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Macroscopic properties of carbon nanotubes from molecular-mechanics simulations
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Results of molecular-mechanics simulations of axial and torsional deformations of a single wall carbon
nanotube are used to find Young’s modulus, the shear modulus, and the wall thickness of an equivalent
continuum tube made of a linear elastic isotropic material. These values are used to compare the response of
the continuum tube in bending and buckling with that obtained from the molecular mechanics simulations. It
is found that the strain energy of bending deformation computed from the Euler-Bernoulli beam theory
matches well with that obtained from the molecular-mechanics simulations. The molecular-mechanics predic-
tions of the critical strains for axial buckling and shell wall buckling do not match well with those derived from
the Euler buckling formula and the Donnell shell theory.
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I. INTRODUCTION 1 TPa. Yakobsoret al? state that ther-bond length 0.66 A

is a better choice for the wall thickness because it more prop-
Since their discovery in 1991, both single wall and mul-erly models the wall buckling behavior of nanotubes.

tiwall carbon nanotubes have become an active area of re- When designing composites with carbon nanotubes as re-
search. This is partly due to their having an extremely highnforcements, it is imperative that one replace a nanotube by
specific strength and stiffness. These properties and their cyah equivalent continuum structure such as a fiber or a hollow
lindrical shape allow for their potential applications in suchcylindrical tube. The response of the continuum structure to
diverse fields as fibrous reinforcement, atomic level pipingdifferent deformations should closely mimic that of the car-
and nanostructures. The structural applications of carbobhon nanotube. Here we find a cylindrical tube made of a
nanotubes require that we ascertain their macroscopic profinear elastic isotropic material whose response to mechani-
erties. Previous experimental and theoretical studies haveal deformations is equivalent to that of a single wall carbon
tacitly presumed that they can be modeled as linear elasticanotubgSWNT); a schematic sketch is given in Fig. 1. The
and isotropic. Tables | and Il summarize, respectively, valuesleformations of a SWNT are analyzed by MM simulations,
of Young’'s modulusE computed by various investigators, and those of the cylindrical tube by commonly used engi-
from molecular mechanic$MM) simulations and experi- neering theories.
mental data. Except for the work of Yakobsaet al.! Two MM potentials, MM3 (Ref. 4 and the
Haliciogll? and Zhouet al.® they all assume a wall thickness Tersoff-BrenneP, are used to simulate deformations of a
of 3.4 A, which is the separation distance between adjacer8WNT in tension, compression, torsion, bending, and buck-
walls in a multiwall nanotub€MWNT). The scatter in the ling. Results from the tension and torsion tests are used to
experimental data is partly due to the poor resolution at thesascertain whethele and the shear modulus vary with the
extremely small scales. There is less scatter in the values sftrain. Values o andG at zero strain in terms of the wall
E computed from the MM simulation& so found is close to thicknesst, changes in the diameter of a SWNT, and the

TABLE |. Values of Young’s modulus computed from experimental data.

Modulus Deviation
Author(s) Year (TPa (TPa Test method Tube
Treacyet al. (Ref. 6 1996 1.8 1.4 Thermal vibrations MWNT
Wonget al. (Ref. 7 1997 1.28 0.6 Cantilever bending MWNT
Krishnanet al. (Ref. 8 1998 1.3 0.5 Thermal vibrations SWNT
Salvetatet al. (Ref. 9 1999 0.81 0.41 3 point bending BUNDLES
Salvetatet al. (Ref. 9 1999 1.28 0.59 3 point bending MWNT
Tombleret al. (Ref. 10 2000 1.2 na 3 point bending SWNT
Cooper and YoungRef. 1] 2000 0.78-2.34 na Raman spectroscopy SWNT
Yu et al. (Ref. 12 2000 0.270.95 na Tension MWNT
Lourie and Wagne(Ref. 13 1998 2.8-3.6 na Raman spectroscopy SWNT
Lourie and Wagne(Ref. 13 1998 1.724 na Raman spectroscopy MWNT
Yu et al. (Ref. 19 2000 0.32-1.47 na Tension Ropes
aNot available.
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TABLE Il. Values of Young’s modulus predicted from atomistic simulations.

