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The ground-state energy, addition energies, and optical absorption spectra are derived for interacting po-
larons in parabolic quantum dots in three and two dimensions. A path integral formalism for identical particles
is used in order to take into account the fermion statistics. The approach is applied to both closed-shell and
open-shell systems of interacting polarons. Using a generalization of the Jensen-Feynman variational principle,
the ground-state energy of a confinedN-polaron system is analyzed as a function ofN and of the electron-
phonon coupling constanta. In contrast to few-electron systems without the electron-phonon interaction,three
types of spin polarization are possible for the ground state of the few-polaron systems:(i) a spin-polarized
state,(ii ) a state where the spin is determined by Hund’s rule, and(iii ) a state with the minimal possible spin.
A transition from a state fulfilling Hund’s rule to a spin-polarized state occurs when the electron density is
decreased. In the strong-coupling limit, the system of interacting polarons turns into a state with the minimal
possible spin. These transitions should be experimentally observable in the optical absorption spectra of
quantum dots.
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I. INTRODUCTION

Many-electron states in quantum dots have been theoreti-
cally investigated by various approaches, e.g., the Hartree-
Fock method,1–3 density-functional theory,4–10 the quantum
Monte Carlo simulation,11 the variational Monte Carlo
method, and the Padé approximation,12,13 a numerical diago-
nalization of the Hamiltonian in a finite-dimensional basis.14

The electron-phonon interaction was not taken into account
in these investigations, although it can contribute signifi-
cantly to both equilibrium and nonequilibrium properties of
quantum dots. For instance, effects due to the electron-
phonon interaction play a key role in the optical spectra of
some quantum dots(see Ref. 15, and references therein).
Some characteristics revealed in the midinfrared region of
the experimentally observed optical absorption spectra of
high-Tc cuprates16–20 were assigned21 to the polaron optical
absorption at intermediate values of the electron-phonon
coupling constanta. The infrared optical absorption band in
the neodymium-cerium cuprate Nd2−zCexCuO4−ysNCCOd,
which was studied experimentally22 as a function of the elec-
tron density, has been associated with the polaron optical
absorption. Also some peculiarities of the infrared optical
absorption spectra of cuprates and Pr2NiO4.22 were inter-
preted in terms of a mixture of large and small polarons or
bipolarons.23,24

The theory of the optical conductivity of arbitrary-
coupling single polarons has been developed in Refs. 25 and
26 (see also Ref. 27, and references therein) within the
memory-function method based on the path-integral
formalism.28 Recently, the optical absorption of a gas of in-
teracting polarons at weak coupling was investigated29,30 on
the basis of a variational many-particle approach.31 The op-
tical absorption of interacting polarons in bulk semiconduc-
tors at arbitrary coupling strength has been treated in Ref. 32

within the random-phase approximation, using variational
parameters obtained from Feynman’s single-polaron
model,28 but this treatment does not seem to be a self-
consistent approach to the many-polaron problem.

In contrast to the polaron mechanism of optical absorption
in bulk (see Refs. 27 and 33, and references therein), the
polaron optical absorption in quantum dots, to the best of our
knowledge, has not yet been widely studied. In order to in-
vestigate the ground state and the optical response of a sys-
tem of interacting polarons in a quantum dot, it is crucial to
take into account the fact that the system contains a finite
number of identical particles(electrons or holes). Indeed, the
thermodynamic properties of systems with a finite number of
identical particles might substantially deviate from those ob-
tained within the grand-canonical formalism(see, e.g., Refs.
34 and 35). The variational path-integral method for identical
particles34–37provides a useful tool for investigating interact-
ing quantum many-body systems with a fixed(few or many)
number ofN particles. An outline of the method is given in
Ref. 38, where we sketched the calculation of the ground-
state energy of a fixed number of interacting polarons, which
form a closed-shell system in a quantum dot.

In the present paper the calculation of the ground state
and of the optical conductivity is performed for both closed-
shell and open-shell systems of interacting polarons in a
quantum dot. In Sec. II, we derive an upper bound to the free
energy of a finite number of interacting polarons confined in
a parabolic quantum dot in three dimensions(3D) and in two
dimensions. In Sec. III we discuss the numerical results for
the ground-state energy and for the addition energy of this
system. In Sec. IV, the optical conductivity of interacting
polarons in a quantum dot is derived on the basis of the
memory-function method. The numerical results for the op-
tical conductivity are discussed in Sec. V. Section VI con-
tains conclusions.
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II. THE PARTITION FUNCTION AND THE FREE
ENERGY OF A MANY-POLARON SYSTEM

A. Interacting polarons in a quantum dot

We consider a system ofN electrons with mutual Cou-
lomb repulsion and interacting with the lattice vibrations.
The system is assumed to be confined by a parabolic poten-
tial characterized by the frequency parameterV0. The total
number of electrons is represented asN=osNs, whereNs is
the number of electrons with the spin projections= ±1/2.
The electron 3D(2D) coordinates are denoted byx j ,s with
j =1, . . . ,Ns. The bulk phonons(characterized by 3D wave
vectorsq and frequenciesvq) are described by the complex
coordinatesQq, which possess the property39

Qq
* = Q−q. s1d

The full set of the electron and phonon coordinates are de-

noted byx̄;hx j ,sj andQ̄;hQqj.
Throughout Secs. II and III, the Euclidean time variable

t= it is used, wheret is the real time variable. In this repre-
sentation the Lagrangian of the system is

Lsẋ̄,Q̄
˙

; x̄,Q̄d = Lesẋ̄,x̄d − VCsx̄d + LphsQ̄
˙
,Q̄d + Le-phsx̄,Q̄d,

s2d

where Lesẋ̄ , x̄d is the Lagrangian of an electron with band
massmb in a quantum dot

Lesẋ̄,x̄d = − o
s=±1/2

o
j=1

Ns Smb

2
ẋ j ,s

2 +
mb

2
V0

2x j ,s
2 D, ẋ ;

dx

dt
,

s3d

VCsx̄d is the potential energy of the electron-electron Cou-
lomb repulsion in the medium with the high-frequency di-
electric constant«`:

VCsx̄d = o
s,s8=±1/2

o
j=1

Ns

o
l=1

Ns8 e2

2«`

s j ,sdÞsl,s8d

1

ux j ,s − xl,s8u
, s4d

LphsQ̄
˙

,Q̄
˙ * ;Q̄,Q̄*d is the Lagrangian of free phonons:

LphsQ̄
˙
,Q̄d = −

1

2o
q

sQ̇q
* Q̇q + vq

2Qq
* Qqd, Q̇ ;

dQ

dt
. s5d

Further, Le-phsx̄ ,Q̄,Q̄*d is the Lagrangian of the electron-
phonon interaction

Le-phsx̄,Q̄d = − o
q
S2vq

"
D1/2

VqQ−qrq, s6d

where rq is the Fourier transform of the electron density
operator

rq = o
s=±1/2

o
j=1

Ns

eiq·x j ,s. s7d

Vq is the amplitude of the electron-phonon interaction. In this
paper, we only consider electrons interacting with the long-

wavelength longitudinal optical(LO) phonons with a disper-
sionless frequencyvq=vLO, for which the amplitudeVq is26

Vq =
"vLO

q
S2Î2pa

V
D1/2S "

mbvLO
D1/4

, s8d

wherea is the electron-phonon coupling constant andV is
the volume of the crystal.

