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We calculate an effect of spinless impurities on the spin Hall effect of the Luttinger model representing
p-type semiconductors. The self-energy in the Born approximation becomes diagonal in the helicity basis and
its value is independent of the wave number or helicity. The vertex correction in the ladder approximation
vanishes identically, in sharp contrast with the Rashba model. This implies that in the clean limit the spin Hall
conductivity reproduces the value of the intrinsic spin Hall conductivity calculated in earlier papers.
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Understanding the dynamics of spins is a long-standing
subject in semiconductor physics. Though there have been
lots of experimental and theoretical studies toward this goal,
there remain many obstacles to overcome before we can ma-
nipulate spins at our disposal in semiconductor spintronics
devices.1,2 One of the obstacles is efficient spin injection into
semiconductors, and there have been many atempts for it.
For example, spin injection from ferromagnetic metals has
low efficiency, because of the band structure mismatch be-
tween semiconductors and metals, in particular by the con-
ductivity mismatch.3 On the other hand, while spin injection
from ferromagnetic semiconductors such assGa,MndAs
(Ref. 4) provides relatively high efficiency,5 the Curie tem-
peratures of such ferromagnetic semiconductors still remain
lower than room temperature. Thus the spin injection, which
constitutes the very first step for spintronic devices, is still
under intensive investigation.

In such circumstances, recent theoretical proposals of an
intrinsic spin Hall effect6,7 have attracted much attention. In
these works, it is theoretically predicted that an external elec-
tric field induces a dissipationless spin current in semicon-
ductors. This intrinsic spin Hall effect is predicted for the
Luttinger model representing bulkp-type semiconductors,6

and for the Rashba model representing two-dimensional
n-type semiconductors in heterostructure.7 This intrinsic spin
Hall effect is caused by the Berry phase8 in the momentum
space. Berry-phase structure in momentum space is com-
prised in the electronic Bloch bands,9–11 and endows the car-
riers with an anomalous velocity. Due to the spin-orbit cou-
pling, the carriers will then have spin-dependent trajectories
in the presence of an external electric field, and it amounts to
the intrinsic spin Hall effect. In bulkp-type semiconductors,
the valence band has a spin splitting, giving rise to spin Hall
effect by hole-doping as proposed by the author and his
collaborators,6 whereas in bulkn-type semiconductors, the
conduction band is doubly degenerate(if the Dresselhaus
term is neglected), and the spin Hall effect does not emerge.
Instead, by making the heterostructure from then-type semi-
conductor, the Rashba spin splitting12,13 arises, and it gives
rise to the spin Hall effect proposed by Sinovaet al.7 Al-
though an unambiguous experimental detection remains to
be done, many theoretical studies have appeared since the
proposals of the intrinsic spin Hall effect.14–26 We note that
these are different from an extrinsic spin Hall effect caused

by spin-dependent scattering by impurities, which might be
assumed as a main source of spin Hall effect in earlier
papers.27–29

In order to argue possibilities of experimental detection,
theoretical investigation of disorder effects is highly desired.
In this paper, we mainly focus on the Luttinger model rep-
resentingp-type semiconductors,30 and study disorder effects
on the spin Hall effect. We shall also discuss on the Rashba
model. For the Luttinger model, the effect of self-energy
broadening was calculated by Schliemann and Loss,17 and no
other papers on disorder effect have appeared at present. In
this paper, we study the effect of randomly distributed spin-
less impurities with short-ranged potential, by calculating
both the self-energy correction in the Born approximation
and the vertex correction in the ladder approximation. The
calculation itself is analogous to that by Inoueet al. for the
Rashba model.24,31 The resulting self-energy is of a simple
form, independent of the wave vectork. Remarkably, the
vertex correction turns out to vanish identically, even away
from the clean limit. Thus the spin Hall conductivity be-
comes identical with that of the intrinsic one calculated in
Ref. 6. We note that it is in sharp contrast with the Rashba
model, where the vertex correction completely kills the spin
Hall effect within the Born and ladder approximations in the
clean limit.24,31