Modulus Thickness Poisson’s

Author(s) Year (TPa A) ratio v Potential / Method Trend
Robertsoret al. (Ref. 15 1992 1.06 3.4 Brenner & LOF 1/r2, helicity
Yakobsonet al. (Ref. 1) 1995 55 0.66 Brenner na
Yakobsonet al. (Ref. 1) 1996 1.07 3.4 0.19 Brenner
Cornwell and Wille(Ref. 16 1997 1 3.4 Brenner 7
Halicioglu (Ref. 2 1997 0.5 6.8 Brenner Radial
Lu (MWNT) (Ref. 17 1997 1.11 3.4 Universal force field Number of walls
Lu (SWNT) (Ref. 17 1997 0.97 34 Universal Force field None
Hernandezt al. (Ref. 18 1998 1.24 3.4 Density-functional theofy None
Yao and Lordi(Ref. 19 1998 1 34 Universal force field 4]
Ozakiet al. (Ref. 20 2000 0.98 3.4 Tight binding @) None
Van Lier et al. (Ref. 21 2000 1.09 3.4 0.11 Hartree-Fdck Helicity (smal)
Zhouet al. (Ref. 3 2000 5.1 0.71 Electronic band theory ra/
Belytschkoet al. (Ref. 22 2002 0.94 3.4 0.29 Modified Morse

aQuantum-mechanical method.

relationE=2(1+»)G, for an isotropic linear elastic mate- the MM3 potential, contributions of different terms to the
rial, are used to findE, G, t, and Poisson’s ratior. For  total strain energy are delineated in Sec. VIII. Characteristics
simulations involving the bending and the buckling of aof cylindrical continuum tubes equivalent in the mechanical
SWNT, these values &, G, v, andt are employed to com- response to SWNT's of different helicities are given in Sec.
pare the response predicted from the MM simulations withX, and conclusions are summarized in Sec. X.

that given by the commonly used engineering approaches.

The paper is organized as follows. Section Il describes Il. POTENTIALS
briefly the potentials used for MM simulations. Techniques
employed in virtual experiments used to analyze tensile, tor- Two potentials used in this work are the MMBef. 3
sional, bending, and buckling deformations of a SWNT areand the Tersoff-BrennérThe MM3 potential is a class I
described in Sec. IIl. Section IV gives results of MM simu- pairwise potential with both higher-order polynomial expan-
lations of tensile and torsional deformations and also list$ions and cross terms; it is used primarily to model proteins.
expressions for Young’s modulus and the shear modulus. ThEhis potential is appropriate for carbon nanotubes due to the
wall thickness and the elastic moduli of the cylindrical con-similarity of carbon bonding between the nanotube graphitic
tinuum tube are evaluated in Sec. V; these values are su@id the aromatic protein structures; the expression for the
that the mechanical response of the continuum tube in tensilM3 potential is given in the Appendix.
and torsional deformations is equivalent to that of the The Tersoff-Brenner potential is an empirical bond-order
SWNT. In Sec. VI, results of MM simulations for bending Potential specifically designed for diamond and graphite
and buckling deformations of the SWNT are compared withstructures. The bond strength is a pairwise potential function
that of the equivalent continuum tube derived from theof the atomic separation, angle, and the number of bonds
Euler-Bernoulli beam theory and the Donnell shell theory. It(neighbors. Rather than using a polynomial function to de-
is shown in Sec. VII that the strain energy of the combinedfine the bond strength, the Tersoff-Brenner potential uses ex-
tensile and torsional deformations of a SWNT equals thévonential functions similar to the MorSepotential; the ex-

sum of the strain energies for individual deformations. ForPression for the Tersoff-Brenner potential is given in the
Appendix.

t In our simulations, the carbon atoms in the MM3 potential
were modeletf as alkene, or type 2 atoms, with the
molecular-mechanics package Tink&The potential energy
of the structure is minimized through an adaptive minimiza-
tion routine which utilizes either a truncated Newton or a
negative curvature technique. Except where noted, all simu-
lations used a nonbonded cutoff value of 30 A, and mini-
mized the potential energy to within 0.001 kcal/mol/A rms.
The computer progranBRENNERMD was used for simula-
tions with the Tersoff-Brenner potential. These simulations
minimized the Lagrangian using molecular-dynamics tech-

