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This work presents a theory of optical signal amplification and processing by quantum-dot semiconductor
optical amplifiers(SOAs) based on the density matrix equations to treat electron-light interaction and the
optical pulse propagation equations. The theory includes the linear optical response as well as the incoherent
and coherent nonlinear response of the new devices with arbitrary spectral and spatial distribution of quantum
dots in the active region under the multimode light. The incoherent nonlinear response was due to the inco-
herent spectral hole burning and the reduction in the carrier density by the stimulated emission. The coherent
nonlinearity was due to the dynamic spectral hole burning caused by the population beating at the electronic
states resonant to the multimode light and the carrier density pulsation caused by the carrier relaxation dy-
namics. Based on the theory, we numerically simulated the operation of quantum-dot SOA's, and succeeded in
presenting their diverse promising features in a very systematical manner. We expect amplifiers with low power
consumption, high saturation power, broad gain bandwidth, and pattern-effect-free operation under gain satu-
ration, and also signal processing devices to realize high-g@€e 160 Gh/spattern-effect-free wavelength
conversion by the cross-gain modulation with low frequency chirping and symmetric highly-efficient 1 to 2
THz wavelength conversion by the nondegenerate four-wave mixing. We point out that the nonlinear optical
response due to the spectral hole burning plays a decisive role in the high-speed optical signal processing.
Many of the theoretical predictions in this paper agree well with recent experimental demonstrations of device
performance. This work will help not only design practical quantum-dot devices working in the photonic
networks but also understand how carrier dynamics relates to the optical response of quantum dots with optical
gain under current injection.
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[. INTRODUCTION symmetric wavelength conversion by nondegenerate four-
wave mixing'®” We expect these promising features of

Quantum-dot semiconductor optical amplifiefSOAS)  quantum-dot SOAs to provide high-performance amplifiers
have opened a new frontier in the field of semiconductoras well as all-optical switches in the next-generation photo-
optical devices for high-capacity and flexible optical datanic networks, which will work as regenerators, wavelength
transmission. Since we first proposed multiwavelength andonverters, and time-division demultiplexers of optical pulse
high-speed pattern-effect-free signal amplification and protrains at much higher capacity than the bulk or quantum-well
cessing by quantum-dot SOA's based on their nonlinear opeounterparts. These pioneering works have been followed by
tical propertie§ and our device theofy;'°we have discov- various reports like the wavelength conversion by 1.5-
ered and demonstrated diverse promising features botimicron InAs quantum-dash SOAS, and the polarization-
theoretically and experimentatly~*¥ Among them are high independent photoluminescence, and thus optical gain, in
saturation power, broad gain bandwidth, pattern-effect-frestacked InAs quantum dofS.
amplification of single- and multichannel signals, pattern- Though practical significance of quantum-dot SOAs has
effect-free high-speed wavelength conversion of optical sighow come to be acknowledged, their operation theory has
nals by the cross-gain modulation, and symmetric high-speeyet to be developed in order to understand their linear and
wavelength conversion by nondegenerate four-wave mixingaonlinear optical response more precisely as well as to de-
In particular, a series of experimental demonstrations of 1.3sign best-performance devices. Indispensable prerequisites
micron quantum-dot SOA's with InAs self-assembled dots infor the theoretical development is to deal with unique fea-
the active region aroused broad interests in this new nanodédres of quantum dots in the SOA active region, like their
vice field; We demonstrated 10—40 Gb/s pattern-effect-frespatial localization, inhomogeneous broadening of optical
amplification’~'® 10-40 Gb/s pattern-effect-free wave- spectra due to their size, composition, shape, and strain dis-
length conversion by the cross-gain modulatitii®and the  tribution, carrier capture from the wetting layer, carrier emis-
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large gap between such knowledge on the carrier dynamic:
of quantum dots and the device performance still remains tc
be bridged.

The purpose of this work is to present an operation theory
of quantum-dot SOA’s including all the above mentioned
properties unique to quantum dots for precise analyses of thi
SOA operation, and more generally, to step into a new body
of theory, i.e., quantum-dot optical device theory, beyond the |G, 1. Structure of the quantum-dot SOA with cross-sectional
conventional one made for bulk or quantum-well active re-and plan-view images of self-assembled InGaAs quantum dots.
gions. We start by deriving equations for the polarization and

the carrier population of the quantum-dot active region undeg,,antym confinement. Quantum-dot SOA's are novel optical
the multimode light using the density matrix equations. yavices using self-assembled quantum dots.

Then, we present the optical pulse propagation equations in |, tnis section, we develop an operation theory of the
traveling-type quantum-dot SOAS, which include the spatialy,antum-dot SOA'. First, we derive equations for the polar-
position of each dot, inhomogeneous broadening, linear ofz4tion and the carrier population of the quantum-dot active
tical susceptibility, and nonlinear optical susceptibilities dueregion under the multimode light using the density matrix
to spectral hole burning and carrier density pulsation. Based ations to treat electron-light interaction in each quantum
on the derived theory, we simulate the quantum-dot SOAyot \we consider the two-level system in the quantum dot,
performance to reveal its promising features in the photoniyhich consists of the quantized electronic energy level of the
networks, its superiority to conventional SOAs with bulk or ¢5nqction band and that of the valence band to describe the
quantum-well active regions, and the physical origins behingnarhand transition. We derive both linear and nonlinear po-
the t’)en(—.:‘flts. We add an Appendix to present a theory ofyrization, and classify the nonlinear polarization into the in-
SOAs with bulk or quantum-well active regions which de- -,herent and coherent ones. The incoherent nonlinear polar-
scribes comprehensively their performance as linear amplifiy, 4tion is due to the population reduction via the stimulated
ers and incqherent ar]d qoherent switches. This comparatiVgnission which occurs even under a single light mode, caus-
approach will help highlight features of our quantum-dotjng the spectral-hole burning in the gain spectrum. We define
theory in the main text. this type of the spectral-hole burning as the incoherent one.
The coherent nonlinear polarization is due to the population
beating at the energy states through the optical response to
more than two optical modes with different frequencies, and
also due to the population beating through the intraband re-
The structure of the quantum-dot SOA is illustrated inlaxation. We call the former population beating as the dy-
Fig. 1. The SOA operates in the way that the current is innamic spectral-hole burning, and the latter as the carrier den-
jected into the active layer including quantum dots, and thesity pulsation according to general usage in bulk
input optical signals are amplified via the stimulated emis-semiconductors and quantum weliee Appendix We also
sion or processed via the optical nonlinearity by the quantunderive the pulse propagation equation in the gquantum-dot
dots. Figure 1 also shows the cross-sectional and plan-vie8OAS, which work as the bases to describe their various
images of self-assembled InGaAs quantum dots as a typicalperation modes, including single- and multimode amplifica-
example of quantum-dot crystals. Self-assembled InGaAson, amplified spontaneous emission, cross-gain and cross-
guantum dots on GaAs substrates and their application tphase modulation, and nondegenerate four-wave mixing. We
semiconductor lasers have been intensively studied singaresent rate equations of carrier population in randomly dis-
early in the 1990s. They are nanosize semiconductor islandsibuted quantum dots, which are solved simultaneously with
with a wetting layer grown via the Strasnki-Krastanow modethe pulse propagation equations.
under highly mismatched epitaxy, where the electron energy Our theory can describe the linear and nonlinear optical
states are completely quantized due to the three-dimensionadsponse of the quantum-dot SOA's with arbitrary spectral

II. THEORY OF OPTICAL PULSE PROPAGATION IN
QUANTUM-DOT SOA’s
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and spatial distribution of quantum dots in the active regionbase function of the conduction-band edge, apglis that of
under the multimode light. What is unique in our theory arethe valence-band edge, afidis the unit-cell volume.
as follows. First, we consider that each quantum dot is spa- The simplest description of the electronic states in the
tially isolated in the active region, and forms its own electricconduction band and the valence band is given by solving
dipole under the multimode light. Polarization of the the effective-mass equation of
guantum-dot active region is formed by summing up the con-
tribution of each quantum dot with different carrier popula-
tion and under different light electric-field amplitude. We
neglect the interdipole interaction between the dots. Second, ) ) ) )
we take into account the dispersion of the interband transivherej=c andv, mj is the effective massy;(r) is the
tion energy or frequency due to the distribution of size and/o€onfinement potential due to the band offset at the hetero-
other factors like composition, shape, and strain, whichunctions, ands; is the energy. As long as we are con-
causes inhomogeneous broadening in the optical spectra. Véerned with the interband transition close to the band edge,
group quantum dots by their ground-state resonant frequenaye have only to treat one conduction band and two valence
to derive equations of the optical susceptibility in randomlybands, i.e., the heavy-hole and light-hole bands. When we
distributed self-assembled quantum dots for practical calcuneed detail structures of the energy states, we should do
lations. Third, we take into account the population relaxatiormany-band calculations including the interband and intersub-
at each energy state of each dot using rate equations whidkand interactions which depend on the size, strain, shape,
include intradot carrier relaxation, carrier capture from theand confinement potential profiles of the dots. The results of
wetting layer, and carrier emission to the wetting layer. Thisthis kind of treatment can be immediately applied to the SOA
approach enables us to treat the carrier dynamics in ththeory in this paper.
quantum-dot active region under multimode light, and to de- In cubic-shape quantum dots with a volume lofl L,
rive formulas on the incoherent and coherent nonlinear optiand with infinite potential barriers, E¢3) gives the wave
cal response of the quantum-dot SOA. function of
The prototype of our quantum-dot optical device theory o

resented the optical gain formula, and had a great success in B . . .
Sescribing lasing spectra of self-assembled quantum-dot PN = (E) sin(kjx)sin(kyyy)sin(kzz), @)
lasers**?> The optical gain formula introduced the inhomo-
geneous broadening by grouping dots in terms of their resd!® €nergy of
nant frequency and the homogeneous broadening. By using

2
V+V(r)

_ﬁ i (N =2jk¢5k(r), (©)

22
the separate rate equation of carriers for each dot group, we e =ho = f ki , (5)
could treat the Fabry-PPet multimode interaction through P P45 2m]

the mcohgrent carrier populanon variation |n.each dot group, 4 the wave vector of
and explain the experiments on the narrowing of the lasing

spectra as temperature increases. The present work improves N Nym N
the optical gain formula by introducing the coherent nonlin- k= (Kix iy ,Kjz) = IJ_ , Il_y , I]_ ,
ear gain, and the optical electric field intensity at each dot. x y z
This improvement enables us to treat the detuning-dependefithere Nix> Njy, Nz=1,2,.... The electronic states are de-

multimode interaction more quantitatively, and also, to cal-noted by the band and three independent quantum numbers.
culated the optical gain of the spatially arbitrarily distributed Here, we assume tHeselection rule that the interband tran-

(6)

dots. sition is possible whek,=k,=k.
Let us consider the electric dipole at each quantum dot by
A. Electronic states and electric dipole in quantum dots assigning the serial number e 1,2,3... to each dot in the
We describe the state vector of the conduction band agctive region of SOAs. The position of each dot is denoted

c.k.), and that of the valence band hsk, ), wherek. is y rs. The electric dipole of-er. at each dot is formed by
!che ‘\:/?/ave vector of the conduction-bfr?d I:a>lectr0n kf]ds the conduction-band and valence-bakdstates under the

that of the valence-band electron. Under the effective-masidht electric field. The resonant frequency of each quantum
approximation, the state vectors are written as ot for the optical transition between the conduction-band
and the valence-barkl states iswg, = we  — 0 +Eq/#,
where Eg is the band gap of the quantum dot. Then, the
|C,ke>:j d*r[r)VQee (Nuco (1) matrix element of the electric dipole for the interband tran-
sition is given as
and

S,0

ei
pslk=—(c.klee, rlv. k)= —5—pZ,, (D
lu.k,)= f &) VQe, (N, o, ) : ) Mo®3y k-

wheree, is the polarization unit vector, and
whereg i (1) is the envelope wave function of the conduc-

tion band, ¢,  (r) is that of the valence bandi is the P& k=(c.kle,p[v k). )
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o

Thes dependence dP¢, , is neglected. Note thabg, | var- Hi=ud, «(rs.t)]c,k) (v, k| + g, ((r,t)]v,k)(c,k],
ies dot by dot, resulting in the inhomogeneous broadening of (14)

the optical spectra.
where

B. Linear and nonlinear polarization and carrier population 1 _
in quantum dots My k(Ts,t)= 52 pg ! s~ omt) (15
m

An advantage of the density-matrix approach in deriving
the polarization by electrons under the light electric field isand
that the relaxation of the polarization can be incorporated

phenomenologically without taking into account microscopic om_ S€Em __

elementary processes of electron scattering. As a result, this “cv,k:m cok (16)
approach gives general expressions for the linear and nonlin-

ear optical susceptibilitie®:*’ From Eqgs.(11)—(15), the equation of motion for the non-

We write the electric field of the multimode light by su- diagonal term is given as
perimposing optical modes with different frequencies as

. . i

1 ) pCv,k(t;S):(_Iwiv,k_rzv,k)pcv,k(t;s)+%[pcc,k(t;s)

E= Ezrn: e,Epe (ImT = omb) (9)
_pvv,k(t;s)]/‘l‘gy,k(rsi)y (17)

wherel's, | is the relaxation rate of the nondiagonal term of

pey k(t;s). Similarly, the equation of motion of the diagonal
ferm in the conduction band is given as

Here, the mode is denoted by an integenpf,, is the wave
vector, andw,, is the frequency. We define that .=
-—on, E_.n,=E}, andq_,=—q,, which guarantee that
the electric field is a real number. The index to represent th
polarizationo might vary with the mode. Assuming that the i
light electric field maintains its polarization along the wave- Peek(t;s)=— %[Pvc,k(t;s)ﬂgu,k(r51t)
guide, and that the induced polarization of the system is par-

allel to the electric field, we write the polarization as . P .
P — peo k(S e i (T D]+ gek(tiS)  (18)

1 . i
P= EE e,P(r,t)eiom (10) with
m
gC,k(t;S) = _Tic,k[Pcc,k(t;S) _ﬁcc,k(t;s)]
where P_(r,t)=Pp(r,t). We assume here that the re- s _ _ _
sponse of the polarization to the electric field is instanta- —Recklpeck(tis) =Peck(t;s)], (19

neous.

We consider the interaction of the multimode light of Eq.
(9) with the two-level electron system consisting of the i
conduction-band statgc,k), and the valence-band state Poo k(1:S) = 7 [per(t;S)u, ((Is,t)
|v,k). The density matrix of theth dot is given a&?® ' Ao '

and that in the valence band is given as

p(t;S):pcc,k(t;s)|C,k><C,k|+pvv,k(t;8)|v,k><v,k| _pCv,k(t;S)M;c,k(rS!t)]+gv,k(t;s)l (20)

+ pey k(1:9)]€, k)0, K|+ pye (t;S)|v,k){(C K|. with
1y 9o k(t:8)=—T5, ([ Pvu k(£:8) = Fuy k(1;9)]
Its equation of motion is — RS, oo k(8 ~Poo (9], (21)
ap(t;s) 1 dp(t;s) wherep;; « (j=c,v) is the diagonal term under the thermal
— =7 [HotHup(tis)]+| — ., (12 equilibrium state3;;  is that under the quasithermal equi-

rel librium state under a given injection curreﬂf,j’k is the car-

rier recombination rate toward thermal equilibrium state, and

T;; « is the intraband carrier relaxation rate toward the qua-
Ho=t oS k|c,k>(c,k|+ﬁw§ Ju k) (v, K|, (13 sﬂhgrmal qulllbnum state. . _

’ ' Since the interaction term is a perturbatiortHg, we can
andH; is the Hamiltonian representing the electron-light in- solve Eqs(17)—(21) by conventional perturbation expansion
teraction. The last term of the right-hand side in EtR) is  of p=p@+pM+p)._.. where the number in the parenthe-
the phenomenological term to describe the relaxation of theis represents how many times the electron has interacted
density matrix to the steady state without light. The interac-with the light. By grouping terms with the same perturbation
tion Hamiltonian is written as order, we obtain a series of equations P, andp{) . The

whereH, is the unperturbed Hamilton written as

235332-4
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where P{(r t) is the linear polarizationP!"°(r t) is the

the time derivative of the zeroth-order d|agonal term is giverincoherent nonlinear polarization, aR§®"(r,t) is the coher-

as
pivk(tis)= =T W[ piDh(t:9) = B k(tiS)]
_Rjj,k[ij,k(t;S)—T)jj,k(t;S)]- (22
Forn=1,2,3,..., we obtain
PV (tis)=[—iwd,  — T3 ol Vit;s)
i - g
+ 7 [pcek 2(69) = ik (691, k(1)
(23)
PN (t;s)=— —[pgz“ V(t;9) ey (T t)
_pcink l)(t S)IU’UC k(rSIt)]+g(2n)(t S)
(24)
and
i )
P k(1:9)= 2 Lpheh () ey k(s t)
— () pyek(Ts D1+ 93 (E;S),
(25)

where

9% (t;9)= =T PR (t;9) RS (P (t;s).  (26)

Note that odd diagonal terms and even nondiagonal terms
electronic
term as

are zero, which is due to the two-level
system assumed here. By expanding each

P& l)((zt)s) S Nwmige ont  and  pP(t;9)
n

=Zmpji K (om;s)e” 'em' and inserting them into Eq&23)—
(25), we obtain each frequency component. Note thad an

integer and thatw _ ,= — w,.

The polarization of thenth mode at the perturbation order
of 2n—1 is given by the diagonal summation of the product

of the density matrix and the electric dipole as

PR D(r,0/2=2 2 pZl Ywm;s)pied(r—rg+he,
c,v.k,s '
(27)

() (fre)=_
where the factor of 2 on the right-hand side represents the Peck(tiS)= a4t

degeneracy due to spin. The delta functioné¢f —r) will

be eliminated when we integrate the polarization rbyo

obtain its average in the local area.

The total polarization is given by the sum of each

perturbation-order term as

Pm(r,t):n}:‘,l Pn=L(r t). (28

and is divided into

Pu(r,t) =PI (r )+ PN(r t)+ P"(r,t), (29

ent nonlinear polarization. Here, we use the term of “inco-
herent” when the phase of some of the participating light
modes is lost, and the term of “coherent” when the phase of
all the participating light modes is preserved. We derived
each polarization term as follows.

