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This work presents a theory of optical signal amplification and processing by quantum-dot semiconductor
optical amplifiers~SOA’s! based on the density matrix equations to treat electron-light interaction and the
optical pulse propagation equations. The theory includes the linear optical response as well as the incoherent
and coherent nonlinear response of the new devices with arbitrary spectral and spatial distribution of quantum
dots in the active region under the multimode light. The incoherent nonlinear response was due to the inco-
herent spectral hole burning and the reduction in the carrier density by the stimulated emission. The coherent
nonlinearity was due to the dynamic spectral hole burning caused by the population beating at the electronic
states resonant to the multimode light and the carrier density pulsation caused by the carrier relaxation dy-
namics. Based on the theory, we numerically simulated the operation of quantum-dot SOA’s, and succeeded in
presenting their diverse promising features in a very systematical manner. We expect amplifiers with low power
consumption, high saturation power, broad gain bandwidth, and pattern-effect-free operation under gain satu-
ration, and also signal processing devices to realize high-speed~40 to 160 Gb/s! pattern-effect-free wavelength
conversion by the cross-gain modulation with low frequency chirping and symmetric highly-efficient 1 to 2
THz wavelength conversion by the nondegenerate four-wave mixing. We point out that the nonlinear optical
response due to the spectral hole burning plays a decisive role in the high-speed optical signal processing.
Many of the theoretical predictions in this paper agree well with recent experimental demonstrations of device
performance. This work will help not only design practical quantum-dot devices working in the photonic
networks but also understand how carrier dynamics relates to the optical response of quantum dots with optical
gain under current injection.

DOI: 10.1103/PhysRevB.69.235332 PACS number~s!: 85.35.Be, 68.65.Hb, 78.67.Hc, 73.21.La
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I. INTRODUCTION

Quantum-dot semiconductor optical amplifiers~SOA’s!
have opened a new frontier in the field of semiconduc
optical devices for high-capacity and flexible optical da
transmission. Since we first proposed multiwavelength
high-speed pattern-effect-free signal amplification and p
cessing by quantum-dot SOA’s based on their nonlinear
tical properties1–5 and our device theory,6–10we have discov-
ered and demonstrated diverse promising features
theoretically and experimentally.11–18Among them are high
saturation power, broad gain bandwidth, pattern-effect-f
amplification of single- and multichannel signals, patte
effect-free high-speed wavelength conversion of optical s
nals by the cross-gain modulation, and symmetric high-sp
wavelength conversion by nondegenerate four-wave mix
In particular, a series of experimental demonstrations of 1
micron quantum-dot SOA’s with InAs self-assembled dots
the active region aroused broad interests in this new nan
vice field; We demonstrated 10–40 Gb/s pattern-effect-f
amplification,11–15 10–40 Gb/s pattern-effect-free wav
length conversion by the cross-gain modulation,11–15and the
0163-1829/2004/69~23!/235332~39!/$22.50 69 2353
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symmetric wavelength conversion by nondegenerate fo
wave mixing.16,17 We expect these promising features
quantum-dot SOA’s to provide high-performance amplifie
as well as all-optical switches in the next-generation pho
nic networks, which will work as regenerators, waveleng
converters, and time-division demultiplexers of optical pu
trains at much higher capacity than the bulk or quantum-w
counterparts. These pioneering works have been followed
various reports like the wavelength conversion by 1
micron InAs quantum-dash SOA’s,19 and the polarization-
independent photoluminescence, and thus optical gain
stacked InAs quantum dots.20

Though practical significance of quantum-dot SOA’s h
now come to be acknowledged, their operation theory
yet to be developed in order to understand their linear
nonlinear optical response more precisely as well as to
sign best-performance devices. Indispensable prerequi
for the theoretical development is to deal with unique fe
tures of quantum dots in the SOA active region, like th
spatial localization, inhomogeneous broadening of opti
spectra due to their size, composition, shape, and strain
tribution, carrier capture from the wetting layer, carrier em
©2004 The American Physical Society32-1
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sion to the wetting layer, intradot population relaxation, a
homogeneous broadening of the optical spectrum at each
crete energy state due to polarization relaxation, etc. In
ticular, dealing with the population and polarization rela
ation at each discrete energy state of each dot under
multimode light is a key to comprehensive understanding
nonlinear optical response, which we expect to be rema
able in quantum-dot SOA’s. Such remarkable nonlinearity
due to slower population and polarization relaxation th
conventional semiconductors known as the phon
bottleneck21–23 and due to prevention of direct carrier tran
fer between spatially localized dots. Though the ultraf
nonlinear phenomena in quantum-dot SOA’s has been fo
by pump-probe and four-wave mixing measurements,1–5 a
large gap between such knowledge on the carrier dynam
of quantum dots and the device performance still remain
be bridged.

The purpose of this work is to present an operation the
of quantum-dot SOA’s including all the above mention
properties unique to quantum dots for precise analyses o
SOA operation, and more generally, to step into a new b
of theory, i.e., quantum-dot optical device theory, beyond
conventional one made for bulk or quantum-well active
gions. We start by deriving equations for the polarization a
the carrier population of the quantum-dot active region un
the multimode light using the density matrix equation
Then, we present the optical pulse propagation equation
traveling-type quantum-dot SOA’s, which include the spa
position of each dot, inhomogeneous broadening, linear
tical susceptibility, and nonlinear optical susceptibilities d
to spectral hole burning and carrier density pulsation. Ba
on the derived theory, we simulate the quantum-dot S
performance to reveal its promising features in the photo
networks, its superiority to conventional SOA’s with bulk
quantum-well active regions, and the physical origins beh
the benefits. We add an Appendix to present a theory
SOA’s with bulk or quantum-well active regions which d
scribes comprehensively their performance as linear amp
ers and incoherent and coherent switches. This compara
approach will help highlight features of our quantum-d
theory in the main text.

II. THEORY OF OPTICAL PULSE PROPAGATION IN
QUANTUM-DOT SOA’s

The structure of the quantum-dot SOA is illustrated
Fig. 1. The SOA operates in the way that the current is
jected into the active layer including quantum dots, and
input optical signals are amplified via the stimulated em
sion or processed via the optical nonlinearity by the quan
dots. Figure 1 also shows the cross-sectional and plan-v
images of self-assembled InGaAs quantum dots as a typ
example of quantum-dot crystals. Self-assembled InG
quantum dots on GaAs substrates and their application
semiconductor lasers have been intensively studied s
early in the 1990s. They are nanosize semiconductor isla
with a wetting layer grown via the Strasnki-Krastanow mo
under highly mismatched epitaxy, where the electron ene
states are completely quantized due to the three-dimens
23533
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quantum confinement. Quantum-dot SOA’s are novel opt
devices using self-assembled quantum dots.

In this section, we develop an operation theory of t
quantum-dot SOA’s. First, we derive equations for the pol
ization and the carrier population of the quantum-dot act
region under the multimode light using the density mat
equations to treat electron-light interaction in each quant
dot. We consider the two-level system in the quantum d
which consists of the quantized electronic energy level of
conduction band and that of the valence band to describe
interband transition. We derive both linear and nonlinear
larization, and classify the nonlinear polarization into the
coherent and coherent ones. The incoherent nonlinear p
ization is due to the population reduction via the stimula
emission which occurs even under a single light mode, ca
ing the spectral-hole burning in the gain spectrum. We de
this type of the spectral-hole burning as the incoherent o
The coherent nonlinear polarization is due to the populat
beating at the energy states through the optical respons
more than two optical modes with different frequencies, a
also due to the population beating through the intraband
laxation. We call the former population beating as the d
namic spectral-hole burning, and the latter as the carrier d
sity pulsation according to general usage in bu
semiconductors and quantum wells~see Appendix!. We also
derive the pulse propagation equation in the quantum-
SOA’s, which work as the bases to describe their vario
operation modes, including single- and multimode amplific
tion, amplified spontaneous emission, cross-gain and cr
phase modulation, and nondegenerate four-wave mixing.
present rate equations of carrier population in randomly d
tributed quantum dots, which are solved simultaneously w
the pulse propagation equations.

Our theory can describe the linear and nonlinear opt
response of the quantum-dot SOA’s with arbitrary spec

FIG. 1. Structure of the quantum-dot SOA with cross-sectio
and plan-view images of self-assembled InGaAs quantum dots
2-2
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THEORY OF OPTICAL SIGNAL AMPLIFICATION AND . . . PHYSICAL REVIEW B69, 235332 ~2004!
and spatial distribution of quantum dots in the active reg
under the multimode light. What is unique in our theory a
as follows. First, we consider that each quantum dot is s
tially isolated in the active region, and forms its own elect
dipole under the multimode light. Polarization of th
quantum-dot active region is formed by summing up the c
tribution of each quantum dot with different carrier popu
tion and under different light electric-field amplitude. W
neglect the interdipole interaction between the dots. Sec
we take into account the dispersion of the interband tra
tion energy or frequency due to the distribution of size and
other factors like composition, shape, and strain, wh
causes inhomogeneous broadening in the optical spectra
group quantum dots by their ground-state resonant freque
to derive equations of the optical susceptibility in random
distributed self-assembled quantum dots for practical ca
lations. Third, we take into account the population relaxat
at each energy state of each dot using rate equations w
include intradot carrier relaxation, carrier capture from t
wetting layer, and carrier emission to the wetting layer. T
approach enables us to treat the carrier dynamics in
quantum-dot active region under multimode light, and to
rive formulas on the incoherent and coherent nonlinear o
cal response of the quantum-dot SOA.

The prototype of our quantum-dot optical device theo
presented the optical gain formula, and had a great succe
describing lasing spectra of self-assembled quantum
lasers.24,25 The optical gain formula introduced the inhom
geneous broadening by grouping dots in terms of their re
nant frequency and the homogeneous broadening. By u
the separate rate equation of carriers for each dot group
could treat the Fabry-Pe´rot multimode interaction through
the incoherent carrier population variation in each dot gro
and explain the experiments on the narrowing of the las
spectra as temperature increases. The present work impr
the optical gain formula by introducing the coherent nonl
ear gain, and the optical electric field intensity at each d
This improvement enables us to treat the detuning-depen
multimode interaction more quantitatively, and also, to c
culated the optical gain of the spatially arbitrarily distribut
dots.

A. Electronic states and electric dipole in quantum dots

We describe the state vector of the conduction band
uc,kc&, and that of the valence band asuv,kv&, wherekc is
the wave vector of the conduction-band electron, andkv is
that of the valence-band electron. Under the effective-m
approximation, the state vectors are written as

uc,ke&5E d3r ur &AVwc,kc
~r !uc,0 ~1!

and

uv,kv&5E d3r ur &AVwv,kv
~r !uv,0 , ~2!

wherewc,kc
(r ) is the envelope wave function of the condu

tion band,wv,kv
(r ) is that of the valence band,uc,0 is the
23533
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base function of the conduction-band edge, anduv,0 is that of
the valence-band edge, andV is the unit-cell volume.

The simplest description of the electronic states in
conduction band and the valence band is given by solv
the effective-mass equation of

F2
\2

2mj*
¹1Vj~r !Gw j ,k j

~r !5« j ,k j
w j ,k j

~r !, ~3!

where j 5c and v, mj* is the effective mass,Vj (r ) is the
confinement potential due to the band offset at the hete
junctions, and« j ,k j

is the energy. As long as we are co
cerned with the interband transition close to the band ed
we have only to treat one conduction band and two vale
bands, i.e., the heavy-hole and light-hole bands. When
need detail structures of the energy states, we should
many-band calculations including the interband and inters
band interactions which depend on the size, strain, sh
and confinement potential profiles of the dots. The results
this kind of treatment can be immediately applied to the S
theory in this paper.

In cubic-shape quantum dots with a volume ofLxLyLz
and with infinite potential barriers, Eq.~3! gives the wave
function of

w j ,k j
~r !5S 2

L D 3/2

sin~kjxx!sin~kjyy!sin~kjzz!, ~4!

the energy of

« j ,k j
5\v j ,k j

5
\2kj

2

2mj*
, ~5!

and the wave vector of

k j5~kjx ,kjy ,kjz!5S njxp

Lx
,
njyp

Ly
,
njzp

Lz
D , ~6!

where njx , njy , njz51,2,... . The electronic states are d
noted by the band and three independent quantum numb
Here, we assume thek selection rule that the interband tran
sition is possible whenkc5kv5k.

Let us consider the electric dipole at each quantum do
assigning the serial number ofs51,2,3... to each dot in the
active region of SOA’s. The position of each dot is denot
by r s . The electric dipole of2er s8 at each dot is formed by
the conduction-band and valence-bandk states under the
light electric field. The resonant frequency of each quant
dot for the optical transition between the conduction-ba
and the valence-bandk states isvcv,k

s 5vc,k
s 2vv,k

s 1Eg /\,
where Eg is the band gap of the quantum dot. Then, t
matrix element of the electric dipole for the interband tra
sition is given as

pcv,k
s,s 52^c,kuees"r s8uv,k&5

ei

m0vcv,k
s pcv,k

s , ~7!

wherees is the polarization unit vector, and

Pcv,k
s 5^c,kues"puv,k&. ~8!
2-3
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Thes dependence ofPcv,k
s is neglected. Note thatvcv,k

s var-
ies dot by dot, resulting in the inhomogeneous broadenin
the optical spectra.

B. Linear and nonlinear polarization and carrier population
in quantum dots

An advantage of the density-matrix approach in deriv
the polarization by electrons under the light electric field
that the relaxation of the polarization can be incorpora
phenomenologically without taking into account microsco
elementary processes of electron scattering. As a result,
approach gives general expressions for the linear and no
ear optical susceptibilities.26,27

We write the electric field of the multimode light by su
perimposing optical modes with different frequencies as

E5
1

2 (
m

esEmei ~qm"r2vmt !. ~9!

Here, the mode is denoted by an integer ofm, qm is the wave
vector, andvm is the frequency. We define thatv2m5
2vm , E2m5Em* , and q2m52qm , which guarantee tha
the electric field is a real number. The index to represent
polarizations might vary with the mode. Assuming that th
light electric field maintains its polarization along the wav
guide, and that the induced polarization of the system is
allel to the electric field, we write the polarization as

P5
1

2 (
m

esPm~r ,t !e2 ivmt, ~10!

where P2m(r ,t)5Pm* (r ,t). We assume here that the r
sponse of the polarization to the electric field is instan
neous.

We consider the interaction of the multimode light of E
~9! with the two-level electron system consisting of t
conduction-band state,uc,k&, and the valence-band sta
uv,k&. The density matrix of thesth dot is given as27,28

r~ t;s!5rcc,k~ t;s!uc,k&^c,ku1rvv,k~ t;s!uv,k&^v,ku

1rcv,k~ t;s!uc,k&^v,ku1rvc,k~ t;s!uv,k&^c,ku.

~11!

Its equation of motion is

]r~ t;s!

]t
5

1

i\
@H01H1 ,r~ t;s!#1F]r~ t;s!

]t G
rel

, ~12!

whereH0 is the unperturbed Hamilton written as

H05\vc,k
s uc,k&^c,ku1\vv,k

s uv,k&^v,ku, ~13!

andH1 is the Hamiltonian representing the electron-light
teraction. The last term of the right-hand side in Eq.~12! is
the phenomenological term to describe the relaxation of
density matrix to the steady state without light. The inter
tion Hamiltonian is written as
23533
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H15mcv,k
s ~r s ,t !uc,k&^v,ku1mcv,k

s ~r ,t !uv,k&^c,ku,
~14!

where

mcv,k
s ~r s ,t !5

1

2 (
m

mcv,k
s,mei ~qm"rs2vmt ! ~15!

and

mcv,k
s,m5

eEm

im0vm
Pcv,k

s . ~16!

From Eqs.~11!–~15!, the equation of motion for the non
diagonal term is given as

ṙcv,k~ t;s!5~2 ivcv,k
s 2Gcv,k

s !rcv,k~ t;s!1
i

\
@rcc,k~ t;s!

2rvv,k~ t;s!#mcv,k
s ~r s ,t !, ~17!

whereGcv,k
s is the relaxation rate of the nondiagonal term

rcv,k(t;s). Similarly, the equation of motion of the diagon
term in the conduction band is given as

ṙcc,k~ t;s!52
i

\
@rvc,k~ t;s!mcv,k

s ~r s ,t !

2rcv,k~ t;s!mvc,k
s ~r s ,t !#1gc,k~ t;s! ~18!

with

gc,k~ t;s!52Tcc,k
s @rcc,k~ t;s!2r5 cc,k~ t;s!#

2Rcc,k
s @rcc,k~ t;s!2 r̃cc,k~ t;s!#, ~19!

and that in the valence band is given as

ṙvv,k~ t;s!5
i

\
@rvc,k~ t;s!mcv,k

s ~r s ,t !

2rcv,k~ t;s!mvc,k
s ~r s ,t !#1gv,k~ t;s!, ~20!

with

gv,k~ t;s!52Tvv,k
s @rvv,k~ t;s!2r5 vv,k~ t;s!#

2Rvv,k
s @rvv,k~ t;s!2 r̃vv,k~ t;s!#, ~21!

wherer̃ j j ,k ( j 5c,v) is the diagonal term under the therm
equilibrium state,r5 j j ,k is that under the quasithermal equ
librium state under a given injection current,Rj j ,k

s is the car-
rier recombination rate toward thermal equilibrium state, a
Tj j ,k

s is the intraband carrier relaxation rate toward the q
sithermal equilibrium state.

Since the interaction term is a perturbation toH0 , we can
solve Eqs.~17!–~21! by conventional perturbation expansio
of r5r (0)1r (1)1r (2)..., where the number in the parenth
sis represents how many times the electron has intera
with the light. By grouping terms with the same perturbati
order, we obtain a series of equations forṙcv,k

(n) andṙ j j ,k
(n) . The
2-4
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THEORY OF OPTICAL SIGNAL AMPLIFICATION AND . . . PHYSICAL REVIEW B69, 235332 ~2004!
initial condition is that terms other thanr j j ,k
(0) are zero. Then,

the time derivative of the zeroth-order diagonal term is giv
as

ṙ j j ,k
~0! ~ t;s!52Tj j ,k

s @r j j ,k
~0! ~ t;s!2r5 j j ,k~ t;s!#

2Rj j ,k
s @r j j ,k

~0! ~ t;s!2 r̃ j j ,k~ t;s!#. ~22!

For n51,2,3,..., we obtain

ṙcv,k
~2n21!~ t;s!5@2 ivcv,k

s 2Gcv,k
s #rcv,k

~2n21!~ t;s!

1
i

\
@rcc,k

~2n22!~ t;s!2rvv,k
~2n22!~ t;s!#mcv,k

s ~r s ,t !,

~23!

ṙcc,k
~2n!~ t;s!52

i

\
@rvc,k

~2n21!~ t;s!mcv,k~r s ,t !

2rcv,k
~2n21!~ t;s!mvc,k~r s ,t !#1gc,k

~2n!~ t;s!,

~24!

and

ṙvv,k
~2n! ~ t;s!5

i

\
@rvc,k

~2n21!~ t;s!mcv,k~r s ,t !

2rcv,k
~2n21!~ t;s!mvc,k~r s ,t !#1gv,k

~2n!~ t;s!,

~25!

where

gj ,k
~2n!~ t;s!52Tj j ,k

s r j j ,k
~2n!~ t;s!2Rj j ,k

s r j j ,k
~2n!~ t;s!. ~26!

