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Interacting electrons in a semiconductor quantum dot at strong magnetic fields exhibit a rich set of states,
including correlated quantum fluids and crystallites of various symmetries. We develop in this paper a pertur-
bative scheme based on the correlated basis functions of the composite-fermion theory, that allows a systematic
improvement of the wave functions and the energies for low-lying eigenstates. For a test of the method, we
study systems for which exact results are known, and find that practically exact answers are obtained for the
ground state wave function, ground state energy, excitation gap, and the pair correlation function. We show
how the perturbative scheme helps resolve the subtle physics of competing orders in certain anomalous cases.
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There is a strong motivation for developing theoreticalliquidlike state at small, but a crystallite at relatively large
tools for obtaining a precise quantitative description of inter-L, as may be expected from the fact that the system becomes
acting electrons in confined geometries, for example in anore and more classical &sincreases(The ground state in
semiconductor quantum dot, because of their possible rethe classical limit is a crystd). Hartree-Fock studies have
evance to future technologyExact diagonalization is pos- been performed for the quantum crystalfite.
sible in some limits but restricted to very small numbers of We will apply the composite fermioriCF) theory to
electrons, and does not give insight into the underlying physgquantum dot states?® The central idea is a mapping between
ics. For larger systems, one must necessarily appeal to aptrongly interacting electrons at angular momentunand
proximate methods. The standard Hartree-Fock or densitweakly interacting electrons dt* =L-pN(N-1). In par-
functional type methods provide useful insight, but are ofterticular, a correlated basigP:} for the low energy states of
not very accurate for these strongly correlated systems. Thigteracting electrons dt can be constructed from the trivial,
aim of this paper is to demonstrate that a practically exacbrthonormal Slater determinant basis for non-interacting
guantitative description is possible for a model quantum doklectrons at.*, denoted by{q)';*}, in the following manner:
system, facilitated by the ability to construct low-energy cor-
related basis functions. ‘I’b =P[] (z- Zk)qu)b*. 2)

Our concern will be with the solution of j<k

_ 1 e, |\ My 5> ¢ Here,z=x; —iy; denotes the position of thj¢h electron,  is
H=2 2_mb<pi * EAJ) +2 PRI 2 o Y the vorticity of composite fermions, arfé indicates projec-
] j j<k €jk L -
tion into the lowest LL.(Electrons at_* in general occupy

which containsN interacting electrons in two dimensions, several Landau levelsThe symbola=1,2,... D* labels
confined by a parabolic potential and subjected to a magnetige D* Slater determinants included in the study. In general,
field. The parametem, is the band mass of the electran,  the basigW%} is not linearly independent, so its dimension,
is a measure of the strength of the confinements the D may not be equal t®* (Dce<D*). The advantage of
dielectric constant of the host semiconductor, ag&|r;  working with the correlated CF basis is thBge is drasti-
~rid. We will consider the limit of a large magnetic field cally smaller tharDy,, the dimension of the lowest LL Fock
(we=eB/my,c> wg), when it is a good approximation to take space at. (which is also the dimension of the matrix that
electrons to be confined to the lowest Landau lgl&l). In must be diagonalized for obtaining exact resul&gure 1
that limit, the energy eigenvalues have the foiliL) jllustrates some basis functionslat 95.
=E(L)+V(L) where the contribution from the confinement At a back-of-the-envelope level, one can compare the ex-
potential is explicitly known as a function of the total angu- act interaction energy at to the kinetic energy ofree fer-
lar momentunL: Ei(L)=(A/2)[Q- L, with Q°=wZ+4w3,  mions atL*, with the cyclotron energy treated as an adjust-
and V(L) is the interaction energy of electrons without con- able parameterThat reproduces the qualitative behavior for
finement, but with the magnetic length replaced by an effecthe L dependence of the exact energy for snhall but dis-
tive magnetic length given by=\A/m,Q. Thus, the prob- crepancies are known to appear at largér
lem is reduced to finding the interaction energy(which For a more substantive test of the theory, it is necessary to
will be quoted below in units 0&/e() as a function of the obtain the energy spectrum by diagonalizing the Hamiltonian
angular momenturh. Exact results, known for a range Nf ~ of Eq. (1) in the correlated basis functions of E@). The
andL values from a numerical diagonalization of the Hamil- CF-quasi-Landau level mixing is treated as a small param-
tonian, provide a rigorous and unbiased benchmark for angter, and completely suppressed at the simplest approxima-
theoretical approach. Exact studies have sifoavoorrelated tion, which we refer to as the zeroth order approximation.
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TABLE |. Exact ground state enerdy,,) and the ground state
energy obtained from the zero(k{g) and the first—orde(V(Clé) CF
theory forN=6. The dimensions of the bases diagonalizedtag
Dg’,):, and Dg): respectively. The statistical uncertainty arising from
Monte Carlo sampling is given in parentheses.

