L gSr, TiO;. Near Mott  to explore strongly correlated materials fromb inito
transition, this system shows a number of features incompatrounds provided useful approximations exist to the spectral
ible with the one-electron descriptiéh. The LDA+ + density functional. One of such approximations is described
method? has been discussed, and the electronic structure dfere, which we refer to as a local dynamical mean-field ap-
Fe has been shown to be in better agreement with experimeptoximation. It is based on extendddnd clustel’~° ver-
than the one based on LDA. The photoemission spectrursions of the dynamical mean-field theory introduced in con-
near the Mott transition in YO has been studiet,as well  nection with the model-Hamiltonian approath.
as issues connected to the finite-temperature magnetism of Implementation of the theory can be carried out on the
Fe and Ni were exploretf.LDA + DMFT was recently gen- basis of the energy-dependent analog for the one-particle
eralized to allow computations of optical properties ofwave functions. These are useful for practical calculations in
strongly correlated materiafs.Further combinations of the the same way as Kohn—Sham particles are used in density-
DMFT and GW methods have been propd$édi?’and a  functional based calculations. The spectral density-functional
simplified implementation to Ni has been carried dut. theory in its local dynamical mean-field approximation, re-

Sometimes the LDA DMFT method! omits full self- quires a self-consistent solution of the Dyson equations
consistency. In this case the approach consists in deriving eoupled to the solution of the Anderson impurity magel
model Hamiltonian with parameters such as the hopping ineither on a single sit8 or on a clustet”*® Since it is the
tegrals and the Coulomb interaction matrix elements exmost time consuming part of all DMFT algorithms, we are
tracted from a LDA calculation. Tight-binding fits to the carrying out a simplified implementation of it based on a
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slave boson Gutzwilléf~*%and Hubbardf**°methods. This
is described in detail in a separate publicattbiVe illustrate
the applicability of the method addressing the problen® of G, (r,r
—Pu. Various aspects of the present work have appeared
already*?% [ 3
Our paper is organized as follows. In Sec. Il we describe
the spectral density-functional theory and discuss local dy-
namical mean-field approximation which summarizes the
ideas of cluster and extend@dversions of the DMFT. We ®
show that such techniques as LBAMFT,* LDA+U,’
and local GW(Refs. 12 and 1bmethods are naturally seen
within the present method. Sec. Il describes our implemen-
tation of the theory based on the energy-resolved one-particle ¢
descriptioR® and linear—muffin—tin orbital methét** for
electronic-structure calculation. Sec. IV discusses application
of the method to the volume expansion of Pu. Sec. V is the
conclusion. ®

[ 4 - - L
G, @r',z)=G,r', g

FIG. 1. lllustration of the area in real space where the local
Il. SPECTRAL DENSITY-FUNCTIONAL THEORY Green functionG,,. is defined. Note that is restricted by the unit

Here we discuss the basic postulates and approximatiorf§!l @t the origin whiler” andr” travel within the crystal.

of spectral density-functional theory. The central quantity of . o ]
our formulation is a local Green functid®,.(r,r’,z), i.e.,a (0 be the exact Green functioG(r,r’,z) within a given
part of the exact electronic Green function which we areclusterQ;,; and zero outside. In other words,

interested to compute. This is by itself arbitrary since we can , , ,

probe the Green function in a portion of a certain space such, Gioc(r,r",2)=G(r,1",2) 60c(r,1"), 2
e.g., as reciprocal space or real space. The;e are the MOMere the ¥ function is a unity when vector e Q 1’
;irr?gjp\ell\;:né;gr;?:owpt]rifet?ﬁelOGC?eIeir?L?r?cIiuoTR?21 %%?ti%?\ %eé Qo and zero otherwise. It is schematically illustrated on

the Hilbert f 2 functi b ded i ig. 1. This construction can be translationally continued
€ nilbert space. 1T a function can be expanded In SOM&niq entire lattice by enforcing the property,.(r +R,r’

basis sef x} +FR)= Oo0(r,1).
We will now discuss the free energy of a system as a
F(rr',2)=>, Xe(NF e (D)X 5 (1) (1)  functional of the local Green function.
13

. . . . A. Functional of local Green function
our interest can, e.g., be associated with diagonal elements of

the matrixF ;;:(2). We consider full many-body Hamiltonian describing the
As we see, the locality is a basis set dependent propertglectrons moving in the periodic ionic potentigf,(x)
Nevertheless, it is a very useful property because a most Vex{r)d(7) and interacting among themselves according
economical description of the function can be achieved. Thigo the Coulomb laww(x—x")=€?/|r—r'[5(7—7") [we
is true when the basis set which leads to such description afse imaginary time-frequency formalism, whete (r,7)].
the function is known. The choice of the appropriate HilbertThis is the formal starting point of our all-electron first-
space is therefore crucial if we would like to find an optimal principles calculation. So, the theory of everything is sum-
description of the system with the accuracy proportional tomarized in the actior®
the computational cost. In spectral density-functional theory
that has a meaning of finding good approximations to the _ "
functional. Therefore we always rely on a physical intuition S_J A" ([ 97= V24 Ver() J$(X)
when choosing a particular representation which should be 1
tailored to a specific physical problem. = + iy oy /
At the beginning we formulate spectral density-functional - 2f dxdX 0097 (X Do cx=xP 0 ¢(x")
theory in completely real space but keep in mind that such &)
formulation is not unique. Thus, we are interested in finding
a part of the electronic Green function restricted within a(atomic Rydberg units; =1, m,=1/2, are used throughagut
certain cluster area. Due to translational invariance of th&Ve will ignore relativistic effects in this action for simplicity
Green function on the original lattice given by primitive but considering our applications to Pu, these effects will be

translationg R}, i.e.,G(r+R,r'+R,z)=G(r,r’,z), itisal-  included later in the implementation. In addition, the effects
ways sufficient to consider lying within a primitive unit  of electron-phonon interaction will not be considered.
cell Q. positioned atR=0. Thus,r’ travels within some We will take the effective action functional approach to

area(),,. centered aR=0. We set the local Green function describe our correlated systéftiThe approach allows us to
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obtain the free energy of the solid from a functiohaévalu-  The effective action for the local Green function, i.e., spec-
ated at its stationary point. The main question is the choice dfral density functional, is obtained as the Legendre transform
the variable of the functional which is to be extremized. Thisof F with respect to the local Green functi@,.(x,x’), i.e.,
question is highly nontrivial because the exact form of the
functional is unknown and the usefulness of the approach, I'spd Gioc]=Fl[Ji0c] = Tri0cGioc » (6)
depends on our ability to construct good approximations tQyhere we use the compact notation)TgG,,. for the inte-
it, which in turn depends on the choice of variables. Theyg|s
Baym-Kadanoff(BK) Green function theofy considers ex-
act Green functiorG(x,x")=— (T, 4(X) " (x")) as a vari- ) )
able, i.e..I'gx[ G]. Density-functional theory considers den- TrJlocGloc:f dxdX Jjoc(X,X") Gioc(X",X)
sity p(r)=G(r,r,7=0) of the solid as a variable, i.e.,
I'petlp]. Spectral density-functional theory will consider lo-
cal Green functiorG,.(X,X") = G(X,X") Oj5c(r,r") as a vari-
able, i.e..I'spd Gocl- 7
Note on the variety of choices we can make, in particular (@)
in the functionall'sp Goc] Since the definition of the lo- Using the conditiond,,c= — 8" spr/ G4 to eliminated;q,
cality is up to us. The usefulness of a given choice is dictate¢h Eg. (6) in favor of the local Green function we finally
by the existence of good approximations to the functionalpbtain the functional of the local Green function alone.
as, for example, the usefulness of the DFT is the result of the The source field sets the degree of locality of the object of
existence of the LDA or GGA, which are excellent approxi- interest. Considering its definition by expanding the cluster
mations for weakly correlated systems. Here we will argusill entire solid, we obtain the Baym—Kadanoff functional
that the usefulness of SDFT is the existence of the localvhich determines the Green function in all space. Shrinking
dynamical mean-field approximations. its definition to a singe point and assuming its frequency
Any of the discussed functionals can be obtained by dtime) independence, i.eJ(r)S(r—r')é(7— '), we obtain
Legendre transform of the effective action. The electronicdensity-functional theory. In its extremum, all functionals al-
Green function of a system can be obtained by probing thevays reach the total free energy of the system regardless the
system by a source field and monitoring the response. Tehoice of the variable. This situation is simflato classical
obtain I'g [ G] we probe the system with time-dependentthermodynamics where the thermodynamic potential is either
two-variable source field(x,x") or its imaginary frequency the Helmholtz free energy, or the Gibs free energy or the
transformJ(r,r’,iw) defined in all space. If we restrict our enthalpy depending on which variables, temperature, pres-
consideration to saddle point solutions periodic on the origisure, volume are used. Note also that due to assumed time
nal lattice, we can assume that the field obeys the periodicitdependence of the source field, away from the extremum the
criterion J(r +R,r’' +R,iw)=J(r,r’,iw). This restricts the Green function functionals cannot be interpreted as energies.
electronic Green function to be invariant under lattice trans- The existence of all functionald,g«[G], I'perlp] as
lations. In order to obtain a theory based on the density as well as I'spd G,,.] assumes a nondegenerate equilibrium
physical variable, we probe the system with a static periodistate. Then, within the effective action formulation of the
cal field J(r) 8(7). This deliver§®~*8the density-functional problem the proof of the analog of the Hohenberg—Kohn

=2 | drdr’3i5e(r,r",i0)Gioc(r' 1 i w).
lw

theory I'peq[p]. In order to obtainl'spd Gioc] We will theorem is reduced to the invertibility of the equation that
probe the system with a local field],.(X,x")=Jjoc(r.r',7  definesG (or p,G,c) as a functional of the sourck If this
—7") restricted by8,,.(r,r'). is possible, the Legendre transformation frétfd] to I'[ G]

Introduction of the time-dependent local sourcecan be done and hend&[G], I'petlp], of I'spd Giocl
Jioc(X,x") modifies the action of the syste(B) as follows exist. In the quantum field thedlythe above inversion pro-
cess forl'gk[ G] has been extensively studied within pertur-
bation theory in powers of the electron repulsion using dia-
Sr[Jloc]:SJrf dxdX Jpoe(X, X ) (X" )t (x).  (4) ~ grammatic method®:*®*° For the case off per[p] the
introduction of the auxiliary field corresponding to the den-
sity operator by Hubbard—Stratonovich transformation is
Due to translational invariance, the integral ovevariable ~ Particularly convenierft® This has proved the existence of
here is the same for any unit-cé€ll, and the integral over’ density functional in the language of effectiv_e action.. Re-
should be restricted by the area wheg.#0, i.e., by the cently, diagrammatic expansions haye been dlsqussed in Ref.
cluster area()loc . The average of the Operat(ﬁ(x) lﬂ+(X,) 29 for the C.ase of local Green fUr:lCtlon a'S a Varlqble. There-
probes the local Green function which is precise]y defined b);ore, the §X|Stence of these funCUOnalS,-lS eStabllsr]ed Wlthln
expression2). The partition functiorz, or equivalently the Perturbation theory, but no nonperturbative proof is available

free energy of the systeri, becomes a functional of the in either case. _
auxiliary source field Having repeated formal arguments on the existence of the
functionalsI'spd Goc] as well as ofl gx[G] andT'pe1 p]
we now come to the problem of writing separately various
_ B _ 4 —S' 01 contributions to it. This development parallels the well-
Z[Jioc]=exp(=F[Jioc]) wa yle RO known decomposition of the total energy into kinetic energy
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of a noninteracting system, potential energy, Hartree energy A
and exchange-correlation energy. The strategy consists in G(re Q_r'iw)
performing an expansion of the functional in powers of the
charge of the electrof?*648:505 he |owest order term is the
kinetic part of the action, and the energy associated with the G= |G, =¢
external potentiaV,;. In the Baym Kadanoff Green func- G G
tion theory this term has the forii3):
Gloc Gloc -
Kg[G1=TrInG—Tr{ G, *— G 1]G. (8) AN u b 7 =
TheGy(r,r',iw) is the noninteracting Green function, which g g
is given by i
Gol(rr i) =80 -t iw+tu+tV2=Vounl, © | | > Qe
<@, .(r,r)=1>