Note that odd diagonal terms and even nondiagonal te
are zero, which is due to the two-level electron
system assumed here. By expanding each term
rcv,k

(2n21)(t:s)5(mrcv,k
(2n21)(vm ;s)e2 ivmt and r j j ,k

(2n)(t;s)
5(mr j j ,k

(2n)(vm ;s)e2 ivmt, and inserting them into Eqs.~23!–
~25!, we obtain each frequency component. Note thatm is an
integer and thatv2m52vm .

The polarization of themth mode at the perturbation orde
of 2n21 is given by the diagonal summation of the produ
of the density matrix and the electric dipole as

Pm
~2n21!~r ,t !/252 (

c,v,k,s
rcv,k

~2n21!~vm ;s!pvc,k
s,s d~r2r s!1h.c.,

~27!

where the factor of 2 on the right-hand side represents
degeneracy due to spin. The delta function ofd(r2r s) will
be eliminated when we integrate the polarization byr to
obtain its average in the local area.

The total polarization is given by the sum of ea
perturbation-order term as

Pm~r ,t !5 (
n51

Pm
~2n21!~r ,t !. ~28!

and is divided into

Pm~r ,t !5Pm
~1!~r ,t !1Pm

inc~r ,t !1Pm
coh~r ,t !, ~29!
23533
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where Pm
(1)(r ,t) is the linear polarization,Pm

inc(r ,t) is the
incoherent nonlinear polarization, andPm

coh(r ,t) is the coher-
ent nonlinear polarization. Here, we use the term of ‘‘inc
herent’’ when the phase of some of the participating lig
modes is lost, and the term of ‘‘coherent’’ when the phase
all the participating light modes is preserved. We deriv
each polarization term as follows.

1. Linear polarization

By substituting

rcv,k
~1! ~ t;s!5(

m
rcv,k

~1! ~vm ;s!e2 ivmt ~30!

into Eq. ~23! with n51, the first-order nondiagonal term i
derived as

rcv,k
~1! ~vm ;s!5

@rvv,k
~0! ~ t;s!2rcc,k

~0! ~ t;s!#mcv,k
s,meiqm"rs

2\~vm2vcv,k
s 1 iGcv,k

s !
.

~31!

By substituting Eqs.~16! and ~31! into Eq. ~27! with n51,
the linear polarization is given as

Pm
~1!~r ,t !5«0xs

~1!~r ,t,vm!Emeiqm"r, ~32!

where the first-order susceptibility is

x~1!~r ,t,vm!5 (
c,v,k,s

xs
~1!~ t,vm ;cvks!d~r2r s! ~33!

and

xs
~1!~ t,vm ;cvks!5

2e2uPcv,k
s u2@rcc,k

~0! ~ t;s!2rvv,k
~0! ~ t;s!#

«0\m0
2vmvcv,k

s

3F 1

vm2vcv,k
s 1 iGcv,k

s

1
1

vm1vcv,k
s 1 iGcv,k

s G . ~34!

Note thateiqm"rs is replaced byeiqm"r in Eq. ~32! considering
the delta function in Eq.~33!. ~This kind of treatment often
appears below.!

2. Second-order diagonal terms

By substituting Eqs.~15!, ~16!, ~30!, and ~31! into Eq.
~24! with n51, we obtain

ṙcc,k
~2! ~ t;s![2

i

4\ (
m,m8
~.0!

e2@rcc,k
~0! ~ t;s!2rvv

~0!~ t;s!#uPcv,k
s u2

\m0
2vmvm8~vm2vcv,k

s 1 iGcv,k
s !

3EmEm8
* ei ~qm2qm8!"re2 i ~vm2vm8!t

1c.c.1gc,k
~2!~ t;s!

>2
«0i

8\ (
m,m8
~.0!

xs
~1!~ t,vm ;cvks!EmEm8

*

3ei ~qm2qm8!"rse2 i ~vm2vm8!t1c.c.1gc,k
~2!~ t;s!

~35!
2-5
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for the electron in the conduction band. In deriving the s
ond equation of Eq.~35!, we neglected nonresonant term
and the high-frequency terms ofe2 i (vm1vm8)t, and used Eq.
~34! with vcv,k

s >vm8 . The time derivative of the second
order diagonal term can be divided as

ṙcc,k
~2! ~ t;s!5 ṙcc,k

~2!pop~ t;s!1 ṙcc,k
~2!,beat~ t;s!, ~36!

where the population term which does not include the os
lating components is

ṙcc,k
~2!pop~ t;s!>

«0

4\ (
m

~.0!

Im xs
~1!~ t,vm ;cvks!uEmu2

2Tcc,k
s rcc,k

~2!,inc~ t;s!2Rcc,k
s rcc,k

~2!,inc~ t;s!

~37!

and the beating term which oscillates with the frequency
vm2vm8 is

ṙcc,k
~2!,beat~ t;s!>2

«0i

8\ (
m,m8

~mÞm8,.0!

xs
~1!~ t,vm ;cvks!EmEm8

*

3ei ~qm2qm8!"rse2 i ~vm2vm8!t1c.c.

2Tcc,k
s rcc,k

~2!,beat~ t;s!2Rcc,k
s rcc,k

~2!,beat~ t;s!.

~38!

The expression for the valence band can be derived from
~25! in the same way, and is divided intoṙvv,k

(2) (t;s)
5 ṙvv,k

(2)pop(t;s)1 ṙvv,k
(2),beat(t;s).

Higher order diagonal terms can also be classified i
population and oscillating terms. We write the populati
terms asrcc,k

(2n12),pop(t;s) and rvv,k
(2n12),pop(t;s), and beating

terms between two optical modes asrcc,k
(2n12),beat(t;s) and

rvv,k
(2n12),beat(t;s), wheren>1. We neglect the diagonal term

consisting of more than three optical-mode frequencies.

3. Incoherent nonlinear polarization due to spectral hole burning

The second-order population term of Eq.~37! becomes
negative whenrcc,k

(0) (t;s).rvv,k
(0) (t;s) @see Eq.~34!# due to

the stimulated emission, leading to the reduction in the po
lation of the k state at thesth dot. This is the nonlinea
polarization known as spectral hole burning. In the sense
the population shows no beating oscillation and that
phase of the optical waves are lost, we call this nonlin
polarization and the spectral hole burning ‘‘incoherent.’’

The (2n11)th order incoherent nonlinear polarizatio
(n>1) originates from the (2n11)th order nondiagona
term of rcv,k

(2n11),inc(t;s) derived by Eq.~23! with the (2n)th
order population terms ofrcc,k

(2n),pop(t;s) and rvv,k
(2n),pop(t;s).

By substituting the Fourier expansion of

rcv,k
~2n11!,inc~ t;s!5(

m
rcv,k

~2n11!,inc~vm ;s!e2 ivmt ~39!

into Eq. ~23!, we obtain the Fourier component of (2n
11)th order nondiagonal term as
23533
-

l-

f

q.

o

u-

at
e
r

rcv,k
~2n11!,inc~vm ;s!

5
@rvv,k

~2n!,pop~ t;s!2rcc,k
~2n!,pop~ t;s!#mcv,k

s,meiqm"rs

2\~vm2vcv,k
s 1 iGcv,k

s !
.

~40!

By substituting Eq.~40! into Eq. ~27!, we obtain the (2n
11)th order incoherent nonlinear polarization as

Pm
~2n11!,inc~r ,t !5«0xs

~2n11!,inc~r ,t,vm!Emeiqm"r, ~41!

where

xs
~2n11!,inc~r ,t,vm!5 (

c,v,k,s
xs

~2n11!,inc~ t,vm ;cvks!

3d~r2r s! ~42!

and

xs
~2n11!,inc~ t,vm ,cvks!

5
2e2uPcv,k

s u2@rcc,k
~2n!,pop~ t;s!2rvv,k

~2n!,pop~ t;s!#

«0\m0
2vmvcv,k

s

3F 1

vm2vcv,k
s 1 iGcv,k

s 1
1

vm1vcv,k
s 1 iGcv,k

s G .
~43!

Then, the total incoherent nonlinear polarization is

Pm
inc~r ,t !5 (

n51
Pm

~2n11!,inc~r ,t !. ~44!

By substituting Eqs.~15!, ~16!, ~39!, and ~40! into Eq.
~24!, the (2n12)th order population term becomes (n>1)

ṙcc,k
~2n12!,pop~ t;s!>

«0

4\ (
m

~.0!

Im xs
~2n11!,inc~ t,vm ;cvks!uEmu2

2Tcc,k
s rcc,k

~2n12!,pop~ t;s!

2Rcc,k
s rcc,k

~2n12!,pop~ t;s!. ~45!

From Eqs.~32!–~34! and~41!–~44!, the total polarization
due to the linear polarization and the incoherent nonlin
polarization becomes

Pm
pop~r ,t !5Pm

~1!~r ,t !1Pm
inc~r ,t ![«0xs

pop~r ,t,vm!Emeiqm"r,
~46!

where
2-6
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xs
pop~r ,t,vm!5 (

c,v,k,s
xs

pop~ t,vm ;cvks!d~r2r !, ~47!

xs
pop~ t,vm ;cvks!5xs

~1!~ t,vm ;cvks!

1 (
n51

xs
~2n11!,inc~ t,vm ;cvks!

5
2e2uPcv,k

s u2@rcc,k
pop~ t;s!2rvv,k

pop ~ t;s!#

«0\m0
2vmvcv,k

s

3F 1

vm2vcv,k
s 1 iGcv,k

s

1
1

vm1vcv,k
s 1 iGcv,k

s G , ~48!

and

rcc,k
pop~ t;s!5rcc,k

~0! ~ t;s!1rcc,k
~2!pop~ t;s!1 (

n51
rcc,k

~2n12!,pop~ t;s!.

~49!

By using Eqs.~22!, ~37!, ~45!, and~49!, the time derivative
of rcc,k

pop(t;s) is given as

ṙcc,k
pop~ t;s!5

«0

4\ (
m

~.0!

Im xs
pop~ t,vm ;cvks!uEmu2

2Tcc,k
s @rcc,k

pop~ t;s!2r5 cc,k~ t;s!#

2Rcc,k
s @rcc,k

pop~ t;s!2 r̃cc,k~ t;s!#. ~50!

The expressions for the valence band,rvv,k
pop (t;s), and its

time derivative can be derived in the same way.

4. Coherent nonlinear polarization due to spectral hole burning

The beating diagonal terms under the two optical mo
of different frequencies form the dynamic spectral-hole bu
ing, and mix with the third light to cause nonlinear polariz
tion. We call this nonlinear polarization coherent in the se
that the phase of all the optical waves is preserved.

Let us derive the coherent nonlinear polarization fro
rcc,k

(2),beat(t;s), rcc,k
(2n12),beat(t;s), rvv,k

(2),beat(t;s), and
rvv,k

(2n12),beat(t;s). The total beating term in the conductio
band is

rcc,k
beat~ t;s!5rcc,k

~2!,beat~ t;s!1 (
n51

rcc,k
~2n12!,beat~ t;s!. ~51!

The time derivative of the second order term ofrcc,k
(2),beat(t;s)

is given by Eq.~38!. By substituting Eqs.~15!, ~16!, ~39!,
and ~40! into Eq. ~24!, we obtain
23533
s
-

-
e

ṙcc,k
~2n12!,beat~ t;s!

>2
«0i

8\ (
m,m8

~mÞm8,.0!

xs
~2n11!,inc~ t,vm ;cvks!

3EmEm8
* ei ~qm2qm8!"rse2 i ~vm2vm8!t1c.c.

2Tcc,k
s rcc,k

~2n12!,beat~ t;s!2Rcc,k
s rcc,k

~2n12!,beat~ t;s!.

~52!

As in Eq.~35!, we neglected nonresonant terms and the hi
frequency terms ofe2 i (vm1vm8)t, and used Eq.~43! with
vcv,k>vm8 . Then, using Eqs.~38!, ~48!, ~51!, and~52!, we
obtain the total beating term as

ṙcc,k
beat~ t;s!>2

«0i

8\ (
m,m8

~mÞm8,.0!

xs
pop~ t,vm ;cvks!

3EmEm8
* ei ~qm2qm8!"rse2 i ~vm2vm8!t1c.c.

2Tcc,k
s rcc,k

beat~ t;s!2Rcc,k
s rcc,k

beat~ t;s!. ~53!

By substituting the second-order diagonal beating term

rcc,k
~2!,beat~ t;s!5 (

m8,m9
~mÞm8,.0!

rcc,k
~2!,beat~vm82vm9 ;s!

3e2 i ~vm82vm9!t1c.c. ~54!

into Eq. ~38!, we obtain

rcc,k
~2!,beat~vm82vm9 ;s!

5
«0

8\

xs
~1!~ t,vm8 ;cvks!

@vm82vm91 i ~Tcc,k
s 1Rcc,k

s !#
Em8Em9

*

3ei ~qm82qm9!"rs. ~55!

Similarly, by substituting the (2n12)-order diagonal beat
ing term of

rcc,k
~2n12!,beat~ t;s!5 (

m,m8
~mÞm8,.0!

rcc,k
~2n12!,beat~vm82vm9 ;s!

3e2 i ~vm82vm9!t1c.c. ~56!

into Eq. ~52!, we obtain

rcc,k
~2n12!,beat~vm82vm9 ;s!

5
«0

8\

xs
~2n11!,inc~ t,vm8 ;cvks!

@vm82vm91 i ~Tcc,k
s 1Rcc,k

s !#

3EmEm8
* ei ~qm82qm9!"rs. ~57!

From Eq. ~23!, the coherent nondiagonal terms due
dynamic spectral hole burning are given by
2-7
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ṙcv,k
~3!,dshb~ t;s!5@2 ivcv,k

s 2Gcv,k
s #rcv,k

~3!,dshb~ t;s!1
i

\
@rcc,k

~2!,beat~ t;s!2rvv,k
~2!,beat~ t;s!#mcv,k

s ~r ,t ! ~58!

and

ṙcv,k
~2n13!,dshb~ t;s!5@2 ivcv,k

s 2Gcv,k
s #rcv,k

~2n13!,dshb~ t;s!1
i

\
@rcc,k

~2n12!,beat~ t;s!2rvv,k
~2n12!,beat~ t;s!#mcv,k

s ~r s ,t !. ~59!

By substituting rcv,k
(3),dshb(t;s)5(m8,m9,m-rcv,k

(3)dshb(vm5vm81vm91vm- ;s)e2 i (vm81vm91vm-)t into Eq. ~58! and
rcv,k

(2n13),dshb(t;s)5(m8,m9,m-rcv,k
(2n13),dshb(vm5vm81vm91vm- ;s)e2 i (vm81vm91vm-)t into Eq. ~59! and using Eq.~15!, we

obtain the Fourier components ofrcv,k
dshb(t;s)5rcv,k

(3),dshb(t;s)1(n51rcv,k
(2n13),dshb(t;s). The component at the frequency o

vm5vm82vm91vm- with m8, m9, m-.0 andm8Þm9 is given as

rcv,k
dshb~vm5vm82vm91vm- ;s!5rcv,k

~3!,dshb~vm5vm82vm91vm- ;s!1 (
n51

rcv,k
~2n13!,dshb~vm5vm82vm91vm9 ;s!

5
e«0iPcv,k

s

16m0vm9\
2

@xs
pop~ t,vm8 ;cvks!2xs

pop~ t,vm9 ;cvks!* #

@~vm82vm91vm-2vcv,k
s !1 iGcv,k#

3H 1

@vm82vm91 i ~Tcc,k
i 1Rcc,k

t !#

1
1

@vm82vm91 i ~Tvv,k
s 1Rvv,k

s !#J 3Em8Em9
* Em9e

i ~qm82qm91qm-!"rs. ~60!

Note that the series expansion of the nondiagonal terms by the perturbation order in Eq.~60! is often used to obtain nonlinea
gain coefficient in lasers.

Then, by the diagonal summation of Eq.~27!, we obtain the coherent nonlinear polarization due to dynamic spectral
burning as

Pm
dshb~r ,t !5 (

n51
Pm

~2n11!,dshb~r ,t !5«0 (
m8,m9m-

~m8Þm9,.0!

xs
dshb~r ,t,vm5vm82vm91vm-!Em8Em9

* Em-ei ~qm82qm91qm-!"r, ~61!

where

xs
dshb~r ,t,vm5vm82vm91vm-!5 (

c,v,k,s
xs

dshb~ t,vm5vm82vm91vm- ;cvks!d~r2r s! ~62!

and

xs
dshb~r ,t,vm5vm82vm91vm- ;cvks!

5
e2uPcv,k

s u2

4m0
2vm-vcv,k

s \2

xs8
pop

~ t,vm8 ;cvks!2xs8
pop

~ t,vm9 ;cvks!*

vm82vm91vm-2vcv,k
s 1 iGcv,k

xH 1

vm82vm91 i ~Tcc,k
s 1Rcc,k

s !

1
1

vm82vm91 i ~Tvv,k
s 1Rvv,k

s !J . ~63!

Note that we added prime on the population susceptibility since the polarization of them9 mode,s, can be different from that
of the m8 andm9 modes,s8.
235332-8
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C. Coherent nonlinear polarization due to population beating
via intraband relaxation: carrier density pulsation

The light-induced population beating at the conductio
band k state described by Eq.~53! causes the populatio
beating in other energy states in the conduction band via
intraband electron relaxation, generating another source
coherent nonlinear polarization besides the dynamic spe
hole burning of Eq.~61!. This is also the case in the valenc
band. We call this source of nonlinearity as carrier dens
pulsation according to the general usage in conventio
semiconductors~see Appendix!. We treat the time-dependen
population at theuc,k l& state of thesth dot taking into ac-
count all the intraband relaxation processes related to o
intradot states denoted by the index ofiÞ l and the wetting
layer state denoted by the index ofw ~Fig. 2!. Then, using
Eqs.~50! and~53!, we obtain the time derivative of the popu
lation at uc,k l& state as

ṙcc,kl
~ t;s!5 ṙcc,kl

pop ~ t;s!1 ṙcc,kl

beat~ t;s!

5
«0

4\ (
m

~.0!

Im xs
pop~ t,vm ;cvk ls!uEmu2

2
«0i

8\ (
m,m8

~mÞm8,.0!

xs
pop~ t,vm ;cvk ls!EmEm8

*

3ei ~qm2qml!"rse2 i ~vm2vm8!t1c.c.

2Tcc,kl

s @rcc,kl
~ t;s!2r5 cc,kl

~ t;s!#

2Rcc,kl

s @rcc,kl
~ t;s!2 r̃cc,kl

~ t;s!#, ~64!

where

Tcc,kl

s 5(
iÞ l

Til
s,c1Twl

c , ~65!
23533
-

e
or
ral

y
al

er

Til
s,c5rcc,kl

~ t;s!t i→ l ,0
21 1@12rcc,kl

~ t;s!#t l→ i ,0
21 , ~66!

Twl
c 5

Nc,w
tot

2ND
tw→ l ,0

21 1S 12
Nc,w

tot

2Dc,w
D t l→w,0

21 , ~67!

and

r5 cc,kl
~ t;s!5Tcc,kl

s 21F(
iÞ l

rcc,kl
~ t;s!t i→ l ,0

21 1
Nc,w

tot

2ND
tw→ l ,0

21 G .

~68!