FIG. 1. (Color onling Single wall carbon nanotube and an niques with the temperature held at 300 K.
equivalent cylindrical tube. The MM3, the Tersoff-Brenner, the Amber and the Morse
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bond-stretching terms for carbon-carbsp? hybrid bonds energy attains a minimum value. The strain energy due to
are compared in Fig. 2 as a function of the bond strain. Theleformation of the structure is determined by simply sub-
bond strain equals the change in the bond length divided btracting the energy of the relaxed structure from that of the
the equilibrium bond length. Expressions for the Amber andoaded structure. From a plot of the strain energy vs a mea-
the Morse potentials are only used in Fig. 2 so these expresure of deformation, effective parameters for a continuum
sions are not included; they can be found in Refs. 26 and 27odel are derived.
The Morse potential is generally believed to accurately Two SWNT models, involving infinite and finite lengths,
model the covalent bonds. The bond-stretching terms ofvere used. The infinite length tubes were modeled as short
MM3 and Tersoff-Brenner potentials are very close to thosegeriodic tubes consisting of 256 atoms, whose bonds and
of the Morse potential for bond strains up to 20%. The Am-interactions wrapped across the axial period. The nonbonded
ber potential is a force-constant model, therefore is symmeteutoff distance was reduced to 10 A so that atoms will not
ric and parabolic about the vertical axis; it is accurate onlyinteract with each other both directly and across the periodic
for small strains. The MM3, the Tersoff-Brenner, and theboundary. The periodic models were effective for quickly
Morse potentials have asymmetric variations with compresstudying axial deformations, large compressive strains, and
sive deformations requiring more energy than tensile deforaxial wall buckling. The finite length models were used to
mations of the same magnitude. EquatidAg) of the Ap-  study the torsional, bending, and column buckling deforma-
pendix show that the MM3 bond-stretching potential is a tions. The ends of these nanotubes were left open which
quartic function of the bond strain; thus the moduli computedchanges the bonding character of the structure and leads to
from it will depend upon the bond strain. edge effects. In order to mitigate these effects the boundary
conditions were applied approximately one diameter length
from the edge and the tube’s aspect rdtength/diameter
IIl. VIRTUAL EXPERIMENTS was kept above ten. Local effects, such as necking or swell-
o . . ing during axial deformation occur withi2 A of the atoms
The minimum-energy configuration for the molecular where boundary conditions were applied; these were found
structure is first found. That is, all atoms are allowed to moveg have negligible effect on the total energy of the system.
freely until the total energy for the structure reaches a mini-  pless otherwise noted, all tests were performed on a
mum. This minimum-energy configuration of the structure iS(lG,@ (Ref. 28 SWNT. The diameters of the relaxed tubes

henceforth referred to as the relaxed structure. For each iRgere 11.87 A and 12.58 A for tubes modeled with the MM3
crement in load, displacements for the deformation mode argnq the TB potentials, respectively.

estimated and applied to the relaxed structure. The appropri-
ate boundary conditions for the specific deformation mode
are applied by fixing positions of suitably selected atoms to
maintain the prescribed displacement. Next the minimum-
energy configuration for the loaded structure is found by al- The axial deformation tests were performed on periodic
lowing the remaining atoms to move until the total potentialSWNT’s and did not require any boundary conditions. For

IV. RESPONSE IN SIMPLE TESTS
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the torsion test, boundary conditions were applied to two In a hollow cylindrical continuum tube equivalent to the
circumferential rings of atoms approximately one diametelSWNT, the simple tension and torsion tests would induce
away from the open ends. The minimum-energy configurasimple stress states of axial and shear stress, respectively. All
tion always coincided with zero axial deformation. Before of the strain energy is produced by a single stress component
the onset of buckling, circular cross sections remained circuthereby allowing the axial and the shear moduli to be directly
lar for both the tension, compression, and torsion tests. Theomputed. The MM strain energy results for these tests, us-
coefficients of variationpercent standard deviatipof the  ing both the MM3 and the Tersoff-Brenner potentials, are
radial positions of atoms, for the relaxed and the 10%presented in Fig. 3. A smooth polynomial is fitted to the data
stretched configurations, were 0.05 and 0.12, respectivelyoints representing strain energies at different strains. The
The diameter of the cross section of a tube deformed in torfirst derivative of this fit yields the corresponding stress com-
sion remained constant, but changed when it was deformegonent, and the second derivative gives the elastic modulus.
axially. Thus, Poisson’s ratio was uniquely defined for eachf the degree of the best-fit polynomial is higher than two,
load step as the negative of the ratio of the lateral strain tohen the elastic modulus will vary with the deformation. The
the axial strain. lowest-order best-fit polynomial for the tension test data ob-
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tained with the MM3 potential is third order and is given by At zero strain, Young’s moduli computed with the two
potentials differ by about 6%, while their variations with
W, =(-8.183x10 'e%+5.9x10 ¢? are nearly the same. At 10% axial strain, Young’s modulus
P derived from the MM3 potential has changed by over 58% of