The Luttinger Hamiltonian30 is written as

H0skd =
"2

2m
SSg1 +

5

2
g2Dk2 − 2g2sk ·Sd2D , s1d

where S=sSx,Sy,Szd are the spin-3/2 matrices,k
=skx,ky,kzd, andk= uk u. For simplicity, we have putg2=g3 in
the original Luttinger Hamiltonian. In this Hamiltonian, a
helicity defined byl=k ·S/k is a good quantum number and
can be used as a label for eigenstates. The helicityl can take
values ±3

2 , ± 1
2; l= ± 3

2 correspond to the heavy-hole(HH)
band andl= ± 1

2 to the light-hole(LH) band. Thus the energy
Ekl of the eigenstatestate with wavenumberk and helicityl
is expressed as

Ek,±3
2

= EkH =
g1 − 2g2

2m
"2k2, s2d
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Ek,±1
2

= EkL =
g1 + 2g2

2m
"2k2, s3d

which only depends onk= uk u. By a unitary transformation
Uk =eiuSyeifSz, where u, f are spherical coordinates ofk,

sk̂·Sd is diagonalized as

Uksk̂ ·SdUk
† = Sz = diags 3

2, 1
2,− 1

2,− 3
2d , s4d

wherek̂=k /k, and the Hamiltonian is diagonalized as well;

UkH0Uk
† = diagsEkH,EkL,EkL,EkHd. s5d

Therefore, an eigenstateukll of the HamiltonianH with he-
licity l is expressed as

ukll = Uk
†ull, s6d

whereull denote the eigenstate ofSz with the eigenvaluel.
We consider randomly distributed nonmagnetic impuries

with short-ranged potential:

Vsr d = Vo
i

dsr − Rid. s7d

We shall calculate the Green functionG=sz−Hd−1, H=H0

+V in the self-consistent Born approximation from the un-
perturbed Green functionGs0d=sz−H0d−1. Gs0d is diagonal in
the helicity basis, with elementsgkl

s0dszd=sz−Ekld−1. By tak-
ing the averagek¯lAV over the impurity distribution, the
lowest-order term of the self-energy in the Born approxima-
tion is written as

kkkluVGs0dVuk9l9llAV =
nV2

L3 dkk9 o
k8,l8

kkluk8l8l

3kk8l8ukl9lgk8l8
s0d , s8d

wheren=N/L3 is a number density of the impurities.
We shall show that this self-energy(8) is written as

Sdkk9dll9, whereS is a constant. By substituting(6) into (8),
we get

kkkluVGs0dVuk9l9llAV =
nV2

L3 dkk9 o
k8,l8

kluUkUk8
† ul8lgk8l8

s0d

3kl8uUk8Uk
†ul9l. s9d

We note that the Green functiong
k8l8
s0d is written as a

k8
s0d

+b
k8
s0dsSz

2dl8l8, where a
k8
s0d+ 1

4b
k8
s0d=sz−Ek8Ld−1, a

k8
s0d+ 9

4b
k8
s0d=sz

−Ek8Hd−1. Herea
k8
s0d andb

k8
s0d depend only onk8= uk8u and not

on the direction ofk8. The self-energy is then rewritten as

kkkluVGs0dVuk9l9llAV

=
nV2

L3 dkk9o
k8

kluUkUk8
† sak8

s0d + bk8
s0dSz

2dUk8Uk
†ul9l

=
nV2

L3 dkk9o
k8

kluUksak8
s0d + bk8

s0dsk̂8 ·Sd2dUk
†ul9l. s10d

Among various terms insk̂8 ·Sd2, the contributions from

cross-terms such ask̂x8k̂y8SxSy vanish by the summation over

k̂8. Likewise, in a termsk̂x8d
2Sx

2, for example,sk̂x8d
2 can be

replaced by1
3sk̂8d2= 1

3. Hence,sk̂8 ·Sd2 can be replaced by
1
3S2= 5

4, and we get

kkkluVGs0dszdVuk9l9llAV

=
nV2

L3 dkk9o
k8

kluUksak8
s0d +

5

4
bk8

s0ddUk
†ul9l

=
nV2

2L3dkk9dll9o
k8
S 1

z− Ek8L
+

1

z− Ek8H
D . s11d

By a similar argument, the full self-energy in the self-
consistent Born approximation is seen to be diagonal ink
andl:

kkkluGuk9l9llAV =
1

sgkl
s0dd−1 − S

dkk9dll9 = gkldkk9dll9,

s12d

gkH = gk,3/2= gk,−3/2, gkL = gk,1/2= gk,−1/2, s13d

S =
nV2

2L3o
k8

sgk8L + gk8Hd, s14d

wheregkl is a full Green function in the self-consistent Born
approximation. The self-energy has several interesting prop-
erties;(i) it is diagonal ink andl, and(ii ) it is independent
of k and of l. It guarantees an assumption in the paper by
Schliemann and Loss.17

Let us calculate a vertex correction for a charge current
vertex within the ladder approximation. The charge current
operatorJx is written as

Jx =
e

"

] H

] kx
=

e"

m
HSg1 +

5

2
g2Dkx − g2hSx,k ·SjJ , s15d

whereh,j is the anticommutator. The lowest order term of the
vertex correction forJx in the ladder approximation is given
by

kkkluVGszdJxGsz8dVuk8l8llAV

=
V2

L6 o
k1,l1

o
k2,l2

o
i

ke−isk−k1d·Rieisk8−k2d·RilAV 3 kkluk1l1l

3kk2l2uk8l8lgk1l1
szdgk2l2

sz8dkk1l1uJxuk2l2l

=
nV2

L3 dkk8 o
k1,l1,l2

kkluk1l1lkk1l2ukl8l 3 gk1l1
szdgk1l2

sz8d

3kk1l1uJxuk1l2l. s16d

From Eq.(13), gkl can be written asgkl=ak+bksSz
2dll. This

relation is useful in the calculation of the vertex correction as
demonstrated below,
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kkkluVGszdJxGsz8dVuk8lllAV

=
nV2

L3 dkk8o
k1

kluUkUk1

† sak1
szd + bk1

szdSz
2dUk1

3 Jxsk1dUk1

† sak1
sz8d + bk1

sz8dSz
2dUk1

Uk
†ul8l

=
nV2

L3 dkk8o
k1

kluUkhak1
+ bk1

sk̂1 ·Sd2j

3 Jxsk1dhak1
+ bk1

sk̂1 ·Sd2jUk
†ul8l. s17d

Because the summand is an odd function ofk1, this lowest
order term of the vertex correction in the ladder approxima-
tion vanishes identically. Therefore, higher order terms in the
ladder approximation vanish as well, and thus we conclude
that the vertex correction for the currentJx in the ladder
approximation vanishes. This cancellation is between the in-
termediate states withk1 and −k1, i.e., due to parity. It is
similar to the familiar example of vanishing vertex correc-
tion for the Fermi gas with spinless isotropic impurities.
When we turn to the calculation of the spin Hall conductiv-
ity, we have to take into account the vertex correction in the
charge current only. Therefore, because of this vanishing ver-
tex correction, the spin Hall conductivity in the clean case
reproduces the intrinsic value, which is obtained from a
clean system without impurities from the outset.6,15,32 In
other words, the result by taking a limit 1 /t→0 beforev
→0 is identical with that by the reverse order of limits. The
Luttinger model is free from a problem of order of limits.