Here,t i→ l ,0 is the relaxation lifetime from theuc,k i& state to
the uc,k l& state, vice versa,tw→ l ,0 is the relaxation lifetime
from the wetting layer to theuc,k l& state, vice versa,ND is
the dot density, andNc,w

tot is the total electron density in th
conduction band of the wetting layer. The lifetimes are
sumed to be common in each dot, and their band ind
conduction or valence band, is omitted. We suppose one
ergy level with the degeneracy ofDc,w in the conduction
band of the wetting layer for simplicity. The rate equation
the wetting-layer electron density is

dNc,w
tot

dt
5

J

edw
2(

s,l

Nc,w
tot

2ND
@12rcc,kl

~ t;s!#tw→ l ,0
21

1(
s,l

rcc,kl
~ t;s!S 12

Nc,w
tot

2Dc,w
D t l→w,0

21 2Rw
c Nc,w

tot ,

~69!

whereJ is the current density,dw is the total thickness of the
wetting layer,Rw

c is the electron recombination rate in th
wetting layer, and the summation on the dot number,s, is
taken per unit volume, and the summation onl is taken over
all the energy states at each dot.

We obtain the amplitude of the population beating at
uc,k l& state in thesth dot by substituting
rcc,kl
~ t;s!5rcc,kl

pop ~ t;s!1 (
m8,m9

~mÞm8,.0!

rcc,kl
~vm82vm9 ;s!e2 i ~vm82vm9!t1c.c. ~70!

and

Nc,w
tot 5Nc,w1 (

m8,m9
~mÞm8,.0!

DNc,w~vm82vm9!e
2 i ~vm82vm9!t1c.c. ~71!

into Eq. ~64! as

rcc,kl
~vm82vm9 ;s!5rcc,kl

beat~vm82vm9 ;s!1(
iÞ l

i
Tli

s,c

vm82vm91 i ~Tcc,kl

s 1Rcc,kl

s !
rcc,kl

~vm82vm9 ;s!

1 i
Tw

c

vm82vm91 i ~Tcc,kl

s 1Rcc,kl

s !
DNc,w~vm82vm9!, ~72!
2-9
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where

Tw
c 5(

s,l
Frcc,kl

~ t;s!

2Dc,w
t l→w,0

21 1
12rcc,kl

~ t;s!

2ND
tw→ l ,0

21 G .

~73!

Never mix upi to describe the state index and the comp
number. In Eq.~72!, we used the Fourier component of th
light-induced beating term ofrcc,kl

beat(t;s) given by Eqs.~55!

and ~57! as

rcc,kl

beat~vm82vm9 ;s!5
«0

8\

xs
pop~ t,vm ;cvk ls!

@vm82vm91 i ~Tcc,kl

s 1Rcc,kl

s !#

3EmEm8
* ei ~qm82qm8!"rs. ~74!

Similarly, from Eq.~69!, we obtain

DNc,w~vm82vm9!5 i(
s,l

Twl
c rcc,kl

~vm82vm9 ;s!

vm82vm91 i ~Tw
c 1Rw

c !
.

~75!

FIG. 2. Conduction-band energy diagram of quantum-dot ac
region, and intraband relaxation processes of theuc,k1& state due to
other intradot states denoted by the index ofiÞ l and the wetting
layer state denoted by the index ofw.
23533
x

Equations~72!, ~74!, and ~75! are the linear simultaneou
equations, and can be solved numerically.

We can obtain an analytical and approximate solution
Eqs. ~72!, ~74!, and ~75! by the successive approximatio
with the form of

rcc,kl
~vm82vm9 ;s!5rcc,kl

beat~vm82vm9 ;s!

1rcc,kl

cdp ~vm82vm9 ;s!, ~76!

where

rcc,kl

cdp ~vm82vm9 ;s!5(
i ,s8

Ali
c ~vm82vm9 ;ss8!

3rcc,kl

beat~vm82vm9 ;ss8!. ~77!

Here, Ali
c (vm82vm9 ;ss8) represents the population puls

tion at thek l state of thesth dot caused by the light-induce
beating at thek i state of thes8th dot, and is a complex
number to cause phase shift from the light-induced beat
Thus,Ali

c (vm82vm9 ;ss8) with sÞs8 represents the interdo
interaction via the wetting layer, and cannot be neglec
when the electron diffusion length in the wetting layer with
the beating period is longer than the interdot distance. N
that

Ali
c ~vm82vm9 ;ss8!5Ali

c* ~vm92vm8;ss8!. ~78!

By substituting Eqs.~76! and ~77! into Eq. ~75!, we obtain
DNc,w(vm82vm9).

The beating at thek l state causes the coherent nondiag
nal term ofrcv,kl

(t;s) via Eq. ~17! with k5k l as

e

ṙcv,kl

coh ~ t;s!5@2 ivcv,kl

s 2Gcv,kl

s #rcv,kl

coh ~ t;s!1
i

\
@rcc,kl

~ t;s!2rvv,kl
~ t;s!#mcv,kl

s ~r s ,t !. ~79!

By substituting

rcv,kl

coh ~ t;s!5 (
m8,m9,m-

rcv,kl

coh ~vm5vm81vm91vm- ;s!e2 i ~vm81vm91vm-!t, ~80!

rcc,kl
(t;s) of Eq. ~70!, and

rvv,kl
~ t;s!5rvv,kl

pop ~ t;s!1 (
m8,m9

~mÞm8,.0!

rvv,kl
~vm82vm9 ;s!e2 i ~vm82vm9!t1c.c. ~81!

into Eq. ~79! with Eq. ~15!, we obtain the component with the frequency ofvm5vm82vm91vm- with m8,m9,m-.0 and
m8Þm9 as
2-10
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rcv,kl

coh ~vm5vm82vm91vm- ;s!5rcv,kl

dshb~vm5vm82vm91vm- ;s!1rcv,kl

cdp ~vm5vm82vm91vm- ;s!, ~82!

where

rcv,kl

cdp ~vm5vm82vm91vm- ;s!5
i«0ePcv,kl

s

16m0vm9\
2 (

i ,s8

xs
pop~ t,vm8 ;cvk ls8!2xs

pop* ~ t,vm9 ;cvk ls8!

@~vm82vm91vm-2vcv,kl

s !1 iGcv,kl
#

3F Ali
c ~vm82vm9 ;ss8!

vm82vm91 i ~Tcc,ki

s8 1Rcc,ki

s8 !
1

Ali
v ~vm82vm9 ;ss8!

vm82vm91 i ~Tvv,ki

s8 1Rvv,ki

s8 !G
3Em8Em9

* Em-ei ~qm82qm91qm-!"rs. ~83!

We neglected nonresonant terms, and assumede2 i (qm82qm9)•(rs2rs8)>1. Terms related to the valence band likeAli
v (vm8

2vm9 ;ss8) can be derived in the same way as the conduction band. The total coherent nonlinear polarization, give
diagonal summation of Eq.~27! with rcv,k

(2n21)(vm ;s) replaced byrcv,kl

coh (vm5vm82vm91vm- ;s), is the sum of the contri-

bution by the dynamic spectral hole burning,Pm
dshb(r ,t), and the carrier density pulsation in the dots,Pm

cdp(r ,t), and in the
wetting layer,Pm

wet(r ,t), as

Pm
coh~r ,t !5Pm

dshb~r ,t !1Pm
cdp~r ,t !1Pm

wet~r ,t !5«0 (
m8,m9,m-

~m8Þm9.0!

xs
coh~r ,t,vm5vm82vm91vm-!Em8Em9

* Em-ei ~qm82qm91qm-!"r,

~84!

where

xs
coh~r ,t,vm5vm82vm91vm-!5xs

dshb~r ,t,vm5vm82vm91vm-!1xs
cdp~r ,t,vm5vm82vm91vm-!

1xs
wet~r ,t,vm5vm82vm91vm-!, ~85!

xs
cdp~r ,t,vm5vm82vm91vm-!5 (

c,v,kl ,s
xs

cdp~ t,vm5vm82vm91vm- ;cvk ls!d~r2r s!, ~86!

xs
cdp~r ,t,vm5vm82vm91vm- ;cvk ls!5

e2uPcv,kl

s u2

4m0
2vm-vcv,kl

s \2 (
i ,s8

xs8
pop

~ t,vm8 ;cvk ls8!2xs8
pop* ~ t,vm ;cvk ls8!

vm82vm91vm-2vcv,kl

s 1 iGcv,kl

3F Ali
c ~vm82vm9 ;ss8!

vm82vm91 i ~Tcc,ki

s8 1Rcc,ki

s8 !
1

Ali
v* ~vm82vm9 ;ss8!

vm82vm91 i ~Tvv,ki

s8 1Rvv,ki

s8 !G , ~87!
i

the
th
ive
-
e

’s

e
s

and

xs
wet~Nc,w ,Nv,w ,vm5vm82vm91vm-!

5 (
i 5c,v

]xs
pop~Nc,w ,Nv,w ,vm-!

]Ni ,w

3@DNi ,w~vm82vm9!1DNi ,w* ~vm92vm8!#

3Em8
21Em9

* 21e2 i ~qm82qm9!"r. ~88!

Note that we added prime on the population susceptibility
Eq. ~87! since the polarization of them9 mode,s, can be
different from that of them8 andm9 modes,s8.
23533
n

D. Optical pulse propagation in the waveguide

We derive the equations for light pulse propagation in
wave guide of SOA’s. The direction of the wave guide wi
the length ofL and with the cross sectional area of the act
region of D is taken as thez axis and its perpendicular di
rection is thex-y plane. The refractive index of the wav
guide is represented byn(x,y,vm).

The wave equation of light is derived from Maxwell
equations as

¹2E5c22]2E/]t21m0s]E/]t1m0]2P/]t2, ~89!

whereP is the polarization of the material induced by th
electric field. We write the electric field of the light pulse a
2-11
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E5
1

2 (
m.0

e@Em~r ,t !e2 ivmt1c.c.#. ~90!

We assume a trial solution of the form of

Em~r ,t !5H~x,y!Rm~z,t !exp@ iqmz#, ~91!

where the real wave number in thez direction is

qm5q0~vm![
vmneff~vm!

c
~92!

and the transverse mode distribution in thex-y plane,
H(x,y), is determined by the conventional wave guide eq
tion of

S d2

dx2 1
d2

dy2DH~x,y!1H v2n2~x,y,vm!

c2 2q0
2~vm!J H~x,y!

50. ~93!

We omitted the transverse mode index inH(x,y) for simplic-
ity. The polarization of Eq.~10! is divided into

P5Ppop1Pcoh1Pb. ~94!

wherePpop1Pcoh is the polarization of the active region du
to the interband transition,Ppop is the sum of the linear po
larization and incoherent nonlinear polarization,Pcoh is the
coherent nonlinear polarization, andPb is the background
polarization. The photon flux density, i.e., the number
photons that pass the unit area of the waveguide cross
tion per unit time is
23533
-

f
ec-

Sm5
«0cneff~vm!

2\vmD E
cav

uEm~r ,t !u2dxdy. ~95!

From Eqs.~89!–~94!, we obtain the propagation equatio
as29

]

]z
Rm~z,T!5

Gm

2
@hpop~z,T,vm!1hcoh~z,T,vm5vm8

2vm91vm-!#Rm~z,T!

2
a loss~vm!

2
Rm~z,T!, ~96!

where we made the transformation ofT5t2q0(vm)z to em-
ploy a frame of reference moving with the pulse at the gro
velocity of q0(vm)21 and neglected the term of the grou
velocity dispersion. In Eq.~96!, the optical confinement fac
tor is

Gm5
*actuH~x,y!u2dxdy

*cavuH~x,y!u2dxdy
, ~97!

the contribution of the population term is

hpop~z,T,vm!

5 i
vm

neff~vm!c

*actxs
pop~r ,T,vm!uH~x,y!u2dxdy

*actuH~x,y!u2dxdy
,

~98!

the contribution of the coherent nonlinear polarization te
is
he
hcoh~z,T,vm5vm82vm91vm-!5 i
vm

neff~vm!c (
m8,m9,m-

~m8Þm9,.0!

*actxs
coh~r ,T,vm5vm82vm91vm-!uH~x,y!u4dxdy

*actuH~x,y!u2dxdy

3Rm8~z,T!Rm9
* ~z,T!Rm-~z,T!Rm

21~z,T!ei ~qm82qm91qm-2qm!z, ~99!

and the internal loss is defined asa loss(vm)5m0sv/q0(vm). The integration of ‘‘act’’ is done over the cross section of t
active region, and that of ‘‘cav’’ is done over the cross section of the waveguide in Eqs.~97!–~99!.

Let us decompose the population term into k

hpop~z,T,vm!5g~z,T,vm!1 i j~z,T,vm!, ~100!

where

g~z,T,vm!52
vm

neff~vm!c

*act Im xs
pop~r ,T,vm!uH~x,y!u2dxdy

*actuH~x,y!u2dxdy
~101!

is the optical gain, and

j~z,T,vm!5
vm

neff~vm!c

*act Rexs
pop~r ,T,vm!uH~x,y!u2dxdy

*actuH~x,y!u2dxdy
~102!

is related to the phase of the optical pulse. Whenxs
pop(r ,T,vm) is replaced withxs

(1)(r ,T,vm), Eq. ~101! gives the linear gain
of g(1)(vm).

The amplitude of the optical pulse propagating in thez direction is affected by the terms ofhm
pop(z,T) andhm

coh(z,T) as
seen in Eq.~96!. By averaging Eq.~98! with Eq. ~47! over the small distance ofDz, we obtain
2-12
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hpop~z,T,vm!5 i
vm

neff~vm!c

(
c,v,k,s

*actdxdy*z
z1Dzdzxs

pop~z,T,vm ;cvks!d~r2r s!uH~x,y!u2

Dz*actuH~x,y!u2dxdy

5 i
vm

neff~vm!c (
c,v,k,s

~z;z1Dz!

xs
pop~z,T,vm ;cvks!

uH~xs ,ys!u2

Dz*actuH~x,y!u2dxdy
. ~103!

Here, the summation overs is limited to the dots betweenz and z1Dz, where Dz should satisfyDz]Rm(z,T)/]z
!Rm(z,T). Similarly, from Eqs.~85! and ~99!, we obtain

hcoh~z,T,vm5vm82vm91vm-!5hcshb~z,T,vm5vm82vm91vm-
!1hcdp~z,T,vm5vm82vm91vm-!

1hwet~z,T,vm5vm82vm91vm-!, ~104!

where

hcshb~z,T,vm5vm82vm91vm-!5 i
vm

neff~vm!c (
m8,m9,m-

~m8Þm9,.0!

(
c,v,k,s

~z;z1Dz!

xs
cshb~z,T,vm5vm82vm91vm9 ;cvks!

3
uH~xs ,ys!u4

Dz*actuH~x,y!u2dxdy
Rm8~z,T!Rm9

* ~z,T!Rm-~z,T!Rm
21~z,T!ei ~qm82qm91qm-2qm!z,

~105!

hcdp~z,T,vm5vm82vm91vm-!5 i
vm

neff~vm!c (
m8,m9,m-

~m8Þm9,.0!

(
c,v,k,kl ,s
~z2z1Dz!

xs
cdp~z,T,vm5vm82vm91vm- ;cvks!

3
uH~xs ,ys!u4

Dz*actuH~x,y!u2dxdy
Rm8~z,T!Rm9

* ~z,T!Rm-~z,T!Rm
21~z,T!ei ~qm82qm91qm-2qm!z,

~106!
and

hwet~z,T,vm5vm82vm91vm-!5 i
vm

neff~vm!c (
m8,m9,m-

~m8Þm9,.0!

*actxs
wet~Nc,w ,Nv,w ,vm5vm82vm91vm-!uH~x,y!u4dxdy

*actuH~x,y!u2dxdy

3Rm8~z,T!Rm9
* ~z,T!Rm-~z,T!Rm

21~z,T!ei ~qm82qm91qm-2qm!z. ~107!
n

tio
r
b

th
th
d

b
we
dg

be-

-

f

In order to calculate Eqs.~103! and~104!, we need to know
the position, the energy states and the carrier populatio
each dot.

E. Amplified spontaneous emission and noise figure

Spontaneous emission is one of the major recombina
processes of electrons and holes injected into the active
gion besides stimulated emission and nonradiative recom
nation. Based on the Weisskopf and Wigner theory in
three-dimensional symmetric continuous optical modes,
spontaneous emission shows an exponential irreversible
cay with a time constant of about one nanosecond.28,30Some
of the spontaneous emission propagate in the waveguide
ing amplified via the stimulated emission. As a result,
observe amplified spontaneous emission light from the e
of the waveguide superimposed to the output signals.29,31,32
23533
of

n
e-
i-

e
e
e-

e-

e

The propagation equation of the spontaneous emission
ing amplified in the cavity is given as

d

dz
Ssp~z,T,vsp!5@Gspg~z,T,vsp!2a loss~vsp!#

3Ssp~z,T,vsp!

1Gspgspon~z,T,vsp!Svac~vsp!, ~108!

whereSsp(z,T,vsp) is the photon flux density of the spon
taneous emission with the frequency betweenvsp and vsp
1Dvsp , a loss(vsp) is the loss, the optical gain o
g(z,T,vsp) is given by Eq.~101! with vm replaced byvsp ,
Gsp is the optical confinement factor,Svac(vsp)
5Dvsp /(2pD) is the photon flux density of the vacuum
field with a frequency betweenvsp and vsp1Dvsp ,
gspon(z,T,vsp) is given byg(z,T,vsp) with the distribution
2-13
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function of rcc,k
pop(z,T;s)2rvv,k

pop (z,T;s) replaced with
rcc,k

pop(z,T;s)@12rvv,k
pop (z,T;s)# to described the stimulate

emission by the vacuum field. We used the concept that
spontaneous emission is the stimulated emission by
vacuum field.33

Under the linear condition, where the gain is independ
of z and T, we write g(z,T,vsp)5g(1)(vsp) and
gspon(z,T,vsp)5gspon

(1) (vsp). Then, we obtain an analytica
solution of Eq.~108!; by integrating Eq.~108! in the wave-
guide between 0 andL, we obtain the output of29,31,32

Ssp~L,T,vsp!5@G~1!~vsp!21#nsp~vsp!Svac~vsp!

1G~1!~vsp!Ssp~0,T,vsp!, ~109!

whereSsp(0,T,vsp) is the photon flux density of the inpu
spontaneous emission, the linear amplifier gain is

G~1!~vsp!5exp$@Gspg
~1!~vsp!2a loss~vsp!#L%,

~110!

and the population inversion parameter is

nsp~vsp!5n~1!~vsp!n
~2!~vsp! ~111!

with

n~1!~vsp!5
gspon

~1! ~vsp!

g~1!~vsp!
~112!

and

n~2!~vsp!5
Gspg~1!~vsp!

Gspg
~1!~vsp!2a loss~vsp!

. ~113!

The population inversion parameter of Eq.~111! takes the
minimum value of one whenrcc,k

pop(z;s)51, rvv,k
pop (z;s)50,

anda loss(vsp)50.
The signal-to-noise ratio~SNR! degrades in SOA’s be

cause of the beating noise that comes from the beating o
signal with the spontaneous emission light, and from
beating between the amplified spontaneous emission of
ferent frequencies.29,31,32The noise figure~NF! of the SOA is
given as

NF5
112houtSsp~L,T,vm!/Svac~vm!

h inhoutGm~T!
, ~114!

whereh in is the input coupling coefficient, andhout is the
output coupling coefficient. In the linear region, usin
Gm(T)5Gm

(1)5exp$@Gmg(1)(vm)2aloss(vm)#L% and Eq.~109!
with Ssp(0,T,vm)50, we obtain

NF5
112hout@Gm

~1!21#nsp~vm!

h inhoutGm
~1! >

2nsp~vm!

h in
.