(0) (1) (0) (1)
L Vex Ver Ve Dex Der Dér

79 21570 2.161@) 2.15733) 26207 4 55
80 2.1304 2.1332) =2.13071) 28009 2 33
81 21286 2.130d) 2.12892) 29941 1 20

82 21226 2.126%) 2.12295) 31943 10 86
83 21090 2.114%) 2.10932) 34085 5 50
84 2.0893 2.0941) 2.09032) 36308 2 26
85 2.0651 2.0692) 2.065%1) 38677 1 13
86 2.0651 2.069%) 2.06562) 41134 5 48
87 2.0543 2.0552) 2.05462) 43752 2 24
88 2.0462 2.0498) 2.04662) 46461 9 58
012345 89 2.0279 2.033@) 2.02943) 49342 3 27
90 2.0054 2.0097) 2.00641) 52327 1 9
FIG. 1. Schematic depiction of Slater determinant basis statesg; 20054 2.0098) 2.00652) 55491 3 25
for N:.6 electrons aL=95, which maps intd*=5 with 2p=6. 92  1.9989 2.001@) 1.99962) 58767 8 48
The single electron orbitals &t*=5 are labeled by two quantum
numbers, the LL indexn=0,1,..., and theangular momentunh 93 1.9852 1.9861) 1.98513) 62239 2 20
=-n,-n+1,.... Thex-axis labelsn+| and they-axis n. The dots 94 19715 197682) 197262) 65827 4 36
show the occupied orbitals forming the Slater determind{$® 95 1.9506 1.954@) 1.95162) 69624 1 10
relevant up to the first order. The state shown at the top left has thegs  1.9506 1.955P) 1.95164) 73551 2 18
lowest kinetic energyif the kinetic energy is measured relative to g7 1 g447 1.9484) 1.94565) 77695 5 32
the lowest Landau level, then, in units of the cyclotron energy, the
o . . ) 98 1.9347 1.938B) 1.93594) 81979 9 49
total kinetic energy of this state is twolr'he other nine states have
one higher unit of kinetic energy. The basis stalés® are ob- 99 19189 1.9228) 1.92174) 86499 1 17
tained according to Eq(2), through multiplication byTlj(z; 100 1.9001 1.9032) 1.90143) 91164 2 26
-2)8, which converts electrons into composite fermions carrying 101 1.9001 1.9032) 1.90141) 96079 4 41
six vortices. That is shown schematically by six arrows on each dot.1g>  1.8947 1.8972) 1.89593) 101155 7 58

The_ single state at the top is relevant at the zeroth order, and all terl03 18855 1.888@) 1.88632) 106491 12 83
basis states are employed at the first orfarfact, there are a total
of 12 linearly independent statds. at the first order folL* =5, 104 18712 1873@ 187291 111999 18 111
but they produce only ten linearly independent staitésat L =95) 105 1.8533 1.8612) 1.85423) 117788 1 28
106 1.8533 1.8618) 1.85384) 123755 1 39
Here, the correlated basis stated atre obtained by restrict- 107 1.8483 1.855%) 1.84884) 130019 2 55
ing the basig®,} to all states with the lowest kinetic energy 108 1.8396 1.8462) 1.84024) 136479 3 74
at L* (with p always chosen so as to give the smallest di
mension.