—2.95¢10 ) /A, @ its value at zero strain. However, the shear moduli and Pois-
whereW, is the strain energy density i fm®, ¢ the nominal  son’s ratio do not necessarily share the same qualitative be-
axial strain, andA(t) the cross-sectional area, m?, is a  haviors; Poisson’s ratios computed from the results of the
function of the wall thickness Thus the axial modulug in MM simulations are shown in Fig. 5. While the MM3 de-

Pascals is given by rived Poisson’s ratio has a linear variation with the axial
strain that derived from the Tersoff-Brenner potential varies
E=(—4.91+1.1810 %/A(t). (2) nonlinearly for axial strains exceeding0.02.

. e We note that for a linear elastic isotropic materi),G,
The third-order and the second-order polynomial fits have .
regression correlations of 1.0 and 0.9%?, rgspectively. WhilépJlnd v are constants and satisfy the relatior 2G(1+).
both values are very high, the third-order fit more accurately
describes the data, as shown in Fig. 4. V. DETERMINATION OF THE WALL-THICKNESS
Young’s modulus derived from the Tersoff-Brenner poten- OF THE EQUIVALENT CONTINUUM TUBE
tial is given by The problem of finding a continuum cylindrical tube
—(_ —6 whose response to axial and torsional deformations is iden-
E=(=53%+129107YA). ® tical to that of a(16,0 SWNT is complicated by the fact that
The correlation coefficients of the second-order and théts Young's modulus and Poisson’s ratio should vary with the
third-order polynomial fits are 0.997 and 1.0, respectively. axial strain but the shear modulus be either a constant or vary
A procedure similar to the one described above for thewith the shear strain. In order to simplify the problem, it was
tension test was followed for the torsion test. Values, in Pasdecided that the equivalent continuum tube is made of a

cal, of the shear moduli so found are linear elastic isotropic material with mean diameter equal to
the diameter of the SWNT, wall thickneds and moduli
G=(86.4y"+1.453610 °/J(t) equal to those of the SWNT at zero strain. Thus, in Egs.
(2)—(4),

for the Tersoff-Brenner potential,

G=1.72<10 °/J(t) for the MM3 potential, ~ (4) A(t) =7

t)?2 t)?2

ez ~leal |
whereJ, the polar moment of inertia of the equivalent con-
tinuum tube, is a function of the wall thickness. Whereas _m t) t)
deformations of the continuum tube are homogeneous for the and J(t)= 20| Tetg] ~|Te3
simple tension test, they are inhomogeneous for the torsion
test. The shear strain at points on the midsurface of the corwherer. is the radius of the SWNT. Substitution from Egs.
tinuum tube was taken to equal that in the SWNT. (2)—(4) into

’

235406-5



A. SEARS AND R. C. BATRA PHYSICAL REVIEW B69, 235406 (2004

04
b = e e g
\Az;
“ %7 =\ = Jersoff-Brenner
\ —0— AT
L ).
5. AA FIG. 5. (Color online Varia-
] g2 tion with the axial strain of Pois-
‘% son’s ratio derived from the MM3
AN ~ “ and the Tersoff-Brenner poten-
~ y tials.
S
o7 1 ‘&.\
e
0.0 . : : :
07 -0.06 -0.02 0.02 006 o7
axial strain
E(0)=2G(0t)[1+ »(0)] (5) dicular to the neutral axis. The boundary conditions used and

the minimum-energy configuration found are shown in Fig.

gives an equation for the determination of the wall thickness. The clamped end was modeled by fixing the locations of
t of the equivalent continuum tube. Knowitg, andG can  atoms on a circumferential ring approximately one diameter
be computed from Eqs$2)—(4). away from the open end. The point load was applied to three

