PHYSICAL REVIEW B 69, 235324(2004)

Ground state and optical conductivity of interacting polarons in a quantum dot
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The ground-state energy, addition energies, and optical absorption spectra are derived for interacting po-
larons in parabolic quantum dots in three and two dimensions. A path integral formalism for identical particles
is used in order to take into account the fermion statistics. The approach is applied to both closed-shell and
open-shell systems of interacting polarons. Using a generalization of the Jensen-Feynman variational principle,
the ground-state energy of a confinRegpolaron system is analyzed as a functionNb&ind of the electron-
phonon coupling constamt In contrast to few-electron systems without the electron-phonon interatiies,
types of spin polarization are possible for the ground state of the few-polaron systgmspin-polarized
state,(ii) a state where the spin is determined by Hund’s rule, (@hda state with the minimal possible spin.

A transition from a state fulfilling Hund'’s rule to a spin-polarized state occurs when the electron density is
decreased. In the strong-coupling limit, the system of interacting polarons turns into a state with the minimal
possible spin. These transitions should be experimentally observable in the optical absorption spectra of
guantum dots.
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I. INTRODUCTION within the random-phase approximation, using variational
. parameters obtained from Feynman’s single-polaron
Many-electron states in quantum dots have been theoretingdel2® but this treatment does not seem to be a self-
cally investigated by various approaches, e.g., the Hartreggnsistent approach to the many-polaron problem.
Fock method; density-functional theor§;'® the quantum In contrast to the polaron mechanism of optical absorption
Monte Carlo simulatiot! the variational Monte Carlo in bulk (see Refs. 27 and 33, and references thgrehe
method, and the Padé approximatidriya numerical diago-  polaron optical absorption in quantum dots, to the best of our
nalization of the Hamiltonian in a finite-dimensional basis. knowledge, has not yet been widely studied. In order to in-
The electron-phonon interaction was not taken into accounjestigate the ground state and the optical response of a sys-
in these investigations, although it can contribute signifi-tem of interacting polarons in a quantum dot, it is crucial to
cantly to both equilibrium and nonequilibrium properties of take into account the fact that the system contains a finite
quantum dots. For instance, effects due to the electromumber of identical particle@lectrons or holgsIndeed, the
phonon interaction play a key role in the optical spectra ofthermodynamic properties of systems with a finite number of
some quantum dot¢see Ref. 15, and references thejein identical particles might substantially deviate from those ob-
Some characteristics revealed in the midinfrared region ofained within the grand-canonical formaligsee, e.g., Refs.
the experimentally observed optical absorption spectra 084 and 35. The variational path-integral method for identical
high-T, cuprate&®-2° were assigned to the polaron optical particle$4-37 provides a useful tool for investigating interact-
absorption at intermediate values of the electron-phonoing quantum many-body systems with a fixéelw or many
coupling constant.. The infrared optical absorption band in number ofN particles. An outline of the method is given in
the neodymium-cerium cuprate NgCeCuQ, ((NCCO),  Ref. 38, where we sketched the calculation of the ground-
which was studied experimentalfas a function of the elec- state energy of a fixed number of interacting polarons, which
tron density, has been associated with the polaron opticgbrm a closed-shell system in a quantum dot.
absorption. Also some peculiarities of the infrared optical In the present paper the calculation of the ground state
absorption spectra of cuprates an,NRO,,, were inter-  and of the optical conductivity is performed for both closed-
preted in terms of a mixture of large and small polarons orshell and open-shell systems of interacting polarons in a
bipolarons?®24 quantum dot. In Sec. Il, we derive an upper bound to the free
The theory of the optical conductivity of arbitrary- energy of a finite number of interacting polarons confined in
coupling single polarons has been developed in Refs. 25 aralparabolic quantum dot in three dimensi¢gB) and in two
26 (see also Ref. 27, and references thereiwithin the  dimensions. In Sec. Il we discuss the numerical results for
memory-function method based on the path-integrathe ground-state energy and for the addition energy of this
formalism?® Recently, the optical absorption of a gas of in- system. In Sec. IV, the optical conductivity of interacting
teracting polarons at weak coupling was investigitétion  polarons in a quantum dot is derived on the basis of the
the basis of a variational many-particle appro&cfihe op-  memory-function method. The numerical results for the op-
tical absorption of interacting polarons in bulk semiconduc-tical conductivity are discussed in Sec. V. Section VI con-
tors at arbitrary coupling strength has been treated in Ref. 3&ins conclusions.
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[l. THE PARTITION FUNCTION AND THE FREE wavelength longitudinal opticgLO) phonons with a disper-
ENERGY OF A MANY-POLARON SYSTEM sionless frequency,=wy o, for which the amplitudey, is?®
A. Interacting polarons in a quantum dot hwLo 2\5#& vz 4 1/4
We consider a system df electrons with mutual Cou- Vg = q \Vj <mbwLO) (8)

