
Composite fermion theory of correlated electrons in semiconductor quantum dots in high
magnetic fields

Gun Sang Jeon, Chia-Chen Chang, and Jainendra K. Jain
Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 26 April 2004; published 21 June 2004)

Interacting electrons in a semiconductor quantum dot at strong magnetic fields exhibit a rich set of states,
including correlated quantum fluids and crystallites of various symmetries. We develop in this paper a pertur-
bative scheme based on the correlated basis functions of the composite-fermion theory, that allows a systematic
improvement of the wave functions and the energies for low-lying eigenstates. For a test of the method, we
study systems for which exact results are known, and find that practically exact answers are obtained for the
ground state wave function, ground state energy, excitation gap, and the pair correlation function. We show
how the perturbative scheme helps resolve the subtle physics of competing orders in certain anomalous cases.
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There is a strong motivation for developing theoretical
tools for obtaining a precise quantitative description of inter-
acting electrons in confined geometries, for example in a
semiconductor quantum dot, because of their possible rel-
evance to future technology.1 Exact diagonalization is pos-
sible in some limits but restricted to very small numbers of
electrons, and does not give insight into the underlying phys-
ics. For larger systems, one must necessarily appeal to ap-
proximate methods. The standard Hartree-Fock or density
functional type methods provide useful insight, but are often
not very accurate for these strongly correlated systems. The
aim of this paper is to demonstrate that a practically exact
quantitative description is possible for a model quantum dot
system, facilitated by the ability to construct low-energy cor-
related basis functions.
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which containsN interacting electrons in two dimensions,
confined by a parabolic potential and subjected to a magnetic
field. The parametermb is the band mass of the electron,v0
is a measure of the strength of the confinement,e is the
dielectric constant of the host semiconductor, andr jk= ur j
−rku. We will consider the limit of a large magnetic field
svc=eB/mbc@v0d, when it is a good approximation to take
electrons to be confined to the lowest Landau level(LL ). In
that limit, the energy eigenvalues have the formEsLd
=EcsLd+VsLd where the contribution from the confinement
potential is explicitly known as a function of the total angu-
lar momentumL: EcsLd=s" /2dfV−vcgL, with V2=vc

2+4v0
2,

andVsLd is the interaction energy of electrons without con-
finement, but with the magnetic length replaced by an effec-
tive magnetic length given by,;Î" /mbV. Thus, the prob-
lem is reduced to finding the interaction energyV (which
will be quoted below in units ofe2/e,) as a function of the
angular momentumL. Exact results, known for a range ofN
andL values from a numerical diagonalization of the Hamil-
tonian, provide a rigorous and unbiased benchmark for any
theoretical approach. Exact studies have shown2 a correlated

liquidlike state at smallL, but a crystallite at relatively large
L, as may be expected from the fact that the system becomes
more and more classical asL increases.(The ground state in
the classical limit is a crystal.3) Hartree-Fock studies have
been performed for the quantum crystallite.4,5

We will apply the composite fermion(CF) theory6 to
quantum dot states.7–9 The central idea is a mapping between
strongly interacting electrons at angular momentumL and
weakly interacting electrons atL* ;L−pNsN−1d. In par-
ticular, a correlated basishCa

Lj for the low energy states of
interacting electrons atL can be constructed from the trivial,
orthonormal Slater determinant basis for non-interacting
electrons atL*, denoted byhFa

L*j, in the following manner:

Ca
L = Pp

j,k

szj − zkd2pFa
L* . s2d

Here,zj =xj − iyj denotes the position of thej th electron, 2p is
the vorticity of composite fermions, andP indicates projec-
tion into the lowest LL.(Electrons atL* in general occupy
several Landau levels.) The symbola=1,2, . . . ,D* labels
the D* Slater determinants included in the study. In general,
the basishCa

Lj is not linearly independent, so its dimension,
DCF, may not be equal toD* sDCFøD* d. The advantage of
working with the correlated CF basis is thatDCF is drasti-
cally smaller thanDex, the dimension of the lowest LL Fock
space atL (which is also the dimension of the matrix that
must be diagonalized for obtaining exact results). Figure 1
illustrates some basis functions atL=95.