We treat acanonicalensemble, where the numbersNs are
fixed. The partition functionZshNsj ,bd of the system can be
expressed as a path integral over the electron and phonon
coordinates:

ZshNsj,bd = o
P

s− 1djP

N1/2 ! N−1/2!

3E dx̄E
x̄

Px̄

Dx̄std E dQ̄E
Q̄

Q̄
DQ̄stde−Sfx̄std,Q̄stdg,

s9d

whereSfx̄std ,Q̄stdg is the “action” functional

Sfx̄std,Q̄stdg = −
1

"
E

0

"b

Lsẋ̄,Q̄
˙

; x̄,Q̄ddt. s10d

The parameterb;1/skBTd is inversely proportional to the
temperatureT. In order to take the Fermi-Dirac statistics into
account, the integral over the electron pathshx̄stdj in Eq. (9)
contains a sum over all permutationsP of the electrons with
the same spin projection, andjP denotes the parity of a per-
mutationP.

The action functional(10) is quadratic in the phonon co-

ordinatesQ̄. Therefore, the path integral over the phonon
variables inZshNsj ,bd can be calculated analytically.39 As a
result, the partition function of the electron-phonon system
(9) factorizes into a product

ZshNsj,bd = ZpshNsj,bdp
q

1

2 sinhsb"vLO/2d
s11d

of the partition function of free phonons with a partition
function ZpshNsj ,bd of interacting polarons, which is a path
integral over the electron coordinates only:

ZpshNsj,bd = o
P

s− 1djP

N1/2 ! N−1/2!
E dx̄E

x̄

Px̄

Dx̄stde−Spfx̄stdg.

s12d

The functional

Spfx̄stdg = −
1

"
E

0

"b

fLe„ẋ̄std,x̄std… + VC„x̄std…gdt

− o
q

uVqu2

2"2 E
0

"b

dtE
0

"b

dt8

3
coshfvLOsut − t8u − "b/2dg

sinhsb"vLO/2d
rqstdr−qst8d

s13d
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results from the elimination of the phonon coordinates and
contains the “influence phase” of the phonons(the last term
in the right-hand side). It describes the phonon-induced re-
tarded interaction between the electrons, including the re-
tarded self-interaction of each electron. The free energy of a
system of interacting polaronsFpshNsj ,bd is related to their
partition function(12) by the equation

FpshNsj,bd = −
1

b
ln ZpshNsj,bd. s14d

At present no method is known to calculate the non-
Gaussian path integral(12) analytically. Fordistinguishable
particles, the Jensen-Feynman variational principle39 pro-
vides a convenient approximation technique. It yields a
lower bound to the partition function, and hence an upper
bound to the free energy.

The formulation of a variational principle for the free en-
ergy for a system ofidentical particles is a nontrivial prob-
lem. However, it can be shown36 that the path-integral ap-
proach to the many-body problem for a fixed number of
identical particles can be formulated as a Feynman-Kac func-
tional on a state space forN indistinguishable particles, by
imposing an ordering on the configuration space and by the
introduction of a set of boundary conditions at the bound-
aries of this state space. The path integral(in the imaginary-
time variable) for identical particles was shown to be posi-
tive within this state space. This implies that a many-body
extension of the Jensen-Feynman inequality was found,
which can be used for interacting identical particles(Ref. 36,
p. 4476). A more detailed analysis of this variational prin-
ciple for both local and retarded interactions can be found in
Ref. 37. It is required that the potentials are symmetric with
respect to all permutations of the particle positions, and that
both the exact propagator and the model propagator are an-
tisymmetric (for fermions) with respect to permutations of
any two electrons at any moment in time. This means that
these propagators have to be defined on the same configura-
tion space. Keeping in mind these constraints, the variational
inequality for identical particles takes the same form as the
Jensen-Feynman variational principle:

Fp ø F0 +
1

b
kSp − S0lS0

, s15d

whereS0 is a model action with corresponding free energy
F0. The angular brackets mean a weighted average over the
paths

ks·dlS0
=

o
P

s− 1djP

N1/2 ! N−1/2!
E dx̄E

x̄

Px̄

Dx̄stds·de−S0fx̄stdg

o
P

s− 1djP

N1/2 ! N−1/2!
E dx̄E

x̄

Px̄

Dx̄stde−S0fx̄stdg

.

s16d

B. Model system

We consider a model system consisting ofN electrons
with coordinatesx̄;hx j ,sj and Nf fictitious particles with

coordinatesȳ;hy jj in a harmonic confinement potential
with elastic interparticle interactions as studied in Ref. 38.
The Lagrangian of this model system takes the form

LMsẋ̄, ẏ̄; x̄,ȳd = −
mb

2 o
s

o
j=1

Ns

sẋ j ,s
2 + V2x j ,s

2 d

+
mbv2

4 o
s,s8

o
j=1

Ns

o
l=1

Ns8

sx j ,s − xl,s8d
2

−
mf

2 o
j=1

Nf

sẏ j
2 + V f

2y j
2d

−
k

2o
s

o
j=1

Ns

o
l=1

Nf

sx j ,s − yld2. s17d

The frequenciesV, v, V f, the mass of a fictitious particlemf,
and the force constantk are variational parameters. Clearly,
this Lagrangian is symmetric with respect to electron permu-
tations. Performing the path integral over the coordinates of
the fictitious particles,39 the partition functionZ0shNsj ,bd of
the model system of interacting polarons becomes a path
integral over the electron coordinates

Z0shNsj,bd = o
P

s− 1djP

N1/2 ! N−1/2!
E dx̄E

x̄

Px̄

Dx̄stde−S0fx̄stdg,

s18d

with the action functionalS0fx̄stdg given by

S0fx̄stdg =
1

"
E

0

"b

o
s

o
j=1

Ns mb

2
fẋ j ,s

2 std + V2x j ,s
2 stdgdt

−
1

"
E

0

"b

o
s,s8

o
j=1

Ns

o
l=1

Ns8 mbv2

4
fx j ,sstd − xl,s8stdg2dt

−
k2N2Nf

4mf"V f
E

0

"b

dtE
0

"b

dt8

3
coshfV fsut − t8u − "b/2dg

sinhsb"V f/2d
Xstd ·Xst8d, s19d

whereX is the center-of-mass coordinate of the electrons

X =
1

N
o
s

o
j=1

Ns

x j ,s. s20d

The details of the analytical calculation of the model parti-
tion function (18) are described in Appendix A.

After substituting the model action functional(19) into
the right-hand side of the variational inequality(15), we ob-
tain an upper bound to the free energyFvar,
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FvarshNsj,bd=F0shNsj,bd +
mb

2
sV0

2 − V2 + Nv2d

3Ko
j=1

N

x j
2s0dL

S0

−
mbv2N2

2
kX2s0dlS0

+ o
qÞ0

2pe2

V«`q2fgsq,0uhNsj,bd − Ng

+
k2N2Nf

4mfb"V f
E

0

"b

dtE
0

"b

dt8

3
coshfV fsut − t8u − "b/2dg

sinhsb"V f/2d
kXstd ·Xst8dlS0

− o
q

uVqu2

2"2b
E

0

"b

dtE
0

"b

dt8

3
coshfvLOsut − t8u − "b/2dg

sinhsb"vLO/2d

3gsq,t − t8uhNsj,bd. s21d

Here, gsq ,t−t8uhNsj ,bd is the two-point correlation func-
tion for the electron density operators

gsq,tuhNsj,bd = krqstdr−qs0dlS0
. s22d

Both the free energy and the correlation functions of the
model system can be calculated analytically using the gener-
ating function technique.34 In the zero-temperature limitsb
→`d, the variational free energy(21) becomes an upper
boundEvar

0 shNsjd to the ground-state energyE0 of the system
of interacting polarons. The details of the calculation of the
correlation functions are given in Appendix B.