lomb repulsion and interacting with the lattice vibrations. ) _ )

The system is assumed to be confined by a parabolic poteMhere « is the electron-phonon coupling constant ands

tial characterized by the frequency parametgr The total ~ the volume of the crystal.

number of electrons is represented\zss N, whereN, is e treat acanonicalensemble, where the numbéts are

the number of electrons with the spin projectiom+1/2.  fixed. The partition functio({N,}, 8) of the system can be
The electron 3D(2D) coordinates are denoted by, with expregsed as a path integral over the electron and phonon
j=1,...N,. The bulk phonongcharacterized by 3D wave coordinates:

vectorsg and frequencies,) are described by the complex (- 1)tp
coordinatesQ,, which possess the propetty Z{N}LB) = >
. P Nig! N_gp)!
Qq= Q- 1) PX o _
The full set of the electron and phonon coordinates are de- X J d7f Dx(7) f de DQ(n)e XN,
noted byx={x; ,} andQ={Qg}. X Q
Throughout Secs. Il and IlI, the Euclidean time variable 9

T=it is used, where is the real time variable. In this repre-
sentation the Lagrangian of the system is

LRQRQ) =LK Vel + QD + L0 TH(n Q=7 |

0
2
) @ The parameteB=1/(kgT) is inversely proportional to the
where L¢(x,x) is the Lagrangian of an electron with band temperaturd’. In order to take the Fermi-Dirac statistics into
massm, in a quantum dot account, the integral over the electron pafthia)} in Eq. (9)
contains a sum over all permutatioRsof the electrons with

wheregx(7) ,6(7-)] is the “action” functional

C S
L(X,Q;x,Q)d. (10

N(T
Le(m =— > > (%)—(1204_ %ngjza>' X = d_X the same spin projection, agd denotes the parity of a per-
oms12m\ 2 72 ’ dr mutationP.
3) The action functiona{10) is quadratic in the phonon co-

) ] ordinatesQ. Therefore, the path integral over the phonon
Vc(X) is the potential energy of the electron-electron CoU-variables inZ({N,},8) can be calculated analyticafjAs a
lomb repulsion in the medium with the high-frequency di- result, the partition function of the electron-phonon system

electric constant.,: (9) factorizes into a product
Ny No

VAT S 3 S S ZNS B = Zy NG BT = (11)

oo =112 =1 1=1 2830 |Xj,0' - X|'0.r| q 2 Sin}“(,BﬁwLo/Z)

(7o) of the partition function of free phonons with a partition

function Z,({N,}, 8) of interacting polarons, which is a path
integral over the electron coordinates only:

(- 1e P )
Zp({NU}!IB):E —def DX(T)e Sp[X_(T)]

—— P Niz! Nyl
Further, Leph(x_,Q,Q*) is the Lagrangian of the electron- (12)
phonon interaction

Lph(a,a;a,a*) is the Lagrangian of free phonons:

- 1 C ok - * - d
Q=53 (0, + 600y Q=53 (®)
q

_ 26 \ 12 The functional
Leph(X_aQ) == E (7(1) VqQ—qqu (6) 7B

q

SIX(]=~ | [LGANXU0) +Vel®ln) o

where p, is the Fourier transform of the electron density

operator V2 (™ (",
. q
pa= S X e, @) ,
4 i cosfw o(|7— 7| -%B/2)] ,
X - pq(T)P—q(T )
: : : : : sinh(Bhw o/2)