By inspection, we can generalize the above discussion;
for any inversion-symmetric models withHskd=Hs−kd, the
vertex correction vanish identically for short-ranged scatter-
ers. For example, even if we introduce the anisotropy in Lut-
tinger parametersg2Þg3, the vertex correction remains zero.
If the impurity potential is long-ranged, forward scattering is
preferred and the vertex correction no longer vanishes. A
simple calculation similar to that for short-ranged scatterers
shows that the resulting spin Hall effect is enhanced by a
factor of ttr

SH/t, wherettr
SH represents an effective transport

lifetime for the spin Hall effect.
This is to be contrasted with the Rashba Hamiltonian

studied by Inoueet al.24,31They studied the vertex correction
within the ladder approximation for randomly distributed
nonmagnetic impurities with isotropic potential. The result is
remarkable; with the vertex correction, the spin Hall effect
becomes zero in the clean limit,24,31,33 instead ofe/8p, the
universal value without impurities.7 In their paper, they cal-
culated the charge-current vertex appearing in the correlation
function between the charge current and the spin current in
the Kubo formalism. In the clean limit, the vertex correction
for the charge current in the ladder approximation is −1
times the spin-dependent part of the charge current operator;
therefore, the total charge-current vertex becomes spin-
independent, yielding a vanishing spin Hall conductivity.
This vanishing result by Inoueet al.corresponds to the order
of limits, v→0 before 1/t→0, while the calculation of the
intrinsic universal value by Sinovaet al. corresponds to

1/t→0 beforev→0. The former and the latter limits cor-
respond toL. l andL, l, respectively, whereL is the sys-
tem size andl is the mean free path. Nonetheless, it is not the
end of the story. Two numerical calculations including disor-
der, one based on Kubo formula34 and the other on scattering
theory,26 indicate that the spin Hall effect in the clean limit
remains the universal valuee/8p. It contradicts the analyti-
cal result, and we do not have any answer to it. Here, we also
note that Burkovet al.22 formulated a theory of spin-charge
coupled transport, and discuss that the spin Hall conductivity
vanishes in a diffusive regime. Thus, a comprehensive under-
standing of disorder effects for various strength of disorder is
still to be desired.

Though the Rashba model is different from the Luttinger
model, our calculation on the Luttinger model has some im-
plications on the debate on the disorder effect in the Rashba
model. To interpret the vanishing spin Hall conductivity in
the clean limit,24 Inoue et al. discuss that diffuse scattering
efficiently scrambles the precession of spins such that no net
spin Hall current remains. This picture is too simplified,
since the spin Hall conductivity is not necessarily zero for
general systems with spin-orbit coupling. Indeed, in the Lut-
tinger model the vertex correction vanishes as we have seen.
Furthermore, even for more general models with Rashba
coupling, the spin Hall conductivity including the vertex cor-
rection is not necessarily zero in the clean limit. For ex-
ample, instead of the simplest model of Rashba coupling

H =
"2k2

2m
+ "lskysx − kxsyd, s18d

let us take a model

H =
"2k2

2m
+ "sl + l1k

2dskysx − kxsyd, s19d

wherel andl1 are constants. An extra terml1 is added here;
this term should exist in general because it is allowed by
symmetry. The vertex correction is calculated in the similar
procedure as in Refs. 24 and 31, and we can calculate the
coefficient l8 for the vertex correction. After lengthy but
straightforward calculation, we can see that the spin Hall
conductivity is nonzero in the clean limit, even if the vertex
correction is included within the ladder approximation. Thus,
for the simplest model of Rashba coupling(18), the complete
cancellation of the spin Hall effect24,31 seems merely acci-
dental, and not a consequence of any symmetries. This is
also supported by the result with long-ranged scatterers,
where the spin Hall conductivity including the vertex correc-
tion no longer vanishes.24 To summarize, we can say that the
spin Hall effect is not necessarily suppressed to zero by the
vertex correction in general.

In conclusion, we consider an effect of spinless impurities
on the spin Hall effect in the Luttinger model. We calculated
the vertex correction for the charge current within the ladder
approximation. For short-ranged scatters, the vertex correc-
tion is zero, and the spin Hall effect reproduces the intrinsic
value, calculated previously from the system without impu-
rities.
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