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Absence of vertex correction for the spin Hall effect inp-type semiconductors
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We calculate an effect of spinless impurities on the spin Hall effect of the Luttinger model representing
p-type semiconductors. The self-energy in the Born approximation becomes diagonal in the helicity basis and
its value is independent of the wave number or helicity. The vertex correction in the ladder approximation
vanishes identically, in sharp contrast with the Rashba model. This implies that in the clean limit the spin Hall
conductivity reproduces the value of the intrinsic spin Hall conductivity calculated in earlier papers.
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Understanding the dynamics of spins is a long-standindpy spin-dependent scattering by impurities, which might be
subject in semiconductor physics. Though there have beesmssumed as a main source of spin Hall effect in earlier
lots of experimental and theoretical studies toward this goalpapers’’—2°
there remain many obstacles to overcome before we can ma- In order to argue possibilities of experimental detection,
nipulate spins at our disposal in semiconductor spintronicsheoretical investigation of disorder effects is highly desired.
devicest? One of the obstacles is efficient spin injection into In this paper, we mainly focus on the Luttinger model rep-
semiconductors, and there have been many atempts for tesentingp-type semiconductor®,and study disorder effects
For example, spin injection from ferromagnetic metals han the spin Hall effect. We shall also discuss on the Rashba
low efficiency, because of the band structure mismatch bemodel. For the Luttinger model, the effect of self-energy
tween semiconductors and metals, in particular by the conbroadening was calculated by Schliemann and béasd no
ductivity mismatch® On the other hand, while spin injection other papers on disorder effect have appeared at present. In
from ferromagnetic semiconductors such @Sa,MnAs  this paper, we study the effect of randomly distributed spin-
(Ref. 4 provides relatively high efficiencythe Curie tem- less impurities with short-ranged potential, by calculating
peratures of such ferromagnetic semiconductors still remaiboth the self-energy correction in the Born approximation
lower than room temperature. Thus the spin injection, whichand the vertex correction in the ladder approximation. The
constitutes the very first step for spintronic devices, is stillcalculation itself is analogous to that by Inoeeal. for the
under intensive investigation. Rashba modet*3! The resulting self-energy is of a simple

In such circumstances, recent theoretical proposals of aform, independent of the wave vectkr Remarkably, the
intrinsic spin Hall effe” have attracted much attention. In vertex correction turns out to vanish identically, even away
these works, it is theoretically predicted that an external elecfrom the clean limit. Thus the spin Hall conductivity be-
tric field induces a dissipationless spin current in semiconeomes identical with that of the intrinsic one calculated in
ductors. This intrinsic spin Hall effect is predicted for the Ref. 6. We note that it is in sharp contrast with the Rashba
Luttinger model representing bulg-type semiconductors, model, where the vertex correction completely kills the spin
and for the Rashba model representing two-dimensiondtall effect within the Born and ladder approximations in the
n-type semiconductors in heterostruct@fEhis intrinsic spin ~ clean limit?431

Hall effect is caused by the Berry ph8se the momentum The Luttinger Hamiltonia#? is written as

space. Berry-phase structure in momentum space is com-

prised in the electronic Bloch bans!and endows the car- 2 5

riers with an anomalous velocity. Due to the spin-orbit cou- Ho(k) = gn(<y1+ 572) K2 = 2y,(k -8)2), (1)

pling, the carriers will then have spin-dependent trajectories
in the presence of an external electric field, and it amounts to
the intrinsic spin Hall effect. In bullp-type semiconductors, where S=($,9,$) are the spin-3/2 matrices,k
the valence band has a spin splitting, giving rise to spin Halk (k,,k,,k,), andk=|k|. For simplicity, we have puj,=1y; in
effect by hole-doping as proposed by the author and hishe original Luttinger Hamiltonian. In this Hamiltonian, a
collaborators, whereas in bulkn-type semiconductors, the helicity defined byx =k -S/k is a good quantum number and
conduction band is doubly degenerdtethe Dresselhaus can be used as a label for eigenstates. The helcitgn take
term is neglectey and the spin Hall effect does not emerge.yalues 4_53 i%; )\=i§ correspond to the heavy-hol¢iH)
Instead, by making the heterostructure from thigpe semi-  pand andh = i% to the light-hole(LH) band. Thus the energy

conductor, the Rashba spin splittidd® arises, and it gives g _ of the eigenstatestate with wavenumkeand helicity\
rise to the spin Hall effect proposed by Sinogtal’ Al- g expressed as

though an unambiguous experimental detection remains to
be done, many theoretical studies have appeared since the
proposals of the intrinsic spin Hall effett-?6We note that Y1~ 272h2k2 ?)