III. GROUND-STATE ENERGY AND ADDITION ENERGY
OF INTERACTING POLARONS

For the numerical calculations, we use effective atomic
units, where", the electron band massmb and e/Î«` have
the numerical value of 1. This means that the unit of length is
the effective Bohr radiusaB

* ="2«` / smbe
2d, while the unit of

energy is the effective Hartree14 H* =mbe
4/ s"2«`

2d. These
units allow us to present results for quantum dots with and
without the electron-phonon interaction on the same scale.
Therefore, for confined polarons they are more convenient
than the usual polaron units, where the unit of length isap
;f" / smbvLOdg1/2, and the energy is measured in units of the
LO-phonon energy"vLO. In terms of the dimensionless pa-
rametersa and h;«` /«0,where «0 is the static dielectric
constant, the following relations exist between both systems
of units:

ap

aB
* =

Î2a

1 − h
,

H*

"vLO
= S ap

aB
* D2

=
2a2

s1 − hd2 . s23d

In Fig. 1, the total spinS of a system of interaction po-
larons in their ground state is plotted as a function of the
number of electrons in a 3D quantum dot for different values

of the confinement frequencyV0, of the electron-phonon
coupling constanta and of the parameterh. As distinct from
few-electron systems without the electron-phonon interac-
tion, three types of spin polarization are possible for the
ground state, which should be distinguishable from each
other using, e.g., capacity measurements.

(i) Except for the strong-coupling case and for the low-
density case, the filling in the ground state is as follows: in
an open shell, with less-than-half filling, each new electron is
added with one and the same spin, so that the total spin(in
the shell under consideration) is maximal in accordance with
Hund’s rule.40 As soon as half filling is achieved with elec-
trons possessing a certain spin, each new electron is added
with the spin opposite to that in the group of electrons pro-
viding the aforementioned half filling. When the number of
electrons corresponds to the number of states in the shell
under consideration, the shell becomes closed, and the total
spin is zero. This mode of filling is referred to as Hund’s rule
for a quantum dot. Hund’s rule means, that the electrons in a
partly filled upper shell build up a minimal possible number
of pairs in order to minimize the electron-electron repulsion.
For a quantum dot with"V0=0.5 H* at a=0 and ata=0.5,
the shell filling always obeys Hund’s rule, as shown in Fig.
1(a).

(ii ) With decreasing confinement frequencyV0 at a given
number of electrons, the electron density lowers. For densi-
ties smaller than a certain value, it can happen that the
ground state is a state with a maximal total(in all shells)
spin. In this state, the electrons are filling consecutively all
the single-electron states with one and the same spin and are
referred to as spin polarized. The examples are the states at
a=0 for N=4 and N=10 in Fig. 1(b). A spin-polarized
ground state precedes the formation of a Wigner crystal
when further lowering the density.14,41

(iii ) In the strong-coupling case(a@1 andh!1), it can
happen that the ground state is a state with a minimal total
spin(0 for even number of electrons and1

2 for odd number of

FIG. 1. Total spin of a system of interacting polarons in a para-
bolic quantum dot as a function of the number of electrons for
"V0=0.5H* (a) and for"V0=0.1H* (b).
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electrons). This is the case when—due to the phonon-
mediated electron-electron attraction—pairing of electrons
with opposite spins occurs, analogous to a singlet bipolaron
ground state in bulk. The examples are the states ata=5 and
h=0.1 for N in the range from 4 to 6 in Fig. 1(a) and forN
in the range from 4 to 10 in Fig. 1(b). This trend to minimize
the total spin is a consequence of the electron-phonon inter-
action, presumably due to the fact that the phonon-mediated
electron-electron attraction overcomes the Coulomb repul-
sion. With an increasing number of electrons, at a certain
value of N, such states with a minimal total spin cease to
form the ground state, and the shell filling abruptly returns to
that prescribed by Hund’s rule[see a jump in the spin ata
=5 whenN changes from 10 to 11 in Fig. 1(b)]. This jump is
analogous to a transition from states with paired electrons
(such as superconducting states) to another type of states
with unpaired electrons(such as normal states).

The addition energyDsNd, which is the variation of the
chemical potential when putting an extra electron into a
quantum dot, is defined as4,5

DsNd = E0sN + 1d − 2E0sNd + E0sN − 1d. s24d

Figure 2 presents the addition energy in a 3D quantum dot as
a function of the number of electrons. The structure ofDsNd
clearly manifests the shell structure of a quantum dot. The
most pronounced peaks in the addition energy occur for
closed-shell systems withN=2,8,20. Thepeaks inDsNd at
N=5 and N=14 obtained within the present approach for
relatively weak electron-phonon coupling correspond to the
systems with the half-filled upper shell[see Fig. 2(a) for
a=0 anda=0.5]. In these cases the total spin for the upper
shell takes its maximal possible value, in accordance with
Hund’s rule. At sufficiently large values ofa, the electron-
phonon interaction substantially modifies the addition en-
ergy. In the strong-coupling case, the peaks corresponding to

half-filled shells become less pronounced, while those corre-
sponding to closed-shell systems become more prominent as
compared to the weak-coupling case.

To the best of our knowledge, the addition energy for
parabolic quantum dots was obtained using the density func-
tional theory(DFT) (see, e.g., Refs. 8, 4, and 5) only without
the electron-phonon interaction. Our results for the addition
energy for a 3D quantum dot as a function ofN in the par-
ticular casea=0 are very close forNø12 to those calculated
within the DFT(Ref. 8) with an optimized effective potential
and a self-interaction correction.42

Panels a and b in Fig. 3 represent, respectively, the total
spin and the addition energy for interacting polarons in a 2D
parabolic GaAs quantum dot with the confinement parameter
"V0=0.5 H* <7.67 meV. The pronounced peaks inDsNd at
N=2,6,12,20, . . .,correspond to the closed-shell systems,
for which the total spin equals zero. In accordance with
Hund’s rule, the upper shell is filled in such a way that the
total spin of electrons in this shell takes the maximal possible
value. Therefore for the half-filled upper shell(at N
=4,9,16, . . .) maxima of the total spin occur as a function of
N. At these electron numbers, the addition energy manifests
peaks, which are less pronounced than those corresponding
to closed shells.

The inset to Fig. 3(b) shows the experimental data for the
addition energy in a cylindric GaAs quantum dot.43 As seen
from Fig. 3, the peak positions for the addition energy of
interacting polarons in a 2D parabolic quantum dot agree
well with the experimental results for the addition energies
of cylindrical quantum dots. The height of the calculated
peaks of the addition energy falls down as the shell number
increases, which is qualitatively consistent with the experi-

FIG. 2. Addition energy of a system of interacting polarons in a
parabolic quantum dot as a function of the number of electrons for
"V0=0.5H* (a) and for"V0=0.1H* (b).