Diagonalization in the correlated CF basis is technicallyliquid and crystal-like ground states. Reference 11 shows a
involved, but efficient methods for generating the basis funccomparison of the exact pair correlation function with that
tions as well as all of the matrix elements required for Gram-<alculated from\lfﬁ?é for L=95 (where there is a unique CF
Schmidt orthogonalization and diagonalization have been devave function; surprisingly, the CF theory, originally in-
veloped using Metropolis Monte Carlo sampling. We refertended for the liquid state, automatically produces also a
the reader to earlier literature for full deta4? crystallite at largeL, even though no crystal structure has

A diagonalization of the Hamiltonian in the zeroth level been put into the theory by haf#@iTable Il gives the over-
basis produces energies and wave functionsljé"‘: low- laps defined aﬁ)(O)EK‘P(COH\IfeX)U \/<\Pg|\l'(c°g><\lfex|\lfex).
lying states. The interaction energy and the wave function for While the zeroth level description is quite good, the fol-
the ground state will be denote\tg and qu’;, respectively. lowing deviations from the exact solution may be notgyl.

We have carried ol extensive calculations for a large range The overlaps are in the range 0.70-0.94, which are not as
of L for up to ten particles, and found that the CF theoryhigh as the overlapg~0.99 for incompressible ground
reproduces the qualitative behavior of the energy as a funcstates in the spherical geometfyy) The energies are within
tion of L all the way to the largedt for which exact results 0.5% of the exact ones, which is quite good but could be
are known. We show in Table | results fd=6 electrons in  further improved.(iii) In the crystallite, the particles are
the angular momentum range <& < 108, which spans both somewhat less strongly localized in the CF wave function
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TABLE II. Overlaps between exact ground states and CFdicted by the CF theory is off by a factor of 2-3.
ground states obtained at the zer6@®) and the first ordetO'®). These discrepancies have motivated us to incorporate CF-
The statistical uncertainty from Monte Carlo sampling does notquasi-LL mixing perturbatively\We stress that CF-quasi-LL
affect the first three significant figures. mixing implies LL mixing atL*, but the basis states &tare,
by construction, always within the lowest DLAt the first
L 00 oW L 00 oW order, we include basis statdd” at L* with one more unit
of the kinetic energy, which produces a larger basid at
95 0.902 0.988 102 0.927 0.985  through Eq.(2). The basic idea is illustrated for the case of
96 0.892 0.988 103 0.943 0.978 N=6 andL=95(L*=5, 2p=6) in Fig. 1.
97 0.898 0.989 104 0.946 0.972 In a similar way we have constructed correlated basis
98 0.908 0.985 105 0.714 0.989 functions at each angular momentum in the ranges<l9
99 0.767 0.859 106 0.710 0987 <108. As shown in Table IDCF, the dimension of the basis