5(r—r’)=f dr”Ggl(r,r”,iw)GO(r”,r’,iw), (10
FIG. 2. Relationship between various Green functions in spec-
where u is a chemical potential. Note that since finite tem-tral density-functional theory: exact Green functiénlocal Green
perature formulation is adopted we did not obtain simplyfunction G,,. and auxiliary Green functio; are the same in a
Kek[G]1=Tr(—V?+V,,)G but also have got all entropy certain region of space of our interest. They are all different outside
based contributions. this area, where the local Green function is zero by definiton.
Let us now turn to the density-functional theory. In prin-

ciple, it does not have a closed formula to describe fullyof Kohn-Sham representation. These auxiliary particles are
interacting kinetic energy as the density functional. Howeverjnteracting so that they will describe not only the density but
it solves this problem by introducing a noninteracting part ofalso a local part of the Green function of the system, and will
the kinetic energy. It is described by its own Green functionfeel a frequency dependent potential. The latter is a field
Gs(r,r',iw), which is related to the Kohn—ShaiiS) rep-  described by some effective mass operatdg«(r,r',iw)
resentation. An auxiliary set of noninteracting particles is=Vey(r) 8(r—r')+ M (r,r',iw). We now introduce an
introduced which is used to mimic the density of the systemauxiliary Green functiong(r,r’,iw) connected to our new
These particles move in some effective one-particle Kohn“interacting Kohn—Sham” particles so that it is defined in
Sham potentiaVe¢s(r) =Vex(r) + Vin(r). This potential is the entire space by the relationshig ~(r,r’,iw)
chosen merely to reproduce the density and does not haveG, *(r,r’,iw) — Min(r,r',iw). Thus, M (r,r',iw) is a
any other physical meaning at this point. The Kohn—Shanfunction which has the same range as the source that we
Green function is defined in the entire space by the relatiomntroduce: it is adjusted until the auxiliag(r,r’,iw) coin-
Ggsl(r,r’,iw)=Ggl(r,r’,iw)—vim(r)é(r—r’), where  cides with the local Green function inside the area restricted
Vini(r) is adjusted so that the density of the system) can by 6,,.(r,r'), i.e.,
be found fromGgg(r,r’,iw). Since the exact Green function

G and the local Green functioB,,. can be also used to find Gioc(r, M i) =g(r,r'",iw) foc(r,r'). (13
the density, we can write a general relationship: We illustrate the relationship between all introduced Green
functions in Fig. 2. Note thag(r,r’,iw) also delivers the
p(r)=TX Gys(r.Iiw)e " exact density of the system. With the help @fthe kinetic
o

term in the spectral density-functional theory can be repre-
sented as follows
=T G(r,r,iw)e“* - -
o Kspd G1=TrinG—Tr[G, -G 11G. (14)
— i iw0+ SinceGgs is a functional ofp, DFT considers the density
T% Groc(r.riw)e™™, (1D functional as the functional of Kohn-Sham wave functions,

i.e., asI'pe7[Gks]. Similarly, sincegG is a functional of

where the sum overw assumes the summation on the Mat- it is very useful to view the spectral density-functional
bara axis at given temperatureWith the introduction of ; .
su I'spr as a functional of:

Gks the noninteracting kinetic portion of the action plus the

energy related to/.,; can be written in complete analogy I'spd G]=TrinG— Tr[Gal—gfl]gjL ®spd Gocls
with Eq. (8) as follows (15

Kporrl Grs]=TrInGrs— T Gg 1~ G d]Gks. (12)  Where the unknown interaction part of the free energy
®5pd Gjoc] is the functional ofG ... If the Hartree term is
In order to describe the different contributions to the ther-explicitly extracted, this functional can be represented as
modynamical potential in the spectral density-functional
theory, we introduce a notion of the energy-dependent analog P spr Gloc]=Enlp]+ PSHH Giocl, (16)

245101-5



S. Y. SAVRASOV AND G. KOTLIAR PHYSICAL REVIEW B69, 245101 (2004

where E4[ p] is the Hartree energy depending only on the 5P <o Gioc]

density of the system, and wher®{,{Goc] is the Mig(r,rjio)=——"—-—
exchange-correlation part of the free energy. Note that the oG(r',r,iw)

density of the system can be obtained @g, or G, there- 5D el Gyoc]

fore the Hartree term can be also viewed as a functional of = Llocﬁmc(f,f')- (26)
Gjoc Or G. Notice also, that since the kinetic energi@s, G oc(r',r,iw)

(12), (14) are defined differently in all theories, the interac- It plays the role of the effective self-energy which is short-

;gr;ntinerg|esbSDF[G|oc], PerlG], Porrlp] are also dif- ranged(local) in the space. The corresponding expressions

Thé stationarity of the spectral density functional can behold for the interaction parts of the exact self-energy of the

. . Y ) P y electron X (r,r’,iw) and for the interaction part of the
examined with respect t@:

Kohn-Sham potentiaV/;(r).

ol'spr 505 [G]
i =0, (17) . " —_—"BKLP]
8G(r,r' iw) Zim(r,r i) 56U riw) @7
similar to the stationarity conditions fol'gx[G] and
I'prrl Gisl V. S(r—r1")= 0Ppetlp] :5¢DFT[P]5 .
(1) (r=1") — (r—r").
(SGKs(r ,I’,Ia)) 5p(r)
or (28
——C—=0, (18) . N .
SG(r,r'iw) If the external potential is added to these quantities we obtain
total effective self—-energies/potentials of the SDF, BK, and
ST per DF theories:/\/leff(r,r’,iw), Eeff.(r,r’,iw.), Veti(r), re-
— - —=0. (19 spectively. If the Hartree potentialy(r) is separated we
OGs(r,r',iw) obtain the exchange-correlation partsM,(r,r',iw),

- - - Se(r i), Vie(r).
T.hls I(_aads to the. eq_uat|ons for the corresponding Green func- Note that strictly speaking the substitution of variables,
tions in all theories: . ) . o
Gks VS p, in the density functional as well as the substitution
N A - of variables,G vs G,,¢, in the spectral density-functional is
Gnrie)=Go(rrio) = Min(r,riio) (20 only possible under the assumption of the so-calle@pre-
as well as sentability(or M representability, i.e., the existence of such
effective potentialmass operatdmhich can be used to con-
G Ur,riw)=Gy X(r,r"iw)—Sin(r,r'iw) (21)  struct the exact densitifocal Green functionof the system
via the noninteracting Kohn-Sham particles of the DFT or its
energy-dependent generalization in SDFT.
Note also that the effective mass operator of spectral

By using Eq.(9) for Gy * and by multiplying both parts by density-functional theory is local by construction, i.e., it is
the corresponding Green functions we obtain familiar Dysorl0nZero only within the cluster arefq restricted by

Gra(r,r'iw)=GyX(r,r"io)—Vin(r)s(r—r’). (22

equations Oroc(r,r’). It is an auxiliary object which cannot be identi-
fied with the exact self-energy of the elect®ps«(r,r’,i w).
[~ V24 V(1) —iw—pn]G(r,r' iw) This is similar to the observation that the Kohn-Sham poten-

tial of the DFT cannot be associated with the exact self-
energy as well. Nevertheless, the SDFT always delivers local
Green function and the total free energy exactyleast in
principle) as long as the exact functional is used. In the limit

+ f dr” Mine(r,r"iw)G(r" r"Jiw)=8(r—r") (23

and when the exact self-energy of the electron is indeed localized
) ) . within Q,,., the SDF becomes the Baym—Kadanoff func-
[= Vo Veulr) —Tlo—u]G(r,r'iw) tional which delivers the full Green function of the system,

i.e., we can immediately identifyMgq¢(r,r’,iw) with
+J dr’ (" io)G(r",riw)=8(r—r"), (24 2.t(r,r’,iw) and the poles ofj(r,r’,iw) with exact poles
of G(r,r’,iw) where the information about both and en-
. , ergy dependence as well as life time of the quasiparticles is
[~V Vex(n) —io—u]Gs(r1iw) contained. We thus see that, at least formally, increasing the
FVin(NGks(r, 1 iw)=8(r—r’). (25)  size of Qo in the SDF theory leads to a complete descrip-
tion of the many-body system, the situation quite different
The stationarity condition brings the definition of the auxil- from the DFT which misses such scaling.

iary mass operatoM;.(r,r’,iw) which is the variational From a conceptual point of view, the spectral density-
derivative of the interaction free energy with respect to thefunctional approach constitutes a radical departure from the
local Green function: DFT philosophy. The saddle—point equati@3) is the equa-
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tion for a continuous distribution of spectral weight and theBose variable coupled to the density, which transforms the
obtained local spectral functioB,,. can now be identified original problem into a problem of electrons interacting with
with the observable localroughly speakingk integratedd  the Bose fieldW is the connected correlation function of the
one-electron spectrum. This is very different from the Kohn-Bose field.
Sham quasiparticles which are the pole<Ggis not identifi- Our effective action is now a functional &, W and of
able rigorously with any one-electron excitations. While thethe expectation value of the Bose field. Since the latter
SDFT approach is computationally more demanding tharcouples linearly to the density it can be eliminated exactly, a
DFT, it is formulated in terms of observables and gives morestep which generates the Hartree term. After this elimination,
information than DFT. the functional takes the form
On one side, spectral density functional can be viewed as 1
approximation or truncation of the full Baym Kadanoff I'sk[G.W]=TrinG—Ti{G,"—~G |G+ Ppk[G,W],
theory where®gy[G] is approximated bybspd Gioc] by (31)
restricting G to G,,.>° and the kinetic functional&gy[G] 1 1
and Kspd §] are thought to be the same. Such restriction ¢ [G,W]=E,[p]— “TrinW+=Toc -~ W 1w
will automatically generate a short-ranged self-energy in the 2 2
theory. This is similar to the interpretation of DFT as
approximation P, G]= Dol p], Kl G1=Ksod Gis] Ve G W (32
which would generate the DFT potential as the self-energyThe entire theory is viewed as the functional of b&tand
However, SDFT can be thought as a separate theory whos&. Here, W[ G,W] is the sum of all two-particle diagrams
manifestly local self-energy is an auxiliary operator intro- constructed withG and W with the exclusion of the Hartree
duced to reproduce the local part of the Green function of théerm, which is evaluated with the bare Coulomb interaction.
system, exactly as the Kohn-Sham ground state potential i&n additional stationarity conditiodI' g /éW=0 leads to
an auxiliary operator introduced to reproduce the density othe equation for the screened Coulomb interactdn
the electrons in DFT. _ . _
Spectral density-functional theory contains the exchange- W riw)=vc (r—r) = II(r,r'iw), (33
corre!ation.functionald?SDF[G,oc]. An 2e-xplicit gxpression where the functiodI(r,r',iw)=—28W g/ SW(r,r’,iw) is
for it involving a coupling constant =e“ integration can be e exact interacting susceptibility of the system, which is
obtalnedz in complete analogy with the Harris-Jones,|eady discussed in connection with representaf&ih.
formula®™ of density functional _theor?ﬁ One considers A similar theory is developed for the local quantitis.
I'spe 6,A ] at an arbitrary interaction and expresses and this generalization represents the ideas of extended dy-
@ TspdGA] namiclal mean-field theor, now viewefd as an (lexafct :]heolry, |
21_ ’ namely, one constructs an exact functional of the loca
Psor 6,671 =Tsord 601 Jo d IN - (29 Greens function and the local correlator of the Bose field
coupled to the density which can be identified with the local
Here the first term is simply the kinetic pafisp{ G] as  part of the dynamically screened interaction. The real-space
given by Eq.(14) which does not depend on The second definition of it is the following:
part is thus the unknown function@spd Go.]. The deriva- ) )
tive with respect to the coupling constant in E8) is given Wioe(r,r" @) =W(r,r',iw) foc(r.r'), (34)
by the average(y" (X)¢" (X" )p(x)(x")) =TI\ (X, X",i®)  which is non-zero within a given clusted,,.. Note that
(Y ()N (X ) (X)) where TI,(x,x") is the  formally this cluster can be different from the one considered
density-density corre_latlon function at a given mte.racyonto define the local Green functid®) but we will not distin-
strength\. computed in the presence of a source which is  gyish between them for simplicity. An auxiliary interaction
dependent and chosen so that the local Greens function @4y ¢’ i) is introduced which is the same as the local part

:h_e system igj. Since(y" () (X)) =p(r) 3(7), we can ob-  of the exact interaction within nonzero aread.(r,r’)
ain:

Wioe(r, 1" i) =W(r,r"iw) O (r,r'). (35
®spd Giocl=Enlp]+ > eZd)\M. (30)  The interaction part of the spectral density functional is rep-
o Jo [r—r’'] resented in the form similar to E¢32),