~115!

The noise figure is proportional to the population invers
parameter and inversely proportional to the input coupl
coefficient. Its minimum is NF53 dB whennsp(vm)5h in
51.
23533
e
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e
if-

g

F. Optical susceptibility and carrier population in randomly
distributed quantum dots with inhomogeneous

broadening

In order to simplify the calculation of the susceptibilitie
described by Eqs.~103! and ~104!, we group quantum dots
by their resonance energies or frequencies; let us divide
dot ensemble into 2M11 groups depending on their reso
nant frequency for the ground-state interband transition~Fig.
3!. Taking the central frequency of the ground-state transit
asvcv,kg

0 and the frequency width of each group asDvcv,kg
,

the frequency of the ground state of thej th group is repre-
sented by

vcv,kg

0 5vcv,kg

0 2~M2 j !Dvcv,kg
, ~116!

where j 50,1,2,..., and 2M @do not confuse the index ofj
with what was used to describe the electronic bands in
~3!#. We should chooseM to makeDvcv,kg

much smaller

than the dephasing rate, say,Dvcv,kg
!Gcv,kg

so that the dots
in one group behave in the same way under the light. We
the inhomogeneous broadening function of

Gj5G~vcv,kg

j 2vcv,kg

0 !Dvcv,kg
~117!

to describe the distribution of the interband transition f
quency at the ground state. Note thatGj is normalized as
( j 50

2M11Gj51. In self-assembled quantum dots,Gj often
obeys Gaussian distribution. The frequency of thel th excited
state of thej th group is represented by

vcv,kl

j 5vcv,kl

0 2~M2 j !Dvcv,kl
, ~118!

wherevcv,kl

0 is the central frequency andDvcv,kl
is the fre-

quency width of each group (Dvcv,kl might vary withj!. We
assume the following; First, each resonant frequency gr
has the same spatial distribution in thexy plane. Second,
quantum dots in the same resonant frequency group have
same population. Third, each group has the same relaxa
and recombination rates, which we denote byj instead ofs,
like Gcv,k

j instead ofGcv,k
s for example. Let us call this treat

ment a random distribution approximation.
We assume in Eq.~118!, for simplicity, that the higher the

ground-state resonant frequency is, the higher the exci
state frequency. This might not be the case when the in
mogeneous broadening is caused by multiple factors like

FIG. 3. Grouping of quantum dots in terms of their resona
frequency of the ground-state interband transition.
2-14
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size, alloy composition, shape, and strain of quantum d
Then, the grouping should take into account the vario
combination of the ground- and excited-state frequenc
Tsiper treated this case by deriving the formula on the pr
ability density for the combination of the ground- an
excited-state frequencies, and presented the way to know
statistical distribution of the each energy state from the p
toluminescence and photoluminescence excita
experiments.34

By taking the summation ofj and s independently, Eq.
~103! becomes

hpop~z,T,vm!5 (
c,v,k

(
j 51

2M11

hpop~z,T,vm ;cvk j !,

~119!

where

hpop~z,T,vm ;cvk j !

5 i
vm

neff~vm!c
ND~z!xs

pop~z,T,vm ;cvk j !Gj ,

~120!

xs
pop~z,T,vm ;cvk j !

5
2e2uPcv,k

s u2@rcc,k
pop~z,T; j !2rvv,k

pop ~z,T; j !#

«0\m0
2vmvcv,k

j

3F 1

vm2vcv,k
j 1 iGcv,k

j 1
1

vm1vcv,k
j 1 iGcv,k

j G ,
~121!

and

NDk~z!5 (
s

~z2z1Dz!

uH~xs ,ys!u2

Dz*actuH~x,y!u2dxdy
. ~122!

Here, rcc,k
pop(z,T; j ) is the common population of thej th

group in the conduction band state,rvv,k
pop (z,T; j ) is that in the

valence band state, andGcv,k
j is the common polarization
23533
s.
s
s.
-

he
-
n

relaxation rate of thej th group. Note thatND(z) of Eq. ~122!
becomes the dot density ofND whenH(x,y) is constant over
the active region.

In the same way, from Eqs.~100! and~119!, we obtain the
optical gain as

g~z,T,vm!5 (
c,v,k

(
j 51

2M11

g~z,T,vm ;cvk j !, ~123!

where

g~z,T,vm ;cvk j !

52
vm

neff~vm!c
ND~z!Im xs

pop~z,T,vm ;cvk j !Gj

~124!

and

Im xs
pop~z,T,vm ;cvk j !

52
2pe2uPcv,k

s u2@rcc,k
pop~z,T; j !2rvv,k

pop ~z,T; j !#

«0\m0
2vmvcv,k

j

3
Gcv,k

j /p

~vm2vcv,k
j !21Gcv,k

j 2 . ~125!

The nonresonant term was omitted. The formulas
gspon(z,T,vsp) can be obtained in the similar way.

By taking the summation ofj and s independently, Eq.
~104! becomes

hcoh~z,T,vm!

5 (
m8,m9m-

~m8Þm9.0!

(
c,v,k,k j

(
j 51

2M11

@hdshb~z,T,vm ;cvk j !

1hcdp~z,T,vm ;cvk l j !#

3Rm8~z,T!Rm9
* ~z,T!Rm-~z,T!Rm

21~z,T!

3ei ~qm82qm91qm-2qm!z1hwet~z,T,vm!, ~126!

where
hdshb~z,T,vm ;cvk j !5 i
vm

neff~vm!c
ND

coh~z!xs
dshb~z,T,vm ;cvk j !Gj , ~127!

xs
dshb~z,T,vm5vm82vm91vm- ;cvk j !5

e2uPcv,k
s u2

4m0
2vm-vcv,k

j \2

xs8
pop

~z,T,vm8 ;cvk j !2xs8
pop

~z,T,vm9 ;cvk j !*

vm82vm91vm-2vcv,k
j 1 iGcv,k

j

3H 1

vm82vm91 i ~Tcc,k
j 1Rcc,k

j !
1

1

vm82vm91 i ~Tvv,k
j 1Rvv,k

j !J , ~128!

hcdp~z,T,vm ;cvk l j !5 i
vm

neff~vm!c
ND

coh~z!xs
cdp~z,T,vm ;cvk l j !Gj , ~129!
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xs
cdp~z,T,vm5vm82vm91vm9 ;cvk l j !5

e2uPcv,kl

s u2

4m0
2vm9vcv,kl

j \2 (
i , j 8

xs8
pop

~z,T,vm8 ;cvk i j 8!2xs8
pop* ~z,T,vm8 ;cvk i j 8!

vm82vm91vm-2vcv,ki

j 1 iGcv,ki

j

3H Ali
c ~vm82vm9 ; j j 8!

vm82vm91 i ~Tcc,ki

j 8 1Rcc,ki

j 8 !
1

Ali
v* ~vm82vm9 ; j j 8!

vm82vm91 i ~Tvv,ki

j 8 1Rvv,ki

j 8 !J ~130!

and

ND
coh~z!5 (

s
~z2z1Dz!

uH~xs ,ys!u4

Dz*actuH~x,y!u2dxdy
. ~131!

From Eqs.~72!–~75! with s replaced byj, the amplitude ofAli
c (vm82vm9 ; j ) is given by solving

rcc,kl
~vm82vm9 ; j !5rcc,kl

beat~vm82vm9 ; j !1(
iÞ l

i
Tli

j ,c

vm82vm91 i ~Tcc,ki

j 1Rcc,ki

j !

3 rcc,ki
~vm82vm9 ; j !1 i

Tw
c

vm82vm91 i ~Tcc,ki

j 1Rcc,ki

j !
DNc,w~vm82vm9! ~132!

and

DNc,w~vm82vm9!5 i(
j ,l

2NDGjTwl
c

vm82vm91 i ~Tw
c 1Rw

c !
rcc,kl

~vm82vm9 ; j ! ~133!

under the successive approximation as

rcc,kl
~vm82vm9 ; j !5rcc,kl

beat~vm82vm9 ; j !1rcc,kl

cdp ~vm82vm9 ; j ! ~134!

and

rcc,kl

cdp ~vm82vm9 ; j !5(
i , j 8

Ali
c ~vm82vm9 ; j j 8!rcc,kl

beat~vm82vm9 ; j 8!. ~135!

Here,Ali
c (vm82vm9 ; j j 8) represents the population pulsation at thek l state of thej th dot group caused by the light-induce

beating at thek i state of thej 8th dot group, and is a complex number to cause phase shift from the light-induced beating
Ali

c (vm82vm9 ; j j 8) with j Þ j 8 represents the interdot group interaction via the wetting layer, and cannot be neglected
the electron diffusion length in the wetting layer within the beating period is longer than the interdot distance. Note t

Ali
c ~vm82vm9 ; j j 8!5Ali

c* ~vm92vm8 ; j j 8!. ~136!

Under the random distribution approximation, the electron density of thej th dot group in the active region at the positio
of z is given as

Nc,k~z,T; j !52NDGjrcc,k
pop~z,T; j !52~DDz!21(

sP j
(

v
E

act
dxdyE

z

z1Dz

dzrcc,k
pop~z,T;s!d~r2r s!, ~137!

where the summation ofs is done when dots are in thej th group. Note that we added the summation on the valence-bankv
state. The degeneracy due to spin is taken into account. Using Eq.~50!, we obtain the time derivative of Eq.~137! as

dNc,k~z,T; j !

dt
5

«0

2\
~DDz!21(

sP i
(

v
(
m

~.0!

E
act

dxdyE
z

z1Dz

dz Im xpop~z,T,vm ;cvks!d~r2r s!uEm~r ,t !u22Tcc,k
j @Nc,k~z,T; j !

2N5 c,k~z,T; j !#2Rcc,k
j @Nc,k~z,T; j !2Ñc,k~z,T; j !#, ~138!

whereN5 c,k(z,T; j ) and Ñc,k(z,T; j ) are given in the same way as Eq.~138! under the random distribution approximatio
Using Eqs.~95! and ~124!, Eq. ~138! becomes
235332-16
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dNc,k~z,T; j !

dt
52(

v
(
m

~.0!

GmSmg~z,T,vm ;cvk j !

2Tcc,k
j @Nc,k~z,T; j !2N5 c,k~z,T; j !#

2Rcc,k
j @Nc,k~z,T; j !2Ñc,k~z,T; j !#.

~139!

The first term of Eq.~139! represents the reduction of th
carrier density by the stimulated emission. The rate equa
of the carrier density in the valence band,Nv,k(z,T; j ), can
be derived in the same way.

III. MODEL OF CARRIER RELAXATION

In order to calculate the light propagation in the wav
guide and the carrier density in the active region using
formulas in Sec. II, we need to know the population rela
ation rates ofTcc,k

j , Tw
c , Twl

c , Tlw
c , andTli

j ,c in the conduc-
tion band, the same rates in the valence band, the reco
nation rates of Rcc,k

j , Rvv,k
j , Rw

c , and Rw
v , and the

polarization relaxation rate ofGcv,k
j at each conduction-ban

and valence-bandk state in each dot group. These para
eters can be evaluated by many experimental approach
study the light-matter interaction, like time-resolved pho
luminescence, pump-probe, and four-wave mixing te
niques, etc.

By time-resolved pump-probe transmission spectra, A
iyama et al.5 reported the incoherent spectral hole burni
width, i.e., homogeneous broadening width, to be 10–
meV in the SOA with 1.15-micron self-assembled InGa
quantum-dot active region at room temperature, giving us
relaxation lifetime of (Gcv,k

j )21590– 130 fs. The authors
found that the spectral hole broadened as the injection
rent increased, which can be attributed to the enhanceme
carrier-carrier scattering rates. By analyzing lasing spectr
the quantum-dot lasers with the same active region base
the prototype of our present theory, Sugawaraet al. obtained
similar values of homogeneous broadening under lasin25

By time-resolved four-wave mixing, Borriet al. evaluated
the polarization relaxation rate at the 1.25-micron grou
state of the quantum-dot SOA to be about 150 fs under
current injection condition.35,36The authors claimed that thi
150-fs value is due to equal contributions from populat
relaxation and elastic dephasing, and is more than three-
longer than less-confined dots indicating that the strong c
finement can reduce the homogeneous broadening under
rent injection.

The carrier recombination rates ofRcc,k
j , Rcc,k

j , Rw
c , and

Rw
v are 0.1–1 ns in semiconductors. This is due to the sp

taneous emission and other nonradiative recombination
cesses.

Gain saturation recovery of the incoherent spectral h
which is caused by the population relaxation, was studied
Akiyama et al.5 and Borri et al.3,4,35 in self-assembled In-
GaAs quantum-dot SOA’s. In general, the measured gain
function of time showed complete recovery of saturat
within a few picoseconds or less, and a fast gain recov
23533
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component with a time constant of 100–300 fs. The sl
recovery component can be attributed to the carrier cap
process to quantum dots, which is also evaluated by the
time of time-resolved photoluminescence.37 The fast compo-
nent corresponds to the population relaxation time
(Tcc,k

j )21 and (Tvv,k
j )21 in our theory. Borriet al. analyzed

their data to eliminate the superimposed two-photon abs
tion contribution, and show that the fast recovery compon
has the time constant of 115 fs in 1.1-micron small-size d
and 140 fs in 1.25-micron large-size dots.

Note that the time constants of 100–300 fs are one or
of magnitude longer than typical carrier scattering rates
10–50 fs in conventional semiconductors like quantum we
and bulk materials.37,38 The slower gain recovery leads t
remarkable incoherent and dynamic spectral hole burnin
quantum-dot SOA’s, which is the principle of the high-spe
switching.

Knowledge we are still lacking for simulating quantum
dot SOA performance is about how the carrier population
eachk state and in the wetting layer depends on the curr
density and the optical intensity. So, we present here a m
of the electronic band structure of the quantum-dot act
region, and then, a series of rate equations on the popula

Figure 4 shows a model of the conduction-band struct
of quantum dots with a wetting layer. The wetting layer
commonly observed in the self-assembled InGaAs quan
dots grown via Stranski-Krastanow mode.28 In each dot, we
take into account three energy states, which we name
ground state, the excited state, and the upper continu
state. The continuum state means the ensemble of dens
ergy states in each dot which merges into the tw
dimensional energy states of the wetting layer. Carriers
injected into the wetting layer by currents, captured by
continuum states, and then, relax into the dots. We desc
the center of the interband transition energy,k vector and the
degeneracy asEg5\vcv,kg

0 , kg andDg for the ground state,

and Ee5\vcv,ke

0 , ke and De for the excited state. For sim

plicity, we also represent the upper continuum state by
interband transition energy ofEu5\vcv,ku

0 and the degen-

eracy ofDu , and the wetting layer by the interband trans
tion energy ofEw5\vw and the degeneracy ofDw . The
time constants of the carrier relaxation processes denote
the arrows in Fig. 4 are given in the Appendix of Ref. 18

Main assumptions here are as follows. We use rand

FIG. 4. Conduction band structure of quantum dots includ
the wetting layer. We take into account the ground state, the exc
state, and the upper continuum state in each dot.
2-17
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distribution approximation defined in Sec. II G. We consid
one conduction band and one valence band, and use
charge neutrality condition ofrcc,k

pop(z,T; j )1rvv,k
pop (z,T; j )

51 at eachk state andNc,w5Nv,w5Nw(z,T) in the wetting
layer. We write the carrier density of the upper continuu
state at the j th dot group as Nu, j (z,T)
52DuNDGjrcc,ku

pop (z,T; j ), that of the excited state a

Ne, j (z,T)52DeNDGjrcc,ke

pop (z,T; j ), and that of the ground

state asNg, j (z,T)52DeNDGjrcc,kg

pop (z,T; j ). We use the re-

laxation rates common for each conduction-band a
valence-bandk state, instead of treating the relaxation
electrons and holes separately. For example, the popula
relaxation rates ofTcc,ks

j and Tvv,kg

j are written asTg
j , the

recombination rates ofRcc,kg

j andRvv,kg

j asRg
j , and the po-

larization relaxation rate ofGcv,kg

j as Gg
j . We suppose tha

only the ground state is resonant to the light, i.e., the stim
lated emission and the light-induced population beating
curs only in the ground state.

A. Rate equations of carrier density

The rate equations of carriers at each energy state
given in Ref. 18. The intraband relaxation rates used in
paper’s notation are given as

Tw5(
j

FNu, j~z,T!

2Dw
tu→w,0

21 1S 12
Nu, j

2DuNDGj
DGjtw→u,0

21 G
~140!

for the wetting layer,

Tu
j ~z,T!5Twu~z,T!1Tgu

j ~z,T!1Teu
j ~z,T!, ~141!

Twu~z,T!5
Nw~z,T!

2DuND
tw→u,0

21 1S 12
Nw

2Dw
D tu→w,0

21 ,

~142!

Tgu
j ~z,T!5

Nj~z,T!

2DuNDGj
tg→u,0

21 1S 12
Nj

2DgNDGj
D tu→g,0

21 ,

~143!

Teu
j ~z,T!5

Ne, j~z,T!

2DuNDGj
te→u,0

21 1S 12
Ne, j

2DeNDGj
D tu→e,0

21 ,

~144!

for the upper continuum state, and

Te
j ~z,T!5Tge

j ~z,T!1Tue
j ~z,T!, ~145!

Tge
j ~z,T!5

Nj~z,T!

2DeNDGj
tg→e,0

21 1S 12
Nj

2DgNDGj
D te→g,0

21 ,

~146!

Tue
j ~z,T!5

Nu, j~z,T!

2DeNDGj
tu→e,0

21 1S 12
Nu, j

2DuNDGj
D te→u,0

21 ,

~147!

for the excited state. The carrier recombination rate at e
state is written asRw , Rc

j , andRe
j .
23533
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The rate equation of the ground state is

dNg, j~z,T!

dT
52 (

m
~.0!

GmSmg~z,T,vm ;cvg j !

2Tg
j ~z,T!@Ng, j~z,T!2N5 g, j~z,T!#

2Rg
j @Ng, j~z,T!2Ñg, j~z,T!#, ~148!

where

g~z,T,vm ;cvg j !5Dgg~z,T,vm ;cvkgj !, ~149!

N5 g, j~z,T!5@Nu, j~z,T!tu→g,0
21 1Ne, j~z,T!te→g,0

21 #Tg
j ~z,T!21,

~150!

Tg
j ~z,T!5Teg

j ~z,T!1Tug
j ~z,T!, ~151!

Teg
j ~z,T!5

Ne, j~z,T!

2DgNDGj
te→g,0

21 1S 12
Ne, j

2DeNDGj
D tg→e,0

21 ,

~152!

Tug
j ~z,T!5

Nu, j~z,T!

2DgNDGj
tc→g,0

21 1S 12
Nu, j

2DuNDGj
D tg→u,0

21 ,

~153!

andRg
j is the carrier recombination rate in the excited sta

B. Nonlinear polarization due to carrier density pulsation
in wetting layer

Under the model of carrier relaxation in this section, let
derive the contribution of the wetting layer to the nonline
polarization due to carrier density pulsation, i.e
hwet(z,T,vm) in Eq. ~126!. Using DNc,w(vm82vm9)
5DNv,w(vm82vm9)5DNw(vm82vm9) under the charge
neutrality condition, Eq.~88! becomes

xs
wet~Nw ,vm5vm82vm91vm-!