At a back-of-the-envelope level, one can compare the ex-
act interaction energy atL to the kinetic energy offree fer-
mions atL*, with the cyclotron energy treated as an adjust-
able parameter.7 That reproduces the qualitative behavior for
the L dependence of the exact energy for smallL,7 but dis-
crepancies are known to appear at largerL.2,5

For a more substantive test of the theory, it is necessary to
obtain the energy spectrum by diagonalizing the Hamiltonian
of Eq. (1) in the correlated basis functions of Eq.(2). The
CF-quasi-Landau level mixing is treated as a small param-
eter, and completely suppressed at the simplest approxima-
tion, which we refer to as the zeroth order approximation.
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Here, the correlated basis states atL are obtained by restrict-
ing the basishFaj to all states with the lowest kinetic energy
at L* (with p always chosen so as to give the smallest di-
mension).

Diagonalization in the correlated CF basis is technically
involved, but efficient methods for generating the basis func-
tions as well as all of the matrix elements required for Gram-
Schmidt orthogonalization and diagonalization have been de-
veloped using Metropolis Monte Carlo sampling. We refer
the reader to earlier literature for full details.8,10

A diagonalization of the Hamiltonian in the zeroth level
basis produces energies and wave functions forDCF

s0d low-
lying states. The interaction energy and the wave function for
the ground state will be denotedVCF

s0d andCCF
s0d, respectively.

We have carried out11 extensive calculations for a large range
of L for up to ten particles, and found that the CF theory
reproduces the qualitative behavior of the energy as a func-
tion of L all the way to the largestL for which exact results
are known. We show in Table I results forN=6 electrons in
the angular momentum range 79øLø108, which spans both

liquid and crystal-like ground states. Reference 11 shows a
comparison of the exact pair correlation function with that
calculated fromCCF

s0d for L=95 (where there is a unique CF
wave function); surprisingly, the CF theory, originally in-
tended for the liquid state, automatically produces also a
crystallite at largeL, even though no crystal structure has
been put into the theory by hand.12 Table II gives the over-
laps defined asOs0d;ukCCF

s0d uCexlu /ÎkCCF
s0d uCCF

s0dlkCexuCexl.
While the zeroth level description is quite good, the fol-

lowing deviations from the exact solution may be noted.(i)
The overlaps are in the range 0.70–0.94, which are not as
high as the overlapss,0.99d for incompressible ground
states in the spherical geometry.(ii ) The energies are within
0.5% of the exact ones, which is quite good but could be
further improved.(iii ) In the crystallite, the particles are
somewhat less strongly localized in the CF wave function

FIG. 1. Schematic depiction of Slater determinant basis states
for N=6 electrons atL=95, which maps intoL* =5 with 2p=6.
The single electron orbitals atL* =5 are labeled by two quantum
numbers, the LL indexn=0,1, . . ., and theangular momentuml
=−n,−n+1, . . .. Thex-axis labelsn+ l and they-axis n. The dots
show the occupied orbitals forming the Slater determinantsFa

L*=5

relevant up to the first order. The state shown at the top left has the
lowest kinetic energy(if the kinetic energy is measured relative to
the lowest Landau level, then, in units of the cyclotron energy, the
total kinetic energy of this state is two). The other nine states have
one higher unit of kinetic energy. The basis statesCa

L=95 are ob-
tained according to Eq.(2), through multiplication byp j,kszj

−zkd6, which converts electrons into composite fermions carrying
six vortices. That is shown schematically by six arrows on each dot.
The single state at the top is relevant at the zeroth order, and all ten
basis states are employed at the first order.(In fact, there are a total
of 12 linearly independent statesFa

L* at the first order forL* =5,
but they produce only ten linearly independent statesCa

L at L=95.)

TABLE I. Exact ground state energysVexd and the ground state
energy obtained from the zerothsVCF

s0dd and the first-ordersVCF
s1dd CF

theory forN=6. The dimensions of the bases diagonalized areDex,
DCF

s0d, andDCF
s1d, respectively. The statistical uncertainty arising from

Monte Carlo sampling is given in parentheses.