The results are presented in Table Il for the MM3 and theneighboring atoms on the top of the beam to avoid the ten-
Tersoff-Brenner potentials. The wall thickness thus founddency for wall indentation, which may occur when only a
equals 1.34 A and 0.98 A for the MM3 and the Tersoff- single atom is loaded. The axial positions of the loaded at-
Brenner potentials, respectively; it differs from the oftenoms were moved until the minimum-energy configuration
used value of 3.4 A, and the 0.66 A proposed by YakobsoRyas found.
et al;* had we used a wall thickness of 3.4 A, then we would  The minimum-energy configurations were found to
have obtained=(0) to be 0.99 TPa and 0.89 TPa, respec-closely conform to those given by the Euler-Bernoulli beam
tively, for the MM3 and the Tersoff-Brenner potentials which theory. The strain energy for a linear elastic isotropic canti-
compare favorably with the values reported in the literaturelever beam is given by

V1. BENDING AND BUCKLING OF A SWNT 3 EI(t) 5

(6)

These simulations were done with the MM3 potential T2 3 ’
only.
wherelL is the length of the beamj represents the tip de-
flection, andl denotes the area moment of inertia about the

- . ) neutral axis;
The initial lateral displacements applied to the atoms of a

226 A long (16,0 SWNT were estimated from the lateral
deflection equation of the Euler-Bernoulli beam theory for a | =
cantilever beam loaded by a point load at the unclamped
edge. Axial displacements of atoms were estimated from the
requirement that plane sections remain plane and perper# %

A. Bending of a Cantilever Beam

3-atom
cantilever point
load

\

TABLE Ill. The wall thickness and elastic constants of an
equivalent linear elastic continuum tube.

clamped end condition

Potential Structure ThicknesE (TP G (TPa

<

(A)
MM3 (16,0 1.34 2.52 096 0.21
Tersoff-Brenner (16,0 0.98 3.10 0.81 0.26 FIG. 6. (Color onling Deformed shape of a cantilever beam

computed with the MM simulation employing the MM3 potential.
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Figure 7 compares the strain energy computed from thare not allowed to rotate. Comparing the critical buckling
MM3 simulations with that given by Eq(6). Thus the strain from the MM3 simulations with that for an Euler col-
equivalent continuum tube mimics well the bending defor-umn provides an assessment of the equivalent continuum

mations of a SWNT. model. The critical strain
B. Buckling " ﬂ_z[ fc+§ i rc_i) }
The column, axial shell wall, and torsional wall buckling Eeritica) = 472 Q) _ @)
were simulated by following the procedure employed for ertiea L2A(t) L2

studying simple axial and torsional deformations. No initial o )
perturbations were introduced to induce a buckling responsdr @n Euler column is independent of the elastic modulus.
The four buckling modes found are shown in Fig. 8. AFor L=171 A rc=5.935A, and t=1.34 A, Ecritical
SWNT was assumed to have buckled when either the straif 0-024 and is 16% less than that for the MM simulations.
energy of deformations dropped significantly for an infini- 1his could be due to not initially perturbing the SWNT.
tesimal increase in the load or lateral deflections were very )
large. These invariably correspond to a noticeable increase in 2. Shell wall buckling
the number of iterations needed for the solution to converge. Two types of shell wall buckling, namely axial compres-
sion and torsional buckling, were studied. The Donnell shell
1. Column buckling theory was used to compute the buckling load for the cylin-
A (16,0 SWNT with an effective length of 171 A was drical tube for both cases even though the ratio of the thick-
used to study the column buckling. The boundary conditiong!€Ss to the mean radits .=0.23 is higher than the range of
used in the MM simulations closely resemble conditions forvalidity of the Donnell theorye.g. see Yamak).
a clamped-clamped Euler column because the cross sections Axial CompressionThe MM simulations of the axial wall
buckling used periodic boundary conditions which most
6 closely approximate simple supports. At an axial strain of
9.8%, the SWNT buckled into two circumferential sinusoidal
waves with a single axial wave as shown in Fi¢p)8
According to the Donnell shell theory, the critical axial
stress in a cylindrical tube is given by

1 Et
& Ocr= ’—3(1—1/) r_c 8

Equation(8) is valid when the normal length defined by

FIG. 8. (Color online Four buckling modes found during the 2
MM simulations: (a) shell wall, (b) columnar,(c) columnar with Z=(1— V2)1/2L_ 9
crimping, and(d) torsional(with boundary conditions highlighted ret’
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exceeds 2.85. The numbhrof half-sine waves in the axial studied here, it is generally believed that the Donnell shell
direction, and the numben of sine waves in the circumfer- theory significantly underpredicts the buckling load and