V, is the amplitude of the electron-phonon interaction. In this LO
paper, we only consider electrons interacting with the long- (13
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results from the elimination of the phonon coordinates andoordinatesy={y;} in a harmonic confinement potential
contains the “influence phase” of the phondgtis last term  with elastic interparticle interactions as studied in Ref. 38.
in the right-hand side It describes the phonon-induced re- The Lagrangian of this model system takes the form
tarded interaction between the electrons, including the re-
tarded self-interaction of each electron. The free energy of a N,
syst'e'm of intgracting polarorfsp({Nf,},,B) is related to their LM(k,—Sﬁm - %2 D (ka,(ﬁ QZX,-Z,(,
partition function(12) by the equation 27 1
1 m wz Nu' NO_/
PN, 8) == I Zy({N} ). (14 D 33 0,0,
oo 171 1=
At present no method is known to calculate the non- N
Gaussian path integr@l2) analytically. Fordistinguishable _ ﬂz (V2 + 02y
particles, the Jensen-Feynman variational prinéfplero- 23 it
vides a convenient approximation technique. It yields a
lower bound to the partition function, and hence an upper k
bound to the free energy. - 52 Z Z (Xj.0 = Y)% (17)
The formulation of a variational principle for the free en- o F=
ergy for a system oidentical particles is a nontrivial prob-
lem. However, it can be showhthat the path-integral ap- The frequencie§), w, (34, the mass of a fictitious particte,
proach to the many-body problem for a fixed number ofand the force constarktare variational parameters. Clearly,
identical particles can be formulated as a Feynman-Kac funcdhis Lagrangian is symmetric with respect to electron permu-
tional on a state space fou indistinguishab|e partideS, by tations. Performing the path integral over the coordinates of
imposing an ordering on the configuration space and by théhe fictitious particles? the partition functiorZy({N,}, 8) of
introduction of a set of boundary conditions at the boundthe model system of interacting polarons becomes a path
aries of this state space. The path integiralthe imaginary-  integral over the electron coordinates
time variable for identical particles was shown to be posi-

Ng Nt

tive within this state space. This implies that a many-body (- pfe Pk B
extension of the Jensen-Feynman inequality was found, Zo({N,},8)=> | Ifdxf Dx(7)e S0l
which can be used for interacting identical partialBef. 36, P Niz! Nogjl X

p. 4476. A more detailed analysis of this variational prin- (18)

ciple for both local and retarded interactions can be found in
Ref. 37. It is required that the potentials are symmetric with . . . .
respect to all permutations of the particle positions, and tha‘f\”th the action functionaf{x(r)] given by
both the exact propagator and the model propagator are an-
tisymmetric (for fermiong with respect to permutations of 1 ("8
any two electrons at any moment in time. This means that Six(n]= gf

0

these propagators have to be defined on the same configura-

Nﬂ'
S 3 T + 03¢, (7)]dr
o j=1

tion space. Keeping in mind these constraints, the variational 1 ("8 N, No' Mo?
inequality for identical particles takes the same form as the -= D> b® [X; (1) =X ~ (DN ]dT
Jensen-Feynman variational principle: hlo L imiimn 4 ' '
1 kNN fﬁﬁ’ fﬁﬁ
Fo<Fot (S - Ss., 15 - dr| dr
p=Fo I3<Sp S, (15) ami0, ), T . T
whereS, is a model action with corresponding free energy coshiQy(|7- 7'[ -2 B/2)] ,
Fo. The angular brackets mean a weighted average over the . X(7)-X(7'), (19
sinh(Bh()4/2)
paths
—1)ér . Px o . oy .
D (-3 fdxf DX()(-)& S whereX is the center-of-mass coordinate of the electrons
Nyt N /0! =
_ P 1/2 1/2 X
<()>SO_ (_ 1)§P . Px . B . 1 Ny
> —— f dx f DX(7)e Solx(7] X=2=2 2 X g (20)
p Niz! N_gpd X N5 =1

(16)
The details of the analytical calculation of the model parti-
tion function (18) are described in Appendix A.
After substituting the model action functionél9) into
We consider a model system consisting Mfelectrons  the right-hand side of the variational inequali#ys), we ob-
with coordinatesx={x; ,} and N fictitious particles with  tain an upper bound to the free enefgy,