L Vex VCF
s0d VCF

s1d Dex DCF
s0d DCF

s1d

79 2.1570 2.1610(2) 2.1573(3) 26207 4 55

80 2.1304 2.1332(1) 2.1307(1) 28009 2 33

81 2.1286 2.1302(1) 2.1289(2) 29941 1 20

82 2.1226 2.1261(4) 2.1229(5) 31943 10 86

83 2.1090 2.1141(7) 2.1093(2) 34085 5 50

84 2.0893 2.0941(1) 2.0903(2) 36308 2 26

85 2.0651 2.0692(1) 2.0655(1) 38677 1 13

86 2.0651 2.0694(5) 2.0656(2) 41134 5 48

87 2.0543 2.0552(2) 2.0546(2) 43752 2 24

88 2.0462 2.0496(1) 2.0466(2) 46461 9 58

89 2.0279 2.0330(3) 2.0290(3) 49342 3 27

90 2.0054 2.0097(1) 2.0064(1) 52327 1 9

91 2.0054 2.0098(3) 2.0065(2) 55491 3 25

92 1.9989 2.0013(1) 1.9996(2) 58767 8 48

93 1.9852 1.9861(1) 1.9851(3) 62239 2 20

94 1.9715 1.9764(2) 1.9726(2) 65827 4 36

95 1.9506 1.9549(2) 1.9516(2) 69624 1 10

96 1.9506 1.9551(2) 1.9516(4) 73551 2 18

97 1.9447 1.9484(1) 1.9456(5) 77695 5 32

98 1.9347 1.9381(3) 1.9359(4) 81979 9 49

99 1.9189 1.9228(1) 1.9217(4) 86499 1 17

100 1.9001 1.9034(2) 1.9014(3) 91164 2 26

101 1.9001 1.9033(2) 1.9014(1) 96079 4 41

102 1.8947 1.8977(2) 1.8959(3) 101155 7 58

103 1.8855 1.8880(2) 1.8863(2) 106491 12 83

104 1.8712 1.8736(2) 1.8729(1) 111999 18 111

105 1.8533 1.8617(2) 1.8542(3) 117788 1 28

106 1.8533 1.8618(1) 1.8538(4) 123755 1 39

107 1.8483 1.8555(2) 1.8488(4) 130019 2 55

108 1.8396 1.8463(2) 1.8402(4) 136479 3 74
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than in the exact ground state(see Ref. 11). (iv) The sym-
metry of the crystallite is predicted correctly with the excep-
tion of L=99, where the CF theory predicts a(0,6) crystallite
[Fig. 2(b)], that is, with all six particles on an outer ring,
whereas the exact solution shows a(1,5) crystallite [Fig.
2(a)], which has five particles on the outer ring and one at the
center. (v) A successful theory must explain not only the
ground state but also excited states, especially the low-
energy ones. We have considered the gap between the two
lowest eigenstates. The zeroth-order theory does not give,
overall, a satisfactory account of it. In some instances(e.g.,
L=81,85,90,95,99,105,106 forN=6), the CF theory gives
no information on the gap, because the basis contains only a
single state heresDCF

s0d=1d; in many other cases, the gap pre-

dicted by the CF theory is off by a factor of 2–3.
These discrepancies have motivated us to incorporate CF-

quasi-LL mixing perturbatively.(We stress that CF-quasi-LL
mixing implies LL mixing atL*, but the basis states atL are,
by construction, always within the lowest LL.) At the first
order, we include basis statesFL* at L* with one more unit
of the kinetic energy, which produces a larger basis atL
through Eq.(2). The basic idea is illustrated for the case of
N=6 andL=95 sL* =5, 2p=6d in Fig. 1.