) S ; Ex:3=Epy=—"F7—"
these are different from an extrinsic spin Hall effect caused ks T KA 2m

0163-1829/2004/624)/2412024)/$22.50 69241202-1 ©2004 The American Physical Society



RAPID COMMUNICATIONS

SHUICHI MURAKAMI PHYSICAL REVIEW B 69, 241202R) (2004
+2
Epul=Ey = "1 72h2k2’ 3) cross-terms such dgky&Sy vanish by the summatlon over
2 2m K. Likewise, in a term(k )Zi for example( ’)? can be
which only depends ok=|k|. By a unitary transformation replaged by3(k')?=3. Hence, (k'-S)? can be replaced by
U,=6%d?S, where 6, ¢ are spherical coordinates &,  3S°=2, and we get
k-S) is diagonalized as
(leS)s diag <<kx|ve<°> VN
Uclk-9)Uj =8, = diad$,3,- 3, 3), @)
. 5kk"2 (AU (e + b(o))UH)\")
wherek=k/k, and the Hamiltonian is diagonalized as well;
UHoU[ = diagExy, v, v, Exy) 5 nV? 1 1
koMK q kH» =KLy =KL kH) ( ) 2L35kk"5)\)\”2 (Z_E +Z_E . (11)
Therefore, an eigenstafie\) of the HamiltonianH with he- K’ k'L k’H

licity \ is expressed as o .
By a similar argument, the full self-energy in the self-

[kA) = UJ[N), (6)  consistent Born approximation is seen to be diagonat in

where|\) denote the eigenstate 8f with the eigenvalue.. and\:

We consider randomly distributed nonmagnetic impuries

with short-ranged potential: {KN[GIK"N" Way = !

(@D) 13 o= Gadr B,
[9N

V(r) = in 8(r - Ry). @) .
We shall calculate the Green functi®=(z-H)™}, H=H,

+V in the self-consistent Born approximation from the un-
perturbed Green functio8©=(z-Hy) ™. G© is diagonal in

OkH = Ok 3/2= Ok -3/22 Ok = Gk 1/2= Ok -1/2» (13

.. . . 0 _ _
fche helicity basis, with element\i;(z)—(z— E}O\) '1. By tak- 32 (Gl + Gerny) (14)
ing the averagg---)ay over the impurity distribution, the 2L
lowest-order term of the self-energy in the Born approxima-
tion is written as whereg,, is a full Green function in the self-consistent Born
approximation. The self-energy has several interesting prop-
<<k7\|VG(° VIK"N" MWy = 3 5kk,, > (kAJK'N\") erties;(i) it is diagonal ink andX\, and(ii) it is independent
L K\ of k and of \. It guarantees an assumption in the paper by
" (0) Schliemann and Los¥.
X (KN [kN Yk ) Let us calculate a vertex correction for a charge current

vertex within the ladder approximation. The charge current

wheren=N/L3 is a number density of the impurities. . )
operatorJ, is written as

We shall show that this self-energ{8) is written as

3 SO, Wherel, is a constant. By substitutin@) into (8),
we get J.= eoH _eh < 42 ) {Sok-St{, (19
' ﬁ &k m " 272 :
(0) "y — ” (0) . .
UAVGEVIK A ay = L3 5"“ kz)\, (MU Uk’p‘ % where{,} is the anticommutator. The lowest order term of the
vertex correction fod, in the ladder approximation is given
XN U UEINY. (99 by

We note that the Green functiog(f,)), is written asaf(o) (<k)\|VG(z)J G(Z VKN M ay

+b(0)(§)x’>\’ where a:<0)+4b(k?)_(z Ee) ™ a1(<?+?1b(k(’))_(z —i(k—ky)R; i (k' k)R
~Ew) % Herea)> andb> depend only ork’=|k’| and not Lskz;« k% PIECY g TRRi) X (kA [k A
on the direction ok’. The self-energy is then rewritten as e

X{KoNolK'N' z Z' (KN 1|, Ko\
((k)\|VG(°)V|k”)\”)) (kahy| >9k1>\ ( )gkz)\z( J(SENINN[ Y

n\V?
n\V? ,
5kk”2 NUU! (29 + b U, U =13 —5 6 k1%>\2<k)\|kl)\l><kl)\2|k)\ ) X G, (DG, (2)
X(kihg| 3k iho)- (16)

(0) 0) /11 20 1T\ 7

= 5,,2 AU +b,, (k" -S)9)ULN"). (10 . .
L3 cr 20 N Ui o IV (10 From Eq.(13), g, can be written agjy =a,+b (), This
relation is useful in the calculation of the vertex correction as