FIG. 3. The total spin(a) and the addition energy(b) of a system
of interacting polarons in a 2D parabolic GaAs quantum dot as a
function of the number of electrons for"V0=0.5 H* . Inset: the
experimentally observed addition energy vs number of electrons in
a cylindrical GaAs quantum dot for two values of the diameter
D=0.5 mm andD=0.44mm.43
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mentally observed behavior.43 The peaks inDsNd corre-
sponding to the half-filled shells are weaker than those for
the closed shells both in the experiment43 and in our theory.

IV. OPTICAL CONDUCTIVITY

For a system of interacting polarons in a parabolic con-
finement potential, we calculate the real part of the optical
conductivity within the memory-function approach. For a
single polaron at arbitrary coupling strength it was developed
in Refs. 25 and 26. For a polaron gas in the weak-coupling
limit, this technique was applied in Ref. 44.

In the present paper we extend the memory-function ap-
proach to a system of arbitrary-coupling interacting polarons.
Since the optical conductivity relates the currentJstd per
electron to a time-dependent uniform electric fieldEstd in the
framework of linear response theory, we have to return to the
real-time representation in the path integrals. The Fourier
components of the electric field are denoted byEv:

Estd =
1

2p
E

−`

`

Eve−ivtdv, s25d

and the similar denotations are used for other time-dependent
quantities. The electric current per electronJstd is related to
the mean electron coordinate responseRstd by

Jstd = − e
dRstd

dt
, s26d

and hence

Jv = ievRv. s27d

Within the linear-response theory, both the electric current
and the coordinate response are proportional toEv:

Jv = ssvdEv, Rv =
ssvd
iev

Ev, s28d

where ssvd is the conductivity per electron. Because we
treat an isotropic electron-phonon system,ssvd is a scalar
function. It is determined from the time evolution of the
center-of-mass coordinate

Rstd ;
1

NKKo
j=1

N

x jstdLL
S

. s29d

The symbolkks•dllS denotes an average in thereal-timerep-
resentation for a system with action functionalS:

kks•dllS;E dx̄E dx̄0E dx̄08E
x̄0

x̄

Dx̄stdE
x̄08

x̄

Dx̄8stde
i
"

Sfx̄std,x̄8stdg

3s•dukx̄0ur̂st0dux̄08lut0→−`, s30d

wherekx̄0ur̂st0dux̄08l is the density matrix before the onset of
the electric field in the infinite pastst0→−`d. The corre-
sponding action functional is45,46

Sfx̄std,x̄8stdg =E
−`

t

fLe„ẋ̄std,x̄std,t… − Le„x̄8̇std,x̄8std,t…gdt8

− i"Ffx̄std,x̄8stdg, s31d

whereLesẋ̄ , x̄ ,td is the Lagrangian ofN interacting electrons
in a time-dependent uniform electric fieldEstd

Lesẋ̄,x̄,td = o
s

o
j=1

Ns Smbẋ j ,s
2

2
−

mbV0
2x j ,s

2

2
− ex j ,s ·EstdD

− o
s,s8

o
j=1

Ns

o
l=1

Ns8

s j ,sdÞsl,s8d

e2

2«`ux j ,s − xl,s8u
. s32d

The influence phase of the phonons(see, e.g., Ref. 46)

Ffx̄ssd,x̄8ssdg = − o
q

uVqu2

"2 E
−`

t

dsE
−`

s

ds8frqssd − rq8ssdg

3 fTvq

* ss− s8drqss8d − Tvq
ss− s8drq8ss8dg

s33d

describes both a retarded interaction between different elec-
trons and a retarded self-interaction of each electron due to
the elimination of the phonon coordinates. This functional
contains the free-phonon Green’s function

Tvstd =
eivt

1 − e−b"v +
e−ivt

eb"v − 1
. s34d

The equation of motion forRstd can be derived by analogy
with that described in Ref. 47:

mb
d2Rstd

dt2
+ mbV0

2Rstd + eEstd = Fphstd, s35d

whereFphstd is the average force due to the electron-phonon
interaction,

Fphstd = − Reo
q

2uVqu2q
N"

E
−`

t

ds TvLO

* st − sdkkrqstdr−qssdllS.

s36d

The two-point correlation functionkkrqstdr−qssdllS should be
calculated from Eq.(30) using the exact action(31), but as
for the free energy above, this path integral cannot be calcu-
lated analytically. Instead, we perform an approximate calcu-
lation, replacing the two-point correlation function in Eq.
(36) by kkrqstdr−qssdllS0

, whereS0fx̄std , x̄8stdg is the action
functional with the optimal values of the variational param-
eters for the model system considered in the previous section
in the presence of the electric fieldEstd. The functional
S0fx̄std , x̄8stdg is quadratic and describes a system of coupled
harmonic oscillators in the uniform electric fieldEstd. This
field enters the term −eEstd ·oso j=1

Ns x j ,s in the Lagrangian,
which only affects the center-of-mass coordinate. Hence, a
shift of variables to the frame of reference with the origin at
the center of mass
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xnstd = x̃nstd + Rstd,

xn8std = x̃n8std + Rstd, s37d

results in46

kkrqstdr−qssdllS0
= kkrqstdr−qssdllS0

uE=0e
iq·fRstd−Rssdg.

s38d

This result(38) is valid for any quadratic model actionS0.
The applicability of the parabolic approximation for

N=1 is confirmed by the fact, that for the polaron ground-
state energy, the results of the Feynman approach28 are very
close to the values obtained using other reliable
methods.48–52 Thus, a self-induced polaronic potential, cre-
ated by the polarization cloud around an electron, is rather
well described by a parabolic potential whose parameters are
determined by a variational method. ForN=2, the lowest
known values of the bipolaron ground-state energy are pro-
vided by the path-integral variational method with parabolic
potentials both in bulk53 and for confined systems54,55 for
realistic values ofa. The aforesaid approximation for the
right-hand side of Eq.(36) is a direct generalization of the
all-coupling approach25,46,56 to a many-polaron system. For
weak coupling, our variational method is at least of the same
accuracy as the perturbation theory, which results from our
approach at a special choice of the variational parameters.
For strong coupling, an interplay of the electron-phonon in-
teraction and the Coulomb correlations within a confinement
potential can lead to the assemblage of polarons in multipo-
laron systems. As shown in Refs. 54 and 55 for a system
with N=2, the presence of a confinement potential strongly
favors the bipolaron formation. Our choice of the model
variational system is reasonable because of this trend, appar-
ently occurring in a many-polaron system with arbitraryN
for a finite confinement strength.