ential direction are given by hence the shear strain at buckling.
One way to check the validity of the equivalent con-
3 5 va tinuum tube for buckling deformations is to study the con-
N=Integer Z(l_ V) Tl tinuum problem with the finite element method. However, it
has not been pursued here.
2 1/4
m= Integer ( > \/E]’ (10 VIl. COMBINED LOADING OF A SWNT

where integers closest to numbers given by the right-hand Whether or not Young's and the shear moduli found in
sides that yield the smallest buckling load should be used. Sec- IV from MM simulations vary with the strain depends
For the periodic model of the SWNT,=16.18 A, r,  UPon the degree of the best-fit polynomial. In order to check
=5937 A, t=1.34 A, »=0.21: therefore,Z=32, N=2, this and to further validate the equivalent continuum model,
m=2, and the axial strain at buckling).147. The MM we simulated combined axial stretch and torsional deforma-
simulations giveN=2 and a critical strain of 0.098. The tons of a(16,0 SWNT of effective length 171 A, diameter
shape of the midsection of the buckled SWNT resembled & 11-87 A having 3072 atoms of which 2704 were strained.
peanut implying tham=2. Thus the axial strain from the Several com_b|nat|ons of axial stretch an.d torsional defor.ma—
Donnell shell theory does not match well with that from the lonS were simulated. The strain energies of the combined
MM simulations. deformations were compared with that of the sum of indi-
vidual deformations and also with the same deformations
3. Torsional buckling applied to the equivalent cylindrical tube. The maximum dif-
. . . ) ference between the strain energy for the combined deforma-
The MM simulations for the torsional deformations em-yjong and the sum of the strain energies of the individual
ployed a 171 A long SWNT. The tube buckled at a shealyeformations for the MM simulations was found to be less

strain of 0.064 and the buckled shape had two half-singn,, 1004 implying that the response of the tube up to 6%
waves in the circumferential direction. For the equivalentgnea sirain and 4% axial strain can be modeled as linear.
continuum tubeZ=3000; thus it can be regarded as beingisq  the difference in the strain energy of the continuum

infinitely long. Accord_mg _to t_he Donnell shell theory, the tube and that of the MM simulations was less than 10%.

shear stress; at buckling is given by Thus the equivalent continuum model described above is
2 quite good for analyzing deformations of the SWNT.

: (11)

A D r
Ts= 52: )\522\/5(1_1/)1/4(_6
t/rg t VIIl. CONTRIBUTIONS TO THE STRAIN ENERGY FROM

3 2 . . . DIFFERENT TERMS IN THE MM3 POTENTIAL
whereD = Et*/12(1- »°). Equationq11) give a shear strain

of 0.066 which agrees well with that obtained from the MM  In order to better understand the differences in the re-
simulations. However, for very long shells like the one beingsponse in axial tension and compression deformations of a
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TABLE IV. Parameters of cylindrical tubes equivalent in me- that computed from the molecular-mechanics simulations.

chanical response to different SWNTSs. Also strain energies of the combined axial and torsional de-
: —— formations computed from the MM simulations matched
SWNT Equivalent cylindrical tube well with that of the equivalent continuum tube. However,

the responses of the SWNT and the cylindrical tube in buck-

Tube Helicity Thickness Mean diameter E G . - . . .
4 ling deformations where bending stiffness of the thin wall

structure_(deg @ @) (TPa (P9 v plays a noticeable role are found to be somewhat different.
(8,0 60 1.34 5.97 2.31 1.03 0.19 The helicity and the diameter of a SWNT have very little
(12,6 30 1.35 11.79 2.43 0.99 0.21 effect on the wall thickness, Young's modulus, and the shear
(16,0 60 1.34 11.88 252 0.96 0.21 modulus of the equivalent continuum tube.

(25,0 60 1.34 18.55 249 097 0.21
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tube, the energy due to bond stretching is almost equal to the
total energy of the tube. The contribution to the total energy APPENDIX
from the angle bend deformation is annulled by contributions

from the van der Waals forces and torsional deformations Variablesr, §, and ¢ used below in Eg3A1) are shown
. ! : . . in Fig. 10. A subscript 0 on a variable signifies its value in
However, in axial compressive deformations, energies of de;

formations due to van der Waals forces, bond stretching, anH]e unstressed equilibrium configuration. The total energy of

angle bend modes of deformation are nearly the same. F(% body equals the sum of the potential for all atoms in the

the same value of the axial strain, the total strain energy o ody [the indexj in Egs. (A1) ranges over bonded atoms,

the tube is larger when it is deformed in compression thar§de the indes over all atomg The MMS3 potential is given

that when it is deformed in tension. Thus Young's modulus?nyareqS)'o(nAdl) d'gfg\:m;g;ﬁrgf;;j tLrJé ’ t:rrgk,Ud) ?srethtgeng:::
for compressive deformations is more than that for tensileb Y o aw
deformations. onded van der Waals term; akld;, U 45, andU 4, repre-

sent cross interactions between the variables.