Establishing the diagrzzrglmatic rules for the functional ®spd Gioc:Wioc]=Enlp] =3 TrinWH+ 3 Tr{vc =W~ W
Dspd Goc] While possible;” is not as simple as for the
functional ®g[G]. The latter is formally represented as a +¥spe Groc Wioc] (36)
sum of two-particle diagrams constructed widhandvc. It and the spectral density functional is viewed as a functional
is known that instead of expandidgg k[ G] in powers of the  T'spd Gioc,Wioc] Or alternatively as a functional
bare interactiorvc and G, the functional form can be ob- TI'spd G, W]. Y spd Gioc,Wioc] is formally not a sum of
tained by introducing the dynamically screened Coulomb intwo-particle diagrams constructed wi@,. and W,,., but
teractionW(r,r’,iw) as a variablé? In the effective action in principle a more complicated diagrammatic expression
formalisnt this can be done by introducing an auxiliary can be derived. Alternatively, a more explicit expression in-
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volving a coupling constant integration can be given. Examnamical mean-field methods, a very useful approximation
ining stationaritysl'spe/ VW= 0 yields a saddle-point equa- exists to access the functional. This is based on a full many-

tion for W(r,r',iw) body solution of a finite-size cluster problem treated as an
. impurity embedded into a bath subjected to a self-
W Hrr'iw)=vct(r—r')=P(r,r',iw), (37)  consistency condition. Such local dynamical mean-field

where the effective susceptibility of the system is the varia-theory will be discussed below.

tional derivative
B. Local dynamical mean-field approximation

—20¥spr - —26¥spr Oioc(r,r") The spectral density-functional theory, where an exact
OW(r' rjiw)  SWpe(r',r,im) loctm functional of certain local quantities is constructed in the
(38 spirit of Ref. 29 uses effective self-energies and susceptibili-
ties which are local by construction. This property can be
: o .. exploited to find good approximations to the interaction en-
Aol o o o o, L, et gy unctonal. o example 1 prio ko tht e
only within the cluster restricted bgjoo(r r,’). .I,Zormally i re_al electronic self-energy is Io_cal in a certain portion of the
is an auxiliary object and cannot beloitcjer’mfiéd with thé exacH"bert space, a good.approxmatmn 1S the corresponding
. . h 1iocal dynamical mean-field theory obtained for example by a
susceplibility of the electronic systefir.r’,iw). However, restriction or truncation of the full Baym-Kadanoff func-

?f the exapt sq;ceptibilitﬂ(r,r o) is. sufficiently Iogal— tional or its generalization to usé&/ and G as natural vari-

ized, this |de_nt|f|cat|on become_s p_ossmle. I CIUS@'& N aples, to local quantities in the spirit of Ref. 30.

pludgs Phys'??' area of Ioca,||.zat|on, we carlw llmme.d|ately The local DMFT approximates the functionBkpd Gc]

{;jventlfy_P(rzr "”w) with L[(r,r ’lw)b at;is ng\r/ o) IW'th (or Yspd Gioc, Wioce]) by the sum of all two-particle dia-
(rriw) In afl Space. Mowever, botandvvare aways grams evaluated witls,,. and the bare Coulomb interaction

the same withinQ),. regardless its size, as it is seen from ve (or screened local interaction,,). In other words, the

Egs.(34) and (35). functional dependence of the interaction phgy[ G] in the

At the stationarity point]’spd G, V] is the free energy Ba . ; . .
: : ym-Kadanoff functional for which the diagrammatic rules
of the system. If one inserts ER0) into Eq. (14) and Eq. exist is now restricted by, and is used as an approxima-

37) into Eqg. (36) we obtain the following formula: : ) .
(37 9.(36) 9 tion t0 ®spd Giocls 1-€.) Pepd Groc]= Pkl Gioc]. ObVi-

F=TrInG—TrMq G+ TtV o, G+ Ey— STrIn W+ L TrPW o_usly th_at the variational derivative of _such_restricted func-
tional will generate the self-energy confined in the same area
+WspE. (39 as the local Green function itself.

- , Remarkably, the summation over all local diagrams can
Similar formulas hold for the Baym—Kadanoff and density- e performed exactly via introduction of an auxiliary quan-
functional theories, tum impurity model subjected to a self-consistency
1 1 condition>™" If this impurity is considered as a clusté,
F=TrinG—Trie G+ TVe G+ Ey—2TrinWH2TIIW o ellular DMFT(C-Df\)/IFT))/ can be used which breaks the

+ Ve, (40) translational invariance of the lattice to obtain accurate esti-
mates of the self energies. The C-DMFT approximation can
F=TrinGys— TrVe{Grst TVeyGrst Pprr, (41) also be motivated using the cavity construction. The solid
) . ) should be separated onto large cells which circumscribe the
where the first two terms in all expressiof89), (40), (41) areasQ),,.. Considering the effective actiod Eq. (3), the
are interpreted as corresponding kinetic energies, the thirﬁhtegraﬁon volume is separated onto the cellular &gaand
term is the energy related to the external potertigh which  the rest bath are — Qc=Qp. The action is now repre-
is in fact TV, in all cases. The other terms represent thesenteq as the action of the cluster c8lf;, plus the action of
interaction parts of the free energy. Note that all entropyine path ), ., plus the interaction between those two. We
originated contributions are included in both kinetic and in-5e interested in the local effective actiéa of the cluster
teraction parts. If temperature goes to zero, the entropy paHegrees of freedom only, which is obtained conceptually by

disappears and the total-energy formulas will be recovereqniegrating out the bath in the functional integral:
For example, in spectral density-functional theory we obtain:

Prr'iw)=

Note again a set of parallel observations as for M+,

— 2
E=—TrVeG+TrVeup+Ey+ Dy (42 Ziexq—sc]= %J' drdr’ext — S, 43
We will also discuss this limit later in more details in Sec. c Qpath
[l

The SDF approach is so far not very useful since a tracwhere Z. and Z are the corresponding partition functions.

table expression for the functional form dfspd Gi,c] or  This integration is carried out approximately, keeping only a
Vspd Gioc s Wioc] has not been given yet. This is quite simi- charge-charge interaction as quartic terms and neglecting all
lar to the unknown exchange-correlation functional of thethe higher-order terms generated in this process to arrive to a

DFT. As we have learned from the developments of the dycavity action of the fornt?:26:30.35
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_ Spectral Density Functional Theory within
Sc=—| dx¢"(x)G 1(X.X/)¢(X/) Local Dynamical Mean Field Approximation Tnput M.
0 yn |
v
+ 2 [ dxdx g 00w () Velxex! ' G =M=G Gy | =08, |G| G = O+ M
2 X 11// (X)lr/l (X) O(X!X )w(x)lr/l(x )! W_1=P—V;1 ’ > Wm:WgC N Vo-1=WI;c1+P
A
(44) M ,7? Q‘,,V‘,
where the integration over the spgtlal varla_bles is performed i Local Impurity Model [
over Qc. Here Gy(x,x') or its Fourier transform Self-C y

Go(r,r',iw) is identified as the bath Green function appeared
in the Dyson equation for the local mass operator FIG. 3. lllustration of self-consistent cycle in spectral density-
Mine(r,r'Jiw) and for the local Green function functional theory with local dynamical mean-field approximation:
Goc(r,r',iw) of the cluster, and/y(r,r’,iw) is the “bath  both local Green functiofs,,. and local Coulomb interactiow,,
interaction” appeared in the Dyson equation for the localare iterated. The auxiliary quantiti€sand )V are used to simplify
susceptibility  P(r,r’,iw) and local interaction the construction of the functional.
Wioe(r,r'iw), ie.,
while single-site impurity problem has a well-defined algo-
le(r,r’,iw)=G|’oi(r,r’,iw)+/\/lim(r,r’,iw), (45) rithm to extract the lattice self-energy, this is not generally
true for the cluster impurity modefS.The latter provides the
Vol(r,r' i) =W i(r,r"iw)+P(r,r'iw). (46)  self-energy of the cluster, and an additional prescription such
as implemented within cellular DMFT or using DCA should
Note that neitheg, norV, can be associated with noninter- pe given to construct the self-energy of the lattice.
acting G, and bare interactiom -, respectively. Note also Unfortunately, writing down the precise functional form
that bothr andr’ indexes inGo(r,r’,iw) and inVo(r,r’,iow)  for ®5pd GiocsWiocl O ¥spH Gioc s Wioc] is still a problem
vary within the cellular ared).. The same should be as- because the evaluation of the entropy requires the evaluation
sumed for the local quantitiesG..(r,r',iw) and of the energy as a function of temperature and an additional
Woc(r,r',iw). Since these functions are translationally in-integration over it. In general, the free enefgy=E—TS,
variant on the original lattice, this property can be used to sevhere E is the total energy and is the entropy. Since
up these functions withit) - . I'spd G1=Kspd 91+ Pspd Giocl, both energy and entropy

An interesting observation can be made on the role of theerms exist in the kinetic and interaction functionals. The
impurity model which in the present context appeared as aenergy part ofkKspd G]=Tr(— V2+ V)G and the energy
approximate way to extract the self-energy of the lattice uspart of ®gpd Gjoc,Wioc] can be written explicitly as
ing input bath Green function and bath interaction. Alterna-3 TrM;,,,G,,.. The entropy correction is a more difficult one.
tively, the impurity problem can be thought itself as thein principle, it can be evaluated by performing calculations
model which delivers exact mass operator of the spectradf the total energy Espd G]1=Tr(—V2+ Ve )G
density functionaf® If the latter is known, there should exist + $TrM;,«Goc at several temperatures and then taking the
such bath Green function and such bath interaction whiclntegral®
can be used to reproduce it. In this respect, the local interac-
tion W, appeared in our formulation can be thought as an o 1 dEspr
exact way to define the local Coulomb repulsiod ,” i.e. S(T)=5(°°)—f =

. . . . T T dT
such interaction which delivers exact local self-energy.

To summarize, the effective action for the cluster cellThe infinite temperature limi() for a well-defined model
(44), the Dyson equation$45), (46) connecting local and Hamiltonian can be worked out. This program was imple-
bath quantities as well as the original Dyson equati@, mented for the Hubbard modgland for Ce’!

(37) constitute a self-consistent set of equations as the Two well separate problems are now seen. For a given
saddle-point conditions extremizing the spectral densitynaterial using the formulag0), (37), (2), (34), (45), (46)
functionall'sp(G,)V). They combine cellular and extended G W,G,.,Wioc,Go, Vo Should be computed using the meth-
versions of DMFT and represent our philosophy in theods and algorithms of the electronic-structure theory. This
ab initio simulation of a strongly correlated system. Sinceprocedure will in part be described in Sec. Ill. With given
M, and P are unknown at the beginning, the solution of input G, andV),, the solution of the impurity model consti-
these equations assumes self-consistency. First, assuminges a well separated problem which can be carried out ei-
some initial M;,;, andP the original Dyson equation0), ther using the QMC method or other impurity solver. Some
(37) are used to find Green functighand screened interac- of the techniques are discussed in Refs. 10 and 11. In Sec.
tion W. Second, the Dyson equations for the local quantitiesV, while applying a simplified version of the theory to plu-
(45), (46) are used to findjy, V. Third, quantum impurity tonium, we will briefly describe an impurity solver used in
model with the cluster actio8,,. after Eq.(44) is solved by that calculation. A full description of this method will appear
available many-body technique to give new lodal,, and  elsewheré!