100 0936 0.982 107 0.735 0.988 in the first- ortjer the(_)ry is larger thzﬂﬁ)F t_)ut etlll fer smaller_
thanDg,. A diagonalization of the Hamiltonian in this basis
101 0.936 0.981 108 0.781 0.990
produces the ground state ene@% and ground state wave
function \PCF Leaving asidd_=99, which we shall discuss
than in the exact ground statsee Ref. 11 (iv) The sym-  separately, the following observations can be madeThe
metry of the crystallite is predicted correctly with the excep-energies are essentially exact. As shown in Table |, the de-
tion of L=99, where the CF theory predict§@6) crystallite ~ Viation from the exact energy is reduced4®.1%, in fact,
[Fig. Zb)], that is, with all six particles on an outer ring, t0 <0.05% in most case$||) The 0V€f|ap5 from the first-
whereas the exact solution shows(B5) crystallite [Fig.  order theory()(l)—|<‘1' |\Ifex>|/\/<\lf(l) F)(\Ifexl‘lfex) are
2(a)], which has five particles on the outer ring and one at theyiven in Table 1. They are uniformly excelle®.98-0.99
center.(v) A successful theory must explain not only the in the entireL range studied(iii) The improvement by the
ground state but also excited states, especially the lowfirst order perturbation theory is also manifest in the pair-
energy ones. We have considered the gap between the tworrelation functions, which are now indistinguishable from
lowest eigenstates. The zeroth-order theory does not givehe exact ones at arbitraty That is not surprising, given the
overall, a satisfactory account of it. In some instan@sg.,  high overlaps(iv) As seen in Fig. 3 the first-order theory
L=81,85,90,95,99,105, 106 ft¢=6), the CF theory gives reproduces the qualitative behavior of the excitation gap as a
no information on the gap, because the basis contains onlyfanction of L, and also gives very good quantitative values.
single state heréD =1); in many other cases, the gap pre- The maximum gaps are correlated with the states where a

()

FIG. 2. (Color onling Pair correlation function foN=6 electrons aL.=99. The position of one particle is fixed on the outer ring,
coincident with the position of the missing peak. The ground state wave function used in the calculation is obtainés) &ract
diagonalization;(b) the zeroth-order CF theoryc) the first-order CF theory(d) the second-order CF theory. The “noise” (& and (d)
results from the relatively large statistical uncertainty in Monte Carlo because of the more complicated wave function.
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T T T T T T TABLE Ill. Comparison of the second order CF theory with
exact results for the =99 ground stateD@ is the dimension of the

0.04 — . . .
correlated CF bas&/é% is the CF prediction for the ground state
. energy, and?@ is the overlap between the CF and the exact wave
A functions.
0.021
L e DR Ve VA 0@

d 99 86499 76 1.9189 1.9168 0.995

1 1
80 85 90 95 100 105
L is now further enlarged, but Monte Carlo still produces reli-
able results. The CF ground state wave function obtained at
FIG. 3. Comparison of the exact excitation gap$) for N=6 this level is extremely accurate: the pair correlation function
with the gaps obtained in the first-order CF the(®). shown in Fig. 2d) compares well to the exact one, and, as
seen in Table Ill, the energy and the overlaps are close to
downward cusp appears in the plot\fL), consistent with  perfect. The origin of the difficulty can be understood from
the higher stability of these ground states. the fact that the(0,6) and the(1,5) crystallites are nearly
Finally, we discuss the case &f=99. Here, the zeroth degenerate in the classical liMitnaking them both competi-
order CF theory predicts a wrong symmetry for the crystal{Ilve. o
lite [Fig. 2b)]. As seen in Fig. @), the first order correction ~ We have focused in this work on cases where the exact
also fails to recover the correct symmetry. That is also refesults are known, because the aim was to test the applica-
flected in the fact that the modified ground state of the firstPility of the CF theory to quantum dots. The theory can be
order theory yields a relatively small overlap ©0.86, and ~ €Xténded to much larger systems, where exact diagonaliza-
the energy is off by a relatively large 0.15%. A closer inspec-t'on is not possible; in such cases, one would need to in-

tion of the correlations in Fig.(2) reveals a slight broaden- crease the accuracy perturbatively until sufficient conver-

ing of the hexagonal structure in the outer-ring, combinegjnce is achieved. The method developed here should also

with an appearance of a small mound at the center, sugge rove useful for multiple coupled quantum nd rapidly

. " Stating atomic Bose-Einstein condensdtes.
ing that the structure here may be a superpositioiOg5) g

and (1,5 crystallites. This has motivated us to incorporate  Partial support by the National Science Foundation under
the next(second order corrections. The basis dimenslbg; Grant No. DMR-0240458 is gratefully acknowledged.
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