1. Linear polarization
By substituting

pg})k(t s)= 2 pCU k(wmvs)e ot (30

into Eq. (23) with n=1, the first-order nondiagonal term is
derived as

'qm s

D) (@ :5)= [Pl(;?;),k(t S)— pcc k(t S) 1"y
Py k{ ®m; 2h(wm— va,k+|ch,k)

(31)

By substituting Eqs(16) and (31) into Eqg. (27) with n=1,
the linear polarization is given as

PR(r ) =eox, (1, ) Epe'dn”, (32)
where the first-order susceptibility is

xM(r ton) = Ek XM (t,wnicvks)S(r—ry) (33
C,v,K,S

and

26?|PZ, WA p2(t;9)— pl2 (1;9)]
2
Sohmowmwcl,,k

xP(t, wp;cvks) =

1

X
K HiTe

wm_w cv,k

1
. 4
wm""%z} k+|rcv J (34

Note thate'9m"s is replaced bye'" in Eq. (32) considering
the delta function in Eq(33). (This kind of treatment often
appears below.
2. Second-order diagonal terms
By substituting Eqs(15), (16), (30), and (31) into Eq.
(24) with n=1, we obtain

i e p2 (t;9) = p'(t;9)1|PE, |?

2
mm’ M@ m@m (0m— ch,k"' i FCU,k)
(>0)

XEpEp, €'(@m~dm)Te™

i(wm—om)t

+c.cHglut;s)

&l
- Z XD(t, 0 ;cvks) EnEL,
>o>
X gl (m=am)Tsg 1 (@m—em)ty c.c 4+ g2)(t;s)
(35
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for the electron in the conduction band. In deriving the sec- pc’in':d) M@ m:S)

ond equation of Eq(35), we neglected nonresonant terms

and the high-frequency terms ef '(®m*“m)t and used Eq. [p(2n POP(t;5) — plZ) POP(t;5) | et T
(34) with wg, (=wy . The time derivative of the second- 2h(0m— 0%, k+iT5, )

order diagonal term can be divided as
(40)

Peak(t:9) =Pk P(t;9) + piic = (ts), (39
where the population term which does not include the oscil-
lating components is

By substituting Eq.(40) into Eq. (27), we obtain the (2
+1)th order incoherent nonlinear polarization as

PEnzn+1),inc(r,t)_8 XST2n+1) |nc(r,t'wm)Emeiqm-r’ (41)

peakoh(tis)= o Z Im XV (t, 0; Coks)|Ep?
<>°) where
_Tsckpﬁ:zc)kmc(t S)— Rcckpg:zc)kmc(t;s)
3
- - - - (37 XET2n+1) |nc(r,t,wm): E XETZn+1 |nc(t W CUKS)

and the beating term which oscillates with the frequency of c.v.k,s
Wm— Oy IS X 8(r—rg) (42)

. &l

pacty=—gr X x(tonicvks)EqET, and

m,m’
(m#m’,>0) i) |
< ei(quqm:)-rsefi(wmfwmr)t_i_C.C' XET n )’Inc(t,wm ,Cv kS)
2 : 2n), .
_Tsc kpc 2 bant S) Rcc kpg:)kbeat(t S) 262|PCU k 2[pgcr,1k)‘p0p(t's)_pgvr,]|)< pop(ts)]
2
38) Soﬁmowmwzu,k

The expression for the valence band can be derived from Eq. % . ! 4 . ! |
(25) in the same way, and is divided intp(2(t;s) wm— e, ( Tl - @mt g, ( FiTG, ¢

. . . (2),beatr.
=pEROP(tis) +pl e (). (43)

Higher order diagonal terms can also be classified into
population and oscillating terms. We write the populationrhen  the total incoherent nonlinear polarization is
terms aspa) 2POP(t;s) and p{2y #POM(t;s), and beating '
terms between two optical modes p&'\ 2 "°?(t;s) and
(2nr2)beajt;s), wheren=1. We neglect the diagonal terms PIn(r t)= 21 p2n+1yiney ¢ (44)
=

consisting of more than three optical-mode frequencies.

3. Incoherent nonlinear polarization due to spectral hole burning By substituting Eqs(15), (16), (39), and (40) into Eq

The second-order population term of H&7) becomes (24), the (2n+ 2)th order population term becomes=1)
negative wherp,(t;s)>p? (t;s) [see Eq.(34)] due to
the stimulated emission, leading to the reduction in the popu-
lation of thek state at thesth dot. This is the nonlinear p<2n+2> POR(; s)~— 2 |mX (2n+1), mc(t,wm;Cka)lEm|2

polarization known as spectral hole burning. In the sense that

(>0)

the population shows no beating oscillation and that the
phase of the optical waves are lost, we call this nonlinear — TP 2l 2 POt;s)
polarization and the spectral hole burning “incoherent.” s (2n+2).pop

The (2n+1)th order incoherent nonlinear polarization —Reckpeck 7 (GS). (45
(n=1) originates from the (2+1)th order nondiagonal
term of p2"" V"%(t;5) derived by Eq(23) with the (2n)th From Eqgs.(32)—(34) and (41)—(44), the total polarization
order population terms o) PO(t;s) and p{Z"kPP(t;s).  due to the linear polarization and the incoherent nonlinear
By substituting the Fourier expansion of polarization becomes

pl2nELine(t:g) = Z PV (wmis)e T omt (39) PROR(r t)=PI(r,t)+ PI(r, 1) =eox OP(r t, @) Epe I,
(46)
into Eq. (23), we obtain the Fourier component of (2
+1)th order nondiagonal term as where

235332-6
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-(2n+2),beat(t.s)

XPOR(rt o) = E Xp"pt wyicvks)S(r—r), (47) cek
gyl )
=2 > xErbine g ccpks)
8h
XP°P(t, 0 cvks) = X bt, ®m;cuvks) (m#m’,>0)

XE E e'(Qm Am' ) Tsg™ i(om= om)ty e,
+2 X(Zn+l NC(t wmicvks)

_TSC kpC%nkJrZ) beat(t S) Rcc kpc%:nkJrZ)'beat(t;S)-
_ 2€%|Pg, Wl LpEk(t:S) — piok(t:s)] 52
soﬁmgwmwiv’k

As in Eq.(35), we neglected nonresonant terms and the high-
1 frequency terms o (“mTem)t and used Eq(43) with

X om— @S IS we, k=wpy . Then, using Eqs(38), (48), (51), and(52), we
m Teok T T cvk obtain the total beating term as
! } (48
: gol
omt 0, File, pesait;s)=— 8(;1 > XPP(t,wp;cuks)
m,m’
and (m#m’,>0)
X EmE:’],ei(quqm’)‘rsefi(“’mf wm’)t+ C.C.
beat ;. beat .
PEER(1:S) = pek(1:9) + PR + 2 Pt PORE ). ~TeckPeck(tis) R kplekitis). (53
(49 By substituting the second-order diagonal beating term of
By using Eqs.(22), (37), (45), and(49), the time derivative (2).beats. o\ _ (2).bea _ ]
of pPok(t;s) is given as Pecic (1) = mzm Pecic™*(om = wn;9)
(m#m’,>0)
o X e em —em)tyc e (54)
peck(tis)= 72 2 ImXGM(t,wm;cuks)|Enl?
~0) into Eq. (38), we obtain
~TeeklPok(tiS) = Peck(t;s)] pCc K beal ) v — wpyr}S)
_Rcc k[pcc k(t S) ﬁcc,k(t;s)]- (50) €9 (1)(t Wy CUkS) E E*
. . - 8ﬁ [wmr—wmu-f-l(ch’k-i— RCC,k)] m=m
The expressions for the valence bamd;h(t;s), and its _
time derivative can be derived in the same way. X !’ = anf)Ts, (55

Similarly, by substituting the (2+2)-order diagonal beat-
ing term of

The beating diagonal terms under the two optical modes
of different frequencies form the dynamic spectral-hole burn-

4. Coherent nonlinear polarization due to spectral hole burning

(2n+2),

. . . . . . . b o) — (2 +2) b .
ing, and mix with the third light to cause nonlinear polariza- Pcck )= 2, | N wm — @ i5)
tion. We call this nonlinear polarization coherent in the sense (m#mn,qn"|>0)
that the phase of all the optical waves is preserved. _,' it
Let us derive the coherent nonlinear polarization from X e !lem—emtt ¢ c, (56)
(2),bea (2n+ 2),bea 2),bea
Peck ts), pee (ts), PUU (ts), and into Eq. (52), we obtain
p,(j”*z) beay.g). The total beating term in the conduction a.(52),
band is p(cink-%—Z),beat(wm’ )
) - . €9 )(E,znﬂ)’inc(t,wm,;Cka)
. _ s . +2), . = —_— "
pookti9)=pLLil L9 + 2, plGi PP (ts). (51 8% [aomy — w1 (To0 o+ Reo )]
X EpEr, e!(dm = dm) s, (57)
The time derivative of the second order termpf},>*?{(t;s)
is given by Eq.(38). By substituting Eqs(15), (16), (39), From Eq.(23), the coherent nondiagonal terms due to
and (40) into Eq. (24), we obtain dynamic spectral hole burning are given by
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i
Pt =[—1g,  — T8, kP tis) + + [pEi°*(9) — pl2 02 (i) g, w(11) (58)

and

i
Peox ML) =[—i0g, k=T, e M)+ 2Lk PGS ok PP ) Iug, k(s ). (59

By substituting p&5M(t;9) == 1 PR 0= 0y + Wy @y ;S) €7 @ FOm et ingo Eq. (58)  and

IR (HS D SN ds““(wm= Wyt + @+ @y (S)€ 7 @M O et intg Eq. (59) and using Eq(15), we
obtain the Fourier components pﬂ b('[;S)=/Og,),i<d5hb(t;s)4—2n 1pg”k+3) dShb(t;s). The component at the frequency of

W= Oy — O+ o With m’, m”, m”>0 andm’ #m’ is given as

pg:n( W= Wy — (,()mrr+ Wy S) pcv) dShb(w =Wmr — wmrr+ Wy S)+ 2 (2n+3) dShb(wm=a)mr—wmu+ wmu;S)

eeoiPg,  [X5P(t, 0 scuks) — xDOP(t, wpy scuks)* ] 1
1&n0wmuh [(wm,—wm”-l- a)mm—wivyk)-i-irw'k] [(Dm/_(,()mrr‘i‘i(Tlccyk‘l‘ Rgc,k)]
1 4
+ X By EX B ! (G = G+ ) 1 (60)

[wm,—wm//‘l‘i(TlS)U'k—}_RSv,k)]

Note that the series expansion of the nondiagonal terms by the perturbation orde(®®)&s|.often used to obtain nonlinear
gain coefficient in lasers.

Then, by the diagonal summation of EG7), we obtain the coherent nonlinear polarization due to dynamic spectral hole
burning as

Pg‘]Shb(r,t):nZl Pl(rﬁnJrl)'dShb(r,t):SO Z Shb(l’ t W= Wy — a)m//+ a)m///)Em/Em,/Em///ei(qm,7qm”+qmm).r, (61)
= m ml/m///
(m’#m”,>0)
where
dShb(r,t,wm W — (x)mn‘l‘ (l)mm)— 2 XdShb(t,a)m=wmr—wm"+ a)mm;CUkS) 5(r_rs) (62)

and

)(gShb(l’,t,wm= [OF (x)mn+ @y ,Cv kS)

P 2 XP(t o scvks) = XDt gy s coks)* 1

- X -
4m0wmm Cu,kﬁz wmr_wmrr+ wmm—wivlk-i—ll_‘w’k wmr_wmrr+|(T§C]k+ Ric,k)

1
. _ . (63)
wm, - (,Om/r+ | (Tls)u,k+ Rls)u,k)

Note that we added prime on the population susceptibility since the polarization wf’thede, o, can be different from that
of them’ andm” modes,o’.

235332-8



THEORY OF OPTICAL SIGNAL AMPLIFICATION AND. .. PHYSICAL REVIEW B69, 235332 (2004

C. Coherent nonlinear polarization due to population beating

S,C . -1 . -1
e . : ! : i = Peck (5872 ot [1=peck (1) 20 (66)
via intraband relaxation: carrier density pulsation ! e =10 ee I=i0

The light-induced population beating at the conduction- . (e .
band k state described by Ed53) causes the population W':W Tw>10t
beating in other energy states in the conduction band via the b
intraband electron relaxation, generating another source fand
coherent nonlinear polarization besides the dynamic spectral
hole burning of Eq(61). This is also the case in the valence _ _ s 1
band. We call this source of nonlinearity as carrier density Pcc,k|(t’s):ch,k.
pulsation according to the general usage in conventional (69)
semiconductorgsee Appendix We treat the time-dependent
population at thec,k,) state of thesth dot taking into ac- Here, 7, o is the relaxation lifetime from thie,k;) state to
count all the intraband relaxation processes related to othdhe |c,k;) state, vice versar,, . ¢ is the relaxation lifetime
intradot states denoted by the indexiefl and the wetting from the wetting layer to théc,k;) state, vice versa\p, is
layer state denoted by the index wf(Fig. 2. Then, using the dot density, andly,, is the total electron density in the

Egs.(50) and(53), we obtain the time derivative of the popu- conduction band of the wetting layer. The lifetimes are as-

(67)

tot
c,w -1
1- o7

2D, WO

cw 1

tot
R
L .
; Peck (1:S)Ti o 2Ny TW—>|,0:|

lation at|c,k,) state as
Peck (6:9)=pEeR (£:5)+ poei(t;s)

€0

:R 2
(>0)

80i 2
8% o’
(m#m’,>0)

Im xPOP(t, wp; Co K S)| Ep| 2

XEOP(t,wm o)) k,S)EmE:;,

X ei(Qm_qu)'rse_i(wm_wm,)t'f‘ C.C.

_Tzc,kl[Pcc,kl(t;S) - 5cc,k|(t;s)]

sumed to be common in each dot, and their band index,
conduction or valence band, is omitted. We suppose one en-
ergy level with the degeneracy @, ,, in the conduction
band of the wetting layer for simplicity. The rate equation of
the wetting-layer electron density is

dNgy  J New
W ) _ . -1
dt ed\N SE,l 2ND [l pCC,k|(tIS)]TW~>|,O

tot
c,w

2D w

-1 c pjtot
) Tl w0 Rch,W '

+; Pcc,k|(t;s)( 1-

(69

wherel is the current density,, is the total thickness of the

—RS.  [Peck (1:8) —Peok (1971, (64)  wetting layer,R;, is the electron recombination rate in the
o - o wetting layer, and the summation on the dot numiseiis
where taken per unit volume, and the summationlas taken over
all the energy states at each dot.
s =% pscqTe (65) We obtain the amplitude of the population beating at the
cck il wl : P
iZl |c,k) state in thesth dot by substituting
Pk (6:S)=pER (L) X pecig(@m —wpris)e” o "ot e, (70)
m/’ml/
(m#m’,>0)
and
NO=Neywt X ANgy(@p —op)e ememitce, (72)
mI’n,]/l
(m#m’,>0)
into Eq. (64) as
ﬁ,c
. beat . ; ! .
Wy — Wy 3 S) = Wy — Wny 3 S) + | " Wy — Wy ;S
Pcc,k|( m m;S) pcc,kl( m m;S) ;&I wm'_wm”+|(T§c,k|+Ric,kl)pccykl( m w3 S)
_ T
+1 ANCVW(a)mr_wmn), (72)

(J)mr - wmn+ | (T(S:C’kl + Ric’kl)
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Plan view Equations(72), (74), and (75) are the linear simultaneous
equations, and can be solved numerically.
We can obtain an analytical and approximate solution of
Egs. (72), (74), and (75) by the successive approximation
with the form of

s-th dot

s*-thdot  yyetting-layer states

5
3 /
i T — [y C.B.
Ti_>l'0\\1 T\ |C’ki> ra | > pcak,(“’m’ — Wpyr ;8)= ngir(wm’ — Wpyr ;S)
w—>1,0 | c.k
rrp o) g .
Light s + pﬁcv'f(l(a)m, —wy;S), (76
Tisio -
s-th dot s’-th dot

where
FIG. 2. Conduction-band energy diagram of quantum-dot active

region, and intraband relaxation processes of thle;) state due to

other intradot states denoted by the index #fl and the wetting cdp

layer state denoted by the index wf pcc,kl(wm’ ~ @y ;S) = 2 Af(0p — o ;SS)
i,s’

where X pggif(wm, —wy:ss). (77

c 2 pcc,k|(t;5) 1 1_Pcc,k|(t;s) 1

Tw= 5p. . Tlewot T 2N, Tw—1,0(" Here, A (o, — oy ;SS) represents the population pulsa-
(73)  tion at thek, state of thesth dot caused by the light-induced
Never mix upi to describe the state index and the com Iexbeating at thek; state of thes'th dot, and is a complex

P . DX umber to cause phase shift from the light-induced beating.
number. In Eq(72), we used the Fourier component of the c ) : , .
light-induced beating term gs®®2(t:s) given by Eqs.(55) ?I'hus,A,.i(wm,.—wm,, ,ss’). with s#s’ represents the interdot

cekih ' interaction via the wetting layer, and cannot be neglected

and(57) as when the electron diffusion length in the wetting layer within
the beating period is longer than the interdot distance. Note
beat €p XB.Op(t,wm;CUk|S) that g p g

Pcc,k|((‘)m’ — Wy 1S) = g [wm’ — wm”+ i (Tic'kl n Ri(:'kl)]
X EpnEpy, €' (dm' = m)Ts, (74) AS (0 — 0 188) =A (wm— wySS).  (78)
Similarly, from Eq.(69), we obtain

By substituting Eqs(76) and (77) into Eq. (75), we obtain

c o .
AN o @y — @) =1 D Tw'p“’k'(w”?' o iS). ANy @y = ).
cwhm m ST Wp— o +i(TH+RS) The beating at th&, state causes the coherent nondiago-
(75 nal term ofpg, i (t;s) via Eq.(17) with k=k; as

. . I a
Dot (t:8) =L =103, 1 =T, 1 105k (1:9)+ 7 [Pcc (1:8) = o,k (1:9) 1, k(s (79

cv K,

By substituting

Pk ()= 2 pek (Om= 0y + @t @ ;s)e (omF ont ont, (80)
ml’mﬂ’m//l
Peck (;s) of Eq. (70), and
ook (S =PRR (6T 2 puy (@ —ppris)e” oot g c. (81)
m’,m”
(m#m’,>0)

into Eq. (79) with Eq. (15), we obtain the component with the frequency«gf= w — @+ @ With m’,;m”,;m”>0 and
m’'#m” as
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Pgs,il(wm: Wmr — wmrr+ Wy ,S) = pg:n(?(wm= Wmr — wmrr+ [OF ,S) + pggff(l(wmz W — wmrr+ (OFN ,S), (82)
where
. ol *
cdp le0ePeu i, o XDt om scukis) = x5 (1,0 scuk;S')

pCU,k|(wm: Wy — (,l)mrr+ [OF] ,S) =

5 -
16m0wmnﬁ is’ [(wmr - a)mu-‘r- Wy — a)zvykl) +1 ch,kl]