IX. EFFECT OF DIFFERENT WRAPPING INDICES
U=2 > (UgtUy+Uy+Ugy+ Uyt Upgg)
i

MM simulations similar to those for €1.6,0 SWNT were
performed on (8,0, (10,10, (12,6, (25,0, and (48,0
SWNT's and for each case, Young's modulus, the shear +> > Uygws
modulus, Poisson’s ratio, and the wall thickness of the Pk
equivalent cylindrical tubes were determined. Results, sum-
marized in Table IV, evince that the wrapping indices affect
very little the values of the elastic moduli and the wall thick-
ness of the equivalent cylindrical tube. For example, Young’s
modulus varies from 2.3 to 2.6 TPa, Poisson’s ratio from
0.19 to 0.22, and the wall thickness from 1.33 to 1.36 A.
Thus results for 416,0 SWNT are representative of those
for tubes of other helicities and diameters. U,=0.021 9K ,(6— 00)’[1— (60— 6p) + 5.6(10 %) (08— 6)?

—7.0010 ") (60— 65)3+9.0(10 19 (68— 6,)*],

Us=71.94<5(r—r0)2[1—2.55(r —Tp)

—+

- 2.55(4—r0)2},

X. CONCLUSIONS

We have used results of the molecular-mechanics simula 4
tions of a SWNT and the relation among Young's modulus, £
Poisson’s ratio, and the shear modulus valid for a linear elas
tic isotropic material, to derive the thickness and values of
the two elastic moduli of an isotropic linear elastic cylindri-
cal tube equivalent to the SWNT. When the MM3 potential is
used to simulate deformations of a SWNT, it is found that for
the equivalent continuum tube, Young’'s modules 2.52
TPa, shear modulus 0.96 TPa, Poisson’s ratie 0.21, and
wall thickness= 1.34 A. The strain energy of bending de-  FIG. 10. Definitions of variables, 8, and ¢ used in defining
formations of the equivalent tube is found to match well with pairwise potentials.
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Uy=(V1/2)(1+cos¢)+(V,/2)(1—cos 2p)
+(V3/2)(1+ cos 3p),

Uygw= &0l —2.25r,/r)8+1.8410°)exd —12.0Qr/r )1},

Usp=2.51K (r—ro)+(r’ —r)](6—6y),

U ys= 11.995K ,/2) (1 — 1) (1+COS 3p),
U09r=—0.021914(09r(0— 00)(0,_ 0(’)) (Al)

Values of constant&g, K4, Vi, Vo, V3, g9, v, Ksp,
Kgs, andKy, are given in Ref. 3.

PHYSICAL REVIEW B69, 235406 (2004

- #ﬁu(ru |J)

VR(rij):fij(rij)DiCj/(SiJ ae

Va(ri)) =i (rij) Df S /(S — 1)e VZSiAil R,

By =| 1+, 2 GilOi) fi(ri ekl )= i)
k(#i,

Gel( i) = ap{ 1+ c§/dg—c/[d§+ (1+cosby )21}

(A2)

Herer;; is the distance between two atomandj, and 6;y is
the angle between lines joining atornandj, andi andk.

The Tersoff-Brenner potential reduces to the form givenThe Tersoff-Brenner potential is not a function of the angle
in Egs.(A2) below for carbon-carbon bonds. The number ofshown in Fig. 10. The functiongg(r;;) andV(rj;) are the
neighbors within a prescribed distance determines the nunrepulsive and the attractive potential energies, respectively,
ber of bonds for an atom. The number of bonds, or bontetween atomsandj. The functionB;; is the bond strength
order, helps define the bond strength of the pairwise bongéerm, andG(#6) is the angle bond energy function. The func-

potential.

UZEi j(2>i) VR(rij)_gijVA(rij)y

tions f;;(ri;) andf(ri) are the cutoff functions, which lin-
early reduce from 1 to O over a small range, to smooth out
the cutoff of long-range atomic interactions. All other quan-
tities are constants; their values can be found in Ref. 5.
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