The correlation functionukrqstdr−qssdlS0
uE=0 corresponds

to the model system in the absence of an electric field. For
t.s, this function is related to the imaginary-time correla-
tion function gsq ,tuhNsj ,bd, described in the previous sec-
tion:

kkrqstdr−qssdllS0
uE=0,t.s = g„q,ist − sduhNsj,b…. s39d

Using the transformation(37) and the relation(39), one
readily obtains

Fphstd = − Reo
q

2uVqu2q
N"

E
−`

t

TvLO

* st − sd

3eiq·fRstd−Rssdgg„q,ist − sduhNsj,b…ds. s40d

Within the framework of the linear-response theory, the
external electric fieldEstd is a small perturbation, so that
Rstd is a linear functional offEst8dgut8øt. Expanding the func-
tion eiq·fRstd−Rssdg in the right-hand side of Eq.(40) in powers
of fRstd−Rssdg up to the first-order term, we obtain the Fou-
rier componentFphsvd of the force due to the electron-
phonon interaction which is proportional toRv. As a result,
the optical conductivity can be expressed in terms of the
memory functionxsvd (see Refs. 25 and 26),

Re ssvd = −
e2

mb

v Im xsvd
fv2 − V0

2 − Rexsvdg2 + fIm xsvdg2 ,

s41d

wherexsvd is given by

xsvd = o
q

2uVqu2q2

3N"mb
E

0

`

dt seivt − 1d

3Im fTvLO

* stdgsq,it uhNsj,bdg. s42d

It is worth noting that the optical conductivity(41) differs
from that for a translationally invariant polaron system both
by the explicit form ofxsvd and by the presence of the term
V0

2 in the denominator. Fora→0, the optical conductivity
tends to ad-like peak atv=V0,

lim
a→0

Re ssvd =
pe2

2mb
dsv − V0d. s43d

For a translationally invariant systemV0→0, and this weak-
coupling expression(43) reproduces the “central peak” of the
polaron optical conductivity.57 In the zero-temperature limit,
the memory function of Eq.(42) is derived in the analytical
form of Eq. (B15) in Appendix B for 3D and 2D interacting
polarons.

V. RESULTS ON THE OPTICAL CONDUCTIVITY

Due to the confinement, the electron motion in a quantum
dot is fully quantized. Hence, when a photon is absorbed, the
electron recoil can be transferred only by discrete quanta. As
a result, the optical conductivity spectrum of a system of
interacting polarons in a quantum dot is a series ofd-like
peaks as distinct from the optical conductivity spectrum of a
bulk polaron.25,26 These peaks are related to the internal po-
laron excitations.

Because Imxsvd=0 for all frequencies except for a dis-
crete set of combinatorial frequencies(B16), the peaks in the
optical conductivity(41) are positioned at the frequencies
which are given by the roots of the equation

v2 − V0
2 − Rexsvd = 0, s44d

which are denoted assṼ1,Ṽ2, . . .d.
One of these roots is close to the variational parameter

V2, which is the eigenfrequency of the motion of a polaron
as a whole. It satisfies the inequalityV2,V0 because the
polaron effective mass is larger than that of a bare electron.
V2 is close toV0 in the weak-coupling case and decreases
with increasinga. Hence, it tends to zero in the limitV0
→0. The peak in Ressvd corresponding to this root can be
considered as the zero-phonon line, which is an analog of the
“central peak” of the polaron optical conductivity.25,26 The
peaks of Ressvd determined by the other roots of Eq.(44)
can be attributed to transitions into excited states of the
many-polaron system.

The changes of the shell filling schemes, which occur
when varying the confinement frequency, manifest them-
selves in the spectra of the optical conductivity. In Fig. 4,
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optical conductivity spectra forN=20 polarons are presented
for a quantum dot with the parameters of CdSe:a=0.46,h
=0.656 (Ref. 58) and with different values of the confine-
ment energy"V0. In this case, the spin-polarized ground
state changes to the ground state satisfying Hund’s rule with
increasing"V0 in the interval 0.0421H* ,"V0,0.0422H* .

In the inset to Fig. 4, the first frequency moment of the
optical conductivity

kvl ;
E

0

`

v Re ssvddv

E
0

`

Re ssvddv

s45d

as a function of"V0 shows a discontinuity, at the value of
the confinement energy corresponding to the change of the
shell filling schemes from the spin-polarized ground state to
the ground state obeying Hund’s rule. This discontinuity
should be observable in optical measurements.

In Fig. 5, the first frequency moment(45) is plotted as a
function of the number of electrons for a CdSe quantum dot
with V0=0.143vLO (corresponding to"V0<0.04H*). The
total spin of the system as a function ofN is shown in the
inset. As a general trend,kvl decreases with increasingN,
with kinks corresponding to the ground-state transitions from
states obeying Hund’s rule withN=3, 9, and 18, into spin-
polarized states withN=4, 10, and 19, respectively.

In Fig. 6, optical conductivity spectra are plotted for sev-
eral values of the confinement frequency forN=10 polarons
in a quantum dot witha=2, h=0.6. These values ofa andh
are typical for the high-Tc superconducting cuprates of the
NCCO family.29 In the “weak-confinement” region(V0
=0.6vLO and V0=0.8vLO) the zero-phonon peak is expres-
sively dominant over the other peaks.

When the confinement frequency parameter passes
through the valueV0=vLO, the so-called “confinement-

phonon resonance”38 occurs. In this case, the peaks atṼk,k
=1,2,3 have comparable oscillator strengths. The position

Ṽ2 of the second peak is substantially shifted from the LO
phonon frequencyvLO. Moreover, the intensities of the
phonon-assisted transitions increase as compared to the
“weak-confinement” case. This resonance has a clear anal-
ogy with the magneto-phonon resonance(see, e.g., Ref. 59),
as far as the energy levels of an electron in a parabolic con-
finement are similar to the Landau levels of an electron in a
magnetic field.

FIG. 4. Optical conductivity spectra ofN=20 interacting po-
larons in CdSe quantum dots witha=0.46,h=0.656 for different
confinement energies close to the transition from a spin-polarized
ground state to a ground state obeying Hund’s rule. Inset: the first
frequency momentkvl of the optical conductivity as a function of
the confinement energy.

FIG. 5. The first frequency momentkvl of the optical conduc-
tivity as a function of the number of electrons for systems of inter-
acting polarons in CdSe quantum dots witha=0.46,h=0.656, and
0.143vLOs"V0<0.04H*d. Open squares denote the spin-polarized
ground state; full dots denote the ground state, obeying Hund’s rule;
open triangles denote the ground state of the third type, with more
than one partly filled shells, which is not totally spin-polarized.
Inset: the total spin of the system of interacting polarons as a func-
tion of N.

FIG. 6. Optical conductivity spectra ofN=10 interacting po-
larons in a quantum dot witha=2, h=0.6 for several values of the
confinement frequency fromV0=0.6vLO to V0=1.4vLO. The spec-
trum for V0=vLO corresponds to the confinement-phonon
resonance.
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With further increasingV0, whenV0.vLO, the dominant
part of the optical conductivity spectrum shifts to higher fre-
quencies. For instance, atV0=1.4vLO the most intensive

peak is that withṼ3. The intensities of the peaks, beginning
with the second peak, increase in comparison with the
intensities of their “weak-confinement” analogs. The posi-
tions of the zero-phonon line and the subsequent peaks
are substantially shifted from the “weak-confinement”
values towards higher frequencies. These effects are a
manifestation of the mixing of the zero-phonon state
with different excited states of the many-polaron system.
A similar behavior of the optical absorption spectra at
and above the magnetophonon resonance is explained
by the mixing of zero-phonon and one-phonon quantum
states.59

The shell structure for a system of interacting pola-
rons in a quantum dot is clearly revealed when analyzing
the addition energy and the first frequency moment

of the optical conductivity in parallel. In Figs. 7 and 8,
we show both the function

QsNd ; ukvluN+1 − 2ukvluN + ukvluN−1 s46d

and the addition energyDsNd for interacting polarons in dif-
ferent 3D quantum dots.