Af(wm — o ;SS) . Al (0m — @y ;SS)

. 4 4 H ! !
Wmr — wm/r+ | (Tic,ki + R(SEC,ki) Wmy — wm”+ I (Tls)v,ki + Riv,ki)

X Eml E;//Emmei(qm,7qm”+qmm)'rs. (83)

We neglected nonresonant terms, and assugigfim' ~ ) ('s~Ts)=1, Terms related to the valence band iR (wp,
—wqy;SS) can be derived in the same way as the conduction band. The total coherent nonlinear polarization, given by the
diagonal summation of Eq27) with p"y Y(wy,;s) replaced bypSd (wm=wm — @+ @ ;S), is the sum of the contri-

Cv,k|

bution by the dynamic spectral hole burnirf*"%r,t), and the carrier density pulsation in the dd®§??(r,t), and in the
wetting layer,Pé{(r,t), as

PEON(r ) =PI 1 t) + PSOP(r ) + P r ty=eq >, xS°N(r.t,0m= 0m — @+ @) Ey E X, E yre! (Om = 8+ )1

m//
m/’m//’m///
(m’ £m">0)
(84)
where
XfrOh(r,t,wm: WOpy — @yt @) :X?,Shb(r,t,wm: Wp— Oy @) +Xfrdp(ryt:wm: Wy — W+ @)
+X\(I)—VEt(r|t1wm: wmr_wmrr+ (,()mw), (85)
cdp _ _ _ cdp - _ . B
X(r (l’,t,a)m—wmr wm//-i- wm/u)— X(r (t,wm— Wy (,L)m//+ a)mr//,CUk|S) 5(!’ rs), (86)
c,v.k,s
2|po 2 o op*
cdp k) |Pcv,k| )(g,p(t,a)m/;Cvk|S’)—xs,p (t,wm;Cvk|S’)
rt,ohn=wy— 0w+t oy, CoKS)= -
XU ( " m m m l 4m(2)wmlﬂw(5:v,klh2 is' a)mr_wmrr+ wmm—wivykl-}—lrcl)’kl
*
Aﬁ(wmr_wmu;ssr) Aﬁ (wm,—wm,,;ss’)
(87)

. s’ s/ . N s’ 1]
Wy — (1)mu+ | (chvki + RCC,ki) Wy — a)m//+ | (Tvv,ki + va,ki)

and D. Optical pulse propagation in the waveguide

We derive the equations for light pulse propagation in the
wave guide of SOAs. The direction of the wave guide with
the length ofL and with the cross sectional area of the active

IXPP(Ng oy N, s @) regi_on qu is taken as the axis anc_i its_ perpendicular di-
= g ewr Tu,wr Tm rection is thex-y plane. The refractive index of the wave
i=cuv INj w guide is represented by(X,Y,w,).

K [AN; wl @y — @) + ANFo (@ — 0m)] eq;l’;ﬂeor\:vsa\allcse equation of light is derived from Maxwell's

wet —
Xo' (NC,W YNU,W yWm= Wy — (,!)m//+ (I)mm)

XE, TEX, T (dm ~dm) T, (89)

m//
V2E=c"20%E/ t?+ w0 JEl gt + uod®Plat?,  (89)
Note that we added prime on the population susceptibility in

Eq. (87) since the polarization of then” mode, o, can be whereP is the polarization of the material induced by the
different from that of them’ andm” modes,o’. electric field. We write the electric field of the light pulse as
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1 : £oCNes( @
E== > eEy(r,t)e “n4c.cl. (90) smzm |Enm(r,t)|2dxdy. (95)
m>0 2ﬁme cav
We assume a trial solution of the form of S'ZgFrom Egs.(89—(94), we obtain the propagation equation
) a
En(r,t)=H(X,y)Rn(z,t)exd igmz], (91
. . . . i _ E pop, coh, —
where the real wave number in tairection is P Rn(z,T) > [7°°P(z,T,wm) + 7°°(Z, T, 0= wny
n
(=) = 27 ) (92 ~ o+ o) Re(2T)
L . QAjosd Wm)
and the transverse mode distribution in tkey plane, - TRm(z,T), (96

H(X,y), is determined by the conventional wave guide equa-
tion of where we made the transformation®ft —qq(w,)z to em-
ploy a frame of reference moving with the pulse at the group

d_2+ d_2 H N wznz(X,y,wm)_ 2 H velocity of go(wm,) "t and neglected the term of the group
dx? ' dy? (xy) c2 Go(@m) {H(XY) velocity dispersion. In Eq(96), the optical confinement fac-
tor is
=0. (93 )
. . o JacdH(x,y)|*dxdy
We omitted the transverse mode indexH(x,y) for simplic- Fm:f TH(x,y)[2dxdy’ (97)
ity. The polarization of Eq(10) is divided into cav 2 y
the contribution of the population term is
P=PPOP peohy pb, (99)
pop
: o : . 772, T, o)
wherePP°P+ PN is the polarization of the active region due
to the interband transitiorR°P is the sum of the linear po- . on L acxPOP(r, T, wm) [H(X,y)|2dxdy
larization and .incoherent'nonlinear po!arizaticﬂ‘f?“ is the =l Noi( @) C T acl HOy) [Zdxdy '
coherent nonlinear polarization, am? is the background
polarization. The photon flux density, i.e., the number of (98)
photons that pass the unit area of the waveguide cross seitie contribution of the coherent nonlinear polarization term
tion per unit time is is
) i) fTOh(r,T,w =@ — o+ o) [HXY)|[*dxd
nCOh(Z,T,(x)m: Wy — (l)m//+ wm///) :| —m acX m m m 2 m | y | y
Nt @m)C m’,m”,m" fact|H(va)| dxdy
(m"#m”,>0)
X Ry (2, T)R%(2, T)Ryn(2, )R, (2, T) €' (Gm' = Gy + Ay = Am)Z, (99

and the internal loss is defined ag,s{ ) = woow/do(wy). The integration of “act” is done over the cross section of the
active region, and that of “cav” is done over the cross section of the waveguide in(E£s(99).
Let us decompose the population term into k

P2 T, 0m) =9(2,T,0m) +1£(2,T,0n), (100

where

Wm factlmXgop(rvTawm”H(Xay)ldedy
Nef( @m)C fact|H(Xry)|2dXdy

9(z,T,0m) =~ (101
is the optical gain, and

Om factReX?rOp(rvT:wm)|H(Xry)|2dXdy
neff(wm)c factlH(va)|2dXdy

§(z,T,0m)= (102
is related to the phase of the optical pulse. Wy&PP(r,T,w,) is replaced withy")(r,T,w,), Eq.(101) gives the linear gain
of g™ (wp).

The amplitude of the optical pulse propagating in thdirection is affected by the terms af2°P(z,T) and 5°"(z,T) as
seen in Eq(96). By averaging Eq(98) with Eq. (47) over the small distance afz, we obtain
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CEk . S actdxdyf 2" 42dzyPoP(2, T,y ;cvks) 8(r—rg) [H(x,y)|?

. W
POP(Z, T, wp) =i
PR em = e A2f ol FCxy)Paxdy
. W |H(Xs’ys)|2
=j— POP(z. T,w.:cuks ) 103
Neft( @m)C c,vE,k,s Xo (2T omicv )Azfact|H(x,y)|2dxdy (103

(z~z+A2)

Here, the summation oves is limited to the dots betweem and z+ Az, where Az should satisfyAzdR,(z,T)/dz
<Ry(z,T). Similarly, from Egs.(85) and(99), we obtain

7N Z, T, 0= 0 — O+ 0m) = 7", T, 0m= 0 —oppt o)t 7°P(2, T, 0m= ®py — O+ O )

+ " Z, T, 0m= 0y — O+ ©pyr), (104
where
w
77CShb(Z=Tawm:“)m’_wm”"'wm"’):i — 2 E X?rShb(ZvT!wm:wm’_wm”+wm”;CUkS)
Nel(@m)C v 17 7 cokss
(m' #m",>0) (272FAD)
|H(XSvys)|4 * 1 i
, - (Am’ = A"+ Ay = Am) Z
A2 sefH Oy Paxdy < 2 T R (2 TR (2 DR (2T ’
(109
w
nCdp(Z,T,wm=wm,—wmn+ (,Umm):i —m E z )(f,dp(Z,T,wm=wmr—wmu+ (x)mm;cvks)
neﬁ(wm)c m’,m",m"” c,v.kkp,s
(m’ #m’,>0) (z—z+Az)
|H(Xs’ys)|4 * 1 i
, " - (A’ = A+ Ay — Am) Z
Az seH Oy Paxdy "2 T R (2 TR (2 DR 2 T ’
(106)
and
we _ . [OFS faCtX‘(lj_vet(NC’W,Nv,W,wmz wmr_a)mrr+ a)mrrr)|H(X,y)|4dXdy
n t(Z,T,wm—wmr—wmu-i- (,()mw)—| - 2
neﬁ(wm)c mr’mrr’mm fact|H(va)| dXdy
(m’#m”,>0)
X R (2, T)R® (2, T)Ryy(z, )Ry (2, T) €' G’ = G’ A = A2, (107
[
In order to calculate Eq$103) and(104), we need to know The propagation equation of the spontaneous emission be-

the position, the energy states and the carrier population dfig amplified in the cavity is given as
each dot.

d
d_zssp(ZaTa wsp) = [Fspg(z,T, wsp) - a’loss(wsp)]
E. Amplified spontaneous emission and noise figure

Spontaneous emission is one of the major recombination X Ssp(2,T, wsp)
processes of electrons and holes injected into the active re- + s 9spord 2, T, 0sp) Syacl wsp) (108
gion besides stimulated emission and nonradiative recombi-
nation. Based on the Weisskopf and Wigner theory in thevhereSsy(z,T,ws) is the photon flux density of the spon-
three-dimensional symmetric continuous optical modes, théaneous emission with the frequency betwegp and wg,
spontaneous emission shows an exponential irreversible de=Aws,, a@jos{wsp) IS the loss, the optical gain of
cay with a time constant of about one nanosecdridSome 9(z,T,wsp) is given by Eq.(101) with w, replaced byws,,
of the spontaneous emission propagate in the waveguide bks, is the optical confinement factor,S,,(wsp)
ing amplified via the stimulated emission. As a result, we=Aw,/(27D) is the photon flux density of the vacuum
observe amplified spontaneous emission light from the edgield with a frequency betweenws, and wgp+Awg,,
of the waveguide superimposed to the output sigfals®  gq,0dz,T,wsp) is given byg(z,T,ws,) with the distribution
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function of pPR(z,T;s)—ph k(2. T;s) replaced with G4 oy
poor(z,T;s)[1—pl k(2. T;s)] to described the stimulated ‘ Inhomogeneous

broadening

emission by the vacuum field. We used the concept that the
spontaneous emission is the stimulated emission by the
vacuum field??

Under the linear condition, where the gain is independent

L
>

of z and T, we write g(z,T,05)=9"(ws) and O, Ay, ®
Ispor 2, T wsp) =g{H {wsp). Then, we obtain an analytical T ""L"‘II I
solution of Eq.(108); by integrating Eq(108) in the wave- i=1,2,3,.. oM, . 2M+1

guide between 0 ant, we obtain the output 613132
FIG. 3. Grouping of quantum dots in terms of their resonant

Ssp(L, T, 05p) =[G (wsp) — 1INg 05p) Syac @sp) frequency of the ground-state interband transition.
(1)
+G (wSP)SSP(O’T’wSP)’ (109 F. Optical susceptibility and carrier population in randomly
where Sq,(0,T,w,) is the photon flux density of the input distributed quantum dots _with inhomogeneous
spontaneous emission, the linear amplifier gain is broadening
" (1) In order to simplify the calculation of the susceptibilities
G (wsp) =exp{['spg" ™ (wsp) — @ioss wsp) JL}, described by Eqs103 and (104), we group quantum dots
(110 by their resonance energies or frequencies; let us divide the
and the popu'ation inversion parameter is dot ensemble intO f+1 groupS depending on the-ir -reSO'
nant frequency for the ground-state interband transitiog.
Nspl Wsp) = n<1>(wsp)n<2>(wsp) (111 3). Tgking the central frequengy of the ground-state transition
i aswey i, and the frequency width of each groupzhsc,,ykg,
w the frequency of the ground state of tht group is repre-
(1) sented by
Ispor @sp)
(1) _ Isp p
N(wsp) = —1 (112 :
g (g wgv,kg:wgv,kg_(M_J)chv,kgl (116
and wherej=0,1,2,..., and ® [do not confuse the index gf

with what was used to describe the electronic bands in Eq.
(113 (3)]. We should choos# to makeAwCU,kg much smaller

(1) _ .
F'spg " (@sp) = @rosd @sp) than the dephasing rate, SAWCv,kg<FCv,kg so that the dots

The population inversion parameter of Hd.11) takes the in one group behave in the same way under the light. We use
minimum value of one whepPoP(z;s)=1, p”°h(z;s)=0, the inhomogeneous broadening function of
and @ wsp) =0. 3 j 0 A

The signal-to-noise ratigSNR) degrades in SOAs be- Gj=G(wey i, ™ Wey k) A@c kg (117

cause of the beating noise that comes from the beating of the . o . -
signal with the spontaneous emission light, and from th 0 describe the distribution of the interband transition fre-

beating between the amplified spontaneous emission of dig‘;ﬁﬂﬁy at the ground state. Note @ is normalized as

ferent frequencie®*1*?The noise figuréNF) of the SOA is =0 'Gj=1. In self-assembled quantum dot§, often
given as obeys Gaussian distribution. The frequency ofltieexcited

state of thejth group is represented by

I‘Spg(l)(")sp)

n(Z)(wsp):

NF= 1+ Znoutssp(LvT-wm)/Svac(wm)
Din MoutCm(T)

. (119 by = 0o~ (M= Ao, i, (118

0o .
where 7;, is the input coupling coefficient, angl,, is the ~ Wheréwg, , is the central frequency anlwg, i, is the fre-
output coupling coefficient. In the linear region, using quency width of each group\w, | might vary withj). We
Gm(T):G$n1)=eXp{[Fmg(l)(wnD—%ss(wm)]L} and Eq.(109 assume the following; First, each resonant frequency group

with Sq(0,T, ) =0, we obtain has the same spatial distribution in thkg plane. Second,
guantum dots in the same resonant frequency group have the
1+2770ut[G§1})_1]nsp(wm) _ 2ng(wp) same populz_ition. Third, each group has th_e_ same relaxation
NF= _ G = _ . and recombination rates, which we denotejbystead ofs,
7in Mout=m in (115 like I'},  instead ofl g,  for example. Let us call this treat-

ment a random distribution approximation.
The noise figure is proportional to the population inversion We assume in Eq118), for simplicity, that the higher the
parameter and inversely proportional to the input couplingground-state resonant frequency is, the higher the excited-
coefficient. Its minimum is NFE 3 dB whenngy(wm) = 7in state frequency. This might not be the case when the inho-
=1. mogeneous broadening is caused by multiple factors like the
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size, alloy composition, shape, and strain of quantum dotselaxation rate of th¢th group. Note thalNp(z) of Eq. (122
Then, the grouping should take into account the varioupecomes the dot density bf; whenH(x,y) is constant over
combination of the ground- and excited-state frequencieshe active region.

Tsiper treated this case by deriving the formula on the prob- In the same way, from Eq§100) and(119), we obtain the
ability density for the combination of the ground- and optical gain as

excited-state frequencies, and presented the way to know the
statistical distribution of the each energy state from the pho-
excitation

toluminescence and

photoluminescence
experiments?

By taking the summation of and s independently, Eq.

(103) becomes

2M+1
np"p(z,T,wm):Ek > 7PPZ,T,0m;cvk)),
c,v, j=1

(119
where
7Pz, T,wm;cvkj)
S No(2) X2, T, g oK) G
Net( @m)C ° Xo 16T Om: I
(120
XEOp(Z,T,wm;Cvkj)
_ 2€%IPg, WPLpek(z.Ti1) — plok(Z T3]
soﬁmgwmwévyk
« 1 N 1
wm_wg:v,k_‘—iri:u,k wm+wcv k+IFCv k
(121
and
[H(xs,Ys)|?
Np(z2)= . 122
o= 2 o Hoplady (122
(z—z+Az2)

Here, pfok(z,T;j) is the common population of th¢th

2M+1

g(szm>—§ 2, 9(zTonicvki), (129
where
9(z. T, wp;cvkj)
o .
= hefl@m)C Np(2)Im x5°%(Z, T, wm;cvkj)G;
(124

and
Im )(pOp(Z,T,wm;Cvkj)

_2m€?|PE, W ApEeR(Z T — Pl k(Z Ti)]

v,k

2 J
SOﬁmmech,k

jv k/7T (125)
X .
(om— wCU k)2+FCU k

The nonresonant term was omitted. The formulas for
Ospor(Z, T, wsp) can be obtained in the similar way.