Among various terms in(ﬁ’-S)z, the contributions from demonstrated below,
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{(KNVG(2)3,G(Z')VIK' A av 1/7— 0 beforew— 0. The former and the latter limits cor-
\2 respond toL>1 andL <I, respectively, wheré is the sys-
=— 5.3 ouout 2 +b, (22U tem size and is the mean free path. Nonetheless, it is not the
3 Tk k21< U (@2 * B )S) k1 end of the story. Two numerical calculations including disor-
der, one based on Kubo formétand the other on scattering
T ’ ’ LN d
X Jdky)Uy (@, (Z) + by (2 )g)uklukp\ ) theory?® indicate that the spin Hall effect in the clean limit
n\2 . remains the universal valu® 8. It contradicts the analyti-
:—35kk,2 ()\|Uk{akl + by (ky - S)? cal result, and we do not have any answer to it. Here, we also
L kq note that Burkowt al2? formulated a theory of spin-charge

coupled transport, and discuss that the spin Hall conductivity
vanishes in a diffusive regime. Thus, a comprehensive under-
. . . standing of disorder effects for various strength of disorder is
Because the summand is an odd functiork gf this lowest still to bge desired 9

order term of the vertex correction in the ladder approxima- Though the Ra{shba model is different from the Luttinger
tion vanishes identically. Therefore, higher order terms in th‘?nodel our calculation on the Luttinger model has some im-
lﬁddeL approximation V?‘”'th ashwell, e t_hushwel Cdodncmd‘fblications on the debate on the disorder effect in the Rashba
that the vertex correction for the curr.en,[.m the ladder - q4el. To interpret the vanishing spin Hall conductivity in
approx[matlon vamshes. This can;ellaﬂon IS between the Nthe clean limi2* Inoue et al. discuss that diffuse scattering
te_rmedlate states_ywtkl and %, ie., _d“_e to parity. It is efficiently scrambles the precession of spins such that no net
similar to the familiar example of vanishing vertex correc- spin Hall current remains. This picture is too simplified,

3\%] for the Fermlh gas|W||thf spm::etshs |sqtro|3|cil |mp3r|t|$s. since the spin Hall conductivity is not necessarily zero for
en we turn to the calculation of the spin Hall conductiv- general systems with spin-orbit coupling. Indeed, in the Lut-

ity, we have to take into account the vertex c_orrect'lon' n thetinger model the vertex correction vanishes as we have seen.
charge current only. Therefore, because of this vanishing Ve rthermore. even for more general models with Rashba

tex correction, the spin Hall condugtlwty n th? clean Casecoupling, the spin Hall conductivity including the vertex cor-
reproduces the intrinsic value, which is obtained from

clean system without impurities from the outé&t3 In ection is not necessarily zero in the clean limit. For ex-
) - ) ample, instead of the simplest model of Rashba couplin
other words, the result by taking a limit 2/ 0 before w P P Piing

—0 is identical with that by the reverse order of limits. The S
Luttinger model is free from a problem of order of limits. H= om Ak kyox =~ ko), (18)

By inspection, we can generalize the above discussion;
for any inversion-symmetric models witd(k)=H(-k), the  let us take a model
vertex correction vanish identically for short-ranged scatter- 22
ers. For example, even if we introduce the anisotropy in Lut- H= om } AN+ N 1K) (Kyo = kyary), (19
tinger parametersg, # 3, the vertex correction remains zero.
If the impurity potential is long-ranged, forward scattering iswhere\ and\, are constants. An extra teny is added here;
preferred and the vertex correction no longer vanishes. Ahis term should exist in general because it is allowed by
simple calculation similar to that for short-ranged scatterersymmetry. The vertex correction is calculated in the similar
shows that the resulting spin Hall effect is enhanced by grocedure as in Refs. 24 and 31, and we can calculate the
factor of 7,/ 7, where 73" represents an effective transport coefficient A’ for the vertex correction. After lengthy but
lifetime for the spin Hall effect. straightforward calculation, we can see that the spin Hall

This is to be contrasted with the Rashba Hamiltonianconductivity is nonzero in the clean limit, even if the vertex
studied by Inouet al?#31They studied the vertex correction correction is included within the ladder approximation. Thus,
within the ladder approximation for randomly distributed for the simplest model of Rashba couplifig), the complete
nonmagnetic impurities with isotropic potential. The result iscancellation of the spin Hall effé' seems merely acci-
remarkable; with the vertex correction, the spin Hall effectdental, and not a consequence of any symmetries. This is
becomes zero in the clean linfft31-33instead ofe/8m, the  also supported by the result with long-ranged scatterers,
universal value without impuritiesin their paper, they cal- where the spin Hall conductivity including the vertex correc-
culated the charge-current vertex appearing in the correlatiotion no longer vanishe¥.To summarize, we can say that the
function between the charge current and the spin current igpin Hall effect is not necessarily suppressed to zero by the
the Kubo formalism. In the clean limit, the vertex correction vertex correction in general.
for the charge current in the ladder approximation is =1 In conclusion, we consider an effect of spinless impurities
times the spin-dependent part of the charge current operatoon the spin Hall effect in the Luttinger model. We calculated
therefore, the total charge-current vertex becomes spirthe vertex correction for the charge current within the ladder
independent, yielding a vanishing spin Hall conductivity. approximation. For short-ranged scatters, the vertex correc-
This vanishing result by Inouet al. corresponds to the order tion is zero, and the spin Hall effect reproduces the intrinsic
of limits, w— 0 before 1/— 0, while the calculation of the value, calculated previously from the system without impu-
intrinsic universal value by Sinovat al. corresponds to rities.

X Jk){a + by (ky - SFULINY). (17)
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