5
]xs

pop~Nw ,vm-!

]Nw
@DNw~vm82vm9!

1DNw* ~vm92vm8!#Em8
21Em9

* 21e2 i ~qm82qm9!"r,

~154!

where

DNw~vm82vm9!5 i (
j 51

2M11
Twu

vm82vm91 i ~Tw1Rw!

3DNu~vm82vm9 ; j !. ~155!

Equation~155! comes from Eq.~133! when only the upper
continuum state is taken into account with the beating a
plitude of DNu(vm82vm9 ; j )52DuNDGjrcc,ku

cdp (vm8
2vm9 ; j ). Since only the ground state is under light-induc
beating, Eq.~135! with i 5g, l 5u, ands replaced byj and
Eq. ~77! with s replaced byj give
2-18
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DNu~vm82vm9 ; j !5
«0

4\

DuNDGj ( j 8Aug~vm82vm9 ; j j 8!xs
pop~ t,vm8 ;cvkgj 8!

vm82vm91 i ~Tg
j 81Rg

j 8!
Em8Em9

* ei ~qm82qm9!"r, ~156!

whereAug(vm82vm9 ; j j 8)5Aug
c (vm82vm9 ; j j 8)5Aug

v (vm82vm9 ; j j 8).
By substituting Eqs.~155! and ~156! to Eq. ~154! and using Eqs.~A4! and ~A9! in the Appendix, we obtain the suscept

bility of Eq. ~107! as

hwet~z,T,vm!5 (
m8,m9m-

~m8Þm9.0!

(
j 51

2M11

hwet~z,T,vm ; j !Rm8~z,T!Rm9
* ~z,T!Rm9~z,T!Rm

21~z,T!ei ~qm82qm91qm-2qm!z, ~157!

where

hwet~z,T,vm ; j !5 i
vm

neff~vm!c
NDG2xs

wet~Nw ,vm5vm82vm91vm- ; j !Gj , ~158!

xs
wet~Nw ,vm5vm82vm91vm9 ; j !52

«0neff~vm-!cDuAm-
4\vm-

(
j 8

Q~vm8 ,vm9 ; j j 8!@xs
pop~ t,vm8 ;cvkgj 8!

2xs
pop* ~ t,vm9 ;cvkgj 8!#, ~159!

Q~vm8 ,vm9 ; j j 8!5 i
~a1 i !Twu

@vm82vm91 iTw#@vm82vm91 i ~Tg
j 81Rg

j 8!#
Aug~vm82vm9 ; j j 8!, ~160!
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G25
*actuH~x,y!u4dxdy

*actuH~x,y!u2dxdy
. ~161!

We assumed thatNw is constant in the cross section of th
active region, which holds when the cross-sectional dim
sion of the wetting layer is smaller than the diffusion leng
of carriers. In Eq.~160!, a is the alpha parameter in Eq
~A4!, andAm- is the differential gain of Eq.~A9!.

IV. OPTICAL SIGNAL AMPLIFICATION AND SWITCHING

Based on the theory of light propagation in Sec. II and
model of carrier relaxation of Sec. III, we describe the o
eration of quantum-dot SOA’s by presenting a set of eq
tions for various operation schemes and by numerical si
lation under random distribution approximation. We al
simulate the operation of bulk SOA’s for comparison, usi
the theory in the Appendix.

Parameters we used in the calculation are as follows.
active region has ten dot layers with the 1% optical confi
ment factor per one dot layer, i.e.,Gm510% in total. We
suppose the columnar-shaped quantum dots with the ra
of RD510 nm, the height ofLD55 nm, and the volume o
VD5pRD

2 LD . The quantum dots are randomly distributed
the active region with the coverage ofj5NDVD . We use the
coverage ofj56% andj510%. The coverage ofj510%
gives the area density ofNDLD53.231010 cm22. We as-
sume the inhomogeneous broadening of the Gaussian s
with the full width at half maximum of\G inh520 meV and
\G inh540 meV. We suppose the wetting layer or the lay
23533
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covering dots with the thickness of 5 nm and with the dens
of states,Dw , of the 5 nm quantum well. We use the dege
eracy of the ground state asDg51, the excited state asDe
53 and the upper continuum state asDu510. We use the
polarization relaxation time of (Gg

j )215130 fs, which corre-
sponds to the homogeneous broadening of the optical ga
the ground state of 2\Gg

j 510 meV. We use the carrier re
laxation lifetime ofte→g,05tu→g,05tu→e,053.4 ps indepen-
dent of the dot group, which gives the population relaxat
time of (Tg

j )215260 fs in Eq.~151! when the excited state
and the upper continuum states are fully occupied by ca
ers. We use the carrier capture time oftw→u,051 ps, the
emission time oftu→w,0510 ps, and the carrier recombina
tion lifetime of Rw5Ru

j 5Re
j 5Rg

j 50.4 ns. In Eqs.~A13!–
~A15!, we assume the energy separation between the disc
states asDEeg570 meV andDEug5150 meV, which corre-
sponds to the excited state energy and the third state en
We consider the operation at room temperature ofT
5295 K. Note that the parameters used here suppose
micron InGaAs self-assembled dots on GaAs substrates~see
Ref. 28 and discussion in Sec. III!.

The propagation equation of the light pulse is describ
by Eqs.~96! and ~104! as

]

]z
Rm~z,T!5

Gm

2
@hpop~z,T,vm!1hdshb~z,T,vm!

1hcdp~z,T,vm!1hwet~z,T,vm!#Rm~z,T!

2
a loss~vm!

2
Rm~z,T!. ~162!
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We can classify the operation of SOA’s by whether it is u
der the single mode or multimodes.

A. Single-mode amplification

When there is only one light mode, the coherent terms
Eq. ~162! vanish, resulting in the propagation equation of

]

]z
Rm~z,T!5

1

2
@Gmhpop~z,T,vm!2a loss~vm!#Rm~z,T!.

~163!

The amplitude ofRm(z,T) can be written as

Rm~z,T!5uRm~z,T!ueifm~z,T! ~164!

using the phase offm(z,T). Substituting Eq.~164! into Eq.
~163!, we obtain the propagation equation of the photon fl
density as

]

]z
Sm~z,T!5@Gmg~z,T,vm!2a loss~vm!#Sm~z,T!

~165!

FIG. 5. ~a! Calculated linear gain spectra of quantum do
g(1)(vm), as a function of\vm2\vcv,kg

0 . ~b! Calculated linear
optical gain of bulk InGaAsP lattice matched to InP using the e
pirical gain formula in Appendix Sec. 3.
23533
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and that of the phase as

]

]z
fm~z,T!5

Gm

2
j~z,T,vm!. ~166!

The rate equations of carriers in Sec. III A with a single lig
mode, and Eqs.~163!–~166! give the amplified intensity and
phase of the optical signal.

Figure 5 shows the linear gain spectra of~a! quantum dots
calculated by Eqs.~123! and~140!–~153! with Sm50 in Eq.
~148!, i.e.,g(1)(vm) as a function of\vm2\vcv,kg

0 , and~b!

bulk InGaAsP lattice matched to InP calculated by the e
pirical gain formula in Appendix Sec. 3 at various injectio
current densities. In quantum dots, we usedj510% and
\G inh540 meV. The bulk InGaAsP shows continuous ga
spectra whose maximum goes toward higher energies as
rent increases. Quantum dots have discrete peaky gain s
tra, where the ground-state gain reaches its maximum at
current densities of about 1–2 kA/cm2. The maximum opti-
cal gain ofg(1)(vm)5350 cm21 at the ground state agree
with real InGaAs/GaAs self-assembled dots.39 The inhomo-
geneous broadening in conjunction with the low density
states due to the low dot density results in broader gain s
trum than in bulk semiconductors. For example, the g
spectrum width defined as the energy width to give m
than 23 dB of the ground-state maximum is 121 meV at
kA/cm2 in the quantum-dot SOA, while that in the bulk SO
defined as the23 dB width of the maximum gain is only 25
meV at 2.2 kA/cm2.

Figure 6 shows the maximum linear amplifier gain of

Gm
~1!5exp$L@Gmg~1!~vm!2a loss~vm!#% ~167!

in the quantum-dot SOA at the ground state maximum
vm5vcv,kg

0 as a function of the length,L, when g(1)(vm)

5350 cm21, a loss(vm)55 cm21 or 10 cm21, and Gm
55% or 10%. The length of the quantum-dot SOA needed
realize 10 to 20 dB linear amplifier gain ranges appro
mately between 1 and 6 mm, depending on the confinem

,

-

FIG. 6. Calculated maximum linear amplifier gain in th
quantum-dot SOA at the ground state maximum ofvm5vcv,kg

0 as a

function of the length,L, when g(1)(vm)5350 cm21, a loss(vm)
55 cm21 or 10 cm21, andGm55% or 10%.
2-20
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factor and the loss. WhenGm510%, the length is 1.5–2 mm
for 20 dB amplifier gain, and 2.3–2.7 mm for 30 dB.

Figure 7~a! shows the calculated linear amplifier gain
Gm

(1) as a function of the current density. For quantum-d
SOA’s, we used~i! \G inh540 meV andj510%, and~ii !
\G inh520 meV andj56%. For the bulk SOA, we used th
gain atl51.55mm andl51.6mm @see Fig. 5~b!#. The op-
tical confinement factor isGm510%, and the internal loss i
a loss55 cm21 for both SOA’s. The amplifier gain of the
quantum-dot SOA’s appears even below 1 kA/cm2, and
reaches its maximum above 1 to 2 kA/cm2. The bulk SOA’s
start to have the amplifier gain at about ten times larger c
rent density than quantum dots, and need the current de
of more than 20 kA/cm2 for the maximum gain. The arrow
represents23 dB of the maximum amplifier gain.

Figure 7~b! shows the noise figure as a function of t
current density calculated by Eq.~115!. We assumed the in
put coupling coefficient ofh in522 dB. The noise figure
decreases to reach its minimum value of 5 to 6 dB as
current density increases because the population inver
factor approaches one. The minimum value of the noise
ure is determined by the 2 dB coupling loss and the inter
loss. In order to achieve the minimum noise figure, we n

FIG. 7. ~a! Calculated linear amplifier gain ofGm
(1) as a function

of the current density. The optical confinement factor isGm

510%, and the internal loss isa loss(vm)55 cm21 for both SOA’s.
~b! Calculated noise figure as a function of the current density.
assumed the input coupling coefficient ofh in522 dB.
23533
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current density to realize the maximum amplifier gain. Fro
this point of view, the arrows for23 dB amplifier gain is a
measure of the lowest operation current density for lo
noise operation in each SOA. We see that quantum-
SOA’s operate as low-noise amplifiers under current de
ties less than tenth of those of bulk SOA’s.

Figure 8 shows the calculated continuous-wave ampli
gain ofGm5Sm(L)/Sm(0) as a function of the output powe
of Sm(L) in the quantum-dot SOA withL51.2 mm, \G inh

540 meV, andj510% at the ground state maximum o
vm5vcv,kg

0 , and in the bulk InGaAsP SOA withL

50.6 mm at the wavelength of 1.55mm. We used Eqs.~123!,
~140!–~153!, and ~165!. The current density is 24 kA/cm2,
the optical confinement factor isGm510%, and the interna
loss isa loss55 cm21 for both SOA’s. The linear optical gain
is 15.5 dB in the quantum-dot SOA and 20.3 dB in the bu
InGaAsP SOA. As the output power increases, the ampli
gain starts to decrease, which is called gain saturation.
numbers next to the closed and open circles on the gain
output power curve represents the magnitude of gain sat
tion. We define the output power at the 3 dB gain saturat
as the 3 dB saturation power,Psat

3 dB, which is shown by an
arrow for each SOA.

Figure 8~b! shows the eye diagram of the 40 Gb/s no
return-to-zero~NRZ! 124-bit random-pattern input and thos
of the output from the quantum-dot SOA at the operat
points marked by solid circles in Fig. 8~a!. Note that, as the
gain saturation increases from20.4 dB to 24.1 dB, the
crossing points rise. Even under a gain saturation as larg
2.2 dB, there is no fluctuation of the mark level. The ma
level fluctuation, which is called the pattern effect, starts
appear at the saturation of24.1 dB. This is in striking con-
trast to the case of the bulk InGaAsP SOA’s, where the m
level starts to fluctuate even at20.5 dB and splits into many
traces due to the pattern effect as seen in Fig. 8~c!. Let us
define the pattern-effect saturation power,Psat

p , where the
fluctuation of the mark level exceeds the 10% of t
continuous-wave output power. The pattern-effect-free a
plification in the quantum-dot SOA under gain saturation o
curs because the gain saturation is dominated by the inco
ent spectral hole burning as seen in Fig. 8~d! and the spectra
hole is repeatedly compensated by the carriers relaxing f
the excited state.6 The pattern effect appears as the carri
are lost in the excited and the upper continuum states
work as carrier reservoirs. The maximum response time
this process is the population relaxation time of (Tg

j )21

5260 fs with the excited and the upper continuum states
fully occupied. This response time is less than tenth of
6.25-ps bit interval of the 160 Gb/s pulse trains, and is f
enough for their amplification and processing even at t
high bit rate.

Figure 9 shows the saturation power ofPsat
3 dB andPsat

p as
a function of the current density for the four cases in Fig.
The plots are shown above the current density indicated
the arrow~23 dB gain! in Fig. 7. The saturation power in
creases in every case as the current density increases. In
SOA’s, the saturation power increases as we go froml
51.55mm to l51.6mm due to the decrease in the diffe

e

2-21
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FIG. 8. ~a! Calculated continuous-wave am
plifier gain of Gm as a function of the outpu
power in the quantum-dot SOA withL
51.2 mm, \G inh540 meV, andj510% at the
ground state maximum ofvm5vcv,kg

0 , and in the
bulk InGaAsP SOA withL50.6 mm at the wave-
length of 1.55mm. ~b! Eye diagram of the 40
Gb/s NRZ 128-bit random-pattern input an
those of the output from the quantum-dot SOA
the operation points marked by solid circles
Fig. 8. ~c! Eye diagram of the 40 Gb/s NRZ 128
bit random-pattern input and those of the outp
from the bulk InGaAsP SOA’s.~d! Optical gain
spectrum of the quantum-dot SOA.
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ential gain, which is realized at the expense of the ampli
gain and/or the length@see Eq.~A37!#. The quantum-dot
SOA’s, having the same amplifier gain and length as the b
SOA atl51.6mm, have the improved saturation power
current density curve, i.e., larger saturation power and lo
operation current density than the bulk SOA. This is par
due to discrete quantized energy states, and partly due to
volume effect, i.e., the smaller crystal volume of t
quantum-dot ensemble than bulk: The quantization cau
larger optical gain than bulk at lower carrier density, and
combination of the volume effect and the quantization

FIG. 9. Saturation power ofPsat
3 dB ~3 dB! and Psat

p ~pattern ef-
fect! as a function of the current density for the four cases in Fig
The plots are shown above the current density indicated by
arrow ~23 dB gain! in Fig. 7.
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ables deeper Fermi level than bulk, leading to lower diff
ential gain at a given current density, and thus, higher s
ration power.

From the practical point of view, quantum-dot SOA
have two attractive operation modes as seen in Fig. 9; on
low power consumption operation, for example, with the lo
noise of NF,6 dB, Psat

3 dB, Psat
pat>10 dBm, G515 dB at the

current density of 3 kA/cm2. The other is the operation unde
high saturation power, for example, of 23 dBm at 30 kA/cm2,
with broad gain bandwidth. The saturation power can be
ther increased by reducing the layer number and/or the
area coverage at the expense of the amplifier gain or
length. See Eq.~A36! for simple understanding. In addition
we can expect the quantum dot SOA is less sensitive to t
perature than the bulk SOA due to discrete energy states
lower carrier density under operation, which is good f
coolerless applications.

B. Multimode operation: multimode amplification, cross-gain
and cross-phase modulation, and four-wave mixing

The multimode operation can be further classified by
frequency separation between each mode. When the m
separation is sufficiently larger than the polarization rela
ation rate (uvm82vm9u@Gg

j ), we can neglect the coheren
terms in Eq. ~162!, leading to multimode amplification
When the mode separation is comparable to or less than
polarization relaxation rate (uvm82vm9u<Gg

j ), the coherent
terms cause intermode interaction like cross-gain and cr
phase modulation and four-wave mixing.

.
e

2-22



b
f

ai
ni
ct
do
n

l a
do

a
w
ve
ne
d
s
a

at
b/

ve

m
e
e-
ne

ss

e

is

the

ss-
the

.

n

THEORY OF OPTICAL SIGNAL AMPLIFICATION AND . . . PHYSICAL REVIEW B69, 235332 ~2004!
1. Multimode amplification„zvm8Àvm9zšGg
j
…

The propagation of each optical mode is described
Eqs. ~163!–~166! in conjunction with the rate equations o
carriers in Sec. III A. As the optical power increases, g
saturation occurs due to the incoherent spectral hole bur
caused by the stimulated emission. The incoherent spe
hole burning due to each optical mode occurs in different
groups, resulting in negligible cross talk between differe
modes.6

Using the high-saturation power characteristics as wel
the broad gain bandwidth characteristics of quantum-
SOA’s discussed in Sec. IV A, we proposed and designed
ultrabroadband multimode amplifier, which enables lo
noise amplification of up to 8 channels over the entire wa
length range of 1.3–1.6 micron with the 40 nm chan
interval.40 We proposed adopting the multisection electro
to realize nonuniform current injection in order to suppre
gain saturation due to amplified spontaneous emission
reduce the gain difference among the discrete bound st
By simulation, we demonstrated the amplification of 40 G
non-return-to zero~NRZ! 8-channel signals with negligible
cross talk. This device is highly suitable in the course wa
length division multiplexing networks.

2. Intermode interaction„zvm8Àvm9zÏGg
j
…

Let us consider the case where we input the strong pu
pulse with the frequency ofvp and the signal pulse with th
frequency ofvs into the quantum-dot SOA. The beating b
tween the pump and the signal causes coherent nonli
polarization via the four different processes asvs5vs2vp
1vp , vp5vp2vs1vs , v f5vp2vs1vp , and v f5vs
2vp1vs . The combination ofvs5vs2vp1vp and vp
5vp2vs1vs causes cross-gain modulation and cro
phase modulation, and the combination ofv f5vp2vs
1vp andv f5vs2vp1vs causes four-wave mixing. Thes
processes occur simultaneously.

From Eq.~162!, the propagation equation of the pump
approximately given by

]Rp~z,T!

]z
5

1

2
@Gphpop~z,T,vp!2a loss~vp!#Rp~z,T!,

~168!

where the term under the combination ofvp5vp2vs1vs
is neglected due to the strong pump pulse intensity.
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(a) Cross-gain and cross-phase modulation(vs5vs
2vp1vp). When the pump beam with a frequency ofvp
conveys a bit pattern, the intensity and the phase of
continuous-wave signal with a frequency ofvs is modulated
according to the bit pattern, each of which is called cro
gain and cross-phase modulation. We suppose that only
ground state has the dynamic spectral hole burning term

Using Eqs. ~119!–~122!, ~126!–~131!, ~157!–~61!, and
~162!, the propagation equation of thevs mode is

]

]z
Rs~z,T!5 i

vsGs

2neff~vs!c
(
j 51

2M11

V~z,T,vs ; j !GjRs~z,T!