As seen from Figs. 7 and 8 for quantum dots of CdSe and
with a=3,60 respectively, distinct peaks appear inQsNd and
DsNd at the “magic numbers” corresponding to closed-shell
configurations atN=8,20 for thestates obeying Hund’s rule
in panels a, b and to half-filled-shell configurations atN
=10,20 for the spin-polarized states in panels c, d of Fig. 8.
In the case when the shell filling scheme is the same for
differentN (see panels a, b in Figs. 7 and 8, where the filling
obeys Hund’s rule), each of the peaks ofQsNd corresponds
to a peak of the addition energy. In the case when the shell
filling scheme changes with varyingN (panels c, d in Figs. 7
and 8), the functionQsNd exhibits pronounced minima forN

FIG. 7. The functionQsNd and
the addition energyDsNd for sys-
tems of interacting polarons in
CdSe quantum dots witha=0.46,
h=0.656 for "V0=0.1H* (panels
a, b) and for V0=0.04H* (panels
c, d). Open squares denote the
spin-polarized ground state; full
dots denote the ground state,
obeying Hund’s rule; open tri-
angles denote the ground state of
the third type, with more than one
partly filled shells, which is not
totally spin-polarized.

FIG. 8. The functionQsNd and
the addition energyDsNd for sys-
tems of interacting polarons in
quantum dots witha=3, h=0.25,
and V0=vLO (panels a, b) and
with a=3, h=0.3, and V0

=0.5vLO (panels c, d).
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corresponding to the change of the filling scheme from the
states, obeying Hund’s rule, to the spin-polarized states.

It follows that measurements of the addition energy and
the first frequency moment of the optical absorption as a
function of the number of polarons in a quantum dot can
reflect the difference between open-shell and closed-shell
configurations. In particular, the closed-shell configurations
may be revealed through peaks in the functionQsNd. The
filling patterns for a many-polaron system in a quantum dot
can be determined from the analysis of the first moment of
the optical absorption for different numbers of polarons. The
appearance of minima in the functionQsNd will then indicate
a transition from the states which are filled according to
Hund’s rule to the spin-polarized states.

VI. CONCLUSIONS

We presented a formalism for calculating the ground-state
energy and the optical conductivity spectra of a system ofN
interacting polarons in a parabolic confinement potential for
arbitrary electron-phonon coupling strength. The path inte-
gral treatment of the quantum statistics of indistinguishable
particles36,34 allows us to find an upper bound36 to the
ground-state energy of a finite number of polarons. The pa-
rameters from the variational procedure are used as input for
the calculation of the optical conductivity spectrum of the
system.

Two types of transitions were found forN polarons con-
fined in a parabolic potential, with the corresponding ground
states characterized by different values of the total spin. In
the weak-confinement regime, the polaron system is in the
spin-polarized state. When increasing the confinement fre-
quencyV0, the system goes into a state obeying Hund’s rule
at a specific value ofV0. For a strongly coupled system of
interacting polarons, a third type of state appears, for which
the total spin takes its minimal value. The analysis is per-
formed for both closed-shell and open-shell systems.

The calculations of the optical conductivity spectra for a
finite number of polarons in a quantum dot are based on the
memory-function approach. The dependence of the optical
conductivity spectra on the confinement parameterV0 re-
veals a resonant behavior forV0<vLO. Transitions between
states with different values of the total spin manifest them-
selves through discontinuous changes of the optical conduc-
tivity spectra and of the addition energy as a function of the
number of electrons.

The first frequency moment of the optical conductivity as
a function of the number of electrons clearly shows the tran-
sition between the spin-polarized ground state of interacting
polarons in a quantum dot and the ground state obeying
Hund’s rule, and it also can be used to discriminate between
open-shell and closed-shell configurations. Optical measure-
ments are therefore suggested as possible tools for examin-
ing the shell structure of a system of interacting polarons.
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APPENDIX A: PARTITION FUNCTION OF THE MODEL
SYSTEM

In this appendix we discuss the analytical calculation of
the partition functionZ0shNsj ,bd [Eq. (18)] for the model
system of interacting polarons. It can be expressed in terms
of the partition functionZMshNsj ,Nf ,bd of the model system
of interacting electrons and fictitious particles with the La-
grangianLM [Eq. (17)] as follows:

Z0shNsj,bd =
ZMshNsj,Nf,bd

ZfsNf,wf,bd
, sA1d

whereZfsNf ,wf ,bd is the partition function of fictitious par-
ticles

ZfsNf,bd =
1

s2 sinh1
2b"wfdDNf

, sA2d

with

wf = ÎV f
2 + kN/mf sA3d

and D=3s2d for 3D (2D) systems. The partition function
ZMshNsj ,Nf ,bd is the path integral for both the electrons and
the fictitious particles:

ZMshNsj,Nf,bd = o
P

s− 1djP

N1/2 ! N−1/2!
E dx̄E

x̄

Px̄

Dx̄std

3E dȳE
ȳ

ȳ

Dȳstde−SMfx̄std,ȳstdg sA4d

with the “action” functional

SMfx̄std,ȳstdg = −
1

"
E

0

"b

LMsẋ̄, ẏ̄; x̄,ȳddt, sA5d

where the Lagrangian is given by Eq.(17).
Let us consider an auxiliary “ghost” subsystem with the

Lagrangian

LgsẊg,Ẏg,Xg,Ygd = −
mbN

2
sẊ2

g + w2Xg
2d −

mfNf

2
sẎg

2 + wf
2Yg

2d

sA6d

with two frequenciesw andwf, wherew is given by

w = ÎV2 − Nv2 + kNf/mb. sA7d

The partition functionZg of this subsystem

Zg =E dXgE dYgE
Xg

Xg

DXgstdE
Yg

Yg

DYgstd

3exph− SgfXgstd,Ygstdgj, sA8d

with the “action” functional
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SgfXgstd,Ygstdg = −
1

"
E

0

"b

LgsẊg,Xg,Ẏg,Ygddt sA9d

is readily calculated:

Zg =
1

f2 sinhsb"w/2dgD

1

f2 sinhsb"wf/2dgD . sA10d

The productZgZM of the two partition functionsZg and
ZMshNsj ,Nf ,bd is a path integral in the state space ofN
electrons,Nf fictitious particles, and two “ghost” particles

with the coordinate vectorsXg andYg. The LagrangianL̃M
of this system is a sum ofLM andLg,

L̃Msẋ̄, ẏ̄,Ẋg,Ẏg; x̄,ȳ,Xg,Ygd

; LMsẋ̄, ẏ̄; x̄,ȳd + LgsẊg,Ẏg,Xg,Ygd. sA11d

The “ghost” subsystem is introduced because the center-of-

mass coordinates inL̃M can be explicitly separated more eas-
ily than in LM. This separation is realized by the linear trans-
formation of coordinates

x j ,s = x j ,s8 + X − Xg,

y js = y js8 + Y − Yg, sA12d

whereX andY are the center-of-mass coordinate vectors of
the electrons and of the fictitious particles, correspondingly:

X =
1

N
o
s

o
j=1

Ns

x j ,s, Y =
1

Nf
o
j=1

Nf

y j . sA13d

Before the transformation(A12), the independent variables
aresx̄ , ȳ ,Xg,Ygd, with the center-of-mass coordinatesX and
Y determined by Eq.(A13). After this transformation the
independent variables can be considered to besx̄8 , ȳ8 ,X ,Yd,
where the coordinatessXg,Ygd obey the equations

Xg =
1

N
o
s

o
j=1

Ns

x j ,s8 , Yg =
1

Nf
o
j=1

Nf

y j8. sA14d

A substitution of Eq.(A13) into Eq. (A11) results in the
following three terms:

L̃Msẋ̄8, ẏ̄8,Ẋ,Ẏ ; x̄8,ȳ8,X,Yd = Lwsẋ̄8,x̄8d + Lwf
sẏ̄8,ȳ8d

+ LCsẊ,X ;Ẏ,Yd, sA15d

whereLwsẋ̄8 , x̄8d and Lwf
sẏ̄8 , ȳ8d are Lagrangians of nonin-

teracting identical oscillators with the frequenciesw andwf,
respectively,

Lwsẋ̄8,x̄8d = −
mb

2 o
s=±1/2

o
j=1

Ns

fsẋ j ,s8 d2 + w2sx j ,s8 d2g,

sA16d

Lwf
sẏ̄8,ȳ8d = −

mf

2 o
j=1

Nf

fsẏ j ,s8 d2 + wf
2sy j ,s8 d2g. sA17d

The LagrangianLCsẊ ,X ; Ẏ ,Yd describes the combined mo-
tion of the center-of-mass of the electrons and of the ficti-
tious particles

LCsẊ,X ;Ẏ,Yd = −
mbN

2
sẊ2 + Ṽ2X2d −

mfNf

2
sẎ2 + wf

2Y2d

+ kNNfX ·Y , sA18d

with

Ṽ = ÎV2 + kNf/mb. sA19d

It is reduced to a diagonal quadratic form in the coordinates
and the velocities by a standard transformation for two inter-
acting oscillators

X =
1

ÎmbN
sa1r + a2Rd,

Y =
1

ÎmfNf

s− a2r + a1Rd sA20d

with the coefficients

a1 = F1 + x

2
G1/2

, a2 = F1 − x

2
G1/2

, sA21d

x ;
Ṽ2 − Ṽ f

2

fsṼ2 − Ṽ2
f d2 + 4g2g1/2

, g ; kÎ NNf

mbmf
. sA22d

The eigenfrequencies of the center-of-mass subsystem are
then given by the expression

V1 = Î1
2fṼ2 + Ṽ f

2 + ÎsṼ2 − Ṽ f
2d2 + 4g2g,

V2 = Î1
2fṼ2 + Ṽ f

2 − ÎsṼ2 − Ṽ f
2d2 + 4g2g. sA23d

As a result, four independent frequenciesV1, V2, w andwf
appear in the problem. Three of them(V1, V2, w) are the
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eigenfrequencies of the model system.V1 is the frequency of
the relative motion of the center of mass of the electrons with
respect to the center of mass of the fictitious particles,V2 is
the frequency related to the center of mass of the model
system as a whole, andw is the frequency of the relative
motion of the electrons with respect to their center of mass.
The parameterwf is an analog of the second variational pa-
rameterw of the one-polaron Feynman model. Further, the
Lagrangian(A18) takes the form

LC = −
1

2
sṙ 2 + V1

2r 2d −
1

2
sṘ2 + V2

2R2d, sA24d

leading to the partition function corresponding to the com-
bined motion of the centers-of-mass of the electrons and of
the fictitious particles

ZC =
1

F2 sinhSb"V1

2
DGD

1

F2 sinhSb"V2

2
DGD

.

sA25d

Taking into account Eqs.(A10) and(A25), we obtain finally
the partition function of the model system for interacting
polarons

Z0shNsj,bd = 3 sinhSb"w

2
DsinhSb"wf

2
D

sinhSb"V1

2
DsinhSb"V2

2
D4

D

Z̃FshNsj,w,bd.

sA26d

Here

Z̃FshNsj,w,bd = ZFsN1/2,w,bdZFsN−1/2,w,bd sA27d

is the partition function ofN=N1/2+N−1/2 noninteracting fer-
mions in a parabolic confinement potential with the fre-
quencyw. The analytical expressions for the partition func-
tion of Ns spin-polarized fermionsZFsNs ,w,bd were derived
in Ref. 34.

APPENDIX B: TWO-POINT CORRELATION FUNCTION:
MEMORY FUNCTION

The two-point correlation function(22) is represented as
the following path integral:

gsq,tuhNsj,bd =
1

Z0shNsj,bdoP
s− 1djP

N1/2 ! N−1/2!

3E dx̄E
x̄

Px̄

Dx̄stde−S0fx̄stdgrqstdr−qs0d.

sB1d

We observe thatgsq ,tuhNsj ,bd can be rewritten as an aver-
age within the model “action”SMfx̄std , ȳstdg of interacting
electrons and fictitious particles:

gsq,tuhNsj,bd =
1

ZMshNsj,Nf,bdoP
s− 1djP

N1/2 ! N−1/2!

3E dx̄E
x̄

Px̄

Dx̄std E dȳE
ȳ

ȳ

Dȳstd

3e−SMfx̄std,ȳstdgrqstdr−qs0d. sB2d

Indeed, one readily derives that the elimination of the ficti-
tious particles in Eq.(B2) leads to Eq.(B1). The representa-
tion (B2) allows one to calculate the correlation function
gsq ,tuhNsj ,bd in a much simpler way than through Eq.(B1),
using the separation of the coordinates of the centers of mass
of the electrons and of the fictitious particles. This separation
is performed for the two-point correlation function(B2) by
the same method as it has been done for the partition func-
tion (A4). As a result, one obtains

gsq,tuhNsj,bd = g̃sq,tuhNsj,bd
kexpfiq · „Xstd − Xssd…glSC

kexpfiq · „Xgstd − Xgssd…glSg

,

sB3d

whereg̃sq ,tuhNsj ,bd is the time-dependent correlation func-
tion of N noninteracting electrons in a parabolic confinement
potential with the frequencyw,

g̃sq,tuhNsj,bd = krqstdr−qs0dlSw
. sB4d

The action functionalSwfx̄tg is related to the Lagrangian

Lwsẋ̄ , x̄d [Eq. (A16)]