By taking the summation of and s independently, Eq.
(104) becomes

77COh(Zv-|—y0’)m)

2M+1

= X E E [ 79" 2, T,wp;cok))

m’ mmm c,v,k J j=1
(m"#m”>0)

+ 72, T, 0 cvk )]

X R (2, T)R®,(Z. T)Ryn(z, T)R, X2, T)

m”

i m' ~ Um” m”~ Um t
group in the conduction band statd2h(z,T;j) is that in the X @!(m' = am ™ Im = Am2 4 V(7 T, ), (126)
valence band state, arid,, , is the common polarization where
w
72, T, 0 ;cvk)) =i ————=NE"(2) X3 2, T, 0 ;cvkj) G, (127
Ne(@m)C
s e?|PZ X(pT(,)p(Z,T,wm, ;cvkj)—x pOp(Z T,wn ;cvkj)*
b(Z T yWm= Wy — (l)m//+ Wy CUkJ) 2 ] 2
4mowmmw6v’kﬁ Wy — wm”-i- Wy — wCU k+IFCU K
! + ! (128
wm'_wm"—i_i(T{:C,k_l_R{:C,k) wm’_wm”_l—i(T{)z),k_*—R{;v,k) '
72T, 0micvk ) =i ————NE(2)x;(2,T,0m;cvk )Gy, (129
neﬁ( m)C

235332-15



M. SUGAWARA et al. PHYSICAL REVIEW B 69, 235332 (2004

e?|Pg, , |2 X2, T, 0y sCoKi] ')—X‘"’F’*(z T, wm ;cvkij")

hZZ

XEET 0=~ gy o 0K ]) =

4m0(1)m//(1)CU kI [OF (,()m//+ (OF CU k + | FCU k

A (0 — omrii ) . AL (o —omrj]’)

7 7 — Y (130
wm’_wm”—’—l(T!IC,ki—’_R{‘,C,ki) wm’_wm”"_'(T{w,ki""Ri;u,ki)
and
H(Xs,ys)|*
coh | s1)s
zZ)= . 131
D= 2 T IRy Paxdy (130
(z—z+Az2)
From Eqgs.(72—(75) with s replaced byj, the amplitude ofA;; (v — wyy;j) is given by solving
: beat E T{ivc
r— ", ’ ny])+ i -
Pcc,k|(wm o)) = pcck(wm o)) — wm’_wm”+|(T£:c,ki+R{:c,ki)
TC
X ((1) A 0] //,)+| ((1) i 0] //) (132)
Peck\ @Wm m 1) o wm”+|(chk +Rcck) cw m m
and
2NDGJ-T°| )
ANC W(wm’ “m _Ig Wy — wmrr+i(Tv\V(/:v+ R\(/:v)pCC'kl(wm’_wm” ’J) (133)
under the successive approximation as
pcc,k|(wm’ — @)= Pgsi (On —@mr;))+ ng,‘;l(‘”m’ — o)) (139
and
Pcck(wm’ O )= 2 Ah(wm’ O] )Pct:)gak(wm’ op]’). (135

iy’

Here, Al (wm —wny;jj’) represents the population pulsation at kpestate of thejth dot group caused by the light-induced
beating at théx; state of thg ’'th dot group, and is a complex number to cause phase shift from the light-induced beating. Thus,
Al (wm—on;jj ") with j# ]’ represents the interdot group interaction via the wetting layer, and cannot be neglected when
the electron diffusion length in the wetting layer within the beating period is longer than the interdot distance. Note that

AL (@ — 031 ) =AS (0 — 0 5] ). (136)

Under the random distribution approximation, the electron density ofttheot group in the active region at the position
of zis given as

z+Az
Nex(z T:j)=2NpGjpho(z,T;))=2(DAZ) 1> X dxdyf dzpPR(z,T;s)8(r—ry), (137)

sej v

where the summation afis done when dots are in thjéh group. Note that we added the summation on the valence4and
state. The degeneracy due to spin is taken into account. Usinb@gwe obtain the time derivative of E¢137) as

dNc (2, T;j) &9 z+Az ) .

= 52 (DA PIPIPI actdxdyL dzIm xP°P(2,T, @ ;CukS) 8(r =16 |Em(r,1)|?= Tl [ Ne (2, T3)
(>0

~New(TiD]=ReeNe( 2. T:) = New( T3], (138

where l\:lc,k(z,T;j) and Nc,k(z,T;j) are given in the same way as E@.38) under the random distribution approximation.
Using EQs.(95) and (124), Eq. (138 becomes
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dN. (z,T;] Upper Continuum
Terl2 LSS 180T 0micoki) state; Nu,
v m

=0 Wetting layer; Ny,
~ThorNe (2 T) =N (2 T:))]
. . Excited
_Rf:(:‘k[Nc,k(ZuT;j)_Nc,k(Z1T;j)]- state; Ne’J Nej'
Ground *
(139 state; Nj Nj'
The first term of Eq.(139 represents the reduction of the j-th dots j'-th dots

carrier density by the stimulated emission. The rate equation
of the carrier density in the valence bamd, . (z,T;j), can
be derived in the same way.

FIG. 4. Conduction band structure of quantum dots including
the wetting layer. We take into account the ground state, the excited
state, and the upper continuum state in each dot.

lll. MODEL OF CARRIER RELAXATION component with a time constant of 100—300 fs. The slow
recovery component can be attributed to the carrier capture
rocess to quantum dots, which is also evaluated by the rise
me of time-resolved photoluminescentélhe fast compo-
nent corresponds to the population relaxation time of
Tl ) tand (T}, )" in our theory. Borriet al. analyzed

In order to calculate the light propagation in the wave-
guide and the carrier density in the active region using th(—{?
: . [
formulas in Sec. Il, we need to know the population relax-

ation rates offL,,, TS, TS, Tfy, andT};¢ in the conduc-

tion band, the same rates in the valence band, the recom ¢ . vU )
- eir data to eliminate the superimposed two-photon absorp-

. j ] C v
natlop rgtes of RC,Cvk’ va'kj’ Ry, and R, apd the tion contribution, and show that the fast recovery component
polarization relaxation rate dfc,  at each conduction-band 1 o5 the time constant of 115 fs in 1.1-micron small-size dots,
and valence-bané state in each dot group. These param-;n4 140 fs in 1.25-micron large-size dots.

eters can be evaluated by many experimental approaches 10 Noe that the time constants of 100-300 fs are one order
study the light-matter interaction, like time-resolved photo-q¢ magnitude longer than typical carrier scattering rates of
luminescence, pump-probe, and four-wave mixing tech4g_50fs in conventional semiconductors like quantum wells
niques, etc. o and bulk materiald”3 The slower gain recovery leads to
By time-resolved pump-probe transmission spectra, Akyemarkable incoherent and dynamic spectral hole burning in

iyama et al> reported the incoherent spectral hole bumingquantum-dot SOAs, which is the principle of the high-speed
width, i.e., homogeneous broadening width, to be 10-1%iiching.

meV in the SOA with 1.15-micron self-assembled InGaAs Knowledge we are still lacking for simulating quantum-

quantum-dot active region at room temperature, giving us thot SOA performance is about how the carrier population at
relaxation lifetime of (¢, ) '=90-130fs. The authors eachk state and in the wetting layer depends on the current
found that the spectral hole broadened as the injection CUlensity and the optical intensity. So, we present here a model
rent increased, which can be attributed to the enhancement gf the” electronic band structure of the quantum-dot active
carrier-carrier scattering rates. By analyzing lasing spectra gfgion, and then, a series of rate equations on the population.
the quantum-dot lasers with the same active region based on Figyre 4 shows a model of the conduction-band structure
the prototype of our present theory, Sugaweiral. obtained  of quantum dots with a wetting layer. The wetting layer is
similar values of homogeneous broadening under I&&ing. commonly observed in the self-assembled InGaAs quantum
By time-resolved four-wave mixing, Borwt al. evaluated ots grown via Stranski-Krastanow motfeln each dot, we

the polarization relaxation rate at the 1.25-micron groundgake into account three energy states, which we name the
state of the quantum-dot SOA to be about 150 fs under th@round state, the excited state, and the upper continuum
current injection conditiof>*®The authors claimed that this state. The continuum state means the ensemble of dense en-
150-fs value is due to equal contributions from populationergy states in each dot which merges into the two-
relaxation and elastic dephasing, and is more than three-tim@mensional energy states of the wetting layer. Carriers are
longer than less-confined dots indicating that the strong COMnjected into the wetting layer by currents, captured by the
finement can reduce the homogeneous broadening under cntinuum states, and then, relax into the dots. We describe
rent injection. the center of the interband transition enelgyector and the

The carrier recombination rates Bf.,, Rtc . Ry, and  degeneracy aEgzhwgvykg, kq andDy for the ground state,

v B . ) D - ) .
R, are 0.1-1 ns in semiconductors. This is due to the spony Ec=fwd, , , ke andD, for the excited state. For sim-
taneous emission and other nonradiative recombination pro- e

cesses. plicity, we also represent the upper continuum state by the
Gain saturation recovery of the incoherent spectral holeinterband transition energy (Eu:ﬁwgv,ku and the degen-
which is caused by the population relaxation, was studied bgracy ofD,, and the wetting layer by the interband transi-
Akiyama et al® and Borri et al>*% in self-assembled In- tion energy ofE,=%w, and the degeneracy d,,. The
GaAs quantum-dot SOA’s. In general, the measured gain astane constants of the carrier relaxation processes denoted by
function of time showed complete recovery of saturationthe arrows in Fig. 4 are given in the Appendix of Ref. 18.
within a few picoseconds or less, and a fast gain recovery Main assumptions here are as follows. We use random
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distribution approximation defined in Sec. Il G. We consider The rate equation of the ground state is
one conduction band and one valence band, and use the

charge neutrality condition opPoh(z T;j)+ploh(z.T;)) dNg,(zT) .
=1 at eaclk state andN. ,=N, ,,=N,(z,T) in the wetting aT %: TmSng(2, T, om;cvg))
layer. We write the carrier density of the upper continuum (=0

state at the jth dot group as Ng;(zT)
=2D NDGJ-ppOp (z,T;j), that of the excited state as

cc,k
Ne,;(z,T)=2D NDG,pgng’ (z,T;j), and that of the ground —RI[Ng (z,T)=Ng (z.T], (148
state asNg ;(z,T)=2D NDGjpggﬁg(z,T;j). We use the re- | hare

laxation rates common for each conduction-band and

—TH(zT)[Ng(zT)—Ng;(z,T)]

valence-bandk state, instead of treating the relaxation of 9(z,T,wm;cvgj)=Dya(z,T,0n;cvkgj), (149
electrons and holes separately. For example, the populatlon
i _
relaxation rates oﬂ'Cck and TUU kg &€ written asTy, the Ng.(zT)=[N;(z,T) Tqu ot Ne(ZT) 7o eﬂg T (z,T) 1
recombination rates dRCC k, and RUU K, 8S Rl , and the po- (150
i 3
larization relaxation rate oF v kg asly We SL.Jppose thet (z T)=Tl (2, T)+TLg(Z 7). (151)
only the ground state is resonant to the light, i.e., the stimu-
lated emission and the light-induced population beating oc- _
curs only in the ground state. T (z,T)= Lz)fl +1- _Nej L
egt™ 2DgNpG; e~g.0 2DNpG; g—el
A. Rate equations of carrier density (152
The rate equations of carriers at each energy state are j N, j(zT) _; Ny,j -
given in Ref. 18. The intraband relaxation rates used in this Tug(ZT)= 55 5= Tc g0t | 1~ 55 G| To-uo
, . . g'YD V] u'NDVIj
paper’s notation are given as (153
z,T) i ; inafi i i
T, 2 Ny J( TJiw o1 )G Twﬁu . andRy is the carrier recombination rate in the excited state.
j W 2D NDG
(140 B. Nonlinear polarization due to carrier density pulsation
for the wetting layer, in wetting layer

TUZ D =Tuu(z N+ Tz +Tey(zT), (14D gerive the contribution of the wetting layer to the nonlinear

2T) N,, polarization due to carrier density pulsation, i.e.,
T2 T)= Sz D) N ( ot (1_ )7_1 7"z, T, 0m) in EQ. (126. Using ANg (wm — o)
2D Np 2D =AN, w(on — o) =ANy(wn — o) under the charge
(142 neutrality condition, Eq(88) becomes

) N:(zT) N wet N —
] — ] . : ! n+ "
Tou2 1= 25 oG, " giu°+(1_ 2DgNDGj)Tuig,o' (N om= om = one )
(143 IXH°P(Ny , @)
ZT[ANW(wmI_me)
e](z T) 1 Ne,j -1 ’ - 1
TLy(zT)= m%ﬂu,ﬁ l_m Tueo + ANE (@ — @) JE ER, e Gm = am) T,
(144 (154
for the upper continuum state, and where
Ty(z,T)= e(Z T)+The(2,T), (145 2M+1 T
ANy (@ — o) =i > s
N ZT i wimm m = W — O+ 1T+ R
Tod2.T)= ZD(N()B oot |1 35N G-)T‘*ig,o' o TR
D g'¥DYj (146) XANu(a)mr_me;j). (155)

Equation(155 comes from Eq(133 when only the upper

i (2,T)= Ny,;(z,T) o1 +<1_ Ny,j )7_1 continuum state is taken into account with the beating am-

e 2DNpG; 70l 2D NpG;/ &0 plitude  of  ANy(@m — @ny;])=2DUNpGjpeek (@

(147 —wn;j)- Since only the ground state is under light-induced

for the excited state. The carrier recombination rate at eacheating, Eq(135 with i=g, |=u, ands replaced byj and
state is written afR,,, R., andR.. Eqg. (77) with s replaced byj give
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&0 DuNpGZj/ Ayg( 0 — @py 3] xR, 0y ;Cukgj ")

ANy(@m — ;)= Em,E;,,ei(qmr—qmrr)~r’ (156)

4h wm/_(l)m//+i(Tg+Rg)
WhereAug(wm/ I Or ,” ,) :Alcjg((x)m/ — Wy ,JJ ’) =Aﬁg(wm, — Wy ,” ,) .

By substituting Eqs(155 and(156) to Eq.(154) and using Egs(A4) and (A9) in the Appendix, we obtain the suscepti-
bility of Eq. (107 as

2M+1
"z T,on= > 7" T,0m) R (2 TR (2 T)Ry(2, T)R,H(z, T)€!On ~m G =dmz, (157
m’ m"m"” j:l
(m’#m">0)
where
SR ®m 1 _ .
ﬂwet(Z,T,wm 1J ) =1 m NDrz)(YTve (NW yWm™= Wy — wmrr+ [OF ,] )Gj y (158)
) Son ff((,l) w)CD A " .., .,
)(vaer(Nw,wm=wm/—wm"+wm”;j)=— ° 4;;0) wm 2 Qlwm ,ou ;i )[XEOD(t,wm,;Cvkgj )
m” J-,
— X2 (t, @y sC0kgi )], (159
o (a+)Tyy .
Qoy ,@my;jj ") =i . Y 7 Aug(wm’_wm";”/)v (160
[wm, — Wyt |TW][(Dm/ — Wyt (Tjg + Rjg )]
I
and covering dots with the thickness of 5 nm and with the densit
g %

of statesD,,, of the 5 nm quantum well. We use the degen-
[aclH(X,y)|*dxdy eracy of the ground state &,=1, the excited state &3,
zzfact|H(X,y)|2dXdy' =3 and the upper continuum state Bg=10. We use the
polarization relaxation time of[(‘g)*lz 130 fs, which corre-
We assumed thatl,, is constant in the cross section of the sponds to the homogeneous broadening of the optical gain at
active region, which holds when the cross-sectional dimenthe ground state Ofizl"g:lo meV. We use the carrier re-
sion of the wetting layer is smaller than the diffusion length|gxation lifetime 0fTe 4.0~ Tug.0= Tu_eo= 3-4 PS indepen-

of carriers. In Eq.(160, « is the alpha parameter in Eq. gent of the dot group, which gives the population relaxation

r

(167

(A4), andAny» is the differential gain of EqA9). time of (T,)~*=260 fs in Eq.(151) when the excited states
and the upper continuum states are fully occupied by carri-
IV. OPTICAL SIGNAL AMPLIFICATION AND SWITCHING ers. We use the carrier capture time qf ., o=1ps, the

. . emission time ofr,_.,, =10 ps, and the carrier recombina-
Based on the theory of light propagation in Sec. Il and th ion lifetime of R, =R!,=Rl= Rg=0.4 ns. In Eqs(A13)—

mod_el of carrier relaxation o,f Sec. Il we describe the op (A15), we assume the energy separation between the discrete
eration of quantum-dot SOA's by presenting a set of equa: _ v :
. X . , o states a’\Eqg=70 meV andAE, =150 meV, which corre-
tions for various operation schemes and by numerical simu= . :

. R S sponds to the excited state energy and the third state energy.
lation under random distribution approximation. We also

simulate the operation of bulk SOAs for comparison usingWe consider the operation at room temperature Tof
the theory in the Appendix. =295 K. Note that the parameters used here suppose 1.3-

Parameters we used in the calculation are as follows. Thmlcron InGaAs self-assembled dots on GaAs substrates

: . . . . &ef 28 and discussion in Sec. )l
o Ref. .
active region has ten dot layers with the 1% optical confine The propagation equation of the light pulse is described

ment factor per one dot layer, i.d,,,=10% in total. We

suppose the columnar-shaped quantum dots with the radit?é’ Egs.(96) and(104) as
of Rp=10 nm, the height of. ;=5 nm, and the volume of

Vp= WR%LD . The quantum dots are randomly distributed in

r
the active region with the coverage £ NpVp . We use the  —Rp(2,T)= 7’“[ 7°P(2, T, wm) + 79°"(Z, T, wp)
coverage off=6% andé=10%. The coverage of=10%
gives the area density dfipLp=3.2x10"°cm 2. We as- + 792, T, 0) + 72, T, 0) IR(2,T)
sume the inhomogeneous broadening of the Gaussian shape
with the full width at half maximum of:I";,,=20 meV and  Qosd Om) R(2T) (162
fili,n=40 meV. We suppose the wetting layer or the layer 2 mar
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2-0 T T T T T T T T T T T T T T T T T T 30
—_ Quantum dot ) =100 .
= 295 K X Tn=10% O4ose = 10 cm?!
£ - 7 E
o ©
- I
=4 £ (_)(1"5’3s -1
x 101 . g [ =M
c & 201
S £
° T I 8
S 5
g 0 g

: : Vo123 3% 6
-50 0 50 10 150 SOA length, L | )5
ength, mm
(a) Interband energy (meV) 9
FIG. 6. Calculated maximum linear amplifier gain in the

20 guantum-dot SOA at the ground state maximunwef= wgvlkg as a
R ' _ ' function of the lengthL, when g™ (w,)=350 cm?, apsdwm)
T ggu;kKlnGaAsP 1Tm 51 kA/em? =5cm *or 10 cm %, andT',,=5% or 10%.
£ 1.5}
% and that of the phase as
=
\x’ 1-0 B (9 l"m
c 1.6 um — -
£ | (2T = E(2 T o). (166
D o5+
1 2 Alem? The rate equations of carriers in Sec. Il A with a single light
2 0 L3 mode, and Eq163—(166) give the amplified intensity and
(o) phase of the optical signal.