2
a loss~vs!

2
Rs~z,T!, ~169!

where

V~z,T,vs ; j !

5ND~z! (
l 5g,e,c

Dlxs
pop~z,T,vs ;cv l j !1ND

coh~z!

3FDgxs
dshb~z,T,vs5vs2vp1vp ;cvg j !

1 (
l 5g,e,c

Dlxs
cdp~z,T,vs5vs2vp1vp ;cv l j !

1xs
wet~Nw ,vs5vs2vp1vp ; j !G uRp~z,T!u2

~170!

usingND
coh(z)>G2ND(z).

From Eq.~169!, the propagation equation of the photo
flux density of thevs mode is given as~whens5s8)

]Ss~z,T!

]z
5Gs (

j 51

2M11

gs~z,T,vs ;cvg j !@12« l~vs ,vp ,vq

5vs ; j !GpSp~z,T!#Ss~z,T!2a loss~vs!Ss~z,T!,

~171!

where
« l~vs ,vp ,vq5vs ; j !52b j~vp!Ap, jH Gg
j $~vq2vcv,kg

j !~vs2vp!2Gg
j Tg

j %

@~vq2vcv,kg

j !21Gg
j 2

#@~vs2vp!21Tg
j 2

#
U

vq5vs

2(
j 8

(
l 5g,e,u

§~vs ; j j 8!
Dl

Dg

a l~vs ,vp ,vq5vs ; j j 8!~vs2vp!1Tg
j g l~vs ,vp ,vq5vs ; j j 8!

~vs2vp!21Tg
j 82 J

1DuAp(
j 8

§~vs ; j j 8!ReQ~vs ,vp ; j j 8!, ~172!
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Ap, j5
vpCp

neff~vp!cGg
j b j~vp!

, ~173!

is the differential gain atvp by the j th group@see Eqs.~124! and ~125!#,

Cm5
2e2uPcv

s u2

«0\m0
2vmvcv,kg

j , ~174!

a l~vs ,vp ,vq ; j j 8!52
Gg

j @G l
j Im Alg~vs2vp ; j j 8!1~vq2vcv,kl

j !ReAlg~vs2vp ; j j 8!#

~vq2vcv,kl

j !21G l
j 2 , ~175!

b j~vp!5F Gcv,g
j 2

~vp2vcv,kg

j !21Gcv,g
j 2 G21

, ~176!

g l~vs ,vp ,vq ; j j 8!52
Gg

j @~vq2vcv,kl

j !Im Alg~vs2vp ; j j 8!2G l
j ReAlg~vs2vp ; j j 8!#

~vq2vcv,kl

j !21G l
j 2 , ~177!
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§~vs ; j j 8!5
Im xs

pop~z,T,vs ;cvg j8!

Im xs
pop~z,T,vs ;cvg j !

. ~178!

Here, we usedxs
pop(z,T,vs ;cvg j)2xs

pop(z,T,vp ;cvg j)*
>2 Imxs

pop(z,T,vs;cvgj), vcv,kg

j >vcv,kl

j , Tg
j @Rg

j , uPcv,kg

s u2

>uPcv,kl

s u2[uPcv
s u2, and

Gp5ND
coh~z!D/ND~z!*cavuH~x,y!u2dxdy.

The first term of the right-hand side of Eq.~172! is due to the
imaginary part ofxs

dshb, the second term is that ofxs
cdp , and

the third term is that ofxs
wet . We neglected that the contr

bution of the excited states to the optical gain.
As the first order approximation of the successive solut

of Alg(vs2vp ; j j 8) from Eq. ~132!, we take

Alg~vs2vp ; j j !> i
Tlg

j

vs2vp1 i ~Tl
j1Rl

j !

Dg

De1Du

~179!

for l 5e,u, and other terms as zero. This means that
neglect the interdot interaction via the wetting layer with
23533
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the population beating period, and the kickback to the po
lation beating at the ground state from the upper states.

We can calculate the optical pulse propagation under
cross gain modulation by the rate equations of carriers@Eqs.
~140!–~153!# with m5s,p, and Eqs.~168! and ~169!. The
cross-gain modulation enables wavelength conversion f
vp to vs with the bit pattern inverted.

Figure 10~a! shows the calculated continuous-wave a
plifier gain at the frequency ofvs ~probe! andvp ~pump! as
a function of the input pump power,Pp(0)5\vpDSp(0), in
the quantum-dot SOA withL51.2 mm, \G inh540 meV,
andj510%. The pump is at the ground-state gain maxim
of vp5vcv,kg

0 and the detuning ofDv/2p5(vp2vs)/2p is

500 GHz. The current density is 24 kA/cm2, the optical con-
finement factor isGm510%, and the internal loss isa loss

55 cm21. The amplifier gain of the probe decreases as
pump power increases, which is the cross gain modulati

Figure 10~b! shows the linear, incoherent, and total optic
gain spectrum at the exit of the SOA whenPp(0)
510 dBm. We see the dimple in the gain spectrum deno
by incoherent gain which comes fromgs(z,T,vs ;cvg j).
The ‘‘total’’ gain spectrum includes the gain saturation whi
comes from« l(vs ,vp ,vq5vs ; j ) in Eq. ~171!. The satu-
rated optical gain is almost symmetric due to dominant sp
tral hole burning, and negligible contribution of the carri
density pulsation, which is in contrast to the bulk SOA
Fig. 14~a!.

Figure 10~c! shows eye diagrams of the output pum
beam and the amplifier gain of the probe beam when
input pump is the NRZ random pattern at a bit rate of
2-24
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FIG. 10. ~a! Calculated continuous-wave am
plifier gain at the frequency ofvs ~probe! andvp

~pump! as a function of the input pump powe
Pp(0), in the quantum-dot SOA with L
51.2 mm, \G inh540 meV, andj510%. The
pump is at the ground-state gain maximum
vp5vcv,kg

0 and the detuning ofDv/2p5(vp

2vs)/2p is 500 GHz.~b! Linear, incoherent, and
total optical gain spectrum at the exit of the SO
when Pp(0)510 dBm. ~c! Eye diagrams of the
output pump beam and the amplifier gain of th
probe beam when the input pump is the NR
random pattern at a bit rate of 40 Gb/s and t
input probe is weak continuous wave. The inp
pump power isPp(0)510 dBm and 13 dBm.
The input wave form is the same as Fig. 8~b!. ~d!
The same calculation at 40 Gb/s in the bulk I
GaAsP SOA withL50.6 mm at the wavelength
of 1.55 mm as ~c!. The input pump power is
Pp(0)50 dBm. ~e! Calculated frequency chirp
ing of the probe output from the quantum-d
SOA when the SOA is under the cross-ga
modulation at 40 Gb/s withPp(0)510 dBm and
13 dBm shown in~b!.
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of
Gb/s and the input probe is weak continuous wave. The in
pump power is 10 and 13 dBm. The input wave form is t
same as Fig. 8~b!. We see clear eye opening with the extin
tion ratio of 4.4 dB at Pp(0)510 dBm and 6.6 dB at
Pp(0)513 dBm. The high-speed response is due to
high-speed repeated response of the incoherent spectral
burning.

Figure 10~d! shows the same calculation at 40 Gb/s in t
bulk InGaAsP SOA withL50.6 mm at the wavelength o
1.55mm as Fig. 10~c!. The input pump power is 0 dBm. Th
slow response of gain saturation dominated by the car
recombination lifetime in Eq.~A23! results in the pattern
effect in the pump, and the undetectable signal in the pr
beam. The response is 2.5 Gb/s at most@see Fig. 15~b!#.
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To summarize the cross-gain modulation, the 40 G
response is possible due to the gain saturation under th
coherent and dynamic spectral hole burning by numer
calculation. The upper speed limit is 160 Gb/s or above o
ing to the intraband relaxation rate of 260 fs~as discussed in
Sec. III, the intraband relaxation rate is 100 to 300 fs
self-assembled dots with optical gain!. The extinction ratio
of 6.6 dB in the present calculation atPp(0)513 dBm and
24 kA/cm2 can be further increased above 10 dB witho
pattern effect using the SOA’s with decreased optical c
finement factor or dot area density and with longer cav
length.

From Eq.~169!, the propagation equation of the phase
the modevs is given as~whens85s)
]

]z
fs~z,T!52

Gs

2 (
j 51

2M11

Dggs~z,T,vs ;cvg j !@ag
j ~vs!1«R~vs ,vp ,vq5vs ; j !GpSp~z,T!#

2
Gs

2 (
l 5e,u

(
j 51

2M11

Dlgs~z,T,vs ;cv l j !a l
j~vs!, ~180!

where

a l
j~vs!5

vcv,kl

j 2vs

Gcv,l
~181!

and
2-25
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«R~vs ,vp ,vq5vs ; j !5b j~vp!Ap, jH Gg
j @Gg

j ~vs2vp!1Tg
j ~vq2vcv,kg

j !#

@~vq2vcv,kg

j !21Gg
j 2

#@~vs2vp!21Tg
j 2

#
U

vq5vs

1(
j 8

(
l 5g,e,u

§~vs ; j j 8!
Dl

Dg

~vs2vp!g l~vs ,vp ,vq5vs ; j j 8!2Tg
j a l~vs ,vp ,vq5vs ; j j 8!

~vs2vp!21~Tg
j !2 J

1DuAp(
j 8

§~vs ; j j 8!Im Q~vs ,vp ; j j 8!. ~182!

The first term of the right-hand side of Eq.~182! is due to the real part ofxs
dshb, the second term is that ofxs

cdp , and the third
term is that ofxs

wet .
We can calculate the phase of the signal under the cross phase modulation by the rate equations of carriers@Eqs.~140!–

~153!# with m5s,p, and Eqs.~168! and ~180!.
Figure 10~e! shows the calculated frequency chirping of the probe output from the quantum-dot SOA when the S

under the cross-gain modulation at 40 Gb/s withPin(0)510 dBm and 13 dBm shown in Fig. 10~b!. The chirping is given by

D f s52
1

2p

]fs~L,T!

]T
, ~183!

wherefs(L,T) is the phase at the exit. We see that the frequency chirping is less than 0.4 GHz atPin(0)510 dBm and 0.7
GHz atPin(0)513 Bm during the cross-gain modulation, which are only 1–2% of the signal bandwidth of about 40 G
more. This small chirping is partly because the contribution of the dots withvcv,kg

j .vs and the dots withvcv,kg

j ,vs almost

cancels out whenvs>vcv,kg

0 due to the symmetric ground-state gain spectrum, and partly because the contribution

excited and the upper continuum states is negligible due to their energy separation from the ground state.
(b) Four-wave mixing(v f5vp2vs1vp andv f 85vs2vp1vs). Using Eqs.~119!–~122!, ~126!–~131!, ~157!–~161!, and

~162!, the propagation equation of thev f mode is

]

]z
Rf~z,T!5 i

v fG f

2neff~v f !c
(
j 51

2M11

V~z,T,v f ; j !GjRf~z,T!2
a loss~vc!

2
Rf~z,T!, ~184!

where

V~z,T,v f ; j !5ND~z!Dgxs
pop~z,T,v f ;cvg j !1ND

coh~z!FDgxs
dshb~z,T,v f5vp2vs1vp ;cvg j !1 (

l 5g,e,c
Dlxs

cdp~z,T,v f5vp

2vs1vp ;cv l j !1xs
wet~Nw ,v f5vp2vs1vp ; j !GRp

2~z,T!Rs* ~z,T!Rf
21~z,T!ei ~2qp2qs2qf !z. ~185!

From Eqs.~184! and ~185!, we obtain

]

]z
Rf~z,T!5 i

v fG f

2neff~v f !c
(
j 51

2M11

ND~z!Dgxs
popk~z,T,v f ;cvg j !GjRf~z,T!1

G f

2
Q~vp ,vs!Rp

2~z,T!Rs* ~z,T!ei ~2qp2qs2qf !z

>
G f

2 (
j 51

2M11

gs~z,T,v f ;cvg j !Rf~z,T!1
G f

2
Q~vp ,vs!Rp

2~z,T!Rs* ~z,T!ei ~2qp2qs2qf !z, ~186!

where

Q~vp ,vs!52
«0neff~vp!c

2\vp
G2 (

j 51

2M11

Wj~vp ,vs ; j !gk~z,T,vp ;cvg j ! ~187!

and

Wj~vp ,vs ; j !5« l~vp ,vs ,vq5v f ; j !1«R~vp ,vs ,vq5v f ; j !. ~188!
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FIG. 11. Calculation of conversion efficiency
hcon(vp ,vs), as a function of the absolute valu
of detuning, Dv/2p5(vp2vs)/2p, in the
quantum-dot SOA under different current densi
The pump is at the top of the ground state ga
i.e., vp5vcv,kg

0 , with the power of Pp(L)
513 dBm. We used the same parameters as F
10 in calculating Wf(vp ,vs ; j ) and
g(vp ;cvg j), and the amplifier gain ofGf

515.5 dB independent of the current densi
since the SOA is almost in the linear regio
above 8 kA/cm2.
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The amplified intensity and phase ofRf(z,T) can be cal-
culated by the rate equations of carriers@Eqs. ~140!–~153!#
with m5p,s,c, and Eqs.~168!, ~169!, and~186!.

Instead of solving Eq.~186! by numerical calculations, we
present here an approximate analytical solution for se
quantitative understanding of the conversion efficiency,
signal-to-background ratio (SBRf), the signal-to-noise ratio
(SNRf) and the noise figure (NFf) of the wavelength con-
version by four-wave mixing. We suppose the condition
the continuous wave operation, a constant gain over the
ity, and the complete phase matching condition ofqf52qp
2qs . We use the signal amplitude ofRs(L) at the exit and
the pump amplitude ofRp(L) at the exit in the second term
of the right-hand side of Eq.~186!. Then, by integrating Eq
~186! over the waveguide, we obtain the conversion e
ciency of

hcon~vp ,vs!5
Sf~L !

Ss~0!
>Gp

2Gf
2U (

j 51

2M11

Wj~vp ,vs ; j !

3g~vp ;cvg j !/g~vp!U2

Sp~L !2, ~189!

where we useg(vp) and g(vp ;cvg j) in Eq. ~123! at the
exit of the SOA underSp(L), andGf is the amplifier gain.
Using Eq.~109! with Ssp(0,T,vc)50, the SBRf of the con-
verted signal with the ASE background is given as

SBRf5
Sf~L !

Ssp~L,v f !
5

hcon~vp ,vs!Ss~0!

@Gf21#nsp~v f !Svac~v f !
.

~190!

The SNRf of the converted signal against the shot noise a
the beating noise with the amplified spontaneous emissio
given as
23533
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SNRf5
h inhoutDSf~L !

2DvF11
4phout

Dvsp
DSsp~L,v f !G . ~191!

The noise figure defined as the ratio of SNRin of Eq. ~129!
with m5s and Ssp(0,T,vs)50 and SNRf of Eq. ~191! is
given as

NFf5
112hout@Gf21#nsp~v f !

h inhouthcon~vp ,vs!
. ~192!

Equations~190! to ~192! show that the high conversion effi
ciency is a key to high signal quality.

Figure 11~a! shows the calculation ofhcon(vp ,vs) as a
function of the absolute value of detuning,Dv/2p5(vp
2vs)/2p, in the quantum-dot SOA under different curre
density. The pump is at the top of the ground state gain,
vp5vcv,kg

0 , with the power ofPp(L)513 dBm. We used

the same parameters as Fig. 10 in calculatingWj (vp ,vs ; j )
andg(vp ;cvg j), and the amplifier gain ofGf515.5 dB in-
dependent of the current density since the SOA is almos
the linear region above 8 kA/cm2. We see that the total con
version efficiency is almost symmetric, i.e., independent
the conversion direction, which is a striking contrast to t
bulk SOA @Fig. 17~a!#. This is because the coherent nonli
earity is dominated not by the carrier density pulsation
by the dynamic spectral hole burning, which is partly due
slower population and polarization relaxation than bu
semiconductors and partly due to the separated excited,
per and the wetting layer states from the ground state.
latter effect leads to small alpha parameter discussed in
Appendix.

As the current density increases from~a! to ~d!, the con-
version bandwidth increases due to the increased relaxa
rate of Tg

j , since the carriers occupy the excited and t
2-27
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upper continuum states@see Eq.~151!#. As a result, the con-
version efficiency at 0.5 to 2 THz, which corresponds to 8
32 nm wavelength dispersion in the 1.55mm wavelength
range for the optical transmission system, increases as
current density increases. For example, the conversion
ciency at 30 kA/cm2 is 21.1 dB for 0.5 THz~8 nm conver-
sion!, 24.7 dB for 1 THz~16 nm conversion!, and211.7 dB
for 2 THz ~32 nm conversion!. When D f sp5100 GHz
(Dvsp52pD f sp), Gf515.5 dB, nsp(v f)51, Ps(0)5
22.5 dBm, and\vs50.8 eV, Eq. ~190! gives SBRf>31
1h f(vp ,vs) in dB. When h in522 dB, Eq. ~192! gives
NFf>20.52h f(vp ,vs) in dB. The conversion efficiency o
24.7 dB at 30 kA/cm2 gives SBRf>26.3 dB and NFf
>25.2 dB.

One way to further improve NFf of the four-wave mixing
wavelength conversion by quantum-dot SOA’s is to incre
the optical gain of dots by increasing the dot density or
ducing the inhomogeneous broadening width. The other
is to increase the pump power and the amplifier gain
increasing the SOA length. Figure 12 shows the convers
efficiency calculated by Eq.~189! and the noise figure cal
culated by Eq.~192! as a function of the amplifier gain,Gf ,
when the output pump power is~a! Pp(L)510 dBm and~b!
Pp(L)513 dBm. The detuning is 0.5, 1.0, and 2.0 THz. T
current density is 24 kA/cm2. The solid lines represent th
calculation as long as the converted signal power is less
210 dB of the output signal, which is an approximate cri
ria for the spectrum distortion not to occur. The minimu
noise figure is shown by the solid circle at each detuni
When the output signal power is equal to the pump pow
which is also an approximate criteria for the spectrum dis
tion not to occur, the maximum signal-to-background-ratio
the minimum noise figure is SBRf527 dB at 0.5 THz,
SBRf522 dB at 1.0 THz, and SBRf514 dB at 2.0 THz
when Pp(L)510 dBm, and SBRf545 dB at 0.5 THz,
SBRf539 dB at 1.0 THz, and SBRf533 dB at 2.0 THz
whenPp(L)513 dBm. Comparing Figs. 12~a! and 12~b!, we
see that increasing the pump power is more effective
lower noise figure than increasing the amplifier gain. N
that NFf519 dB with SBRf533 dB even at the detuning o
2 THz is accomplished underPp(L)513 dBm and Gf
518.6 dB.