P. The process is repeated till self-consistency is reached. The described algorithm is quite general, totally initio
This is schematically illustrated in Fig. 3. Note here thatand allows to determine all quantities, such as the one-

(47)
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electron local Green function&,,. and the dynamically probes the Green function locally in a certain region deter-
screened local interaction®V,,.. Unfortunately, its full mined by a choice of basis functions in the Hilbert space.
implementation is a very challenging project which so farProvided the calculation is exact, the free energy of the sys-
has only been carried out at the level of modeltem and the local spectral density in that Hilbert space will
Hamiltonians’® There are several simplifications which can Pe recovered regardless the choice of it. We have developed
be made, however. The screened Coulomb interactiofe® theory assuming that the basis in the Hilbert space is
W(r.r',iw) can be treated on different levels of approxima-indeed the real space which gives us the ché®efor the
tions. In many cases used in practical calculations with thd2Cal Green function, i.e., the part of the real Green function
LDA +DMFET method, this interactiodV is assumed to be restricted byd,,.(r,r’). While this is most natural choice for

: o , - .
static and parametrized by a set of some optimally screenetgsop\lljéfoiiguflotgm&lsagl'Jns%lgcglc')?/e'n 2Rgrral\::é;1rcl)?gleesc,c;ﬁ1lr1secte d
on-site parameters, such as Hubbatdand exchangel. y 9 '

These parameters can be fixed by constrained density l‘url%(2 some space of orbitajg(r) which can be used to repre-

tional calculati tracted f tomi tra data or ent all the relevant quantities in our calculation. As we have
lonal calcufations, extracted rom atomic spectra data or ady, ing to ytilize sophisticated basis sets of modern elec-

justed to fit the experiment. Since the described theory cagnic structure calculations, we will sometimes waive the

perform a search in a constrained space with fixed interactioghogonality condition and will introduce the overlap matrix
w, this ]UStIerS. the_use df andJ as input numbers. A more O.er={x¢lx¢') especially in cases when we discuss a prac-
refined approximation, can use a method such as GW tg¢g| implementation of the method.
generate an energy-dependemt (Ref. 56 which is then We note that the spacgg(r) can in principle be inter-
treated using extended DMFTAlternatively we can envi- preted as the reciprocal space plane wave representation
sion that)V is already so short ranged that we can ignore they(r) =e'**®)" ¢=k+G with k being the Brillouin zone
EDMFT self-consistency condition, and we tre®¥ as vector andG being the reciprocal lattice vector. Thus the
Wrix(X,X"). This leads to performing a partial self- Green function can be probed in the region of the reciprocal
consistency with respect to the Green function only. The prospace. It can be interpreted as the real space representation if
cedure is reduced to solving Dyson equati¢B6), (45 as  x.(r)=8(£—r) where the sums ovef are interpreted as the
well as to findingM;,; via the solution of the impurity prob- integrals over the volume, and the locality in this basis is
lem. A full self-consistency can finally be restored by includ- precisely exploited in Eq2). A tremendous transparency of
ing a second loop to relaxXy. the theory will also arrive if we interpret the orbital space

A methodological comment should be made in order to{x,.} as a general nonorthogonal tight-binding basis set when
make contact with the literature of cluster extensions ofindex & combines the angular momentum index, and the
single site DMFT within model Hamiltonians. We adopted aunit cell indexR, i.e., x¢(r) = xim(r —R) = x,(r —R). Note
less restrictive notion of locality by defining an effective ac-that we can add additional degrees of freedom to the index
tion of the one-particle Green functidiand of the interac- such, for example, as multiple basis sets of the linear
tion) whose arguments are in nearby unit cells. This mainmuffin-tin orbital based methods, Gaussian decay constants
tains the full translation invariance of the lattice. At the levelin the Gaussian orbital based methods, and so on. If more
of the exact effective action , this is an exact constructionthan one atom per unit cell is considered, indeghould be
and its extremization will lead to portions of the exact supplemented by the atomic basis position within the unit
Greens function which obeys causality. Note however that itell, which is currently omitted for simplicity. For spin un-
has been proved recentiithatgenerating approximation® restricted calculationg accumulates the spin index and
the exact functional by restricting the Baym—Kadanoff func-the orbital space is extended to account for the eigenvectors
tional to nonlocal Green’s functions leads to violations of of the Pauli matrix.
causality. For this reason, we propose to use techniques such Let us now introduce the representation for the exact
as CDMFT which are manifestly causal for the purpose ofGreen function in the localized orbital representation
realizing approximations to the local Greens functions.

Our final general comment concerns the optimal choice of PN k ; K (1
local representation or, precisely, the definition of the local Glr.r 'Iw)_% Ek: Xal1)Gag(kiTw)xg (1)
Green function. This is because the local dynamical mean-

field approximation is likely to be accurate only if we know _ r—R)G (R—R'.i

in which portion of the Hilbert space the real electronic self- ;;; RE,;‘, Xo )Gl o)
energy is well localized. Unfortunately, this is not known . )

a priori, and in principle, only a full cluster DMFT calcula- Xxp(r'=R"). (48)

tion is capable to provide us some hints in attempts to answegssuming the single-site impurity case, we can separate local
this question. However, considerable empirical evidence cagng nonlocal part&,.(r,r’,i )+ Gnon0c(r,r i) as fol-

be used as a guide for choosing a basis for DMFT calculapys
tions, and we discuss these issues in the following sections.

Gioc(T, 1) =2 Glogapli®) 2 xalr=RIX5(r' =R
C. Choice of local representation P

We have already pointed out that spectral density- - G i Ky %* (17 49
functional theory is a basis set dependent theory since it aEB loc.af w); XalP)Xg (1), 49
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where we denoted the site-diagonal matrix elementsllow treatment of all local Hartree-like potentials without a
Orr'Gap(R—R',iw) as Gy 44(iw). Note that this defini- problem. Moreover, as we discuss below, this may allow to
tion is different from the real-space definitid@). For ex-  design better approximations to the functional since the Hil-
ample, Eq(2) contains the information about the density of bert space treatment of locality is more powerful: it may
the system. The formulé49) does not describe the density allow us to treat more long-ranged self-energies than the
since R#R’ elements of the matrdG,4(R—R’,iw) are ~ Ones restricted byj(r,r’), and the basis sets can be opti-

thrown away. The locality of Eq49) is controlled exclu- Mally adjusted to specific self-energies exactly as the basis
sively by the decay of the orbitalg,(r) as a function of sets used in electronic structure calculations are tailored to

not by 0,,c(r,r") the LDA potential.
oc 1 .
The local part of the Green functiorG,c(r,r',iw), We have noted earlier that the mass operator

S . . . M (r,r’,iw) is an auxiliary object of the spectral density-
which is just defined with respect to the Hilbert spage} funlgttgonal '?r:)eory. It has t)k/1e éame mean?ng as the gFT

can be found by developing the corresponding Sloectra}kohn—Sham potential: it is local operator that needs to be

density-functional theory. Since the basis set is assumed Qyqq (o the noninteracting Green function in order to repro-

be fixed, the matrix element§,,.4(iw) appear only as qyce the local Green function of the system, as the DFT
variables of the functional. As above, we introduce an auxyotential is added to the noninteracting Green function to
iliary Green functiong, s(k,iw) to deal with kinetic energy  reproduce the density of the system. Roughly speaking,
counterpart. Stationarity yields the matrix equation: SDFT provides the exact energy and exact one-electron den-
IR I i sity of states which is advantageous compared to the DFT
Goap(Ki@) =G 5(Kiw)+ Mingopli®), (500 which provides the energy and the density only. However,

where the noninteracting Green functi€®) is the matrix of W€ obtain the fullk dependent one-particle spectra as the

noninteracting one-electron Hamiltonian: polgs of auxiliary Green functio@(r,r’,z). Can these pole;s
g be interpreted as the exdctdependent one-electron excita-

Gl (Kiw)=(liw+u+V2—V Ky 51 tions? This question is similar to the question of the DFT:
oapkil0)=(xaliw +u edxg) (51 can the Kohn-Sham spectra be interpreted as the physical
The self-energy M, .g(iw) is the derivative one-electron excitations? To answer both questions we need
6P spd Gioc,ap(iw) 1/ 6Goc op(iw) and takes automatically to know something about exact self-energy of the electron. If
the k independent form. it is energy-independent, totally local, i.e., proportional to
While formally exact, this theory would have at least oned(r —r’) and well-approximated by the DFT potential, the

undesired feature since, for example, the density of the syd¢ohn-Sham spectra represent real one-electron excitations.
tem can no longer be found from the definiti¢a9) of ~ The exact SDFT waives most of the restrictions: if the real
Gioo(r,r’,iw). As aresult, the Hartree energy cannot be sim-self-energy is localized within the ar&,,, the exact SDFT
ply recovered. If treated exacttPspe Gioc,op(i®)] should calculation with the cluste),, mcludmg Rioc Will find the
contain the Hartree part. However, we see that the theor§Xactk dependent spectrum. If we picRo. larger than
deliversk independentM, .4(iw) including the Hartree Moc: the SDFT equations themselves will choose physical
term. There seems to be a paradox since modern electronlﬁc"’mz"’ltlon area for the self-energy during our self-

. onsistent calculation. However, these statements become
str?ctgr? m_f[ert]hods (_:alcult;a te.the mat'inx.eleript\a/nt oith(?rﬁartre pproximate if we utilize the local dynamical mean-field ap-
potential within a given basis exactly, .€xlVulxpg). The proximation instead of extremizing the exact functional.
k dependence is trivial here and is connected to the known pyen it the real self-energy of the electron is sufficiently

dependence of the basis functions used in the calculationy,qt ranged, this approximation will introduce some error in
Therefore, while formulating the spectral density-functionalihe cajculation. the situation similar to LDA within DFT.
theory for electronic structure calculation, we need to keep iygwever the I'ocal dynamical mean-field theory does not
mind that in many cases, the dependence is factorizable neocessarily have to be formulated in real space. The assump-
and can be brought into the theory without a problem. Thig;o of [ocalization for self-energy can be done in some por-

warns us that the choice of the local Green function has t0 bgs, of the Hilbert space. In that portion of the Hilbert space
done with care so that useful approximations to the funcine cluster impurity model needs to be solved.

tional can be worked out. It also shows that in many cases The choice of the appropriate Hilbert space, such, e.g., as
the k dependence is encoded into the orbitals. It is not thagomiclike tight-binding basis set is crucial to obtain an eco-
nontrivialk dependence of the self-energy operator, which is,omical solution of the impurity model. Let us for simplicity
connected to the fact thafin (r,r',iw) may be long-range, giscuss the problem of optimal basis in some orthogonal

i.e., decay slowly whem departs fronr’. It may very well  tight-binding (Wannier-like representation for the electronic
be proportional tos(r —r') such as the LDA potential and  se|f-energy

still deliver thek dependence.

It turn out that the desirell dependence with the choice
of the Green function after E¢49) can be quickly reinstated
if we add the density of the system as another variable to the
functional. This is clear since the density is a particular case
of the local Green function in Eq2) taken atr=r' and
summed oveiw. Therefore combination of definitio®9)
andp is another, third possibility of defininG,, . This will Xxp(r'=R’). (52

2<r,r',iw>=2ﬁ 2 xa(NZap(kiio)xg (1)

=2 2 Xo{r—R)I4(R—R' iw)

af RR
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We can separate our orbital spdgg,} onto the subsets de- tions. For example, the well-known one-band Hamiltonian
scribing light{xa} and heavy{x,} electrons. Assuming ei- for CuQ, plane of highT, materials considers an antibond-
ther off-diagonal terms between them are small or we workng combination of C_2 and Q,, orbitals which crosses
with exact Wannier functions, the self-ener@y(r,r’,iw) E-. Also, the calculations based on the LBAMFT
can be separated onto contributions from the lightmethod usually obtain reliable results when treating only the
% (r,r',iw), and from the heavyX(r,r',io), electrons. pands crossing the Fermi level as the correlated one-electron
2 .p(k,iw) is expected to bé& dependent but largely in-  states. This is, for example, the case of Pu or’band
dependen& for thek light = block, i, (r.r',iw)  previous” calculation for LaTiQ where t,, three-band
* !
=Zas2iXa(MZas(K)xg (1), The k dependency here pamiltonian is considered. All this implies that the range for
should be weII-descnbec,i by LDAlike app,rOX|ma_t|ons, 3! (iw) term in Eq.(53) should correspond to the properly
therefore we expeck (r,r",iw)~Ver(r)o(r—r'). A dif-  onsicted Wannier orbitals, which is fairly long ranged.
ferent situation is expected for the heavy block where W8N hat happen if we instead utilize mostly localized represen-
would rely on the result tation which, for example, can be achieved by tight binding
fits to the energy bands at higher energy scale? For the case

S(rr i) ~Ver(1)8(r—r")+ 2 xa(DS i) xi (r'). of CuG, this would correspond to a three-band Hamiltonian

ab with Cu,2_,2 and Q , orbitals treated separately. For LaTiO

(53) y2 y oone : .
system this is a Hamiltonian derived fromfiand Q, or-

The first term here gives the dependence coming from an bitals. The answer here can be given as a practical matter of
LDA-like potential. It describes the dispersion in the heavymost economic way to solve the impurity problem: provided
band. The second term is the energy dependent correctiddu and O levels are well separated, provided both ap-
where site-diagonal approximati@®=R’ is imposed. What proaches use properly downfolded for each case Coulomb
is the best choice of the basis to use in connection Withyteraction matrix eIemenMSEﬁHRm, and provided correla-
2 ap(i) in Eq. (53)? Here the decay of the orbitats(r) as  tions are treated on all orbitals, the final answer should be
a function ofr is now entirely in charge of the self-energy similar regardless the choice of the basis. A faster algorithm
range. In light of the spectral density-functional theory, thewj| be obtained by treating the one-band Hamiltonian with
answer is the following: the local dynamical mean-field ap-antibonding Cie_,2— Oy, orbital. If indeed the self-energy
proximation would work best for such basig,(r) whose s |ocalized on the scale of the distance between Cu and O, it
range approximately corresponds to a self-energy localizgs clear where the inefficiency of the three-band model ap-
tion Ry, of the real electron. Even thoug, is not known  pears: the second term in E¢p3) needs to be extended
a priori, something can be learned about its value based on githin the cluster involving both Cu and nearest O sites and
substantial empirical evidence. ltis, for example, known thaghoukj involve both Cu and O centered orbitals S|mp|y to
LDA energy bands when comparing to experiments at firsteach the cluster boundary. In the one-band case this is en-
place miss the energy dependéit,(iw) like corrections. coded into the decay of the properly constructed Wannier
This is the case for bandwidths in transition metalsd also  state.
in simple metals the energy gaps of semiconductors, etc. It  The preceding discussion is merely a conjecture. It does
is also known that many-body based theories work best fonot imply that the localization range for the real self-energy
massively downfolded model Hamiltonians where only ac-of correlated electron at given frequenayis directly pro-
tive low-energy degrees of freedom at the region around thgortional to the size of Wannier states located in the vicinity