Figure 5 shows the linear gain spectra@fquantum dots
-0.50 %5‘ — ‘0'8' . '0 I85' — '0 9 calculated by Eq9123 and(140—(153) with S,,=0 in Eq.
- al - . (1) . _ 0

(b) Interband energy (eV) (148, i.e.,g"(wyy) as a function ofi w, ﬁwcv’kg, and(b)

bulk InGaAsP lattice matched to InP calculated by the em-
FIG. 5. (a) Calculated linear gain spectra of quantum dots, Pirical gain formula in Appendix Sec. 3 at various injection
99 (w,), as a function ofiw,—%wd, , . (b) Calculated linear —current densities. In quantum dots, we usgd10% and
optical gain of bulk INGaAsP lattice matched to InP using the em7i['inn=40 meV. The bulk InGaAsP shows continuous gain
pirical gain formula in Appendix Sec. 3. spectra whose maximum goes toward higher energies as cur-
rent increases. Quantum dots have discrete peaky gain spec-
We can classify the operation of SOA's by whether it is un-tra, where the ground-state gain reaches its maximum at low
der the single mode or multimodes. current densities of about 1-2 kA/&niThe maximum opti-
cal gain ofg™(w.,)=350 cm ! at the ground state agrees
with real InGaAs/GaAs self-assembled d&tdhe inhomo-
. ) _geneous broadening in conjunction with the low density of
When there is only one light mode, the coherent terms iniates due to the low dot density results in broader gain spec-
Eq. (162 vanish, resulting in the propagation equation of 4, than in bulk semiconductors. For example, the gain
9 1 sr?ectr%md widfthhdefined é:\s the energy width ;o give mor2e
- S pop — than —3 dB of the ground-state maximum is 121 meV at
9z Ru(2T) 2 L rn7™H2.T, ) = o5l om) IRm(Z T). kA/cm? in the quant%m-dot SOA, while that in the bulk SOA
(163 defined as the-3 dB width of the maximum gain is only 25
meV at 2.2 kA/cr.
Figure 6 shows the maximum linear amplifier gain of
Ri(2,T)=|Ryn(z,T) €z (164)

| o | Gl =expLIIng"Y (wm) — aiosd wm) ]} (167)
using the phase ob,(z,T). Substituting Eq(164) into Eq. ]
(163, we obtain the propagation equation of the photon fluxin the quantum-dot SOA at the ground state maximum of
density as wn= g, as a function of the length,, wheng™®(w,,)
=350cm !, @ppsdwm)=5cm?* or 10 cm?, and I',,
d _ =5% or 10%. The length of the quantum-dot SOA needed to
5Sm(Z'T)_[Fmg(Z’T’wm)ia'OSS(wm)]Sm(Z’T) realize 10 to 20 dB linear amplifier gain ranges approxi-
(165  mately between 1 and 6 mm, depending on the confinement

A. Single-mode amplification

The amplitude oR,(z,T) can be written as
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—_ ' ' current density to realize the maximum amplifier gain. From
fes] B Bulk INGaASP ..-- - . . : i .
S 20[ Quantumdot L = 0.6 mm s this point of view, the arrows for-3 dB amplifier gain is a
SE [ somer, oo %=1-55um\%;' 1 measure of the lowest operation current density for low-
© i 3 noise operation in each SOA. We see that quantum-dot
-% - | q SOA's operate as low-noise amplifiers under current densi-
o - i 1 ties less than tenth of those of bulk SOAs.
%’ 10 Quantum dot - Figure 8 shows the calculated continuous-wave amplifier
a 40mev,10% | 4 gain of G,= S;,,(L)/S,(0) as a function of the output power
E | ] of Sy(L) in the quantum-dot SOA witlh = 1.2 mm, AT,
§ L BulklnGaAsP/,.’ "r —10% ] =40 meV, andé=10% at the ground state maximum of
£ | teizem S (;1 " ot 0= wg,,kg, and in the bulk InGaAsP SOA withL
- e : ui 02?0 =0.6 mm at the wavelength of 1.56n. We used Eqg123),
(@) Current density (kA/cm?) (140—(153), and (165. The current density is 24 .kA/c%n
the optical confinement factor I,,= 10%, and the internal
1 PPN : ' loss isa;ess=5 cm ! for both SOAs. The linear optical gain
;m';‘;fmq e is 15.5 dB in the quantum-dot SOA and 20.3 dB in the bulk
_ 10} = '; A=155um 1 INnGaAsP SOA. As the output power increases, the amplifier
a Letzmm 4 ‘/ gain starts to decrease, which is called gain saturation. The
PO 'Quamumz:“-s pm_ 4 1 numbers next to the closed and open circles on the gain vs
a L=12mm “. ! output power curve represents the magnitude of gain satura-
a: 8 [ 20mev. 6% 1 ‘| ] tion. We define the output power at the 3 dB gain saturation
2 Quantum dot | as the 3 dB saturation powe?232, which is shown by an
2 7} someenen, N ; arrow for each SOA.
X Figure 8b) shows the eye diagram of the 40 Gb/s non-
6 ¢ ‘\L, ] return-to-zerdNRZ) 124-bit random-pattern input and those
N of the output from the quantum-dot SOA at the operation
510.1 1 10 points marked by solid circles in Fig(&. Note that, as the
(b) Current density (kA/cm?) gain saturation increases from0.4 dB to —4.1 dB, the

crossing points rise. Even under a gain saturation as large as

FIG. 7. (a) Calculated linear amplifier gain @'Y as a function 2.2 dB, there is no fluctuation of the mark level. The mark
of the current density. The optical confinement factor Iig, level fluctuation, which is called the pattern effect, starts to
=10%, and the internal loss igys{ @) =5 cm * for both SOAs.  appear at the saturation ef4.1 dB. This is in striking con-
(b) Calculated noise figure as a function of the current density. Werast to the case of the bulk InGaAsP SOA’s, where the mark
assumed the input coupling coefficient pf,= —2 dB. level starts to fluctuate even at0.5 dB and splits into many

traces due to the pattern effect as seen in Fig). &et us

factor and the loss. Whdn,,,=10%, the length is 1.5-2 mm define the pattern-effect saturation powet,,, where the
for 20 dB amplifier gain, and 2.3—2.7 mm for 30 dB. fluctuation of the mark level exceeds the 10% of the

Figure fa) shows the calculated linear amplifier gain of continuous-wave output power. The pattern-effect-free am-
GY as a function of the current density. For quantum-dotplification in the quantum-dot SOA under gain saturation oc-
SOAs, we used(i) #l',,=40 meV andé=10%, and(ii) curs because the gain saturation is dominated by the incoher-
AT ,n=20 meV andé=6%. For the bulk SOA, we used the ent spectral hole burning as seen in Figd)&nd the spectral
gain at\=1.55um and\=1.6 um [see Fig. B)]. The op-  hole is repeatedly compensated by the carriers relaxing from
tical confinement factor i§ ,= 10%, and the internal loss is the excited staté The pattern effect appears as the carriers
@10s=5 cm t for both SOAs. The amplifier gain of the are lost in the excited and the upper continuum states that
quantum-dot SOAs appears even below 1 kAfcrand Work as carrier reservoirs. The maximum response time of
reaches its maximum above 1 to 2 kAftrithe bulk SOAs  this process is the population relaxation time af)~*
start to have the amplifier gain at about ten times larger cur=260 fs with the excited and the upper continuum states are
rent density than quantum dots, and need the current densifylly occupied. This response time is less than tenth of the
of more than 20 kA/crhfor the maximum gain. The arrows 6.25-ps bit interval of the 160 Gb/s pulse trains, and is fast

represents-3 dB of the maximum amplifier gain. enough for their amplification and processing even at this
Figure 1b) shows the noise figure as a function of the high bit rate.
current density calculated by EQL15). We assumed the in- Figure 9 shows the saturation powerl%)j‘adtB andP?,, as

put coupling coefficient ofy;,=—2 dB. The noise figure a function of the current density for the four cases in Fig. 7.
decreases to reach its minimum value of 5 to 6 dB as th@he plots are shown above the current density indicated by
current density increases because the population inversighe arrow(—3 dB gain in Fig. 7. The saturation power in-
factor approaches one. The minimum value of the noise figereases in every case as the current density increases. In bulk
ure is determined by the 2 dB coupling loss and the internaBOA’s, the saturation power increases as we go from
loss. In order to achieve the minimum noise figure, we need=1.55um to A\=1.6 um due to the decrease in the differ-
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_Bulk InGaAsP

' Llirlelarglainl\I T P E 40 Gb/s input _ -0.4dB
20 =06mm | AT\ £ s
ARVEVARVERESPAVIELVART)
) s [
= 8 AT 2 o A
£ -2.2 dB VIRV 8 I\
S| fmme L\ e BmEe TSI
€ 10 : 1 -22dB -3.14dB .
g gﬁmmi g E __FIG. 8 (a) Calculated con_tlnuous-wave am-
< , P § 100 AN §2" i plifier gain of G, as a function of the output
1%4 '=(A1/(‘)=?/:, ; z L3 power in the quantum-dot SOA withL
O =5 C"! q - \Vi \ - =1.2mm, AT;,,=40 meV, andé=10% at the
19 10 20 30 ““"“ég;:i(o;)“ﬁ“ ““““2‘:13_‘.‘me4(4:ps) &0 ground state maximum ab,,= wgv,kg, and in the
(a) Output power (dBm) (b) bulk InGaAsP SOA with.=0.6 mm at the wave-
length of 1.55um. (b) Eye diagram of the 40
_ -05dB _ 1448 o Gb/s NRZ 128-bit random-pattern input and
Ex \ 4 24 kA/cm? those of the output from the quantum-dot SOA at
g g 1 = Fm=10% | the operation points marked by solid circles in
8.0 \'AR' 2.0 £ 0dB Oees = 5 €M ; ;
£ N 2% A o toss Fig. 8.(c) Eye diagram of the 40 Gh/s NRZ 128-
g WAV \ '03 \V4 \| & 3 1 bit random-pattern input and those of the output
526 A0 R . from the bulk InGaAsP SOA's(d) Optical gain
Time () Time (e £ spectrum of the quantum-dot SOA.
" -2.5dB >
Ee 8 4 .
§4o = g
13 |
22\ i -4.1dB Quantum dot
©o _JI__‘ JI___ L=1.2 mm
20 40 60 !

© O e o) @' 20 -0 0 10 20
Energy (meV)

ential gain, which is realized at the expense of the amplifieables deeper Fermi level than bulk, leading to lower differ-
gain and/or the lengttisee Eq.(A37)]. The gquantum-dot ential gain at a given current density, and thus, higher satu-
SOAs, having the same amplifier gain and length as the bulkation power.

SOA atA=1.6 um, have the improved saturation power vs  From the practical point of view, quantum-dot SOAs
current density curve, i.e., larger saturation power and lowerave two attractive operation modes as seen in Fig. 9; one is
operation current density than the bulk SOA. This is partlyjow power consumption operation, for example, with the low

due to discrete quantized energy states, and partly due to thgjise of NF<6 dB. P38 PPa'=10 dBm.G=15 dB at the

. sat 1 sat
volume effect, i.e., the smaller crystal volume of the ., ant density of 3 kA/cth The other is the operation under
guantum-dot ensemble than bulk: The quantization caus

larger optical gain than bulk at lower carrier density, and th%gh saturation power, for example, of 23 dBm at 30 kAfcm

L T ith broad gain bandwidth. The saturation power can be fur-
combination of the volume effect and the quantization en- . .
ther increased by reducing the layer number and/or the dot

: area coverage at the expense of the amplifier gain or the
- length. See Eq(A36) for simple understanding. In addition,
. we can expect the quantum dot SOA is less sensitive to tem-

—-3dB

t --- Pattern effect )
@ perature than the bulk SOA due to discrete energy states and
= 20I Gueitimdai lower carrier density under operation, which is good for
€ [ Zomev.on coolerless applications.
g
c
S
g 10 B. Multimode operation: multimode amplification, cross-gain
§ and cross-phase modulation, and four-wave mixing
 Quantum dot Eull;lgGaAsP_ The multimode operation can be further classified by the
r =0.6 mm & .
| Ledapm, A=155um frequency separation between each mode. When the mode
o] 45 separation is sufficiently larger than the polarization relax-

ation rate (wm,—wmﬁ|>1’g), we can neglect the coherent

terms in Eqg. (162, leading to multimode amplification.
FIG. 9. Saturation power oP2%® (3 dB) and P?,, (pattern ef- When the mode separation is comparable to or less than the

fect) as a function of the current density for the four cases in Fig. 7,polarization relaxation rate{ @, — w|<T{), the coherent

The plots are shown above the current density indicated by théerms cause intermode interaction like cross-gain and cross-

arrow (—3 dB gain in Fig. 7. phase modulation and four-wave mixing.

Current density (kA/cm?2)
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1. Multimode amplification(| @ — | >T}) (a) Cross-gain and cross-phase modulatidws= wg

The propagation of each optical mode is described by @p™t @p)- When the pump beam with a frequency «f
Eqs. (163—(166) in conjunction with the rate equations of CONVeys a bit pattern, the intensity and the phase of the
carriers in Sec. lllA. As the optical power increases, gaincontinuous-wave signal with a frequencyf is modulated
saturation occurs due to the incoherent spectral hole burningccording to the bit pattern, each of which is called cross-
caused by the stimulated emission. The incoherent spectrdfin @nd cross-phase modulation. We suppose that only the
hole burning due to each optical mode occurs in different doground state has the dynamic spectral hole burning term.
groups, resulting in negligible cross talk between different  USing Egs.(119-(122), (126—(131), (157—(61), and

mode< (162), the propagation equation of the mode is
Using the high-saturation power characteristics as well as oM 1
the broad gain bandwidth characteristics of quantum-dot ¢ - odls .
Ry(z,T)=i Z Az, T,05;])GjR(2,T)

SOA's discussed in Sec. IV A, we proposed and designed an »z
ultrabroadband multimode amplifier, which enables low-
noise amplification of up to 8 channels over the entire wave- Alosd Ws)
length range of 1.3-1.6 micron with the 40 nm channel - 2
interval?® We proposed adopting the multisection electrode

to realize nonuniform current injection in order to suppresswvhere

gain saturation due to amplified spontaneous emission and

reduce the gain difference among the discrete bound states. O (z,T,w;j)

By simulation, we demonstrated the amplification of 40 Gb/s

non-return-to zerqNRZ) 8-channel signals with negligible _ pop 1 coh
cross talk. This device is highly suitable in the course wave- B ND(Z)|=g,e,c Dixo" (2, T, ws;cvlj) +Np(2)
length division multiplexing networks.

2N wg)C =1

Rs(z,T), (169

X dsh — _ . .
2. Intermode interaction(| ey, — @ |<I'y) X|DgXo b(Z,T,ws ws—wptw,;cvg))

Let us consider the case where we input the strong pump

pulse with the frequency ab, and the signal pulse with the + > DXz T, 05= 05— wp+ wy;icul])
frequency ofwg into the quantum-dot SOA. The beating be- I=g.e.c

tween the pump and the signal causes coherent nonlinear

polarization via the four different processes@s= ws— w, + X0 (N, 0s= 05— wp+ oy ]) [|Ry(2,T)|?
tw,, wpy=wp—wstos, Vi=wy—wst oy, and ;= wq

—wp+ws. The combination ofws=ws— wp+w, and w, (170

=wp— wst wg causes cross-gain modulation and cross- A
phase modulation, and the combination @f=w,—ws  USINGNF"(z)=I";Np(2).
+ w, andws= ws— w,+ wg causes four-wave mixing. These ~ From Eqg.(169), the propagation equation of the photon

processes occur simultaneously. flux density of thews mode is given aswheno=0")
From Eq.(162), the propagation equation of the pump is
approximately given by 9S4z, T) 2M+1 _
R(2T) 1 T:Fs ]_El ga(ZaT!ws;Cvgj)[l_sl(“’sawpqu
plZ, -
—:_[r npop(ZlT!w )_a| 5((1) )]R (Z,T), .
6z 20F v 168 = 05;))TpSH(Z T IS(ZT) ~ dlosd @) (2. T),
17
where the term under the combination @f = w,— ws+ ws (0
is neglected due to the strong pump pulse intensity. where

|
Fg{(wq— “’jm;,kg)(ws_ wp)— FgTjg} ‘

[(0q= w0k, )2+ Th (0= wp) >+ T} ]
a)qiw

ei(ws,wp,0q=0s;]) == By Ay

Dy af(wg,0p,04=ws;jj N ws— )+ T y(og,0,,04=0s;jj ")
-2 X slegiiNg L
i’ 1=9.e g (05— wp)*+ Ty

+DuA s(wsijiIReQ(ws, @3] "), (172
J!
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is the differential gain atv, by the jth group[see Eqs(124) and(125)],

a(ws,wp,0q;]]")=—

A, = ©pCy (173
- neﬁ((up)CF]g,BJ(a)p)’
2e?|PY |2 17
S —
" 8omnowm‘l’f:u,kg (74
T IM Ag(@s— @p3jj ) + (@ ol, « )ReAg(0s—wp3jj )]
B 2 ’ (173
(wq—wévvkl)z-i—l_'f
2 -1
B (wp)= =9 , (176
P (wp_wizv,kg)2+rng
U (0q= 0, 1) IM Aig(ws— w5 ") — T ReAg(ws— wpjj )]
: 177

7I(w51wpawq;jj =-

and

Im xP°P(z, T, ws;cvgj’)

Here, we usedy?°?(z, T a)s,Cvg]) x5z, T wp,Cvgj)*
=2 Im ¥*Nz T,ws;c0gj), © TJ >Ry,
=|PZ . |>=|PZ |? and

|2
Cvk Cvk' Cvk

cu K

T',=NS"(2)D/Np(2) f cap|H(X,y)|2dxdy.

The first term of the right-hand side of E4.72) is due to the
imaginary part of¢?*"®, the second term is that gf£°?, and

the third term is that ofs(f,”et. We neglected that the contri-

bution of the excited states to the optical gain.

. 2 .2
(0q= wg, ) + T

the population beating period, and the kickback to the popu-
lation beating at the ground state from the upper states.

We can calculate the optical pulse propagation under the
cross gain modulation by the rate equations of carfiecs.
(140—(153)] with m=s,p, and Egs.(168 and (169. The
cross-gain modulation enables wavelength conversion from
o, 10 wg With the bit pattern inverted.

Figure 1@a) shows the calculated continuous-wave am-
plifier gain at the frequency abs (probe andw, (pump as
a function of the input pump poweP,,(0)=%Aw,DS,(0), in
the quantum-dot SOA with.=1.2 mm, AT';,,=40 meV,
andé= 10% The pump is at the ground-state gain maximum
of wp= v kg and the detuning oA /27 = (w,— we) /27 is

500 GHz The current density is 24 kA/énthe optical con-
finement factor isl’',,=10%, and the internal l10sSs 845
=5cm L. The amplifier gain of the probe decreases as the
pump power increases, which is the cross gain modulation.
Figure 1@b) shows the linear, incoherent, and total optical
gain spectrum at the exit of the SOA wheR,(0)

As the first order approximation of the successive solution=10 dBm. We see the dimple in the gain spectrum denoted

of Ajg(ws— w,;jj") from Eq. (132, we take

i
Tig Dy
ws— wpti(TI+R]) Det+Dy

Alg(ws_wp =i
(179

for |

by incoherent gain which comes from,(z,T,ws;Cvgj).
The “total” gain spectrum includes the gain saturation which
comes frome(ws,w,,0q=ws;j) in Eq. (171). The satu-
rated optical gain is almost symmetric due to dominant spec-
tral hole burning, and negligible contribution of the carrier
density pulsation, which is in contrast to the bulk SOA in
Fig. 14a).