Swfx̄tg =
1

"
E

0

"b

Lwsẋ̄,x̄ddt. sB5d

The averages in Eq.(B3) are calculated using Feynman’s
method of generating functions39

kexpfiq · „Xstd − Xssd…glSC
= exp5−

"q2

Nmb3o
i=1

2

ai
2

sinhSViut − su
2

DsinhSVis"b − ut − sud
2

D
Vi sinhSb"Vi

2
D 46 ,
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kexpfiq · „Xgstd − Xgssd…glSg

= exp3−
"q2

Nmb

sinhSwut − su
2

DsinhSws"b − ut − sud
2

D
w sinhSb"w

2
D 4 .

The two-point correlation functiong̃sq ,tuhNsj ,bd is derived
using the generating-function technique for identical
particles.34 After the path integration, the following expres-
sion is obtained:

g̃sq,− ituhNsj,bd

= o
n,s,n8,s8

seiq·xdn,nse−iq,xdn8,n8f2sn,s;n8,s8uhNsj,bd

+ o
n,n8,s

useiq·xdn,n8u
2expF t

"
s«n − «n8dG

3ff1sn,suhNsj,bd − f2sn,s;n8,suhNsj,bdg, sB6d

whereseiq·xdn,n8 is the one-electron matrix element,

seiq·xdn,n8 =E eiq·xcn
* sxdcn8sxddx. sB7d

For a 3D quantum dot,cnsxd is the eigenfunction of a 3D
oscillator with the frequencyw [see, e.g., Ref. 61]. The index
n denotes the setn=sn, l ,md, wheren is the number of the
energy level«n="wsn+3/2d, l is the quantum number of the
orbital angular momentum andm is the quantum number of
the z projection of the orbital angular momentum. Similarly,
for a 2D quantum dot,cnsxd is the eigenfunction of a 2D
oscillator with the frequencyw.

The one-electron distribution functionf1sn,s uNs ,bd is
the average number of electrons with the spin projections at
the nth energy level, while the two-electron distribution
function f2sn,s ;n8 ,s8uhNsj ,bd is the average product of the
numbers of electrons with the spin projectionss and s8 at
the levelsn and n8. These functions are expressed through
the following integrals(see Ref. 35):

f1sn,suNs,bd =
1

2pZFsNs,w,bdE−p

p

fs«n,udFsu,b,Nsddu,

sB8d

f2sn,s;n8,s8uhNsj,bd

=5
1

2pZFsNs,w,bdE−p

p

fs«n,udfs«n8,udFsu,b,Nsddu,

if s8 = s;

f1sn,suNs,bdf1sn,s8uNs8,bd, if s8 Þ s

sB9d

with the notations

Fsu,b,Nsd = expFo
n=0

`

lns1 + eiu+j−b«nd − Nssj + iudG ,

sB10d

fs«,ud ;
1

expsb« − j − iud + 1
. sB11d

The functionfs« ,ud formally coincides with the Fermi-Dirac
distribution function of the energy« with the “chemical po-
tential” sj+ iud /b.

From here on we consider the zero-temperature limit, for
which the integrals(B8) and (B9) can be calculated analyti-

FIG. 9. Real(a) and imaginary(b) parts of the memory function
xsvd /v for a system of interacting polarons in a quantum dot for
N=10, a=2, h=0.6, andV0=0.6vLO. The dashed line in panel a
representssv2−V0

2d /v. The vertical arrows in panel a indicate the
roots of Eq.(44). The height of peaks in panel b represents the
relative intensity of thed-like peaks off−Im xsvd /vg.
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cally. The result for the one-electron distribution function is

f1sn,sub,Nsdub→` =5
1, n , Ls,

0, n . Ls,

Ns − NLs

gLs

, n = Ls.

sB12d

According to Eq.(B12), Ls is the number of the lowest open
shell, and

gn = H 1
2sn + 1dsn + 2d, s3Dd
n + 1 s2Dd

is the degeneracy of thenth shell. NLs
is the number of

electrons in all the closed shells with the spin projections,

NLs
; o

n=0

Ls−1

gn =5
1

6
LssLs + 1dsLs + 2d s3Dd,

1

2
LssLs + 1d s2Dd.

sB13d

The two-electron distribution function
f2sn,s ;n8 ,s8uhNsj ,bd at T=0 takes the form

uf2sn,s;n8,us8ub,hNsjdub→` =5
uf1sn,usub,Nsdub→`uf1sn8,us8ub,Ns8dub→`, n Þ n8 or s Þ s8,

1, s = s8 andn = n8 , Ls,

0, s = s8 andn = n8 . Ls,

N − NLs

gLs

N − NLs
− 1

gLs
− 1

, s = s8 andn = n8 = Ls.

sB14d

Finally, using the two-point correlation function(B7), the one-electron(B12) and the two-electron(B14) distribution functions,
the memory function of Eq.(42) can be represented in the unified form for 3D and 2D interacting polarons

xsvd = lim
«→+0

2a

3pN
S3p

4
D3−DSvLO

A
D3/2

o
p1=0

`

o
p2=0

`

o
p3=0

`
s− 1dp3

p1 ! p2 ! p3!
S a1

2

NV1A
Dp1S a2

2

NV2A
Dp2S 1

NwA
Dp3

3HFo
m=0

`

o
n=0

`

o
s

ff1sn,suhNsj,bd − f2sn,s;m,suhNsj,bdgub→`

3S 1

v − vLO − fp1V1 + p2V2 + sp3 − m+ ndwg + i«
−

1

v + vLO + p1V1 + p2V2 + sp3 − m+ ndw + i«

+ PS 2

vLO + p1V1 + p2V2 + sp3 − m+ ndwDD
3o

l=0

m

o
k=n−m+l

n s− 1dn−m+l+kGsp1 + p2 + p3 + k + l + 3
2d

k ! l!
S 1

wA
Dl+kSn + D − 1

n − k
DS 2k

k − l − n + m
DG

+FS 1

v − vLO − sp1V1 + p2V2 + p3wd + i«
−

1

v + vLO + p1V1 + p2V2 + p3w + i«
+ PS 2

vLO + p1V1 + p2V2 + p3w
DD

3o
m=0

`

o
n=0

`

o
s,s8

f2sn,s;m,s8uhNsj,bdub→`o
k=0

n

o
l=0

m s− 1dk+lGsp1 + p2 + p3 + k + l + 3
2d

k ! l!
S 1

wA
Dk+l

3Sn + D − 1

n − k
DSm+ D − 1

m− l
DGJ , sB15d

whereD=2,3 is thedimensionality of the space,P denotes
the principal value,A is defined asA;foi=1

2 ai
2/Vi +sN

−1d /wg /N, V1,V2, and w are the eigenfrequencies of the

model system,a1 anda2 are the coefficients of the canonical
transformation which diagonalizes the model Lagrangian
(17) derived in Appendix A.
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The typical spectra of the real and imaginary parts of the
memory functionxsvd, are plotted in Figs. 9(a) and 9(b),
respectively. According to Eq.(B15), the poles of Rexsvd
and thed-like peaks of f−Im xsvdg are positioned at the
combinatorial frequenciesvklm, which are linear combina-
tions of the LO-phonon frequency and three eigenfrequen-
cies

vklm ; vLO + kV1 + lV2 + mw, sB16d

with integer coefficientsk, l, m=0,1, . . . .Each combinato-
rial frequencyvklm corresponds to a phonon-assisted transi-

tion to an excited state of the model system.
The roots of Eq.(44), which provide the peaks in the

optical conductivity,sṼ1,Ṽ2, . . .d, are indicated in Fig. 9(a)
by the vertical arrows. For the chosen parameters, the peak at

Ṽ1 is the zero-phonon line. Figure 9(a) also reveals peaks of
Re ssvd with frequencies in between two neighboring dis-

crete values ofvnkl, e.g., atṼ2. Following the physical in-
terpretation of the memory function in Refs. 25, 26, and 56,
these peaks can be related to transitions into excited states of
the many-polaron system.
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