Fermi levelEr remain. The many-body Hamiltonian of o+ . It may very well be that in many cases this range
is restricted by a single atom onlgtomic sphere of Cu in
A= h©@ ret coo 4+ H.c. the exan_1p|e abO\)eCIgarIy more experience can be gained
azﬁ % arpr/[ CarCR ] by studying a correlation between the decay of the Coulomb

matrix elementVRRRR’ as a function oR—R’ and the ob-
+> D> VSE;F;”RWCZRC;WCaRwCyR" (54  tained matrixX(R—R’,w) using a suitable cluster DMFT
aByd RR'R'R" technique. These works are currently being performed and
with will be reported elsewher®. The given discussion however
warns that in general the best choice of the basis for single-
VRRR'R” site dynamical mean-field treatment may not be the case of
apByo mostly localized representation. In this respect the area re-
. . stricted by#,,.(r,r") which is used to formulate SDFT in the
= f drdr’xor(M) X gr/ (F)vc(F =) xR (M) X srr (1) real space may need to be extended up to a cluster. However,
alternative formulation with the choice of local Green func-
assumes the one-electron Hamiltonfdﬁ%BR, is obtained as tion after Eq.(49) may be more economical since a single-
a fit to the bands neaEr. This can always be done by site approximation may still deliver good results. As we have
long-ranged Wannier functions. It is also clear that the corargued, such spectral density-functional theory will also need
relation effects are important at first place for the partiallythe density of the system to complete the definition of local
occupied bands since only these bring various configuraGreen function. The local dynamical mean-field approxima-
tional interactions in the many-body electronic wave func-tion can be applied to the interaction functiodad g which
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is viewed asPgpd p,Gjoc]. This idea is used by the LDA  The full functional I' pa+pmer[G] is considered as a

+ DMFT method described below. functional of the matri>G,z(R—R’,iw) or its Fourier trans-
formed analod, s(k,i w). The stationarity is examined with
D. LDA +DMFET Method respect ta7, z(k,iw) and produces the saddle-point equation

. ; 1 similar to Eq.(20). It has the following matrix form:
Various methods such as LDAU," LDA+DMFT,™ and

local GW (Refs. 12 and 1pwhich appeared recently for Gaiﬁ(k,iw):ggﬁl(k,iw)jLMim wp(Kiw), (56)
realistic calculations of properties of strongly correlated ma- ' '

terials can be naturally understood within spectral densityWwhere the noninteracting Green functit® is the matrix of
functional theory. Let us, for example, explore the idea ofnoninteracting one-electron Hamiltonian

expressing the energy as the density functional. Local den- IR Kl 5 K

sity approximation prompts us that a large portion of the Goap(Kii@)=(Xollot utVo=Verlxp).  (57)
exchange-correlation par,p] can be found easily. In- 1he gelf-energym, «p(K,iw) is the variational derivative
deed, the charge density is known to be accurately obtainegk ‘DLDA+DMFT[P,G|;}C]- lts precise form depends on the
by the LDA. Why not think of LDA as the most primitive . «ic"cet used in the LDADMFT calculation.

impurity solver, which generates manifestly local self—"", general it can be split onto several contributions in-
energy with localization radius collapsed to a sinlthg:gint? cluding Hartree, LDA exchange correlation, DMFT and the
It is tempting to represem®spd Gioc]=Enlp]+Exc [P]  double-counting correction. In orthogonal tight-binding, both

T@[Gjoc] = Ppc[Gioc],  where the new functional pmFT, A1, (iw), and double countings,,V2S, matrices
®spd Gioc] Needs in fact to take care of those electronsdo not depend ok. These matrices are nonzero within the
which are strongly correlated and heavy, thus badly deheavy block only. The Dyson equati¢®6) can be rewritten
scribed by LDA. Conceptually, that means that the solutionby separating fromM;y .s(k,i @) the total LDA potential
of the cluster impurity model for the light electrons is ap- VLDA(r):Vext(r)+VH(r)+VLDA(r):

proximated by LDA and does not need a frequency resolu- X

tion for their self-energies. . _ GopKio)=(xklio+u+V2=V palx§) — SeadpaVoy
Unfortunately, the LDA has no diagrammatic representa- _
tion, and it is difficult to separate the contributions from the + 04205 Map(i ). (58

light and heavy electrons. THe,2*[p] is a nonlinear func- . _ . _
tional and it already includes the contribution to the energy The Green functiorj, 5(k,iw) obtained from Eq(9) is
from all orbitals in some average form. Therefore we need ta!S€d 10 findG,o¢ 4 5(i @) = ZG,p(k,i @) which is then used
take care of a nontrivial double counting, encoded in théh another Dyson equation to compute the bath Green func-
functional ®pc[Goc]. The precise form of the double ton:
counting is related to the approximation imposed for S I -
®[G,.]. We postpone this discussion until establishing the Goan(l @) = Gioc ap(lw) + Map(iw). (59)
connection to the LDA U method in the following section. | Sec. 11l we will also describe an accurate procedure to
The LDA+DMFT approximation considers both the den- solve the real space fori@5) of the Dyson equation using
sity and the local Green functioB ¢ .4(1w) defined in Eq.  the linear muffin-tin orbital(LMTO) basis set. The LDA
(49) as the parameters of the spectral density functiohal.  + DMFT bath Green functioy (i @) is the only essential
further approximation is made to accelerate the solution of gput to the auxiliary impurity model. Thus, the procedure of
single-site impurity model: the functional dependence comegeif-consistency within LDA DMFT is reduced to the fol-
from the subblock of the correlated electrons only. If local-|owing steps. First, some self-energy matrix of the heavy
ized orbital representatio{r)(c_y} is g@ilized, a subspace of_the orbitals M, @) is guessed. Then, the Dyson equatise)
heavy electrongx,} can be identified. Thus, the approxima- is solved in the entire Hilbert space and delivers the Green

tion can be written as ®spd Gioc,ani®) ], where  function G,4(k,iw). After that, the local Green function of
Gioc,an(i®) is the heavy block of the local Green function. the correlated electrons is constructed, which is then used in
The double counting correction depends only on the averagge Eq.(59) to deliver the bath Green functiof (i w).
density of the heavy electrons. Its precise form will be dis-Thjs matrix is the input to the impurity model. Solution of

cussed below, but for now we assume tBbc[Giocl  this model delivers the new self-energyl,,(iw) and the
=®pc[ne] with Ne=TZ;,2,G|oc aa(iw)e' ", Where in-  process is iterated towards self-consistency.
dexa runs within a correlatet}, shell only. We can write the  Note that once the DMFT self-consistency is reached, the
LDA +DFMT approximation for the interaction energy as process can either be stopped or continued since the Green
follows: function G, 4(k,iw) delivers new charge density of the sys-
DA ~ ) tem which modifies the Hartree and LDA exchange-
PLoa+pmFTLR:Gloc] =Enlp]+ Exc o]+ P[Ciocanli®)] correlation potentials in the expressi@B). In this respect,
— the LDA+ DMFT method assumes a double iterational loop,
~®oclnel- (55 the internal one over the self-energy and the external one
The kinetic energy part is treated as usual with introducingover the density. This is precisely dictated by the spectral
the auxiliary Green functiog(r,r’,iw). density-functional stationarity condition. We illustrate such
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LDA + DMFT Theory Input M, p and for the LDA potential
| —
v LDA
AV pa(N)=AVy(r)+ ———Ap(r). 63
G = M=GL[p] _9> G,.=C8, | G G =G+ M Loa(r) n(r) dp p(r) (63
M G Thus, to first order, these are the quantities which are iterated

Local Impurity Model "—‘ in the external density loop of the spectral density functional

DMFT Self-Consistency as shown on Fig. 4.
Demsity p Enormy E The main physical point of the LDADMFT methodol-

ogy is identification of a subset of the correlated orbitals
FIG. 4. lllustration of self-consistent cycle in spectral density- {xa} which'is separateq fr_om the full Hilbert spa{x:a}. In
functional theory with LDA+ DMFT approximation: double itera- the Cas_e Su.Ch as Py, this is the sub§é{&béctron orbitals. In )
tional cycle consists of the innner DMFT loop and outeensity other situations, this subset can be isolated based on physical
plus total energyloop. grounds. If{ x,} is appropriately constructed Wannier repre-
sentation, this subset may describe the bands crossing the
loop on Fig. 4. Note that in order to access accurate totatermj level. We expect the dynamical self-energy corrections
energies and remove ambiguity that the LDA Green functiong appear at first place only within the subsgt}. However,

(@nd not any other oneis used as an input to the DMFT cpanges in the electronic densities of statedl(E), will
calculation, this density self-consistency loop needs to b%ppear for all light and heavy electrons.

carrie_d out. Our_ app_lication t(.) the volume _expansion in Pu We did not discuss so far the relaxation of the screened
described later in this paper involves solution of the SDFT,

; . . .. Coulomb interactiod\(r,r’,iw), which, in principle, needs
equations allowing the full relaxation of the charge densny.t be d duri i If- ist ) el t
Iterations over the density are not complicated to incorpo—0 ? _done during Ihe - seli-consistency In paraflel to
rate in the programs for electronic-structure calculations. Thg(r’r lw). We stress that the short-rgnge b’e.haw.or appears
spherical part of the density at a given site can be writterP!Y for the local effective susceptibility(r,r "“’), in Eq.
approximately using the atomic sphere approximation as af33 and means its fast decay whenleparts fronr’. Con-
integral over the partial density of statdg(E) till the Fermi  trary, the function/\(r,r’,iw) can be as long range as the
level Eg: bare Coulomb interaction if necessary. This is dictated by

. Eqg. (33) and is similar to the relationshij20) betweeng and
_ F 2 Mint .
p(r)_2| foN'(E)(p' (r.B)dE, €0 The locality assumption fo should simplify the self-
consistency ovelV. This should be faster than the one em-
ap{oyed in the full GW method which formally tries to com-
pute full II(r,r',iw). In the language of local orbital
representatiod x,}, this means computation of all matrix
elements forIl,;(R—R',iw) or its Fourier transform
2 , , (2 IT,4(k,iw) as compared to the site-diagonakg ) or small
(_Vrl_E)‘P'(r'E)“Lf Mer(r.r,B)ei(r,B)r"*dr'=0. ¢ ster cases of SDFT. This will be discussed below in con-
(61 nection to the recently proposgd®local version of the GW
method.
So far we did not mention the problem of the optimal

where ¢(r,E) are the solutions of the radial Sckiinger
equation. Usually these are constructed using spherical p
of the LDA potential but in the present context the nonlocal
self-energy operator needs to be utilifad:

Expression(60) can be simplified further if we assume

i = +
2 Tz;ylor expansion  of ?"'“’.E) .(‘D'(r’E”') . (E choice of the double counting corrections. This is discussed
—E,)ei(r.E,y) around some linearization energids,  pojoy in connection to the LDA U method.
taken at the centers of gravities of the occupied energy
bands, i.e.E, =/ EN/(E)dE/fF N,(E)dE. During the
iterations, DMFT modifies the density of statesN,(E), o _
which leads to the chang&p(r) of the density. The latter Historically, the LDA+U method has been lnthdU_é@d_
has a feedback onto the chandep(r,E) [or changes @s an extension of the local spin-density approximation
A<P|(r,EV|),A¢|(F,EV|)]- If we assume that these changes(LSDA) to treat the ordered phases of Mott insulating solids.

are small compared to the original LDA values, we can Work![ﬂ_thIS rterzls%ect it |f$ a; tnatural exten;srlo? ObeEDA' Howe;/er,
out a linear response relationship for the density IS method was Tirst to recognize that a betier energy func-

tional can be constructed if not only the density but the den-
Er ) sity matrix of correlated orbitals is brought into the density

Ap(r)= Z fﬁwANI(E)‘PI (r,E)dE functional. We have discussed the correlated supggtand

the local Green function§,,¢ ,4(i @) in connection to the

E. Double counting and LDA+U method

Er LDA +DMFT method. The density matrir,, is related to
+§|: 7®N|(E)(p|(r,E)A(p|(I’,E)dE the correlated subblock of the local Green function:
+ 20 Ni(Eg)of(r, Er)AER (62 Nap=T2 €0 Giog apfi®). (64
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Therefore, the LDA-U method can be viewed as an ap- bital symmetries are not broken. They stem from the well-
proximation (Hartree—Fock approximatiornto the spectral known deficiencies of the Hartree—Fock approximation. The
density functional within LDA- DMFT. most noticeable is that it only describes spectra of magneti-
The correct interaction energy among the correlated elegsally ordered systems which have Hubbard bands. We have
trons can be written down explicitly using the Hartree—Fockhowever argued that a correct treatment of the electronic
approximation. In our language the LBADMFT interaction  structure of strongly correlated systems has to treat both

energy functional55) is rewritten in the form Hubbard bands and quasiparticle bands on the same footing.
~ o Another problem occurs in the paramagnetic phase of Mott
@ pasulpNap]=Enlpl+ P2 p]+ Dy[nap]— Ppclng],  insulators: in the absence of any broken symmetry the

(65  LDA+U method reduces to the LDA, and the gap collapses.
In systems such as NiO where the gap is of the order of eV,
but the Neel temperature is a few hundred Kelvin, it is un-
5 1 physical to assume that the gap and the magnetic ordering
Dy[napl= > > (Uacba— Yacan)NapNeq - (66)  are related. For this reason the LBAJ predicts magnetic
abed order in cases that it is not observed, as, e.g., in the case of

. . . 62
Here, indexes,b,c,d involve fixed angular momentutnof ~ PU-
the heavy orbitals and run over magneti@and spino quan-

where the functional forn® [ n,] is known explicitly:

tum numbers. The on-site Coulomb interaction maltii, .4 F. Local GW approximation
is the on-site Coulomb interaction matrix element . .