Figure 1@c) shows eye diagrams of the output pump

=e,u, and other terms as zero. This means that webeam and the amplifier gain of the probe beam when the

neglect the interdot interaction via the wetting layer withininput pump is the NRZ random pattern at a bit rate of 40
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20 T T T L | T T T 7 T T T
i Pump, ho, i 4 _
o 1 =~ [ Incoherent Linear gain FIG. 10. (a) Calculated continuous-wave am-
2 g g% plifier gain at the frequency abs (probe andw,
E =S (pump as a function of the input pump power,
& 10 ] X 2t Pp(0), in the gquantum-dot SOA with L
S Probe, tich, £ - \ =1.2 mm, AT,n=40 meV, and §.= 10%._ The
g I ;’ ir =10 % Total aal pump is at the ground-state gain maximum of
| 24 kAJem? ] e [ o =5cm? otal gain wp,=wd . and the detuning ofAw/27=(w,
[m=10% ~ Quantum dot §or —wg) 2w is 500 GHz.(b) Linear, incoherent, and
[ Cee=5SCMT ) 1 2mm ] Quantum dot P,(0) =10 dBm t i - i
P P Sl ‘ ‘ \ ‘ otal optical gain spectrum at thg exit of the SOA
-10 0 10 20 6 -4 2 0 2 4 6 when P(0)=10dBm. (c) Eye diagrams of the
@ Input pump power (dBm) (b) Detuning, (wp-as )/2n (THz) output pump beam and the amplifier gain of the
probe beam when the input pump is the NRZ
Pump, Pp(0)= 10 dBm Probe, P, (0)= 10 dBm Pump, P, (0)= 0 dBm Probe, P; ()= 0 dBm random pattern at a bit rate of 40 Gb/s and the
g™ g, £ g= = input probe is weak continuous wave. The input
¢ \ 5 \/ \\/ \/ P £ pump power isP,(0)=10dBm and 13 dBm.
Z. IAIANRA :g'-s H %2 The input wave form is the same as Figb8 (d)
g 1 \ H £ ot The same calculation at 40 Gb/s in the bulk In-
LEW/ARY, ! T 1”1::.4?'3 5570 GaAsP SOA withL=0.6 mm at the wavelength
ety A O of 1.55 um as(c). The input pump power is
R Pump, P, (0)= 13 dBm Probe, Py ()= 13 dBm ,._Pratae, Po(0)= 10 dBm J.._Probe, P, (0)= 13 dBm Pp(O):O dBm. (e) Calculated frequency Chil’p-
z 2K Tk B g LA A ing of the probe output from the quantum-dot
D i 05 e NN 2 VN N SOA when the SOA is under the cross-gain
i IAWANT, \ £ HH H o NN N modulation at 40 Gb/s witlP,(0)=10 dBm and
H N £ LN °© °© hd 13 dBm shown in(b).
10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 61526303056 50 70 1671020 30 40 50 60 70
Time (ps) Time (ps) Time (ps) Time (ps)

—
(1)
~—

(e)

Gb/s and the input probe is weak continuous wave. The input To summarize the cross-gain modulation, the 40 Gb/s
pump power is 10 and 13 dBm. The input wave form is theresponse is possible due to the gain saturation under the in-
same as Fig. ®). We see clear eye opening with the extinc- coherent and dynamic spectral hole burning by numerical
tion ratio of 4.4 dB atP,(0)=10dBm and 6.6 dB at calculation. The upper speed limit is 160 Gb/s or above ow-
Pp(0)=13dBm. The high-speed response is due to théng to the intraband relaxation rate of 260(&s discussed in
high-speed repeated response of the incoherent spectral h&@ec. 1ll, the intraband relaxation rate is 100 to 300 fs in
burning. self-assembled dots with optical gaimhe extinction ratio
Figure 1@d) shows the same calculation at 40 Gb/s in theof 6.6 dB in the present calculation B},(0)=13 dBm and
bulk InGaAsP SOA withL=0.6 mm at the wavelength of 24 kA/cn? can be further increased above 10 dB without
1.55um as Fig. 10c). The input pump power is 0 dBm. The pattern effect using the SOAs with decreased optical con-
slow response of gain saturation dominated by the carriefinement factor or dot area density and with longer cavity
recombination lifetime in Eq(A23) results in the pattern length.
effect in the pump, and the undetectable signal in the probe From Eq.(169), the propagation equation of the phase of
beam. The response is 2.5 Gb/s at nigse Fig. 1f)]. the modews is given as(wheno’ = o)

2M+1
J ) : ]
9z bs(z,T)=— ?S 121 Dgg(r(Zrvas;Cvgj)[a]g(ws)+sR(wsrwp ’wq:ws;J)FpSp(ZaT)]

F 2M+1
“7,2, & DdzTesclal(wy), (180
where
. wj’:v,k|_w8
al(wg)= T, (181
Cu,
and
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[r (ws—wp)-i-T(wq chk)] ‘

[(w0q= w0k, k) +rg][<ws—wp>2+T’g]\w ]

aR(wsJ*’pqu:ws;j):ﬁj(wp)ApvJ

D, (ws— wp) y(ws,wp,0q=wg;jj ') — T a(w W, 0g= 03] )
+2 2 9((1)31” ) ! > P > P (q : 2 TJ 2I : : T
Dy ws— wp) "+ ( g)

+DuAY s(wsi]])IMmQ(ws,wyijj ). (182
j

The first term of the right-hand side of E4.82) is due to the real part of%*"°, the second term is that ¢£?, and the third
term is that ofy!®".

We can calculate the phase of the signal under the cross phase modulation by the rate equations dEcriigds)—
(153 ] with m=s,p, and Eqs(168 and (180).

Figure 1Qe) shows the calculated frequency chirping of the probe output from the quantum-dot SOA when the SOA is
under the cross-gain modulation at 40 Gb/s viath(0)=10 dBm and 13 dBm shown in Fig. (). The chirping is given by

1 9¢g(L,T)

A= =

(183
where ¢4(L,T) is the phase at the exit. We see that the frequency chirping is less than 0.4 GH¢0t=10 dBm and 0.7
GHz atP;,(0)=13 Bm during the cross-gain modulation, which are only 1-2% of the signal bandwidth of about 40 GHz or
more. This small ch|rp|ng is partly because the contribution of the dots M@m > w, and the dots witho. v kg <wg almost
cancels out whemws= ‘UcU kg due to the symmetric ground-state gain spectrum and partly because the contribution of the
excited and the upper contlnuum states is negligible due to their energy separation from the ground state.

(b) Four-wave mixind w;= w,— ws+ 0, andwt = 0s— w,+ wg). Using Eqs(119—(122), (126—(131), (157—(161), and
(162), the propagation equation of the mode is

2M+1

Jd Ioss(wc)
SRz T)=i m j}_}l QUzT0i)GR(ZT) — ——Ri(zT), (184
where
Q(z,T,01:j)=Np(2)Dgx2°(z, T, w¢ ;cvgj) + NF"(2)| D gxiS'm(z,T,wf=wp—ws+wp;cvgj>+I DXz, T, 0=,
=g,e,C
—wst wp;colj) T Xa Ny, 0= wpy— 0t 0y )) [R5(2, T)RE (2, T)R; H(z,T)e! (29~ 9s—a02, (185
From Egs.(184) and(185), we obtain
9 2M+1
—R(zT) =i > Np(2)Dgx5°Pk(z, T, ¢ ;c09j)GjR(2,T) + ®(wp,ws)R (z,T)RE (2,T)e! (995~ anz
0z eﬁ( f)C =1
I 2M+1 F
~_f . ; * (20p=0s=01)2,
== 2 0,(zT01c0g)RI(ZT)+ 5 0 (w0p,0) RYZTIRE (2, T)e! % (186
=1
where
eoNer( ,)C 2M+1
ol leff . .
O (wp,w9) =~ —r ——T5 2, Wj(wp,05:))gk(z,T,wpicvg)) (187)
@p j=1
and
Wj(wp,0s;]) = |(wp,0s,0q= 0f;]) + er(0p, 05, 0q= 0 ;). (188
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20 . . 20 : :
o Aw>0 P,(L)= 13dBm - Aw>0 Py(L)=13dBm
g 10_Am<0 8 kA/em? g 10F 12 kA/em?
S of 5
E SHB+CDP ™S »i98 -4 i SHB+CDP 2 2P8F .4
1] [
c -10f 0784 2 qof—— o JeedE .
2 173d8) O -16.6dB |
@ 20| B -200 . . -

g ] FIG. 11. Calculation of conversion efficiency,
§ -30f § =301 Neon(@p ,u_)s), as a function of the absol_ute value
-40{Quantum dot -40} Quantum dot of detuning, Aw2m=(w,—ws)/2m, in the

5 L=1.2mm . " L=12mm quantum-dot SOA under different current density.

10 .10'1 1 10 102 10" 10 The pump is at the top of the ground state gain,

(@ Detuning, lo-og/2r [THz] (b) Detuning, lay-og/2n [THZ] ie., wp= wgv,kgv with the power of Py(L)

20 20 . =13 dBm. We used the same parameters as Fig.
Z 10l Aw>0 2 1ol 10 in  calculating Wi(w,,0g;j)  and
c & Ap>0 i . e !
g o 5 v 9(wp;cvgj), and the amplifier gain ofGq
% N 6 db ] ;*:’ 7 o 47aB ] =15.5dB independent of the current density
c -10- SHB+CDP 14,548 g 100 <% supicop 117 dB- since the SOA is almost in the linear region
(=] ik O
® 20| 3 20 above 8 kA/crA.
o cDP e
g 30 1 & -30 cop |
© 0| Quantumdot  Pe(L=13dBm | O ol o ioniimdot  Pyl)=13dBm |

L=1.2 mm 24 kAlem? L=1.2 mm 30 kA/cm?
-50 L A -50 1 1
102 107 1 10 107 1 10

(c) Detuning, loy-o.l/2n [THz] (d) Detuning, log-0sl/2n [THz]

The amplified intensity and phase Bf(z,T) can be cal- Tin ToutD Sf(L)
culated by the rate equations of carrigisys. (140—(153)] SNR = pp (199
with m=p,s,c, and Eqs(168), (169, and(186). 240| 1+ 2D SH(L, @)

Instead of solving Eq.186) by numerical calculations, we Wsp

present here an approximate analytical solution for SemiThe noise figure defined as the ratio of SNBFf Eq. (129

guantitative understanding of the conversion efficiency, th
signal-to-background ratio (SBR the signal-to-noise ratio

(SNR;) and the noise figure (NF of the wavelength con-

version by four-wave mixing. We suppose the condition of
the continuous wave operation, a constant gain over the cav-

ity, and the complete phase matching conditiomge# 2q,
—(s. We use the signal amplitude &(L) at the exit and

Swith m=s and S,(0,T,ws) =0 and SNR of Eq. (19)) is
given as

_ 1+ 290, Gi— 1]nsp(wf)

NF;
Tin 770ut77con(wp , W)

(192

Equations(190 to (192 show that the high conversion effi-

the pump amplitude oRy(L) at the exit in the second term ciency is a key to high signal quality.

of the right-hand side of Eq186). Then, by integrating Eq.

Figure 11a) shows the calculation ofcon(wp,ws) as a

(186) over the waveguide, we obtain the conversion effi-q,nction of the absolute value of detuning.w/27= (e,

ciency of

2M+1
Si(L) .
_EFEGfZ j;l Wj(wp,05:])

S4(0)

77con(wp ,Wg) =

2

S(L)% (189

Xg(wp;cvgj)/g(wp)

where we useg(wp) andg(wp;cvgj) in Eq. (123 at the
exit of the SOA undeSy(L), andG; is the amplifier gain.
Using EQ.(109 with S,(0,T,w.) =0, the SBR of the con-
verted signal with the ASE background is given as

Si(L) _ ﬂcon(wpvws)ss(o)
p(l—wa) [Gf_l]nsp(wf)svac(wf) .

SBR=g
(190

—wg)/27r, in the quantum-dot SOA under different current
density. The pump is at the top of the ground state gain, i.e.,
wp:wgv’kg, with the power ofP,(L)=13 dBm. We used

the same parameters as Fig. 10 in calculagow,, , ws;])
andg(wp;cvgj), and the amplifier gain o&;=15.5 dB in-
dependent of the current density since the SOA is almost in
the linear region above 8 kA/cmWe see that the total con-
version efficiency is almost symmetric, i.e., independent of
the conversion direction, which is a striking contrast to the
bulk SOA[Fig. 17@a)]. This is because the coherent nonlin-
earity is dominated not by the carrier density pulsation but
by the dynamic spectral hole burning, which is partly due to
slower population and polarization relaxation than bulk
semiconductors and partly due to the separated excited, up-
per and the wetting layer states from the ground state. The
latter effect leads to small alpha parameter discussed in the
Appendix.

The SNR of the converted signal against the shot noise and As the current density increases fraa) to (d), the con-
the beating noise with the amplified spontaneous emission igersion bandwidth increases due to the increased relaxation

given as

rate of Tg, since the carriers occupy the excited and the

235332-27



M. SUGAWARA et al. PHYSICAL REVIEW B 69, 235332 (2004

upper continuum statdsee Eq(151)]. As a result, the con- ~ 10 7 ——40
version efficiency at 0.5 to 2 THz, which corresponds to 8 to g ‘

32 nm wavelength dispersion in the 1.38n wavelength - ™)
range for the optical transmission system, increases as the e 0 Z
current density increases. For example, the conversion effi- % QU SBR:MB'so )
ciency at 30 kA/criis —1.1 dB for 0.5 THz(8 nm conver- % 10 >
sion), —4.7 dB for 1 THz(16 nm conversiop and—11.7 dB 5 \{o\,& %
for 2 THz (32 nm conversion When Afg,=100 GHz ? “‘\20 .g
(Awgp=27ATgy), G;=15.5dB, ng(wi)=1, Py(0)= 1)) N 2
—2.5dBm, andzws=0.8 eV, Eq.(190 gives SBR=31 S P(L)f?::;"ma Lo R

+ 7¢(wp,ws) in dB. When 7,,=—2dB, Eq.(192 gives © o8 kAT \'Ql,i N

NF=20.5- 7¢(w, ,ws) in dB. The conversion efficiency of -3045 20 36‘0
—4.7 dB at 30 kA/crh gives SBR=26.3dB and NF
=25.2dB.

One way to further improve NFof the four-wave mixing
wavelength conversion by quantum-dot SOA's is to increase
the optical gain of dots by increasing the dot density or re-
ducing the inhomogeneous broadening width. The other one
is to increase the pump power and the amplifier gain by
increasing the SOA length. Figure 12 shows the conversion
efficiency calculated by Eq.189 and the noise figure cal-
culated by Eq(192) as a function of the amplifier gailg;,
when the output pump power {g8) P,(L) =10 dBm and(b)
P,(L)=13 dBm. The detuning is 0.5, 1.0, and 2.0 THz. The
current density is 24 kA/cfa The solid lines represent the
calculation as long as the converted signal power is less than Py(L)= 20dBm
—10 dB of the output signal, which is an approximate crite- g 24kAem, |, .
ria for the spectrum distortion not to occur. The minimum b 10 . 15, 20
noise figure is shown by the solid circle at each detuning. (k) Amplifer gain, G, (dB)
When the output signal power is equal to the pump power, g 12 calculated conversion efficiency and the noise figure
which is also an approximate criteria for the spectrum distoryas 5 function of the amplifier gairG,, when the output pump
tion not to occur, the maximum signal-to-background-ratio atyower is(a) P,(L)=10 dBm and(b) P,(L)=13 dBm. The detun-
the minimum noise figure is SBR27dB at 0.5 THz, ingis 0.5, 1.0, and 2.0 THz. The calculation is done until the con-
SBR=22dB at 1.0 THz, and SBR-14dB at 2.0 THz verted signal power reachesl0 dB of the output signal.
when P,(L)=10dBm, and SBR=45dB at 0.5 THz,

SBR=39dB at 1.0 THz, and SBR-33dB at 2.0 THz with InGaAs/GaAs self-assembled quantum dots in the ac-
whenP (L) =13 dBm. Comparing Figs. 18 and 12b), we tive region, and demonstrated their various unique character-
see that increasing the pump power is more effective foistics discussed in this theoretical work. Among them are
lower noise figure than increasing the amplifier gain. Note10—40 Gb/s pattern-effect-free amplificatibn®® 10—40
that N =19 dB with SBR=33 dB even at the detuning of Gb/s pattern-effect-free wavelength conversion by the cross-
2 THz is accomplished undeP,(L)=13dBm andG¢  gain modulatior} **and the symmetric wavelength conver-
=18.6 dB. sion by nondegenerate four-wave mixitg.’ We also fabri-

Since the detuing of 2 THz corresponds to 32 nm wavecated quantum-dot SOAs with InGaAs/InP self-assembled
length conversion at the 1.55 micron wavelength range, thguantum dots in the active region and succeeded in demon-
quantum-dot SOA enables wavelength conversion over thstrating high saturation power above 20 dBm at 1.55
entire range of the& band of the fiber transmission system. micron*?> We are now working to demonstrate the remaining
This enables the 20-channel 40 Gb/s system with a singlpromising features like low power-consumption amplifica-
channel bandwidth of 100 GHz and the 8-channel 160 Gb/gion, multichannel amplification on broad gain bandwidth
system with a single channel bandwidth of 500 GHz. Wewith negligible cross talk, and less than 20 dB noise figure as
have proposed, designed, and assembled a tunable waveur-wave mixing wavelength converter.
length conversion module over the entire range ofGhzand We took the population relaxation raf@60 f9 and the
by the combination of a quantum-dot SOA, a wavelengthpolarization relaxation ratél30 f9 in the calculation from
tunable laser as pump source and the dispersion diversifyrevious experimental studies on carrier dynamics. This
configuration for polarization insensitivify. slower relaxation time in quantum dots than bulk and
quantum-well semiconductors can be attributed to the dis-
crete energy states and spatial localization of quantum dots
to limit the relaxation via carrier-LO phonon scattering,

We have done experiments on optical signal amplificatiorcarrier-LA phonon scattering, and carrier-carrier scattering to
and switching at the wavelength of 1.3 micron using SOAssome extent. This is the phonon bottleneck in the sense that

—
)
—

Noise figure (dB)

ey,
SBR=450B =<

Conversion efficiency (dB)

C. Current states of experiments
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available electronic energy states to satisfy the energy con-APPENDIX: THEORY OF BULK AND QUANTUM-WELL
servation rule for relaxation are limited. SEMICONDUCTOR OPTICAL AMPLIFIERS

We can expect the relaxation rates can be controlled to | ..o appendix, we present a theory of the single- and

some extent by tuning the size, shape, strain, density, ang,imode optical pulse propagation in traveling-type semi-
potential depth of quantum dots. Generally speaking, fastefonqyctor optical amplifier§SOAS) with bulk or quantum-
relaxation rates than those of 1.3-micron InGaAs/GaAs selfyg|| active regions and show how the introduction of quan-
assembled quantum dots will be advantageous to linear ojgum dots into the active region will improve the performance
erations as optical amplifiers, and slower rates to nonlineagf SOA's within the framework of the theory. Here, the
operations as optical switches. The InGaAs/InP quantunguantum-dot active region is characterized as a continuum
dots with 1.55 micron we are now working Brhave the medium with the discrete density of states, small crystal vol-
diameter of about 40 nm, about twice that of 1.3-micronume, zero alpha parameter, and slower population and polar-
InGaAs/GaAs self-assembled quantum dots, and have densgation relaxation rates than bulk or guantum well active re-
discrete energy states. We expect these 1.55-micron dots wiion. This comparative approach will help highlight features
have faster relaxation rates than the 1.3-micron dots, andf our quantum-dot theory in the main text.

thus might work as linear optical amplifiers more efficiently ~ As in the main text, we clarify the operation modes of the
than as nonlinear optical switches. An arbitrary control of theSOA' into the single-mode amplification, multimode ampli-
population and polarization relaxation rates via the dot strucfication, and intermode interaction for optical switching.

tures will enable us to design the best performance amplifiershough many papers on theoretical treatments of SOA op-
or switches we need. erations have been publish&t;*® this appendix is the first,

to our knowledge, to treat all the aspects of their operations
in a unified manner. In this sense, this appendix will also
help readers with an interest in conventional SOA’s.