Since the detuing of 2 THz corresponds to 32 nm wa
length conversion at the 1.55 micron wavelength range,
quantum-dot SOA enables wavelength conversion over
entire range of theC band of the fiber transmission system
This enables the 20-channel 40 Gb/s system with a sin
channel bandwidth of 100 GHz and the 8-channel 160 G
system with a single channel bandwidth of 500 GHz. W
have proposed, designed, and assembled a tunable w
length conversion module over the entire range of theC band
by the combination of a quantum-dot SOA, a wavelen
tunable laser as pump source and the dispersion dive
configuration for polarization insensitivity.41

C. Current states of experiments

We have done experiments on optical signal amplificat
and switching at the wavelength of 1.3 micron using SO
23533
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with InGaAs/GaAs self-assembled quantum dots in the
tive region, and demonstrated their various unique charac
istics discussed in this theoretical work. Among them a
10–40 Gb/s pattern-effect-free amplification,11–15 10–40
Gb/s pattern-effect-free wavelength conversion by the cro
gain modulation,11–15and the symmetric wavelength conve
sion by nondegenerate four-wave mixing.16,17 We also fabri-
cated quantum-dot SOA’s with InGaAs/InP self-assemb
quantum dots in the active region and succeeded in dem
strating high saturation power above 20 dBm at 1.
micron.42 We are now working to demonstrate the remaini
promising features like low power-consumption amplific
tion, multichannel amplification on broad gain bandwid
with negligible cross talk, and less than 20 dB noise figure
four-wave mixing wavelength converter.

We took the population relaxation rate~260 fs! and the
polarization relaxation rate~130 fs! in the calculation from
previous experimental studies on carrier dynamics. T
slower relaxation time in quantum dots than bulk a
quantum-well semiconductors can be attributed to the
crete energy states and spatial localization of quantum
to limit the relaxation via carrier-LO phonon scatterin
carrier-LA phonon scattering, and carrier-carrier scattering
some extent. This is the phonon bottleneck in the sense

FIG. 12. Calculated conversion efficiency and the noise fig
as a function of the amplifier gain,Gf , when the output pump
power is~a! Pp(L)510 dBm and~b! Pp(L)513 dBm. The detun-
ing is 0.5, 1.0, and 2.0 THz. The calculation is done until the c
verted signal power reaches210 dB of the output signal.
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available electronic energy states to satisfy the energy c
servation rule for relaxation are limited.

We can expect the relaxation rates can be controlled
some extent by tuning the size, shape, strain, density,
potential depth of quantum dots. Generally speaking, fa
relaxation rates than those of 1.3-micron InGaAs/GaAs s
assembled quantum dots will be advantageous to linear
erations as optical amplifiers, and slower rates to nonlin
operations as optical switches. The InGaAs/InP quan
dots with 1.55 micron we are now working on42 have the
diameter of about 40 nm, about twice that of 1.3-micr
InGaAs/GaAs self-assembled quantum dots, and have de
discrete energy states. We expect these 1.55-micron dots
have faster relaxation rates than the 1.3-micron dots,
thus might work as linear optical amplifiers more efficien
than as nonlinear optical switches. An arbitrary control of
population and polarization relaxation rates via the dot str
tures will enable us to design the best performance amplifi
or switches we need.

V. SUMMARY

We presented a theory of optical signal amplification a
processing by quantum-dot semiconductor optical amplifi
The theory includes the linear optical response as well as
incoherent and coherent nonlinear response of the quan
dot SOA’s with arbitrary spectral and spatial distribution
quantum dots in the active region under the multimode lig
Based on the theory, we numerically simulated the opera
of quantum-dot SOA’s to show diverse promising features
amplifiers with low power consumption, high-saturatio
power, broad gain bandwidth, pattern-effect-free opera
under gain saturation, and also, as signal processing de
to realize high-speed~40–160 Gb/s! pattern-effect-free
wavelength conversion by the cross-gain modulation w
low frequency chirping, and the symmetric highly-efficient
to 2 THz wavelength conversion by nondegenerate fo
wave mixing. The high performance as amplifiers is prim
rily based on discrete quantized energy states and relati
low dot density, and switching functions owes to domina
incoherent and dynamic spectral hole burning. Our previ
theoretical prediction, experimental demonstration, and
development of devices and modules in progress are
supported by a rigid framework of the present theory. T
work will help not only design practical quantum-dot devic
working in the photonic networks but also understand h
carrier dynamics in quantum dots relates to the optical
sponse of quantum dots under current injection.
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APPENDIX: THEORY OF BULK AND QUANTUM-WELL
SEMICONDUCTOR OPTICAL AMPLIFIERS

In this appendix, we present a theory of the single- a
multimode optical pulse propagation in traveling-type sem
conductor optical amplifiers~SOA’s! with bulk or quantum-
well active regions and show how the introduction of qua
tum dots into the active region will improve the performan
of SOA’s within the framework of the theory. Here, th
quantum-dot active region is characterized as a continu
medium with the discrete density of states, small crystal v
ume, zero alpha parameter, and slower population and po
ization relaxation rates than bulk or quantum well active
gion. This comparative approach will help highlight featur
of our quantum-dot theory in the main text.

As in the main text, we clarify the operation modes of t
SOA’s into the single-mode amplification, multimode amp
fication, and intermode interaction for optical switchin
Though many papers on theoretical treatments of SOA
erations have been published,43–48 this appendix is the first,
to our knowledge, to treat all the aspects of their operati
in a unified manner. In this sense, this appendix will a
help readers with an interest in conventional SOA’s.

We use the density matrix equation to treat the interact
between the photon and the two-level electron system c
sisting of the conduction-band and valence-bandk states,
uc,k& and uv,k&, respectively, as in the main text. The equ
tion includes the relaxation rate of the polarization and t
of the intraband and interband population at eachk state,
giving analytical expressions for the linear and nonline
susceptibilities with the summation of the contribution
eachk state. The nonlinear susceptibility includes the pop
lation term to describe the incoherent polarization, the
namic spectral hole burning term, and the carrier den
pulsation term. We also present approximate expression
the susceptibilities as linear functions of the carrier dens
N. This approximation, though taken primarily due to t
difficulty in treating the intraband population relaxation
each k state in the continuous band under the electr
photon interaction, holds well as long as the optical powe
such that the intraband population relaxation rate is m
faster than the stimulated emission rate, and that the ca
distribution in the bands obeys Fermi-Dirac distributio
function.

1. Propagation equation of optical pulse

We rewrite Eq.~162! of the propagation equation of th
optical pulse with the wave form of Eq.~91! as

]

]z
Rm~z,T!5

Gm

2
@h̃pop~N,vm!1h̃dshb~N,vm!

1h̃cdp~N,vm!#Rm~z,T!

2
a loss~vm!

2
Rm~z,T!. ~A1!

The direction of the wave guide with the length ofL is taken
as thez axis and its perpendicular direction is in thex-y
plane. The frame of reference moving with the pulse at
2-29
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group velocity is employed by making the transformation
T5t2q0(vm)z. The terms in the parenthesis of the righ
hand side of Eq. ~A1! include the population term
h̃s

pop(N,vm), the dynamic spectral hole burning term
h̃s

dshb(N,vm), and the carrier density pulsation term
h̃s

cdp(N,vm) with the carrier density explicitly written. Thes
susceptibility terms are given as follows.

A. Population term,h̃s
pop

„N,vm…

Assuming thatN is constant in the cross section of th
active region~this assumption holds when the cross-sectio
dimension of the active region is smaller than the diffus
length of carriers, and is used throughout this appendix!, we
obtain from Eq.~98!

h̃pop~N,vm!5 i
vm

neff~vm!c
x̃s

pop~N,vm!. ~A2!

From Eqs.~47! and ~48! with the dot serial number ofs
omitted, we obtain

x̃s
pop~N,vm!5 (

c,v,k
x̃s

pop~N,vm :cvk!

5 (
c,v,k

2e2uPcv,k
s u2@rcc,k

pop2rvv,k
pop #

«0\m0
2vmvcv,k

3F 1

vm2vcv,k1 iGcv,k

1
1

vm1vcv,k1 iGcv,k
G , ~A3!

whereGcv,k is the relaxation rate of the polarization forme
by the uc,k& and uv,k& states. The summation o
x̃s

pop(N,vm :cvk) in k space in Eq.~A3! is done per unit
volume. Note thatrcc,k

pop is the population at theuc,k& state
without beating, andrcc,k

pop is that at theuv,k& state, each of
which is often represented by the Fermi-Dirac distributi
function in each band due to ultrafast intraband populat
relaxation. For simplicity, we do the following: By neglec
ing the dispersion ofvcv,k , Pcv,k

s , and Gcv,k , introducing
the gain spectrum width ofD and the gain peak frequency o
v0 , and assuming the neutral condition ofrcc,k

pop512rvv,k
pop ,

we obtain an approximate expression of Eq.~A3! as
23533
f

l

n

x̃s
pop~N,vm!>2

~a1 i !CmD@N2Ntr #

~vm2v0!21D2 . ~A4!

Here, the carrier density is given by taking the summation
rcc,k

pop on the conduction-bandk states including spin degen
eracy per unit volume as

N52(
c,k

rcc,k
pop , ~A5!

Cm5
2e2uPcv

s u2

«0\m0
2vmv0

~A6!

is a constant,

a5

] Rex̃s
pop~N,vm!

]N

] Im x̃s
pop~N,vm!

]N

~A7!

is the alpha parameter, andNtr is the carrier density for
transparency.

Using Eq.~A4!, the optical gain of Eq.~101! is

g̃s~N,vm!52
vm

neff~vm!c
Im x̃s

pop~N,vm!5Am@N2Ntr #,

~A8!

where

Am5
vm

neff~vm!c

CmD

~vm2v0!21D2 ~A9!

is the differential gain.

B. Coherent nonlinear polarization term due to dynamic spectra
hole burning, h̃s

dshb
„N,vm…

From Eqs.~62! and ~63! with the dot serial number ofs
omitted and Eq. ~99!, the coherent nonlinear term o
h̃dshb(N,vm) is given as
h̃dshb~N,vm!5 i
vm

neff~vm!c
G2 (

m8,m9,m-
~m8Þm9,.0!

x̃s
dshb~N,vm5vm82vm91vm-!

3Rm8~z,T!Rm9
* ~z,T!Rm-~z,T!Rm

21~z,T!ei ~qm82qm91qm-2qm!z, ~A10!

where
2-30
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x̃s
cshb~N,vm5vm82vm91vm-!5 (

c,v,k

e2uPcv,k
s u2

4m0
2vm9vcv,k\

2

x̃s8
pop

~N,vm8 ;cvk!2x̃s8
pop

~N,vm9 ;cvk!*

vm82vm91vm-2vcv,k1 iGcv,k

3H 1

vm82vm91 i ~Tcc,k1Rcc,k!
1

1

vm82vm91 i ~Tvv,k1Rvv,k!J , ~A11!

G25
*actuH~x,y!u4dxdy

*actuH~x,y!u2dxdy
, ~A12!

Tcc,k is the intraband relaxation rate of the electron population of theuc,k& state toward quasithermal equilibrium,Tvv,k is that
of the uv,k& state,Rcc,k is the interband relaxation rate of the electron population of theuc,k& state toward thermal equilibrium
state, i.e., the recombination rate, andRvv,k is that of theuv,k& state. The polarization of them9 mode,s, can be different from
that of them8 andm9 modes,s8.

Using the same procedure as we derived Eq.~A4!, Eq. ~A11! becomes

x̃s
dshb~N,vm5vm82vm91vm-!>

«0

4\
Cm-

x̃s8
pop

~N,vm8!2x̃s8
pop

~N,vm9!*

~vm82vm91vm-2v01 iGcv!@vm82vm91 i ~Tin1Rrec!#
, ~A13!
n

.
en

-

ty

is

Eq.
where we adopted the polarization relaxation rate ofGcv , the
intraband population relaxation rate ofTin , and the recom-
bination rate ofRrec in common at eachk state in both
bands.

C. Coherent nonlinear polarization term due to carrier density
pulsation, h̃s

cdp
„N,vm…

From Eqs.~50! and ~53! with the dot serial number ofs
omitted, the time derivative of the diagonal term of the de
sity matrix is

ṙcc,k~r ,t !>
«0

4\ (
v

(
m

~.0!

Im x̃s
pop~N,vm ;cvk!uEm~r ,t !u2

2
«0i

8\ (
v

(
m,m8

~mÞm8.0!

x̃s
pop~N,vm ;cvk!Em~r ,t !

3Em8
* ~r ,t !ei ~qm2qm8!ze2 i ~vm2vm8!t1c.c.

~A14!

Taking the summation ink space per unit volume, using Eq
~A3!, and adding the recombination term and the curr
injection term, Eq.~A14! becomes

]Ntot

]t
5

«0

2\ (
m

~.0!

Im x̃s
pop~N,vm!uEm~r ,t !u2

2
«0i

4\ (
m,m8

~mÞm8.0!

x̃s
pop~N,vm!Em~r ,t !Em8

* ~r ,t !

3ei ~qm2qm8!ze2 i ~vm2vm8!t1c.c.2Rrec~Ntot2N0!,

~A15!
23533
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whereNtot52(c,krcc,k(r ,t) is the total carrier density includ
ing the beating under the charge neutrality condition,N0
5J/Rreced is the quasithermal equilibrium carrier densi
under a given injection current density,J, andd is the active
layer thickness. The thermal-equilibrium carrier density
neglected. By substituting

Ntot5N1 (
m8,m9

~mÞm8.0!

DN~vm82vm9!e
2 i ~vm82vm9!t1c.c.

~A16!

into Eq. ~A15!, we obtain the amplitude of beating as

DN~vm82vm9!5
«0

4\

x̃s
pop~N,vm8!

vm82vm91 i @Rrec1Rstim#

3Em8~r ,t !Em9
* ~r ,t !ei ~qm82qm9!z,

~A17!

where

Rstim52
«0

2\ (
m.0

] Im x̃s
pop~N,vm!

]N
uEm~r ,t !u2

~A18!

is the stimulated emission rate. By taking average of
~A18! in the xy plane, and using Eqs.~A4! and ~A9!, Eq.
~A18! becomes

Rstim5 (
m.0

GmAmSm , ~A19!

whereSm is the photon flux density given by Eq.~95!.
By substituting Eq.~A17! into @see Eq.~96!#
2-31
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]

]z
Rm~z,T!5 i

vm

2neff~vm!c

3

*act

]x̃s
pop~N,vm-!

]N
@DN~vm82vm9!1DN* ~vm92vm8!#uH~x,y!u2dxdy

*cavuH~x,y!u2dxdy
Rm-~z,T!ei ~qm-2qm!z,

~A20!

we obtain

h̃cdp~N,vm!5 i
vm

neff~vm!c
G2 (

m8,m9,m-
~m8Þm9,.0!

x̃s
cdp~N,vm5vm82vm91vm-!

3Rm8~z,T!Rm9
* ~z,T!Rm-~z,T!Rm

21~z,T!ei ~qm82qm91qm-2qm!z, ~A21!

where

x̃s
cdp~N,vm5vm82vm91vm-!52

«0

4\

neff~vm-!c

vm-
~a1 i !Am-

x̃s8
pop

~N,vm8!2x̃s8
pop

~N,vm9!*

vm82vm91 i @Rrec1Rstim#
. ~A22!
f

o
ss
h
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ss-
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The polarization of them9 mode,s, can be different from
that of them8 andm9 modes,s8.

D. Rate equations of carrier density and gain

By averaging Eq.~A15! in the xy plane and omitting the
beating term and introducingT5t2q0(vm)z, we obtain the
equation of the carrier density as

]N

]T
52Rrec@N2N0#2 (

m.0
Gmg̃s~N,vm!Sm~z,T!.

~A23!

From Eqs.~A8! and ~A23!, we obtain the rate equation o
gain as

]g̃s~N,vm!

]T
52Rrec@ g̃s~N,vm!2g̃s

~1!~N,vm!#

2Am (
m8.0

Gm8g̃s~N,vm8!Sm8~z,T!,

~A24!

where the linear gain is

g̃s
~1!~N,vm!5AmNtr~J/Jtr21! ~A25!

andJtr5edRrecNtr .

2. Optical amplification and switching

The operation of SOA’s can be described by Eqs.~A1!,
~A2!, ~A10!, ~A21!, and~A23! @or Eq. ~A24!#. We can clas-
sify the operation by whether it is under the single mode
multimodes. The multimode operation can be further cla
fied by the frequency separation between each mode. W
the mode separation is sufficiently larger than the polar
23533
r
i-
en
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tion relaxation rate (uvm82vm9u@Gcv), we can neglect the
coherent terms in Eq.~A1!, leading to multimode amplifica-
tion. When the mode separation is comparable to or less
the polarization relaxation rate (uvm82vm9u<Gcv), the co-
herent terms cause intermode interaction including cro
gain and cross-phase modulation and four-wave mixing.

A. Single-mode amplification

When there is only one light mode, the coherent terms
Eq. ~A1! vanish, resulting in the propagation equation of

]

]z
Rm~z,T!5

1

2
@Gmh̃pop~N,vm!2a loss~vm!#Rm~z,T!.

~A26!

The amplitude ofRm(z,T) can be written as

Rm~z,T!5uRm~z,T!ueifm~z,T! ~A27!

using the phase offm(z,T). Substituting Eq.~A27! into Eq.
~A26!, we obtain the propagation equation of the photon fl
density as

]

]z
Sm~z,T!5@Gmg̃s~N,vm!2a loss~vm!#Sm~z,T!

~A28!

and that of the phase as

]

]z
fm~z,T!5

Gm

2
j̃s~N,vm!, ~A29!

where

j̃s~N,vm!5
vm

neff~vm!c
Rex̃s

pop~N,vm!52amg̃s~N,vm!.

~A30!
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Under the continuous-wave operation, Eq.~A28! becomes

]Sm~z!

]z
5@Gmg̃s~N,vm!2a loss~vm!#Sm~z! ~A31!

by replacingSm(z,T) with Sm(z). Similarly, Eq.~A24! gives
the gain of

g̃s~N,vm![
g̃s

~1!~N,vm!

11Sm~z!/Sm
sat , ~A32!

where

Sm
sat5

Rrec

AmGm
~A33!

is the saturation photon flux density. Equation~A32! tells us
that the gain saturation occurs whenSm(z) exceedsSm

sat .
Integrating Eq.~A31! with Eq. ~A32! and neglecting the in-
ternal loss, we obtain the amplifier gain as

Gm5
Sm~L !

Sm~0!
5Gm

~1! expH 2
@Gm21#Sm~L !

GmSm
sat J , ~A34!

where the linear or unsaturated single-pass amplifier g
without the loss is

Gm
~1!5exp@Gmg̃s

~1!~N,vm!L#. ~A35!

If we define the saturation power ofPm
sat as the output powe

to give Gm5Gm
(1)/2 in Eq. ~A34!, we obtain

Pm
sat>~ ln 2!

\vmRrecD

GmAm
, ~A36!

where we used the optical power ofPm5\vmDSm , andD
is the cross section area of the active region. From E
~A25!, ~A35!, and~A36!, we obtain the product of the unsa
urated gain and the saturation output power divided by
SOA length as

Pm
sat" ln Gm

~1!/L5
~ ln 2!\vmD

ed
J~J/Jtr21!. ~A37!

Equation~A37! tells us that the saturation power, the amp
fier gain and the length of SOA’s is under trade off at a giv
current density. In some applications, where high satura
power is essential, we should increase the saturation pow
the expense of the length, i.e., the consumption power, or
amplifier gain. In order to increase the saturation power,
know from Eq.~A36! that we should reduce the optical co
finement factor ofGm , the differential gain ofAm , and the
recombination rate ofRrec . The active region area ofD
should be designed to maximize the coupling efficiency
optical fibers.