RRRR . _ . We now discuss the relaxation of the screened Coulomb
Vo ag=by-cs—d appeared in Eq(54) which is again taken

for the subblock of the heavy orbitals. Note that sometimesmter"’.ICtlon W(r,r o) Wh!Ch appeared in the spectral
U ' defined ad/RRRR density-functional formulation of the problem. Both LDA
abcd a=aB=cy=bé=d-
The double counting ternd [ n,,] needs to be intro-
duced since both the(B)DA and U terms account for the

same interaction energy between the correlated orbitals. T.h osed to be given by an external calculation such, e.g., as the
includes in first place the Hartree part. However, the precis

form of the double counting is unclear due to nonlinear na- onstraingd LDA methoEf._To determine .this Interaction
ture of the LDA exchange—correlation energy. In practice itself—consstently an additional self-consistency loop de-
was proposedithat the form ford o is ts(;:rlbed by the Eqs(33) and (46) has to be switched on
gether with calculation of the local susceptibility
P(r,r’,iw) by the impurity solver. This brings a truly self-
consistentb initio method without input parameters and the

+DMFT and LDA+ U methods parametrize the interaction
W with optimally screened set of parameters, such, e.g., as
the matrixU ,,.q @appeared in Eq(66). This matrix is sup-

®pe[ne]=2Unc(n,—1)—1J[nl(nl-1)+nl(nl-1)].

(67) ;
double counting problems.
where UZ[l/(2|+1)2]EabUabab, J_:U_[l/z(2| A simplified version of this method has been recently
+1)]2a5(Unpas— Uapp) and where n?=3._, n..o proposed?® which is known as a local version of the GW
Cc € c lTaO"

— = . ] method (LGW). Within the spectral density-functional
Ng=n¢+n;. Some other forms of the double countings havetheory, this approximation appears as approximation to the

also been discussed in Ref. 61. ~ functional W sp Goc ,Wioc] taken in the form
The minimization of the functional’| pa.ulp,Nap] IS
now performed. The self-energy correction in E§8) ap- Y oW Gioc:Wioel = — 3 TG0 WiocGioc - (70

pears as the orbital dependent correctioty,— Vo< :
As a result, the susceptibilit?(r,r’,iw) is approximated

v 5&’U by the product of two local Green functions, i.eR
=—— =2 (Uzepa—U , 68 P L5
3™ SN Ed( acbd™ Uacdn)Ned (68) =—28¥ cw/ Woe=G0cGloc, and the exchange-
correlation part of our mass operator is approximated
oc._ 9Ppc by the local GW diagram, i.e. M=V gw/8Goc

1 — 1
U(I’lc— E) _j( nC_E (69) == GjocWigc -

) o o _ Thus, the impurity model is solved and the procedure can
While the correction is static, it is best viewed as the Hartreepe made self-consistent: For a givar;,,, andP, the Dyson

Fock approximation to the self-energyl,,(iw) within the  equationg20), (37) for G and W are solved. Then, the local

LDA+DMFT method. NOte that SUCh interpretation allows quantitiesGloc’ WlOC are generated and used to f|nd new

us to utilize double counting forms within LDADMFT as A4, . andP thus avoiding the computation of the bath Green

M(r,r',ie) or M(r,r’,i0). Note also that the solution of function G, after Eq. (45), and the interactionV, after

the impurity problem collapses in the LDAU method since  Eq. (46).

the self-energy is known analytically by formulég). Note that since the local GW approximation E@0) is
From a practical point of view, despite the great successelatively cheap from computational point of view, its imple-

of the LDA+U theory in predicting materials properties of mentation on a cluster and for all orbitals should not be a

correlated solidsthere are obvious problems with this ap- problem. The results of the single-site approximation for the

proach when applied to metals or to systems where the otecal quantities have been developed independently and re-

ab — 5nab — Cab|
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ported in the literaturé® The cluster extension is currently ya;(r.iw)]. These equations should be considered as the ei-
being performed and the results will be reported elsewfiere. genvalue problems with complex non-Hermitian self-energy.
Note finally that the local GW approximation is not the As a result, the eigenvalueg,;, [a shortened form for
only one which can be implemented as the simplified impu£,;(i w)] being the same for both equations are complex in
rity solver. For example, another popular approximationgeneral. The explicit dependency on the frequeneyin
known as the fluctuational exchange approximatlBhEX)  hoth eigenvectors and eigenvalues comes from the self-

can be worked out along the same lines. Note also that thgnergy. Note that left and right eigenfunctions are orthonor-
combination of the DMFT and full GW diagram has beenmal

recently proposéd?’ and a simplified implementation for
Ni,2” and for a model Hamiltoni#f have been carried out.
This procedure incorporates full dependence of the self-
energy known diagrammatically within GW together with
the additional local DMFT diagrams.

J dr (1) g (1) =80 (75

and can be used to evaluate the charge density of a given
IIl. CALCULATION OF LOCAL GREEN FUNCTION system using the Matsubara sum and the integral ovek the

The solution of the Dyson equations described in the preSPac€:

ceding section for a given strongly correlated material re-

quires the calculation of the local Green function during the o
iterations towards self-consistency. This is very similar to the p(r)=TZ 2 gkjwz//kjw(r)z,b,%w(r)e'“’o , (76)
procedure in the density-functional theory, when the charge to ki

density is computed. A big advantage of DFT is the use of

Kohn—-Sham orbitals which reduces the HB2) for the  where

Kohn—Sham Green function to a set of one-particle Sthro

inger’s like equations for the wave functions. As a result the

kinetic-energy contribution is calculated directly and the o 1 (77)
evaluation of the total energy of a solid is not a problem. Yjo o+ u—Eyj,

Here, a similar algorithm will be described for the energy-

erendent. Dyson equation, the _solut|or} n terms of th%e have cast the notation of spectral density theory in a form
linear-muffin-tin orbital basis set will be discussed, and the

similar to DFT. The functiorg,;,, is the Green function in
the orthogonal left/right representation which plays a role of
_ _ a “frequency-dependent occupation number.”
A. Energy Resolved One-Particle Representation It needs to be pointed out that the frequency-dependent
We introduced the auxiliary Green functigifr,r’,iw) to ~ energy bandg,;,, represent an auxiliary set of complex ei-
deal with the kinetic part of the action in SDFT. It satisfies togenvalues. These are not the true poles of the exact one-
the Dyson Eq(9). Let us now introduce the representation of electron Green functio(r,r’,z) considered at complex
generalized energy-dependent one-particle states plane. However, they are designed to reproduce the local
spectral density of the system. Note also that these bands
. YR (D (") Eyj, are not the true poles of the auxiliary Green function
glr.r 'Iw):;j io+ u—Eg, g(r,r',z). The latter ones still need to be located by solving
: a nonlinear equation corresponding to the singularities in the
expression(71) after analytic continuation to real frequency.
GHr o) =2 YR (N(o+n—Ey,) ¥.(r), For a one-band case this equation is simpy: u—E,,
ki =0, whose solution delivers the quasiparticle disper&ipn
(72 i i
General knowledge of the poles positiafig will allow us to
where the leftyy;,,(r) and rightyy (1) states satisfy to the write an alternative expression fgrwhich is similar to Eq.

formula for evaluating the total energy will be given.

: (71)

following Dyson equations: (71), but with the eigenvectors found &f; thus carrying out
) R no auxiliary frequency dependence. These poles are the real
[ =V 4+ Vexd 1) + V(1) ] (1) one-electron excitational spectra in c&bis a good approxi-

mation toG. However, the use of Eq71) is advantageous,

+J ch(r,r’,iw)«/xfjw(r’)dr’=Ekjw¢ij(r) (73)  since it avoids additional search of poles and allows direct
evaluation of the local spectral and charge densities the sys-
tem.

_y2 L
[= V" Vex(N) +Vu(N 14 (1) The energy-dependent representation allows us to obtain a
very compact expression for the total energy. As we have

+f Dol ) M1 i) dr’ =Ey,th (1) (74)  argued, the entropy terms are more difficult to evaluate.

However, they are generally small as long as we stay at low
[we dropped the imaginary unit for simplicity in the notation temperatures. The pure kinetic part of the free energy ex-
Uijo(r) which shall be thought as a shortened version ofpressed vidsee, Eq(39)]
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i . 1 einJr
TrinG—TrMeG=T>, e""°+J drdr’'InG(r,r’iw) O -
o o i eBki—mITyq Tiw o+ p—Ey; 69
—TE drdr' Mo (10 i) and the formuld76) collapses to the standard expression for
< eff

the density of noninteracting fermions. The total-energy ex-
o pression80) is converted back to the DFT expression for the
XG(r',rio) (78)  total energy since the eigenvalug,;, becomes the DFT

band structureey; 3 and the summation over Matsubara fre-
needs to be separated onto the energy and entropy terms :
uenuesTE,we‘” ngw gives according to Eq(84) the

Both contributions can be evaluated without a problem, bufl
in light of neglecting the entropy correction in the interaction €Mi-Diragq occupation numbéy; . The standard DFT ex-

part, we concentrate on evaluating the kinetic energy only: Pression is recovered:

TE einJrf dr[(_v?)g(r’r/’iw)]r:r, EDFT:% fkjEkj_f drVeff(r)P(r)"‘f drVeX[(r)p(r)

1
L |_wv2|,R
—T ge0" S <‘/kaqu|r v ||Edjkjw>' (79 +§f drvVy(r)p(r)+Exdpl, (85)
io ki loTu~EByjo
where  Ey;= (| = VZ+ Ve thig) = (il — V2+ Vexrt Vi
The SDFT total energy formula is now arrived by utilizing + V| ;).
the__relationship Exj,= (¥l — V74 Merd¥450) = (¥l
| = V24 Vayit Vi + My '/’k1w> B. Use of linear muffin—tin orbitals

The next problem is to solve the Dyson equation for the
Eane=TS giv0” Eriw eigenvalues. The sqphisticated basis sets developed to solve
SPF E ; koK the one-electron Schdinger equation can be directly used in
this case. We utilize the LMTO method described exten-
TS | drdr Meg(rr ' i@)G(r i)+ sively in the past Iiterat.uf‘é‘44 as it provides a minimal
i atom-centered local orbital basis set ideally suited for the
electronic structure calculation. Within the LMTO basis, the

1 . .
+j drVe,(Np(r)+ Ef drVy(rp(r) full Green function is represented as a sum

1 , , Grir'iw) =2 2 Xa(NGaplkiiw)xg (1) (86)
+§TZ drdr’ My (rr’,i)Goe(r',riw).