We use the density matrix equation to treat the interaction

We presented a theory of optical signal amplification andoetween the photon and the two-level electron system con-
processing by quantum-dot semiconductor optical amplifierssisting of the conduction-band and valence-bandtates,
The theory includes the linear optical response as well as thi€.k) and|v k), respectively, as in the main text. The equa-
incoherent and coherent nonlinear response of the quanturﬁon |nC.|UdeS the r9|aX.at|0n rate of the pO|ar|2at|0n and that
dot SOA's with arbitrary spectral and spatial distribution of ©f the intraband and interband population at eachtate,
quantum dots in the active region under the multimode light91Ving analytical expressions for the linear and nonlinear
Based on the theory, we numerically simulated the Operaﬂoﬁusceptlbllltles with the summation of the contribution of

of quantum-dot SOA's to show diverse promising features a aphk state. The nonlinear s_usceptibility inclgdeg the popu-
amplifiers with low power consumption, high-saturation ation term to describe the incoherent polarization, the dy-

. . ._namic spectral hole burning term, and the carrier density
power, broad gain bandwidth, pattern-effect-free operation . : )
ulsation term. We also present approximate expressions of

under gain sa}turat|on, and also, as signal processing devic e susceptibilities as linear functions of the carrier density,
to realize h|gh—spe.ed(40—160 Gb/s pa.ttern-eﬁecF-free_ N. This approximation, though taken primarily due to the
wavelength conversion by the cross-gain modulation Withyiicity in treating the intraband population relaxation at
low frequency chirping, and the symmetric highly-efficient 1 oach k “state in the continuous band under the electron-
to 2 THz wavelength conversion by nondegenerate fourphoton interaction, holds well as long as the optical power is
wave mixing. The high performance as amplifiers is prima-sych that the intraband population relaxation rate is much
rily based on discrete quantized energy states and relativebaster than the stimulated emission rate, and that the carrier
low dot density, and switching functions owes to dominantdistribution in the bands obeys Fermi-Dirac distribution
incoherent and dynamic spectral hole burning. Our previougunction.

theoretical prediction, experimental demonstration, and the

development of devices and modules in progress are now 1. Propagation equation of optical pulse

supported by a rigid framework of the present theory. This We rewrite Eq.(162 of the propagation equation of the

work will help not only design practical quantum-dot devices . -
working in the photonic networks but also understand howOptlcaI pulse with the wave form of E¢91) as

V. SUMMARY

carrier dynamics in quantum dots relates to the optical re- P
sponse of quantum dots under current injection. -5 Rm(zT)= Tm[%pOp(N,wm)Jr%dShb(N,wm)
+7°9(N, 0m) IRn(2,T)
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group velocity is employed by making the transformation of (a+i)ChA[N—N]
T=t—qo(wm)z. The terms in the parenthesis of the right- X5 AN, )= — (or—wg) 2+ AZ
hand side of Eq.(Al) include the population term, m 0
7P°P(N,w), the dynamic spectral hole burning term,
n(,Shb(N wy), and the carrier density pulsation term,
7°9P(N, wy,) with the carrier density explicitly written. These
susceptibility terms are given as follows.

(A4)

Here, the carrier density is given by taking the summation of
pEC L on the conduction-bank states including spin degen-
eracy per unit volume as

A. Population term,%*°P(N, ) N= 2624( pEok. (A5)

Assuming thatN is constant in the cross section of the
active regionthis assumption holds when the cross-sectional
. . . . . . . 292|P |2
dimension of the active region is smaller than the diffusion c - (A6)
length of carriers, and is used throughout this appensie ™ o Mawmawo
obtain from Eq.(99)

is a constant,

. w
PPN om) =1 S X Nor). (A2)
efft ®m IReXPOP(N, wpn)
From EqQs.(47) and (48) with the dot serial number o B oN A7
omitted, we obtain a=y IM%P°°(N, ) (A7)

N

XoP(N om) = 2, X5 AN o icvk) _ _ _ _
is the alpha parameter, ard,, is the carrier density for

292|P 2[ pop__ _pop transparency.
=> co.kl LPeck™ Poosk Using Eq.(A4), the optical gain of Eq(101) is
c,v,k 8Oﬁmowmwcv,k
% o Go(N, o) = = —— T IMXEP(N, 0m) = AN =Ny ],
Wm™— wCU,k+|FCU,k e Ne( @m)C m m tr
(A8)
! } (A3)
wmt o, k+Hile k]’ where
wherel’,  is the relaxation rate of the polarization formed
by the |c,k) and |v,k) states. The summation of A Om CmA (A9)
YP°P(N,w,:cuk) in k space in Eq(A3) is done per unit ™ N 0m) € (0m— wg)°+A?

volume. Note thapPc} is the population at théc,k) state

without beating, anggck is that at thefv, k) state, each of s the differential gain.

which is often represented by the Fermi-Dirac distribution

function in each band due to ultrafast intraband population

relaxation. For simplicity, we do the following: By neglect- B. Coherent nonlinear polarization term due to dynamic spectral

~d hb,
ing the dispersion ofoc, , PZ, , andlg, , introducing hole burning, 7, (N, &)
the gain spectrum width of and the gain peak frequency of  From Egs.(62) and(63) with the dot serial number of
wg, and assuming the neutral conditiongftk=1—pP %,  omitted and Eq.(99), the coherent nonlinear term of
we obtain an approximate expression of E&3) as 79PN, w,,) is given as
";]dShb(N w ):|LF2 ~dShb(N W= Wt — O T+ @ m)
m neﬁ(wm)C m’ m".m"” m-—m m m
(m’#m”,>0)
X R (2, T)R® (2, T)Ryy(z, T)Riy (2, T) €' Gm' = A Ay = Am2, (A10)

where
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o2 2 ~pop . _~pop . *
~cshb(N . - e’|Pg, il Xy (N on ;cvk) =X, "(N,wqy;cvk)
W= Oqy — Oy + @ -

m—m’ S c.k 4m0wm"‘”0v Wh? Oy~ Oyt Oy — @y, FH1l g,

1 1

X - + - , (A11)
Wy — (1)mu+ | (TCC,k+ RCC,k) Wy — wmu-I— | (Tvv,k+ va,k)

Jacd HOXY) | *dxdy
JacdH(X,y)[*dxdy’
Teck is the intraband relaxation rate of the electron population ofdte) state toward quasithermal equilibriuf,, \ is that

of the|v k) state R is the interband relaxation rate of the electron population ofdfie) state toward thermal equilibrium

state, i.e., the recombination rate, &y \ is that of thelv k) state. The polarization of the” mode,o, can be different from
that of them’ andm” modes,o”'.

Using the same procedure as we derived @d), Eq. (A11) becomes

FZZ

(A12)

€g C PPN, 0 ) — X PN, @) *
4h mw(wmr—wmu+wmm—w0+|rcv)[wm’_wm”+|(-rin+Rrec)]'

~dShb(N W= Wy — (l)mrr+ (,L)mw)—

(A13)

where we adopted the polarization relaxation rat€ gf, the ~ whereN''=23_,p.. «(r,t) is the total carrier density includ-
intraband population relaxation rate of,, and the recom- ing the beating under the charge neutrality conditibl,
bination rate ofR,.. in common at eaclk state in both =J/R..ed is the quasithermal equilibrium carrier density
bands. under a given injection current densify,andd is the active

layer thickness. The thermal-equilibrium carrier density is
C. Coherent nonlinear polarization term due to carrier density neglected. By substituting

pulsation, 7°%(N, ;)

From Eqgs.(50) and (53) with the dot serial number of

_ _ 1{52 : NO=N+ > AN(@gy —omp)e @m-entycc.
omitted, the time derivative of the diagonal term of the den-

m’,m”

sity matrix is (m#m'>0) (AL6)
&
peck(r,t)= ﬁz % IMXPP(N, @ ; Cok)|En(r,t)|? into Eq. (A15), we obtain the amplitude of beating as
v
(>0)
€0 Xg'op(vam’)
80' ~pop AN(a)m/_(L)mu):_ T

2 E Xo (N, wm;CuK)Ep(r,t) 4 wp — oy +i[Riect Rstiml

meni~o) X Epy (1, ER(r,1)€!(Om = am2,

Ex,(r,t)e (am™am)zg=i(em~om)ty ¢ ¢, (A17)

(A14) where

Taking the summation ik space per unit volume, using Eq. -
(A3), and adding the recombination term and the current €0 dlmy, (N, om)

L= 2
injection term, Eq(A14) becomes Rstim=~ 57 2 N |Em(r,t)]
(A18)
IN®t g pop 5 is the stimulated emission rate. By taking average of Eq.
ot 2h % ImX5"AN, 0m) [En(r,1)] (A18) in the xy plane, and using EqgA4) and (A9), Eq.
(>0) (A18) becomes
S RN o) En(TDEL (1,1)
A g m Retim= 2 TmAnSh, (A19)
(m#m’>0) m
Xe(qm Am’) '(wm om)t +c.c— RreC(NO NO)'

whereS,, is the photon flux density given by E¢P5).
(A15) By substituting Eq(A17) into [see Eq.(96)]
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I R(zT)=i—2m
a7 (2D = 5 ome
(9")‘(2°p(N,wm///)
s [AN(@m — @) + AN* (0= o) [IH(x,Y) Pdxdy
X " (A —dm)z
Jearl HX,Y)[*dxdy Rur(z,T)e ’
(A20)
we obtain
’;ICdp(N w ):|LI‘2 E }Cdp(N On= Wy — O+ 0 ru)
rm neff(wm)c ! T 1 Wm m m m
(m’#m”,>0)
X Ry (2, T)R® (2, T)Ryyr(z, )Ry (2, T) €' G’ = G A~ Am2, (A21)
where
~Ppop ~pop *
&g Negfl ) C Xo! (N,w r)_XO_, (N,(D //)
PN, 0= 0y — Oyr+ @pyr) = — == M(cﬁ-i)Amm i i (A22)

4h

[P

The polarization of then” mode, o, can be different from
that of them’ andm” modes,o”’.
D. Rate equations of carrier density and gain

By averaging Eq(A15) in the xy plane and omitting the
beating term and introducing=t—qq(w,,)zZ, we obtain the
equation of the carrier density as

= =~RiedN=No] = X T'8,(N,0n)Sn(z.T).
m>0

(A23)

From Egs.(A8) and (A23), we obtain the rate equation of
gain as

Go(N, wp) 3 -
— =~ RiedTo(N.om) ~T (N, )]

—An 2 TnGe(N,0n)Sw(z,T),

m’>0
(A24)

where the linear gain is
T (N, 0m) =AnNg (33— 1) (A25)

andJ;,=edRecNy, -

2. Optical amplification and switching

The operation of SOAs can be described by Egsl),
(A2), (A10), (A21), and(A23) [or Eq.(A24)]. We can clas-

O — Oyt i[Rrect Rgtiml

tion relaxation rate |, — o|>T,), we can neglect the
coherent terms in EqA1), leading to multimode amplifica-
tion. When the mode separation is comparable to or less than
the polarization relaxation ratéd,, — w|<TI,), the co-
herent terms cause intermode interaction including cross-
gain and cross-phase modulation and four-wave mixing.

A. Single-mode amplification

When there is only one light mode, the coherent terms in
Eqg. (A1) vanish, resulting in the propagation equation of

d 1
E Rm(z,T)= E[anpop(Nrwm) — Qjoss Wm) IRM(Z,T).
(A26)
The amplitude oR,(z, T) can be written as
Rn(2,T)=|Rp(2,T)|€m=D (A27)

using the phase ab,(z,T). Substituting Eq(A27) into Eq.
(A26), we obtain the propagation equation of the photon flux
density as

J
ESn(ZvT):[FmGU(Nrwm)_aloss(wm)]S"n(ZiT)
(A28)
and that of the phase as

J T
b2 T)= 5 E(N, o), (A29)

where

sify the operation by whether it is under the single mode or

multimodes. The multimode operation can be further classi-~
fied by the frequency separation between each mode. Whe
the mode separation is sufficiently larger than the polariza-

Re}gop(Nawm) = amgu(vam)-
(A30)

rgo(vam):

Nes( @m)C
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Under the continuous-wave operation, E428) becomes Bulk Quantum wire
ISw(z)
2 =[Talo(N,0m) — @iosd @) 1Sn(2)  (A3D) P =
| | - | e
by replacingS,,(z,T) with S(z). Similarly, Eq.(A24) gives
the gain of i .
3 3
To(N, o) = G (N.on) A32 ° / ° LLL
9o(N,0y) = 148,z (A32)
Energy Energy
where
R Quantum well Quantum dot
Soat= 2T (A33)
m A 2 B @
. . . . = -1 -
is the saturation photon flux density. Equati@82) tells us ® @ o
that the gain saturation occurs whé&q(z) exceedsS2". //' A
Integrating Eq(A31) with Eq. (A32) and neglecting the in- Well  Barrier
ternal loss, we obtain the amplifier gain as & @
) o
3 a
L) Gy—1]S,(L) . ’_I_,_
Gm:i:Ginl) exp{ _w], (A34)
Sm(O) Gmen Energy Energy
where the linear or unsaturated single-pass amplifier gain g, 13. Active-region structures and density of states of a bulk
without the loss is semiconductor and quantum nanostructures like quantum wells,
(1) ~(1) gquantum wires, and quantum dots.
Gn'=exdIl'nd, (N, om)L]. (A35)
If we define the saturation power Bf2! as the output power 10N increases, i.e.,-2&;>£;>&. As a result, the optical
to give G,,= G2 in Eq.(A34), we obtain confinement factor decreases frémpm=1I",, in the bulk active
mo-m ' ’ region approximately td",&, in the quantum-well]’,&; the
. howmRecD quantum-wire and &, in the quantum-dot active region.
Pr=(n2) —F——, (A36)  Also, since quantum dots have the density of states which is
m-'m

discrete due to the complete quantization as well as small
where we used the optical power Bf,=%w,DS,,, andD  due to the low filling factor, the Fermi level goes into the
is the cross section area of the active region. From Eqsand deeper than in other semiconductors at a given carrier
(A25), (A35), and(A36), we obtain the product of the unsat- density, causing smaller differential gain. Owing to these two
urated gain and the saturation output power divided by théactors, i.e., low confinement factor and small differential
SOA length as gain, we can expect higher saturation power in quantum-dot
SOA’s than in other conventional SOA.
(In2)fw Note that the combination of the deep Fermi level and the
inhomogeneous broadening due to size distribution also

mD
od J(J/J,—1). (A37)
. ) . causes broader gain bandwidth than other conventional
Equation(A37) tells us that the saturation power, the ampli- SCSJA’S gal w vent

fier gain and the length of SOA's is under trade off at a given

current density. In some applications, where high saturation B. Multimode amplification (|@,— @ |>T,)

power is essential, we should increase the saturation power at ) ) ) )

the expense of the length, i.e., the consumption power, or the 1"€ Propagation of each optical mode is described by
amplifier gain. In order to increase the saturation power, wé=ds-(A8), (A23), and(A28)—(A30). The intermode interac-

know from Eq.(A36) that we should reduce the optical con- tion appears via thg,(N, o) in Egs.(A28) and(A30), i.e.,
finement factor off',,, the differential gain ofA,,, and the the gain saturation due to the reduction in the carrier density
recombination rate oR,... The active region area db results in the cross talk between different modes as the opti-

should be designed to maximize the coupling efficiency t°@ Power increases. In quantum-dot SOAs multimode am-
optical fibers. plification with negligible cross talk even under gain satura-

Figure 13 compares the active-region structures and thon is possible due to the inhomogeneous broadening and
density of states of a bulk semiconductor and quantum nang:Patial isolation of quantum dots as discussed in the main
structures like quantum wells, quantum wires, and quanturﬁeXt-
dots. Let us assume the filling factor of the hatched region in
the active region a§, in the quantum wells¢; in the quan-
tum wires, andé, in the quantum dots. Generally speaking, Let us consider the case where we input the strong pump
the filling factor decreases as the dimension of the quantizadight with a frequency ofw, and the signal or probe light

Pyt NG /L=

C. Intermode interaction(|w,— @,/ |<T,)
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with a frequency ofwg into the SOA. The beating between frequency ofwS is modulated according to the bit pattern,
the w, and w; light causes coherent nonlinear polarizationeach of which is called cross-gain and cross-phase modula-
via the four different processes as=ws—wp+w,, w,  tion. _ _ _