In a similar way we have constructed correlated basis
functions at each angular momentum in the range 79øL
ø108. As shown in Table I,DCF

s1d, the dimension of the basis
in the first-order theory is larger thanDCF

s0d but still far smaller
thanDex. A diagonalization of the Hamiltonian in this basis
produces the ground state energyVCF

s1d and ground state wave
function CCF

s1d. Leaving asideL=99, which we shall discuss
separately, the following observations can be made:(i) The
energies are essentially exact. As shown in Table I, the de-
viation from the exact energy is reduced to,0.1%, in fact,
to ,0.05% in most cases.(ii ) The overlaps from the first-
order theory,Os1d;ukCCF

s1d uCexlu /ÎkCCF
s1d uCCF

s1dlkCexuCexl, are
given in Table II. They are uniformly excellent(0.98–0.99)
in the entireL range studied.(iii ) The improvement by the
first order perturbation theory is also manifest in the pair-
correlation functions, which are now indistinguishable from
the exact ones at arbitraryL. That is not surprising, given the
high overlaps.(iv) As seen in Fig. 3 the first-order theory
reproduces the qualitative behavior of the excitation gap as a
function of L, and also gives very good quantitative values.
The maximum gaps are correlated with the states where a

TABLE II. Overlaps between exact ground states and CF
ground states obtained at the zerothsOs0dd and the first ordersOs1dd.
The statistical uncertainty from Monte Carlo sampling does not
affect the first three significant figures.

L Os0d Os1d L Os0d Os1d

95 0.902 0.988 102 0.927 0.985

96 0.892 0.988 103 0.943 0.978

97 0.898 0.989 104 0.946 0.972

98 0.908 0.985 105 0.714 0.989

99 0.767 0.859 106 0.710 0.987

100 0.936 0.982 107 0.735 0.988

101 0.936 0.981 108 0.781 0.990

FIG. 2. (Color online) Pair correlation function forN=6 electrons atL=99. The position of one particle is fixed on the outer ring,
coincident with the position of the missing peak. The ground state wave function used in the calculation is obtained from(a) exact
diagonalization;(b) the zeroth-order CF theory;(c) the first-order CF theory;(d) the second-order CF theory. The “noise” in(a) and (d)
results from the relatively large statistical uncertainty in Monte Carlo because of the more complicated wave function.
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downward cusp appears in the plot ofVsLd, consistent with
the higher stability of these ground states.

Finally, we discuss the case ofL=99. Here, the zeroth
order CF theory predicts a wrong symmetry for the crystal-
lite [Fig. 2(b)]. As seen in Fig. 2(c), the first order correction
also fails to recover the correct symmetry. That is also re-
flected in the fact that the modified ground state of the first-
order theory yields a relatively small overlap of,0.86, and
the energy is off by a relatively large 0.15%. A closer inspec-
tion of the correlations in Fig. 2(c) reveals a slight broaden-
ing of the hexagonal structure in the outer-ring, combined
with an appearance of a small mound at the center, suggest-
ing that the structure here may be a superposition of(0,6)
and (1,5) crystallites. This has motivated us to incorporate
the next(second) order corrections. The basis dimensionDCF

s2d

is now further enlarged, but Monte Carlo still produces reli-
able results. The CF ground state wave function obtained at
this level is extremely accurate: the pair correlation function
shown in Fig. 2(d) compares well to the exact one, and, as
seen in Table III, the energy and the overlaps are close to
perfect. The origin of the difficulty can be understood from
the fact that the(0,6) and the(1,5) crystallites are nearly
degenerate in the classical limit,3 making them both competi-
tive.

We have focused in this work on cases where the exact
results are known, because the aim was to test the applica-
bility of the CF theory to quantum dots. The theory can be
extended to much larger systems, where exact diagonaliza-
tion is not possible; in such cases, one would need to in-
crease the accuracy perturbatively until sufficient conver-
gence is achieved. The method developed here should also
prove useful for multiple coupled quantum dots13 and rapidly
rotating atomic Bose-Einstein condensates.14
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FIG. 3. Comparison of the exact excitation gaps(h) for N=6
with the gaps obtained in the first-order CF theory(P).

TABLE III. Comparison of the second order CF theory with
exact results for theL=99 ground state.Ds2d is the dimension of the
correlated CF basis,VCF

s2d is the CF prediction for the ground state
energy, andOs2d is the overlap between the CF and the exact wave
functions.

L Dex DCF
s2d Vex VCF

s2d Os2d

99 86499 76 1.9189 1.9193(3) 0.995
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