" and, as we have argued in the preceding section, the matrix
(80) G.p(K,iw) needs to be considered as a variable in the spec-

If the self-energy is considered as input to the iteration Wh"‘%?tﬁznélrgetwu?ﬂgt?ﬂ] The stationarity yields the equation

the Green function is the output, near stationary point, it
sér:c;Lejlr(lj ]E:Ja;]vctiign(?onvergency faster than the convergency in the aﬁ(k,iw)=[(iw+,u)O(k)—h(o)(k)—/\/lim(k,iw)];ﬁl,

It is instructive to consider the noninteractive limit when 87
the self-energy represents a local energy-independent potewhere the overlap matn@aﬁ(k) <X |X Y, the noninteract-
tial, say, the ground-state Kohn Sham potential of theng Hamiltonian matrix h(C (k) (x¥|-Vv? +Vext(r)|)(ﬁ>
density-functional theory. This provides an important test forand the self—energy formally comes as a matrix element
our many-body calculation. It is trivial to see that in the DFT

limit, we obtain the Kohn—Sham eigenfunctions . ,
9 Mintaptki0) = [ drd 'yt (0 Min (1.1 ) (s

Yol 1) = i (1), (8D) (88)
over the LMTOs. Again, it is worth to point out that the
Yol — U551, (82 self-energy here depends dnvia the orbitals even if the
single-impurity case is considered. In calculations performed
Exjo— Exj» (83) on a cluster, the self-energy will also pick its nontrivial

dependence coming from the nearest sites.
and the one-electron energy bands are no longer frequency While formally valid, the present approach is not very
dependent. The sum over Matsubara frequencies in the exfficient since the Green functiog(r,r’,iw) has to be
pression for the charge density6) can be performed ana- evaluated via E¢(86). This is thek integral which has poles
lytically using the expression for the Fermi-Diraq occupationin a complex frequency plane, and integrating singular func-
numbers: tions need to be performed with care. In this respect, we
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adopt the eigenvalue representatiofil). We expand the R kR
energy-dependent states in terms of the LMTO bgefg as XN =xk(p)e"R=e" & (P)+2 Y (p)S',|,
follows: (95)

R(L) GoRL) whereS¢, are the structure constants of the LMTO method
Yigo (1= Z Aa a(r). 89 and whered{"’(p) are such linear combinations of the so-
lutions of the radial Schidinger equation taken at spherical
The unknown coefficient&/R) are now the quantities part of the potential as well as their energy derivatives taken
which have to be considered as variables in the spectral deat some set of energids,; at the center of interest so that
sity functional. The stationarity yields the equations they match to the spherical Hankgl) and Besse(J) func-
tions at the muffin-tin sphere boundary. The local Green

0 Kio.R_ function can be represented in this basis set as follows
2, [EBK) + Ming ap(Kii @) = EiguOag(K)JAF “ =0,

(90) Glocrr (p,p iw) =2, E <I>‘L“><p>

LL’ #v=H
> AU (K) + Mipg (Kol @)~ Eyj,0,5(K) 1=0. xe,‘g‘C”{RL,R,(|w)q><”,)*(p'), (96)

(91)  where the matrices GIOC arpr (1@, GlowRL,R,(lw)

JH ’ _
These are the non-Hermitian eigenvalue problems solved b 'OC,LRBR’(' ®), G'OC Lrur(f@) (indexesR andR” are re

standard numerical methods. The orthogonality condition inStricted to al clusterare given by the following Brillouin
volving the overlap matrix is zone integrals:

Atj(w)RAkJ w,L
) (uv) _ ) T L'(v) Lik(R-R’
> AUt AY = gy (92 Gloctrum(i0)= 2 (0 mg & 7

ka R(L) kjw,R(L)
Note that the present algorithm just inverts the mat8x) HgZeLA H) k]waLre the ggg,;”a' e'%fmﬁfwcaor’s and
with help of the “right” and “left” eigenstates. The Green AL SATS, AGR=2, SEAL O are the convo-

function (87) in the basis of its eigenvectors becomes Iutlons of the eigenvectors with the LMTO structure con-
stants. We now utilize a similar representation for the bath
Ak]w RAka L Green function
lar — (93
G )= 2 io+u—Eyj, ()
Gorr(p.p"iw) =2 E (DL (p)
This formula can be safely used to compute the Green func- LL' mv=H
tion as the integral over the Brillouin zone, Eg6), because s G V)%
. . ' e . g (l0)® , (98
the energy denominator can be integrated analytically using Yorrur(i®) (p1), (98
the tetrahedron methdd. where  the  matrices go RBR,(Iw) goaRL,R,(Iw)

Our next topic here is the evaluation of the bath Gree

functionGy(r,r’,iw). It can be found from the integral equa- OLRr’)’R'(Iw) ggLRL'R'(Iw) can be found from the following

Dyson equatioriwhere the matrices sizes have been enlarged

tion by a factor of 2
rr'iw)=G,(r,r',i 1 _ v)—1
Gol ©)=Giocl ©) gOTQL’R’(Iw)_GI(cl:c,)LRL’R’(I w)+M|(#tVI)_RL’R’(Iw)

(99

—f dr"dr” Gpc(r,1",iw) Min(r" 1" i w) ) ) ]
with the self-energy matrices are defined as follows

X Go(r”,r,im), (94)
. . MBI (o =fd dp’ DM
wherer andr’ run over),,. In order to solve this equation, inttrur (10) pdp @™ (p)
it is useful to represent=p+R, r'=p’' +R’, and redenote
go(-r,r,,l (x)) = gO,RR’ (pvp, i w)iGloc(r!r_, i w) = GIOC,RR'(_pv
pliiw), Min(r,r',iw)=Misrr(p,p’,iw). Considering
one atom per unit cell let us see how this can be solved usin
single x LMTO me'tho.d n atom_lc sphere approx[matlon self-energy(88) to be used in constructing the new Green
(ASA). The generalization to multiatomic systems with mul- S . i .
function in Eq. (87) is found first by restoring thek
tiple x basis sets as well as inclusion of full potential terms q ‘ h | )
in the calculation can be done along the same lines. The forflePendence  from  the cluster Mg, |, (k.iw)
of the LMTO basis function inside the sphere centereRat =Zg- RrM,m LRL,R,(Iw)e'k(R R") and second, restoring the

is k dependence of the LMTO basis as follows

XMint,RR/(P,P',iw)q)(LV,)(p’). (100

The solution of the impurity model witrgg{tQL,R,(iw)
elivers new matrix element$100. The k dependent
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shows a strong narrow Kondo-like peak at the Fermi level

: _ HH B HJ ; K . . . i
Mint,aﬁ(kilw)_Mint,aB(k'lw)_l—g Mint,aL(Ki0)Sg consistent with large values of the linear specific-heat coef-
ficient.
e . M . Density-functional based LDA and GGA calculations de-
+ LE SL’aMint,L’B(k’l ) scribe the properties of Pu incorrectly. They predict magnetic

ordering® They underestimat® equilibrium volume of the
e+ o33 ) p 6 ande phase by as much as 30%, the largest discrepancy
+2 SteMine i (Ki@)S, 5. (10D known in LDA, which usually predicts the volume of solids
L within few percent accuracy even for such correlated systems
In practical calculations performed with the LDA as high-temperature. supergonductors. Despite this,_ the vol-
+DMFT method for Pu, only the subset of orbitdlg,} is ~ Ume of thea phase is predicted correctly by LDA Since
treated as correlated glectrons of Puand a single-impurity ~ the transport and thermodynamic propertiesaoénd 6 Pu
case is considered. It is useful to separate the Hartree ar@fe very similar, the nature of the phase and the reason
LDA exchange-correlations terms. Instead of dealing withWhy LDA predicts accurately its structure and volume is by
the noninteracting Hamiltonian in E¢87), we can rearrange itself is another puzzle.

the contributions to arrive To address these questions several approaches have been
developed. The LDA U method was applied t6 Pu®2"* It
gaﬁ(k,iw)z[(iw+M)C)(k)—ﬁLDA(k)—AM(k,iw)];é, is able to produce the correct volume of thephase for

values of the parametdd~4 eV consistent with atomic
(102 . . ) .
LDA . 5 . ) spectral data and constrained density-functional calculations.
where h;; (|<):<)(ML|D—AV +Vipa(Nlxp) With Vipa(r)  Similar calculation has been performed by a so-called orbit-
=Vex{(r) +Vu(r)+ Ve (r). The matrix AM,g(K,io) ally ordered density functional methdtl.However, both
=M p(k,iw)=V55(K), where M,p(k,iw)  methods predict Pu to be magnetic, which is not observed
_ 5aaéﬁbMab(kri ®) and Vzg(k): 5aa55bVaD1§(k) repre- experlmentglly: The LDA-U method is unable to predict the
correct excitation spectrum. Also, to recover thephase

sent the DMFT correction and double counting term de--"""" ,
scribed by Eq(69). These matrices are nonzero within the Within LDA+U the parameter U has to be set to zero which

correlated subset. To accelerate the calculation of the impdS inconsistent with its transport properties and with micro-
rity model, we can parametrize the self-energy matrix as’¢OP'C (égl,cmtah“o”s ?f t?r'ls para;ngter.d ﬁrllgc';ther apprrc])a}ch
~ ) ~ (D) B i . roposed in the past is the constraine approach in
M‘% )é' “;) :/l\/l'(""i))(' w)f@)(aﬂ.)'q)g )>.' With such parametriza- \?vhigh some of thepﬁ electrons, are treated as corg,pwhile the
t!on, the local Green un(_:tlon which enters the Dyso_n equa'remaining are allowed to participate in band formation. Re-
tlon Shoﬂ}‘j{,R be (M)de}‘i’r;edkjwfs _ fOHOWSG'OClab(""_) sults of the self-interaction-corrected LDA calculations have
=22 wha() (@ |C_Db _>Ab(v) / (Iw_+M_E|§jw)' This  peen reported as well as qualitative discussion of the bond-
represents the generalization of a partlal-densny—pf—state fori—ng nature across the actinides series has been given.
fmuladoffthe Ll\ﬂo methcid- Tge bath G_rle:e(r; function can be “Thus, the problem of Pu is challenging becausé étec-
ound from the equation: Goap(iw) loc,ab(i @) trons are close to the Mott transitiéhlt provides us a cru-
+M{P)(iw) and can be passed to the impurity solver. Thegial test for our quantitative theory of strong correlations. A
latter delivers a new self-energ#®)(iw) which is then  short version of this work has appeared alre&dur imple-
multiplied by <q)gu)|q)gv)> and used to reconstruct ney ~ Mentation is based on the self-cqns_iste_nt LDBMFT
dependent self-energy aftér01). Such procedure preserves Method and uses the LMTO method in its tight-bindifig)

all k dependent information coming from the orbitals. rep.re_sentatioﬁ? Spin-orbit coupling effects are important for
actinide compounds and have been included in the calcula-

tion for Pu. The “full potential” terms have been neglected
in the calculation through the use of the atomic sphere ap-
This section describes the application of the theory to Pluproximation with a onec LMTO basis set. The necessaty
tonium. Pu is known to be an anomalous mé&%t has six ~ space integrals for evaluating Green functions and charge
crystallographic structures. Starting from the low tempera-densities have been carried out using the tetrahedron method
ture @ phase(0—100 G with 16 atoms per unit cell it shows using (8,8,8 grid in the Brillouin zone. We also included
a series of phase transitions and ends up in relatively simplgeneralized gradient corrections after Ref. 77 in all our cal-
fcc & (300—450 @ and bcce phaseg500-650 @ just be-  culations.
fore it melts. The temperature dependence of atomic volume To evaluate total energy as a function of volume we need
in Pu is anomalou® It shows an enormous volume expan- to iterate charge density and the local Green functionf for
sion betweenr and § phases which is about 25%. Within the electrons towards self-consistency. This, first, involves the
& phase, the metal shows negative thermal expansion. Trasolution of eigenvalue probleii®0), (91) which represents a
sition betweens and higher-temperatuge phase occurs with matrix analog of differential equatior{3), (74) when using
a 5% volume collapse. Also, Pu shows anomalous resistivitg TB-LMTO basis set. We fixed radial wave functions
behaviof’ characteristic for the heavy fermion systems, but(b}*"’(r) appeared in Eq(95) from linear combinations of
neither of its phases is magnetic. The susceptibility is smalthe solutionsy,(r,E,,) of the radial Schrdinger equation as
and relatively temperature independent. The photoemi&sionwell as their energy derivatives taken at setEf at the