Figure 13 compares the active-region structures and
density of states of a bulk semiconductor and quantum na
structures like quantum wells, quantum wires, and quan
dots. Let us assume the filling factor of the hatched region
the active region asj2 in the quantum wells,j1 in the quan-
tum wires, andj0 in the quantum dots. Generally speakin
the filling factor decreases as the dimension of the quant
23533
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tion increases, i.e., 1.j2.j1.j0 . As a result, the optica
confinement factor decreases fromGm5Gb in the bulk active
region approximately toGbj2 in the quantum-well,Gbj1 the
quantum-wire andGbj0 in the quantum-dot active region
Also, since quantum dots have the density of states whic
discrete due to the complete quantization as well as sm
due to the low filling factor, the Fermi level goes into th
band deeper than in other semiconductors at a given ca
density, causing smaller differential gain. Owing to these t
factors, i.e., low confinement factor and small different
gain, we can expect higher saturation power in quantum-
SOA’s than in other conventional SOA’s.

Note that the combination of the deep Fermi level and
inhomogeneous broadening due to size distribution a
causes broader gain bandwidth than other conventio
SOA’s.

B. Multimode amplification„zvmÀvm8zšGcv…

The propagation of each optical mode is described
Eqs.~A8!, ~A23!, and~A28!–~A30!. The intermode interac-
tion appears via theg̃s(N,vm) in Eqs.~A28! and~A30!, i.e.,
the gain saturation due to the reduction in the carrier den
results in the cross talk between different modes as the o
cal power increases. In quantum-dot SOA’s multimode a
plification with negligible cross talk even under gain satu
tion is possible due to the inhomogeneous broadening
spatial isolation of quantum dots as discussed in the m
text.

C. Intermode interaction„zvmÀvm8zÏGcv…

Let us consider the case where we input the strong pu
light with a frequency ofvp and the signal or probe ligh

FIG. 13. Active-region structures and density of states of a b
semiconductor and quantum nanostructures like quantum w
quantum wires, and quantum dots.
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with a frequency ofvs into the SOA. The beating betwee
the vp and vs light causes coherent nonlinear polarizati
via the four different processes asvs5vs2vp1vp , vp
5vp2vs1vs , v f5vp2vs1vp , and v f 85vs2vp
1vs . The combination ofvs5vs2vp1vp and vp5vp
2vs1vs causes cross-gain modulation and cross-ph
modulation, and the combination ofv f5vp2vs1vp and
v f 85vs2vp1vs causes four-wave mixing where fre
quency or wavelength conversion occurs. These proce
occur simultaneously.

From Eq.~A1!, the propagation equation of the pump
approximately given by

]

]z
Rp~z,T!5

1

2
@Gph̃pop~N,vp!2a loss~vp!#Rp~z,T!,

~A38!

where the coherent term under the combination ofvp5vp
2vs1vs is neglected due to the strong pump pulse int
sity.

(1) Cross-gain modulation(vs5vs2vp1vp). When the
pump beam with a frequency ofvp conveys a bit pattern, the
intensity and the phase of the continuous-wave signal wi
f
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frequency ofvs is modulated according to the bit patter
each of which is called cross-gain and cross-phase mod
tion.

The propagation equation of the mode with a frequency
vs is

]

]z
Rs~z,T!5

Gs

2
@h̃pop~N,vs!1h̃dshb~N,vs!

1h̃cdp~N,vs!#Rs~z,T!2
a loss~vs!

2
Rs~z,T!.

~A39!

Using the results in Sec. 1, we obtain

h̃pop~N,vs!5 i
vs

neff~vs!c
x̃s

pop~N,vs!, ~A40!

h̃s
dshb~N,vs!5 i

vs

neff~vs!c
G2x̃s

dshb~N,vs5vs2vp1vp!

3uRp~z,T!u2 ~A41!

with
x̃s
dshb~N,vs5vs2vp1vp!5

«0

4\
Cp

x̃s8
pop

~N,vs!2x̃s8
pop

~N,vp!*

~vs2v01 iGcv!@vs2vp1 i ~Tin1Rrec!#
, ~A42!

and

h̃s
cdp~N,vs!5 i

vs

neff~vs!c
G2x̃s

cdp~N,vs5vs2vp1vp!uRp~z,T!u2 ~A43!

with

x̃s
cdp~N,vs5vs2vp1vp!52

«0

4\

neff~vp!c

vp
~a1 i !Ap

x̃s8
pop

~N,vs!2x̃s8
pop

~N,vp!*

vs2vp1 i ~Rrec1Rstim!
. ~A44!

From Eq.~A39!, the propagation equation of the photon flux density of the modevs is given as~wheres85s)

]

]z
Ss~z,T!5Gsg̃s~N,vs!@12« l~vs ,vp ,vq5vs!GpSp~z,T!#Ss~z,T!2a loss~vs!Ss~z,T!, ~A45!

where

« l~vs ,vp ,vq5vs!52ApH bpD$~vq2v0!~vs2vp!2GcvTin%

@~vq2v0!21Gcv
2 #@~vs2vp!21Tin

2 #
2

a~vs2vp!1~Rrec1Rstim!

@~vs2vp!21~Rrec1Rstim!2#U
vq5vs

~A46!
the

-

and

bp5
vpCp

neff~vp!cApD
. ~A47!

We usedGp>G2D/*cavuH(x,y)u2dxdy. The first term of the
right-hand side of Eq.~A46! is due to the imaginary part o
x̃s

dshb, and the second term is that ofx̃s
cdp .
We can calculate the optical pulse propagation under
cross-gain modulation by the combination of Eq.~A23! with
m5p, s, Eq. ~A38!, and Eq.~A45!. The cross-gain modula
tion enables wavelength conversion fromvp to vs with the
bit pattern inverted.

Figure 14~a! shows the calculation of 12« l(vs ,vp ,vq
5vs)GpSp as a function of the detuning ofDv/2p5(vp
2vs)/2p in bulk InGaAsP, using the parameters ofa52,
Gcv

21530 fs, Tin
21560 fs, Rrec

2150.4 ns, Pp5\vpDSp
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520 nW, Gp50.1, N52.3531018 cm23, D51.5
31029 cm2, andlp52pc/vp51.55mm, andvp5v0 . We
used the empirical gain formula of bulk InGaAsP in Sec.
which gives the differential gain ofAp52.22310216 cm2

whenN52.3531018 cm23 at 1.55mm. See the optical gain
curve in Fig. 5~b!. We see that the asymmetry of gain arou
the pump frequency appears, which is due the carrier den
pulsation. Figure 14~b! shows the calculation whena50,
Gcv

215130 fs, andTin
215260 fs with other parameters fixed

where we suppose that the active region consists of quan
dots. Note that we used these values ofGcv

21 andTin
21 in the

main text. The magnitude of gain saturation due to the
namic spectral hole burning aroundDv50 is about 20 times
larger than that in Fig. 14~a! due to slower relaxation. The
asymmetric gain due to the carrier density pulsation dis
pears due to the zero alpha parameter.

Figure 15~a! shows the calculated amplifier gain at th
frequency ofvs ~probe! andvp ~pump! as a function of the
input pump power,Pp(0)5\vpDSp(0). The wavelengths
arels51.54mm andlp51.55mm, and thus the detuning i
Dv/2p521.26 THz. We suppose the bulk InGaAsP SO
with L50.6 mm, a loss(vm)55 cm21, and the empirical
gain of Sec. 3. The amplifier gain of the probe decrease
the pump power increases, which is the cross gain mod
tion. Figure 5~b! shows the eye diagram of the amplifier ga
of the probe beam when the input pump is the non-return
zero~NRZ! random pattern at a bit rate of 2.5 Gb/s with t
power of 1 mW @see Fig. 8~b! for the input waveform#.
Though we see eye opening, the response speed is al
near its limit at this bit rate.

The switching speed is dominated by the response tim
the gain saturation, which isRrec

21 as seen in Eq.~A24!. Since
Rrec

21 ranges between 0.1 and 1 ns in direct-transition se
conductors, the switching speed is 10 Gb/s at most. See
eye diagram with distorted waveforms of Fig. 10~d! at 40
Gb/s in the main text. In quantum dots, the incoherent
dynamic spectral hole burning enhanced by the retarded
rier relaxation enables pattern-effect-free and high-sp
cross-gain modulation as seen in the eye diagram of
10~c!.

(2) Cross-phase modulation(vs5vs2vp1vp). From
Eq. ~A39!, the propagation equation of the phase of the mo
with a frequency ofvs is given as~whens85s)

]

]z
fs~z,T!52

Gs

2
g̃s~N,vs!

3@a1«R~vs ,vp ,vq5vs!GpSp~z,T!#,

~A48!

where

«R~vs ,vp ,vq5vs!

5ApH bPD@Gcv~vs2vp!1Tin~vq2v0!#

@~vq2v0!21Gcv
2 #@~vs2vp!21G in

2 #

1
~vs2vp!2a~G rec1Gstim!

~vs2vp!21~G rec1Gstim!2J U
vq5vs

.

~A49!
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The first term of the right-hand side of Eq.~A49! is due to
the real part ofx̃s

cshb, and the second term is that ofx̃s
cdp .

We can calculate the optical pulse propagation under
cross-phase modulation by the combination of Eq.~A23!
with m5p, s, Eq. ~A38!, and Eq.~A48!. The cross-phase
modulation in the interferometer like Mach-Zehnder inte
ferometric waveguide with SOA’s on both branches enab
the wavelength conversion fromvp to vs without the bit
pattern inverted.49 With the continuous light ofvs passing
through both branches, the phase change in one SOA ca
by the input of the one-bit pump pulse ofvp results in the
constructive interference of thevs light at the exit of the
interferometer, generating a one-bit optical pulse onvs . As
in the case of the cross gain modulation, the switching sp
of the conversion is dominated by the response time of
gain saturation, which isRrec

21 as seen in Eq.~A24!. Since
Rrec

21 ranges between 0.1 and 1 ns, the switching speed i
Gb/s at most. In order to overcome this material-limit
speed, the so-called push pull operation has been ado
with the time-offset control pulses injected into both SOA
in order to cancel out the slow recovery of the pha
change.50 However, since the amount of phase change
one bit depends on bit patterns, this scheme is not free
pattern effect, either.

Figure 16~a! shows the calculation ofa1«R(vs ,vp ,vq
5vs)GpSp as a function of the detuning ofDv/2p5(vp
2vs)/2p in bulk InGaAsP, using the same parameters
Fig. 14~a!. We see that the carrier density pulsation cau
the refractive index change just around the pump freque
and that the dynamic spectral hole burning causes the
tended refractive index change of a few percent ofa52.
Figure 16~b! shows the calculation using the same para
eters of Fig. 14~b!, which corresponds to quantum dots. W
see that the contribution of the dynamic spectral hole burn
increases due to the decrease in the relaxation rates. H
ever, the value ofa1«R(vs ,vp ,vq5vs)GpSp is much
smaller than in the case of Fig. 16~a!, which shows that
quantum-dot SOA’s are not suitable for the optical sign
switching by the cross-phase modulation.

Figure 15~c! shows the calculated frequency chirping
the probe output from the bulk InGaAsP SOA when the SO
is under the cross-gain modulation at 2.5 Gb/s shown in F
15~b!. The chirping is given by Eq.~183!. We see that the
frequency chirping up to about 24 MHz occurs during t
cross-gain modulation. A merit of quantum-dot SOA’s co
cerning the cross-phase modulation is that the chirping at
exit of the SOA can be restricted at the onset and offse
the light pulse, when the wavelength conversion is done
the cross-gain modulation.

(3) Four-wave mixing(v f5vp2vs1vp and v f 85vs
2vp1vs). Basic understanding of nondegenerate fo
wave mixing in traveling-type semiconductor optical amp
fiers has been reached by Agrawal46 and Kikuchi et al.47

Agrawal derived coupled wave equations of the four-wa
mixing including nonlinear susceptibilities due to both ca
rier density pulsation and spectral hole burning as domin
processes, discussed their bandwidth, and found asymm
gain around the pump frequency caused by the nonzero a
2-35
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parameter. Kikuchiet al. measured the wavelength conve
sion efficiency as a function of the pump and probe detun
to find asymmetric efficiency with a dip under the negat
detuning~when the pump frequency is lower than the pro
frequency!, and attributed this asymmetry to the interferen
of the two nonlinear processes.

The propagation equation of the mode with a frequency
v f is

]

]z
Rf~z,T!5

Gc

2
@h̃pop~N,v f !1h̃cshb~N,v f !

1h̃cdp~N,v f !#Rf~z,T!2
a loss~v f !

2
Rf~z,T!,

~A50!

where

h̃pop~N,v f !5 i
v f

neff~v f !c
x̃s

pop~N,v f !, ~A51!

FIG. 14. Calculation of 12« l(vs ,vp ,vq5vs)GpSp as a func-
tion of the detuning ofDv/2p5(vp2vs)/2p when ~a! a52,
Gcv

21530 fs, Tin
21560 fs, and ~b! a50, Gcv

215130 fs, andTin
21

5260 fs. The contribution of the dynamic spectral hole burn
~SBH!, and carrier density pulsation~CDP! are also shown, though
the SHB almost coincides with the total in~b!.
23533
g

e

f

h̃dshb~N,v f !5 i
v f

neff~v f !c
G2x̃s

dshb~N,v f5vp2vs1vp!

3Rp
2~z,T!Rs* ~z,T!Rf

21~z,T!ei ~2qp2qs2qf !z

~A52!

with

x̃s
dshb~N,v f5vp2vs1vp!

5
«0

4\
Cp

x̃s8
pop

~N,vp!2x̃s8
pop

~N,vs!*

~v f2v01 iGcv!~vp2vs1 iTin!
,

~A53!

and

h̃cdp~N,v f !5 i
v f

neff~v f !c
G2x̃s

cdp~N,v f5vp2vs1vp!

3Rp
2~z,T!Rs* ~z,T!Rf

21~z,T!ei ~2qp2qs2qf !z

~A54!

with

FIG. 15. ~a! Calculation of the amplifier gain at the frequency
vs ~probe! andvp ~pump! as a function of the input pump powe
Pp(0). We suppose the bulk InGaAsP SOA withL50.6 mm, and
a loss(vm)55 cm21. ~b! Calculated eye diagram of the amplifie
gain of the probe beam at the NRZ random pattern at bit rate of
Gb/s @see Fig. 8~b! for the input waveform#. ~c! Calculated fre-
quency chirping of the probe output from the bulk InGaAsP SO
under the cross-gain modulation at 2.5 Gb/s of~b!.
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x̃s
cdp~N,v f5vp2vs1vp!

52
«0

4\

~a1 i !CpD

~vp2v0!21D2

x̃s8
pop

~N,vp!2x̃s8
pop

~N,vs!*

vp2vs1 i ~Trec1Tstim!
.

~A55!

The propagation ofRf(z,T) can be calculated using Eq
~A23! with m5p, s,f, Eqs.~A38!, ~A39!, and~A50!.

From Eqs. ~A50!–~A55! with the phase term in
h̃pop(N,vc) neglected, we obtain~whens85s)

]

]z
Rf~z,T!>

1

2
@G f g̃s~N,v f !2a loss~v f !#Rf~z,T!1

G f

2

3Qs~vp ,vs!Rp
2~z,T!Rs* ~z,T!ei ~2qp2qs2qf !z,

~A56!

where

Qs~vp ,vs!52
«0neff~vp!c

2\vp
G2g̃s~N,vp!

3W~vp ,vs ,vq5v f ! ~A57!

and

FIG. 16. Calculation ofa1«R(vs ,vp ,vq5vs)GpSp as a func-
tion of the detuning ofDv/2p5(vp2vs)/2p when ~a! a52,
Gcv

21530 fs, Tin
21560 fs, and ~b! a50, Gcv

215130 fs, andTin
21

5260 fs. The contribution of the dynamic spectral hole burn
~SBH!, and carrier density pulsation~CDP! are also shown.
23533
W~vp ,vs ,vq5v f !5« l~vp ,vs ,vq5v f !

1 i«R~vp ,vs ,vq5v f !.

~A58!

The first and third term of the right-hand side of Eq.~A58!
originates from the imaginary and real part ofx̃s

dshb, respec-
tively. The second and fourth term originates from the ima
nary and real part ofx̃s

cdp , respectively.
Instead of solving Eq.~A56! by numerical calculations

we present here an approximate analytical solution for se
quantitative understanding of the conversion efficiency,
signal-to-background ratio (SBRf), the signal-to-noise ratio
(SNRf) and the noise figure (NFf) of the wavelength con-
version by four-wave mixing. We suppose the condition
the continuous wave operation, a constant gain over the
ity, and the complete phase matching condition ofqf52qp
2qs . We use the signal amplitude ofRs(L) and the pump
amplitude ofRp(L) at the exit in the second term of th
right-hand side of Eq.~A56!. Then, by integrating Eq.~A56!
over the waveguide, we obtain the conversion efficiency

hcon~vp ,vs!5
Sf~L !

Ss~0!
>Gp

2Gf
2uW~vp ,vs ,vq5v f !u2Sp~L !2,

~A59!

FIG. 17. Calculation of the conversion efficiency,hcon(vp ,vs),
as a function of the absolute value of the detuning,Dv/2p5(vp

2vs)/2p when ~a! a52, Gcv
21530 fs Tin

21560 fs, and~b! a50,
Gcv

215130 fs, andTin
215260 fs. The contribution of the dynami

spectral hole burning~SBH!, and carrier density pulsation~CDP!
are also shown.
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whereGf is the amplifier gain of the converted signal. Th
SBRf of the converted signal with the ASE background
given by Eq.~190!, the SNRf of the converted signal agains
the shot noise and the beating noise with the amplified sp
taneous emission is given by Eq.~191!, and the noise figure
is given by Eq.~192!. The high conversion efficiency is
key to high signal quality.

Figure 17~a! shows the calculation ofhcon(vp ,vs) as a
function of the absolute value ofDv/2p5(vp2vs)/2p in
the InGaAsP SOA, using the same parameters of Figs. 1~a!
and 16~a!, andGf517 dB. We see that the conversion ef
ciency is asymmetric around the pump frequency, and h
dip at the detuning ofDv/2p50.23 THz under the negativ
detuning (vp,vs) where the contribution of the spectra
hole burning and the carrier density pulsation crosses. T
dip results in more than 10 dB difference in the convers
efficiency depending on the direction of conversion. T
asymmetry is due to the constructive or destructive inter
ence of the dynamic spectral hole burning and the car
density pulsation when the detuning is positive (vp.vs) or
negative (vp,vs), respectively. Equation~A58! tells us that
the asymmetry of conversion efficiency around the pu
frequency becomes remarkable asa increases due to the ca
rier density pulsation.

Figure 17~b! shows the calculation using the same para
eters of Figs. 14~b! and 16~b!, where we suppose that th
active region consists of quantum dots. We see that the as
metric gain due to the interference of the two nonlinear co
ponents disappears due toa50 @see Eq.~A58! with vp
5v0]. Compared to Fig. 17~a!, we also see that the magn
tude of the dynamic spectral hole burning increases by ab
25 dB due to the decrease in the relaxation rates at the
pense of the bandwidth, and that the magnitude of the ca
density pulsation decreases due toa50. The conversion ef-
ficiency of 7 dB is obtained at the detuning of 0.5 THz co
responding to 8 nm wavelength conversion around 1.55mm
and 1.5 dB at the detuning of 1 THz corresponding to 16
wavelength conversion.

For example, whenD f sp5500 GHz (Dvsp52pD f sp),
Gf517 dB, nsp(v f)51, Ps(0)50 dBm, and\vs50.8 eV,
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