=wp—wstws, O=wp—wstwo,, and op=o0s— o, The propagation equation of the mode with a frequency of
+ ws. The combination ofws=ws— w,+w, and w,=w,  ©sIS

—wst wg causes cross-gain modulation and cross-phase

modulation, and the combination @f;=w,— ws+w, and —R(z,T)= —5[7/p°p(N,wS)+77dShb(N,wS)

i =ws—w,t+ o causes four-wave mixing where fre- 9z

guency or wavelength conversion occurs. These processes (o)

occur simultaneously. + 70PN, wg) R(2,T) — —22 > Ry(2,T).
From Eq.(Al), the propagation equation of the pump is 2

approximately given by (A39)

Using the results in Sec. 1, we obtain
Rp(z,T)= —[F 77PN, wp) = atosd @p) IRp(Z,T),

Jz
(A38) PPN, wg) = m °P(N, ws), (A40)
where the coherent term under the combinationvgf w,
— wst wg is neglected due to the strong pump pulse inten- ~dsh @s ~dsh w0 o+
sity. b(N ws) = neﬁ(ws)c 2Xo b(N,wS W™ Wp wp)

(1) Cross-gain modulatiofws= ws— w,+ w,). When the

2
pump beam with a frequency of,, conveys a bit pattern, the X[Rp(z,T)] (A41)
intensity and the phase of the continuous-wave signal with avith
|
~ pop ~pop *
dsh o Xor (Nyws) =X 5 (N, wp)
b(N WeTWsT @ +wp) 4h Cp(")s_ w0+iFCU)[ws_wp+i(Tin+ Rrec) ]’ (A42)
and
(OR
7PN, wg) =i Trzx PN, ws= ws— wp+ wp)|Ry(2,T)|? (A43)
with
~ Ppop N.w )_~p0p(N ) )*
~cdp — _ :_ﬂneﬁ(wp)c . XU" ( 1S XU” P
Xo (vas s wp""”p) 4h @p (CH_I)AP Ws™ wp+i(Rrec+ Rstim) (A44)
From Eq.(A39), the propagation equation of the photon flux density of the medes given as(wheres’ = o)
J
ﬁss(Z,T) =TGN, 0g)[1— 8I(“’sawp 1 Wg= ws)rpsp(ZvT)]Ss(sz) — @joss 05)Ss(Z,T), (A45)
where
e g, 0 0= 0= — A BDA{(wq_wO)(wS_wp)_FCUTiﬂ} _ a(ws_wp)+(Rrec+ Rstim) ‘ (A46)
R "[[(0g= w0)*+ TG, (05— 0p)*+TR] [(0s= @p)*+ (Rreot Reum)]|
q s
|
and We can calculate the optical pulse propagation under the
cross-gain modulation by the combination of E423) with
0.C m=p, s, Eq.(A38), and Eq.(A45). The cross-gain modula-
p-p (A47)  tion enables wavelength conversion fram to wg with the

P Nei(wp)CAA bit pattern inverted.
_ Figure 14a) shows the calculation of te&|(ws,wp,
We used’,=I",D/[¢o,|H(x,y)|?dxdy. The first term of the =wyl,S, as a function of the detuning ok w/27=(w,
right-hand side of Eq(A46) is due to the imaginary part of — w.)/27 in bulk InGaAsP, using the parameters @f 2,
2", and the second term is that Bf°°. I '=30fs, T,,'=60fs, R.=04ns, P,=fiw,DS,

rec
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=20nW, TI,=0.1, N=2.35x 108 cm 3, D=1.5 The first term of the right-hand side of EGA49) is due to
x10"° cn?, and\ ,=2mc/w,=1.55um, andw,= wy. We  the real part of¢$>"°, and the second term is that §§°".
used the empirical gain formula of bulk InGaAsP in Sec. 3, We can calculate the optical pulse propagation under the
which gives the differential gain oA,=2.22<10 '°cn?  cross-phase modulation by the combination of E&423)
whenN=2.35x<10"* cm™® at 1.55um. See the optical gain \ith m=p, s, Eq. (A38), and Eq.(A48). The cross-phase
curve in Fig. $b). We see that the.asymmetry of gan arounqmodulation in the interferometer like Mach-Zehnder inter-
the pump frgquency appears, which is due_ the carrier OIenSItfsérometric waveguide with SOAs on both branches enables
lgu—lfit?gnd fF|gure ]'—(‘tl))_ShOWS the calculation whea—_o, the wavelength conversion from, to wg without the bit

o s andT;, =2601s with other parameters fixed, o %oy ered® with the continuous light of i
where we suppose that the active region consists of quantufﬁ’l : gnt Olws passing
dots. Note that we used these valuesl“gf and-l—i;l inthe rough both branches, the phase change in one SQA caused
main text. The magnitude of gain saturation due to the dyPY the input of the one-bit pump pulse af, results in the
namic spectral hole burning arounds=0 is about 20 times ~ constructive interference of thes light at the exit of the
larger than that in Fig. 14) due to slower relaxation. The interferometer, generating a one-bit optical pulse«an As
asymmetric gain due to the carrier density pulsation disapin the case of the cross gain modulation, the switching speed
pears due to the zero alpha parameter. of the conversion is dominated by the response time of the

Figure 1%a) shows the calculated amplifier gain at the gain saturation, which iR .. as seen in Eq(A24). Since

frequency ofws (probé andw,, (pump as a function of the  g-1 1 4nges hetween 0.1 and 1 ns, the switching speed is 10
input pump powerP,(0)=7%w,DS,(0). The wavelengths

areh.—1 .54 um andr. —1.55um. and thus the detuning is Gb/s at most. In order to overcome this material-limited
Awlzswzl—llée THz F\’Ne éup%oée the bulk INGaASP gOAspeed, the so-called push pull operation has been adopted

with L=0.6 mm, ajye{@,)=5cm %, and the empirical with the time-offset control pulses injected into both SOA's

gain of Sec. 3. The amplifier gain of the probe decreases d8§ ordeB to cancel out the slow recovery of the phase
the pump power increases, which is the cross gain modulélhangfé- However, since the amount of phase change for
tion. Figure %b) shows the eye diagram of the amplifier gain One bit depends on bit patterns, this scheme is not free of
of the probe beam when the input pump is the non-return-topattern effect, either.

zero(NRZ) random pattern at a bit rate of 2.5 Gb/s with the ~ Figure 16a) shows the calculation oft+eg(ws,w,,0q

power of 1 mW/|[see Fig. &) for the input waveformh =wyl,S, as a function of the detuning Ak w/27=(w,
Though we see eye opening, the response speed is almostw)/27 in bulk InGaAsP, using the same parameters of
near its limit at this bit rate. Fig. 14a). We see that the carrier density pulsation causes

The switching speed is dominated by the response time dhe refractive index change just around the pump frequency,
the gain saturation, which R} as seen in EA24). Since  and that the dynamic spectral hole burning causes the ex-
R .. ranges between 0.1 and 1 ns in direct-transition semitended refractive index change of a few percentaot 2.
conductors, the switching speed is 10 Gb/s at most. See tHdgure 16b) shows the calculation using the same param-
eye diagram with distorted waveforms of Fig.(dDat 40  eters of Fig. 1), which corresponds to quantum dots. We
Gb/s in the main text. In quantum dots, the incoherent an@ee that the contribution of the dynamic spectral hole burning
dynamic spectral hole burning enhanced by the retarded caiacreases due to the decrease in the relaxation rates. How-
rier relaxation enables pattern-effect-free and high-spee@ver, the value ofa+eg(ws,wp,0q=ws)l',S, is much
cross-gain modulation as seen in the eye diagram of Figsmaller than in the case of Fig. (B, which shows that
10(c). quantum-dot SOAs are not suitable for the optical signal

(2) Cross-phase modulatiofiws= ws— w,+ w,). From  Switching by the cross-phase modulation. o
Eq. (A39), the propagation equation of the phase of the mode Figure 1%c) shows the calculated frequency chirping of
with a frequency ofws is given as(\wheno’ = o) the probe output from the bulk InGaAsP SOA when the SOA
is under the cross-gain modulation at 2.5 Gh/s shown in Fig.
15(b). The chirping is given by Eq(183). We see that the
frequency chirping up to about 24 MHz occurs during the
cross-gain modulation. A merit of quantum-dot SOA's con-
X[ater(ws,0p,0q=w) S,z T)], cerning the cross-phase modulation is that the chirping at the

(A48) exit of the SOA can be restricted at the onset and offset of
the light pulse, when the wavelength conversion is done via

g T
Ed)s(Z’T)_ - 7gU(N!wS)

where the cross-gain modulation.
gr(ws, 0y, 0q= ) (©)) Four—wavg mixing(wfzfop—wvawp and ws = wg
—wp+wg). Basic understanding of nondegenerate four-
_ | BrAIT ¢y (05— @p) + Tin(0q— wo) ] wave mixing in traveling-type semiconductor optical ampli-
Pl[(wq— wo)?+ '3, ][(ws— wp)®+ T, fiers has been reached by Agraffahnd Kikuchi et al*’

Agrawal derived coupled wave equations of the four-wave
mixing including nonlinear susceptibilities due to both car-
rier density pulsation and spectral hole burning as dominant
processes, discussed their bandwidth, and found asymmetric
(A49) gain around the pump frequency caused by the nonzero alpha

(ws— wp) —a(lect I‘s‘.tim)}
(ws— wp)2+ (I'yect l_‘stim)z

wq=ws
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P [ Pump, A, = 1.55 um ]
Tn=60fs | g' ok
To=30fs ] < L kAem? 3
0.8 1 1 1 1 1 1 r cm ]
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(@) Detuning, (o-0.)/2r [THZ] - o=5cm? 1
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‘[’jz_ 0.98¢ . 2 P,(0)=0dBm _ Pp(|0) =0dBm 1
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Tov=130fs 8y (I BARE 3% I BT
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0%2 01 0 01 02 (b) ()
(b) Detuning, (a-ws)/2n [THz] FIG. 15. (a) Calculation of the amplifier gain at the frequency of

) ws (probe and w, (pump as a function of the input pump power,
_ FIG. 14. Calculation of T & (ws,wp,wq=wg)[';Sy as afunc-  p (). we suppose the bulk INGaAsP SOA with=0.6 mm, and
t'oj‘l of the de}f”'”g Owa/ZWZ(“’p_‘”s)EW when (a) “:7211 apsdwm)=5cm L. (b) Calculated eye diagram of the amplifier
e, =30fs, Tj;"=60fs, and(b) =0, I'c;=130fs, andTi," ~ gain of the probe beam at the NRZ random pattern at bit rate of 2.5
=260fs. The contribution of the dynamic spectral hole burninggps [see Fig. &) for the input waveforrh (c) Calculated fre-
(SBH), and carrier density pulsatidi€DP) are also shown, though quency chirping of the probe output from the bulk InGaAsP SOA
the SHB almost coincides with the total ib). under the cross-gain modulation at 2.5 Gh/gf

parameter. Kikuchet al. measured the wavelength conver- _ o
sion efficiency as a function of the pump and probe detuning 7 N, o) =i
to find asymmetric efficiency with a dip under the negative _
detuning(when the pump frequency is lower than the probe XR3(z, T)RE (2, T)R; }(z,T)e' (24~ s~z
frequency, and attributed this asymmetry to the interference (A52)
of the two nonlinear processes.

The propagation equation of the mode with a frequency ofvith
w; IS

——— T, %MIN, 0= 0, — ws+ w,)
nef-f((l)f)c 2X o f p S p

~dsh _
XCI'S b(vaf_wp_ws+ wp)

g T, ) g0 XOP(N,wp)—XP7P(N,wg)*
i — _~[%POp A - —
5z (2= [7"N, o) +7 (N, @) 4 ~P(wi— wotiT ) (wp— ws+iTi)’
@ 1) (A53)
PN w0 IR (2 T)— S5 R (21,
2 and
(A50)
w
TN, 0f) =1 — TN, 0= 0y~ 05+ ;)
where Ne( ) C
XR(z, T)RE (2, T)R; }(z,T)e! (%~ 0~z
(A54)
~POP —i o =,POp
Y (N,(J)f) | neﬁ(wf)CXU (N!wf)! (A51) with
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° ---- SHB
(b) Detuning, (oy-ws)/2r [THZ] (& -30 ) )
) 102 10" 1 10
FIG. 16. Calculation ofr+ eg(ws, wp ,wq= wg)I',S, as a func- (b) Detuning, log-al/2n [THZ]

tion of the detuning ofAw/27=(wp— ws)/2m when (@) a=2,
I,'=30fs, T;;'=60fs, and(b) a=0, I';;'=130fs, andT;;’

FIG. 17. Calculation of the conversion efficienay,n(w, , ws),

=260 fs. The contribution of the dynamic spectral hole burningas a function of the absolute value of the detuniagy/2m=(w,

(SBH), and carrier density pulsatiqi€DP) are also shown.

—wg)/2m when (@) =2, T '=30fs T;;'=60fs, and(b) a=0,

I',,'=130fs, andT;,'=260fs. The contribution of the dynamic

')'(f,dp(N,wf:wp—ws-i-wp)
_sg (atDCA Xp '(N,wp) =Xy (N, 0g)*
afi (wp_wo)2+A2 wp~ st i(Trect Tstim)
(A55)

The propagation oR;(z,T) can be calculated using Egs.
(A23) with m=p, s,f Egs.(A38), (A39), and(A50).

From Egs. (A50)—(A55) with the phase term in
7P°P(N, w.) neglected, we obtaitwheno' = o)

W(wp, w5, 0q=wf) =&|(0p,0s,0q= ©f)

+i8R(wp,ws,wq:

cdp

(o8

, respectively.

spectral hole burningSBH), and carrier density pulsatiofCDP)
are also shown.

wf) .
(A58)

The first and third term of the right-hand side of E458)
originates from the imaginary and real partidf*"®, respec-
tively. The second and fourth term originates from the imagi-
nary and real part of

Instead of solving Eq(A56) by numerical calculations,

J 1 I’
ERf(ZvT)Z E[ngg(Nawf)*a|oss(wf)]Rf(Z,T)+ =

X 0 ,(wp, 0 ) RA(Z, T)RE (2, T)e! 2%~ 07,

we present here an approximate analytical solution for semi-
2 quantitative understanding of the conversion efficiency, the
signal-to-background ratio (SBR the signal-to-noise ratio
(SNRy) and the noise figure (NF of the wavelength con-
version by four-wave mixing. We suppose the condition of

the continuous wave operation, a constant gain over the cav-

ity, and the complete phase matching conditiomef 2q,

—(s- We use the signal amplitude &(L) and the pump
amplitude ofRy(L) at the exit in the second term of the

Neonl Wp NONES

(A56)
where
8Oneff(wp)c ~
0 (0p,05)=———7———130,(N,wy,)
prrs 2hwy 2 P
XW(wp,0g,0q= wf) (A57)
and
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Si(L)
S«(0)

right-hand side of Eq(A56). Then, by integrating EqA56)
over the waveguide, we obtain the conversion efficiency of

EFEGﬂW(wp 1w31wq:wf)|zsp(|—)2,

(A59)
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whereG; is the amplifier gain of the converted signal. The Eq. (190 gives SBR=27+ Neon( @p ,ws) iN dB. Whenn;,
SBR; of the converted signal with the ASE background is = 5, = —2 dB, Eq.(192) gives Nf=22— Neon(@p ,ws) IN
given by Eq.(190), the SNR of the converted signal against dB. Then, the conversion efficiency of 0 dB gives SBR
the shot noise and the beating noise with the amplified spon=27 dB and NE=22 dB. The conversion efficiency of 10
taneous emission is given by E391), and the noise figure dB gives SBR=37 dB and NE=12 dB, which are promis-
is given by Eq.(192. The high conversion efficiency is a ing values for the optical transmission.

key to high signal quality.

Figure 17a) shows the calculation ofjcon(wp,ws) as a
function of the absolute value & w/27=(w,— ws)/27 in - } ] .
the InGaAsP SOA, using the same parameters of Figs) 14 The gmp_|r|cgl optical gain of bulk InGaAsP we use in the
and 16a), andG,=17 dB. We see that the conversion effi- c@lculation is given as
ciency is asymmetric around the pump frequency, and has a_
dip at the detuning oA w/27=0.23 THz under the negative 9o (N Am)

3. Empirical gain formula in InGaAsP

detuning @,<ws) Where the contribution of the spectral- AN A= A(N) T2+ Bra A= AN N<N,(N),
hole burning and the carrier density pulsation crosses. This =

dip results in more than 10 dB difference in the conversion 0 A>N(N),
efficiency depending on the direction of conversion. The (A60)

asymmetry is due to the constructive or destructive interfer-

ence of the dynamic spectral hole burning and the carriel

density pulsation when the detuning is positive, wg) or

negative ,<ws), respectively. EquatioA58) tells us that

the asymmetry of conversion efficiency around the pumpand

frequency becomes remarkableamcreases due to the car-

rier density pulsation. Bn=20p(N)/[A,(N) = Ap(N) T, (A62)
Figure 17b) shows the calculation using the same param

eters of Figs. 1) and 1@b), where we suppose that the

active region consists of quantum dots. We see that the asym- gp(N)=a(N—Ng)+a;a,Ng exp( —N/Ng), (A63)

metric gain due to the interference of the two nonlinear com-

ponents disappears due to=0 [see Eq.(A58) with w, the light wavelength to give the peak gain is

= wg]. Compared to Fig. 1(&), we also see that the magni-

tude of the dynamic spectral hole burning increases by about Ap(N)=Xg—Dbo(N—No), (A64)

25 dB due to the decrease in the relaxation rates at the ex- : : ; ;

pense of the bandwidth, and that the magnitude of the carri and the light wavelength below which the optical gain ap

density pulsation decreases dueate 0. The conversion ef-

ficiency of 7 dB is obtained at the detuning of 0.5 THz cor- M(N)Y =X ,0—Co(N—Np). (AB5)

responding to 8 nm wavelength conversion around LB&b

and 1.5 dB at the detuning of 1 THz corresponding to 16 nnParameters ~ are Ny=7.0x 10" [cm™ 3], a,=3.0

wavelength conversion. x10 % [cn?], a;=1.0, Ayg=1.6[um], by=3.0
For example, whem\fs,=500 GHz Qws,=2mAf),  X102°[cmPum], \,=16.5[um], and co=-3.0

G¢=17 dB, ngy(wr) =1, P5(0)=0dBm, andhws=0.8eV, X107 *'[cm’um].

ith

An=30p(N)/[N2(N) = N p(N)]? (AB1)

‘where the peak gain is

G]'5ears is
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