IV. APPLICATIONS TO PLUTONIUM
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centers of interest constructed with the spherical part of thevhere the unknown four coefficienw,, and P, are deter-
LDA potential. As the entire procedure is variational slight mined to satisfy known conditions in the low- and high-
modifications brought by the nonlocal self-energies after Eqfrequency limits. We found that this kind of self-energy fits
(61) and ignored in the present study should not lead taqguantum Monte CarlQMC) data in large region of param-
significant modifications of the obtained total energies anckters, such asl and doping, and where this comparison is at
the one-electron spectra as long as TB-LMTO basis isll possible(small degeneracy and high temperajure
thought to be complete within a given energy window. The Thus, our approach interpolates between four major lim-
second step is a construction of the charge density using thes: small and larged’s valid for anyU as well as small and
obtained local Green function. In this regard, the formulalarge U’s (band vs atomvalid for anyiw. The analytical
(60) was used which takes into account the modification ofcontinuation to the real frequency axis is not a problem with
the one-electron densities of stathig(E) brought by the the present method and avoids the use of the Paated
correlations. As, the redistribution of the spectral weight formaximum entrop$ based techniques. Complete details of
thef electrons involves the feedback on the remairsrgd  our method can be found in Ref. 41. Here we only mention
electrons, change in the densities of statgE) appears in  technicalities connected to tHeelectrons of Pu where we
all I channels. The final step is the self-consistent evaluatiodeal with the impurity Green functions which are the matri-
of the total energy using the formulg0). In the LDA  ces 14<14. However, for the relativisti¢ level in cubic
+DMFT approximation using a fixed basis set all compli- symmetry, the matrices can be reduced &% with four
cated integrals appeared in E§O) can be reduced to con- nonzero off-diagonal elements. The solution of such impurity
volutions between various matrices. Since the interactiomproblem is still a formidable numerical problem. We there-
functional has the form of Eq55), we subtract from the fore make some simplifications. First, the off-diagonal ele-
LDA the average interaction energy of thelectrons in the ments are in general small and will be neglected. We are left
form (67) of the double counting term and then add im- with the 5f%? state split into 2 levels which are twofold
proved estimates of these quantities using the self-consiste(';), and fourfold (") degenerate, and with thef 4 state
solution of the impurity model. This results in a simplified split into three levels which are twofold'¢), twofold (I";),

expression for the total energy: and fourfold ("g) degenerate. Second, since in Pu the inter-
multiplet spin-orbit splitting is much larger than the intra-
E. =T e — | Vad P o(r)dr multiplet crystal field splitting(>5:1), we reduce the prob-
ot kE] % Ijochia f er(r)p(r) lem of solving Anderson impurity modgRAIM) for the lev-

els separately by treating thé% I'; andT'g levels as one
; ; i ® T, I'; andT'g levels
-T M. iw)—VPC1G | sixfold degenerate level, and thé 6: I'7 8
% % [Mintao(10) = Vap 1Groc,pal 1) as another eightfold degenerate level.
We first study in detail the total energy as a function of the

+j Ve (D p(r)dr+Eglp]+ E)IZ(E)A[p] parameteid and give our predictions for the volumes dn
S, ande phases. We then discuss the one-electron spectra in
1 - both @ and 6 phases and compare our results with the pho-
+ ETE z Mint.ab(i©)Goc pali@) = Ppe[Nnel, toemission experimeﬁﬁSince our method does not yet al-
io ab

low us to treat complicated lattices, we perform our calcula-
(103 tions for simple fcc and bcc structures and report only a
_ simplified study of thex phase which formally has 16 atoms
whereV3S is given by Eq(69) and®c[n.] is given by Eq.  per unit cell.
(67).
Since the dynamical mean-field theory requires the solu-
tion of the Anderson impurity model for the multiorbitél
shell of Pu, we have developed a method which, inspired by To illustrate the importance of correlations, we discuss the
the success of the iterative perturbation théBipterpolates  results of our total energy calculations for various strengths
the self-energy between small and large frequencies. At lowf the on-site Coulomb interactiod. Figure 5 reports our
frequencies, the exact value of the self-energy and its slope theoretical predictions. First, the total energy as a function of
extracted from the Friedel sum rule and from a slave-bosowolume of the fcc lattice is computed. The temperature is
mean-field treatmerit.~**This approach is accurate as it has fixed at 600 K, i.e. in the vicinity of the region where tide
been shown recently to give the exact critical valudJoin ~ phase is stableJ=0 GGA curve indicates a minimum at
the large degeneracy limit at half-fillifgAt high frequen- VIV,=0.7. This volume is in fact close to the volume of the
cies the self-energy behavior can be computed based aiphase. Certainly, we expect that correlations should be less
high-frequency moments expansidfié?The result of inter-  important for the compressed lattice in general, but there is
polation can be encoded into a simple rational form for theno sign whatever of thé phase in thé) =0 calculation. The
self-energy’* In practical calculations for Pu, we used a two- total energy curve is dramatically different for larger than
pole approximation: 0. The details depend sensitively on the actual valu& of
The behavior atJ=4 eV shows the possibility of a double
W (104) minimum; it is actually realized for a slightly smaller value
iw—P,’ of U. We find that forU=3.8 eV, the minimum occurs near

A. Calculation of volume

2(iw>:2(iw>+n§12

245101-20



SPECTRAL DENSITY FUNCTIONALS FOR ELECTRONIC.. .. PHYSICAL REVIEW 89, 245101 (2004

0.00

s " GGA, fec 104 @ (b)
0.05 \A_/A/ ’ { a-Pu GGA
- . ] U=.3.0 eV, fcc %\ 8 5-Pu §
< N > ] g
50101 N\ u=3sevfec T & 2
LTCJ, .\ /'&./. e 4 E
= -0.15] *U=4.0eV, fgc 3 £
‘g 0\._’ /0 3 i
= Te e 2
-0.201 U=4.0eV, b .
0.20 o, eV, bee
oo 0 —T— —— —
0.25+———+—————1—+— -2 -1 0 1 -1 0
0.6 0.7 08 0.9 1.0 1.1 1.2 Energy relative Eg (eV)

VIV,
FIG. 6. (a) Comparison between calculated densities of states

FIG. 5. Total energy as a function of volume in Pu for different using the LDA+DMFT approach for fcc Pu: the data faf/V,
values ofU calculated using the LDADMFT approach. Data for =1.05, U=4.0 eV (black line, the data forV/V;=0.80, U
the fcc lattice are computed at=600 K, while data for the bcc  =3.8 eV(gray ling which correspond to the volumes of tideand
lattice are given fofT =900 K. a phases, respectively. The result of the GGA calculatidotted

line) at V/IV4=1(U=0) is also given(b) Measured photemission
V/V 5=0.80 which corresponds to the volume of #taghase  SPectrum ofé (black line and « (gray line Pu at the scale from
if we allow for monoclinic distortions and a volume- —1.0 to 0.4 eV(after Ref. 68.
dependentJ. When U increases by 0.2 eV the minimum
occurs atV/Vs=1.05 which corresponds to the volume of calculations with the LDA method as well as with the experi-
the & phase, in close agreement with experiment. Since thenent, we discuss the results presented in Fig. 6. Fig(ae 6
energies are so similar, we may expect that as temperatushows the density of states calculated using LEBMFT
decreases, the lattice undergoes a phase transition fros themethod in the vicinity of the Fermi level. Solid black line
phase to thex phase with the remarkable decrease of thecorresponds to thé phase and solid gray line corresponds to
volume by 25%. the o phase. We predict the appearance of a strong quasipar-

We repeated our calculations for the bcc structure usingdicle peak near the Fermi level which exists in the both
the temperaturd =900 K where thes phase is stable. Fig. 5 phases. Also, the lower and upper Hubbard bands can be
shows these results ftif=4 eV with a location of the mini-  clearly distinguished in this plot. The width of the quasipar-
mum at around//V ;= 1.03. While the theory has a residual ticle peak in thew phase is found to be larger by 30 per cent
inaccuracy in determining thé and e phase volumes by a compared to the width in thé phase. This indicates that the
few percent, a hint of volume decrease with the: e tran-  low-temperature phase is more metallic, i.e., it has larger
sition is clearly reproduced. Thus, our first-principles calcu-spectral weight in the quasiparticle peak and smaller weight
lations reproduce the main features of the experimental phase the Hubbard bands. Recent advances have allowed the
diagram of Pu. experimental determination of these spectra, and our calcu-

Note that the values df ~4 eV which are needed in our lations are consistent with these measurem@rﬁsigure Gb)
simulation to describe ther— & transition, are in good shows the measured photoemission spectruméfgblack
agreement with the values of on-site Coulomb repulsion beline) and « (gray line Pu. We can clearly see a strong qua-
tweenf electrons estimated by atomic spectral d8tapn-  siparticle peak. Also a smaller peak located at 0.8 eV for the
strained density-functional studifsand our previous LDA & phase can be found. We interpret it as the lower Hubbard
+ U studies?? band.

The double-well behavior in the total-energy curve is un- The result of the local-density approximation is shown on
precedented in LDA or GGA based calculations but it is aFig. 6@ by dashed line. The LDA produces two peaks near
natural consequence of the proximity to a Mott transition.the Fermi level corresponding tof %2 and 5 "2 states sepa-
Indeed, recent studies of model Hamiltonian syst@ffsn rated by the spin-orbit coupling. The Fermi level falls into
the vicinity of the Mott transition show that two DMFT so- the dip between these states and cannot reproduce the fea-
lutions which differ in their spectral distributions can coexist.tures seen in photoemission. We should also mention that
It is very natural that allowing the density to relax in theseLDA + U fails completel§*"* to reproduce the intensity of
conditions can give rise to the double minima as seen ihef states near the Fermi level as it pushesfthand 2-3
Fig. 5. eV below the Fermi energy. This is the picture expected from
the static Hartree-Fock theory such as the Lb. Only
full inclusion of the dynamic effects within the DMFT allows
to account for both the quasiparticle resonance and the Hub-

We now report our calculated spectral density of states fobard satellites which explains all features of the photoemis-
the fcc structure using the volumé/V;=0.8 andV/Vs  sion spectrum in5 Pu.
=1.05 corresponding to our theoretical studiesaofind & The calculated by LDA DMFT densities of states at:E
phases. To compare the results of the dynamical mean-fielelqual to 7 stjeV*cell] are consistent with the measured val-

B. Calculation of spectra

245101-21



S. Y. SAVRASOV AND G. KOTLIAR PHYSICAL REVIEW B69, 245101 (2004

ues of the linear specific-heat coefficient. We still find a re-theory of strongly correlated systems accurate in the situa-
sidual discrepancy by about factor of 2 due to either inaccutions when the self-energy is short ranged in a certain portion
racies of the present calculation or due to the electron-ef space. The localization is defined with reference to some
phonon interactions. However, these values represent dwasis in Hilbert space. It does not necessarily imply localiza-
improvement as compared to the LDA calculations whichtion in real space and is treated using a general basis set
appear to be five times smaller. Similar inaccuracy has beefollowing the ideology of the cellular dynamical mean-field
seen in the LDA- U calculation®? theory. Further approximations of the theory, such as LDA
A simple physical explanation drawn from these studies+ DMFT and local GW are discussed. Implementation of the
suggests that in thé phase thd electrons are slightly on the method is described in terms of the energy-dependent one-
localized side of the interaction-driven localization- particle states expanded via the linear muffin-tin orbitals. Ap-
delocalization transition with a sharp and narrow Kondo-likeplication of the method in its LDA DMFT form is given to
peak and well-defined upper and lower Hubbard bands. Istudy the anomalous volume expansion in metallic Pluto-
therefore has the largest volume as has been found by previium. We obtain equilibrium volume of thé phase in good
ous LDA+ U calculation§?"* which take into account Hub- agreement with experiment with no magnetic order imposed
bard bands only. The low-temperaturephase is more me- in the calculation. The calculated one-electron densities of
tallic, i.e. it has larger spectral weight in the quasiparticlestates are consistent with the results of the photoemission.
peak and smaller weight in the Hubbard bands. It will there-Our most recent studi&sof the lattice dynamical properties
fore have a much smaller volume that is eventually repro-of Pu address the problem of ti#e- ¢ transitions and show
duced by LDA/GGA calculations which neglect both Cou- good agreement with experimetit.
lomb renormalizations of quasiparticles and atomic multiplet  Alternative developments of the LDADMFT approach
structure. The delicate balance of the energies of the twby several groups around the world discuss other applica-
minima may be the key to understanding the anomalousions of the dynamical mean-field theory in electronic-
properties of Pu such as the great sensitivity to smalktructure calculations. The results obtained are promising.
amounts of impuritiegwhich intuitively would raise the en- Volume collapse transitions, materials near the Mott transi-
ergy of the less symmetric monoclinic structure, thus stabition, systems with itinerant and local moments, as well as
lizing the & phase to lower temperatyrand the negative many other exciting problems are beginning to be explored
thermal expansion. Notice however, that th@hase is not a using these methods.
weakly correlated phase: it is just slightly displaced towards
the delocalized side of the localization—delocalization transi-
tion, relative to thes phase. This is a radical new viewpoint ACKNOWLEDGMENTS
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