B. Model system

235324-3



KLIMIN et al. PHYSICAL REVIEW B 69, 235324(2004)

m
Fral{Noh B1=FoliNo} B) + 205~ 02+ No?) 3
N PN
myw“N
X\ Zx(0) ) === X0, g’
=1 n
S 1l
2me?
+ 2 5 519(a,01{N,}, 8) —N] of
q#0 Ve..q 5
KCN2N, (78 B
+ —ff de dr’ !
4mfﬁh9f 0 0 - 3t
coshQy(|7— 7| - %5/2)] 22t o
X X(7) - X(7 @
sinngragz) XMy, (o A_.¢
V2 (7 B oL g ¥ e . . 3 .
— J;_ dTJ dr 0 4 8 12 16 20 24
q 2h°BJo 0 Number of electrons
X COSI{w_Lho_ T,| —hBI2)] FIG. 1. Total spin of a system of interacting polarons in a para-
sinh(Bho o/2) bolic quantum dot as a function of the number of electrons for
Xg(q - 'T,|{N } B) (21) ﬁQOZO.H-l* (a.) and fOI’ﬁQo:O.lH* (b)
Here, g(q, 7 7|{N,},3) is the two-point correlation func- of the confinement frequenc{),, of the electron-phonon
tion for the electron density operators coupling constantr and of the parametey. As distinct from
few-electron systems without the electron-phonon interac-
g(qu‘{Nrr}vﬁ):<pq(7')p_q(0)>so- (22)  tion, three types of spin polarization are possible for the

] ) ground state, which should be distinguishable from each
Both the free energy and the correlation functions of theyiner using, e.g., capacity measurements.

mpdel syst.em can b_e- calculated analytically using t.he gener- iy Except for the strong-coupling case and for the low-
ating function _tephmqué‘% In the zero-temperature imi8  gensity case, the filling in the ground state is as follows: in
—), the variational free energy21) becomes an upper gp open shell, with less-than-half filling, each new electron is
boundEy,({N,}) to the ground-state enerdf of the system  added with one and the same spin, so that the total @pin
of interacting polarons. The details of the calculation of thethe shell under consideratipis maximal in accordance with
correlation functions are given in Appendix B. Hund’s rule® As soon as half filling is achieved with elec-
trons possessing a certain spin, each new electron is added
with the spin opposite to that in the group of electrons pro-
lll. GROUND-STATE ENERGY AND ADDITION ENERGY viding the aforementioned half filling. When the number of
OF INTERACTING POLARONS electrons corresponds to the number of states in the shell
For the numerical calculations, we use effective atomicunder consideration, the shell becomes closed, and the total
units, wherei, the electron band mass, ande/\s,, have  SPin is zero. This mode of filling is referred to as Hund's rule
the numerical value of 1. This means that the unit of length i0r @ quantum dot. Hund’s rule means, that the electrons in a
the effective Bohr radiusg=#2e../(mye?), while the unit of partly filled upper shell build up a minimal possible number
energy is the effective HartréeH =m,e*/(#%2). These of pairs in order to minimize the electron-electron repulsion.

units allow us to present results for quantum dots with and:hor ahqllJle:c_r;lt.um dIOt W'tmblozoﬁ H d?t “TO and r?tazo_.S,F.
without the electron-phonon interaction on the same scald!'¢ Shell filing always obeys Hund's rule, as shown in Fig.

Therefore, for confined polarons they are more Convenien}(a):, . . ) .
than the usual polaron units, where the unit of lengtlas (ii) With decreasing confinement frequerity at a given

= [/ (Myw,0) ]2 and the energy is measured in units of the'Umber of electrons, the electron density lowers. For densi-

LO-phonon energyiw, o. In terms of the dimensionless pa- ties s(rjnaltletr than at (;erta_ltnh value, it clatn ;Iapﬁenh tnat the
rametersa and n=e./eg,wheregg is the static dielectric ground state is a state with a maximal togal all shelly

constant, the following relations exist between both system pin..ln this state, the elec'grons are filling consecu'gively all
of units: ' e single-electron states with one and the same spin and are

referred to as spin polarized. The examples are the states at
a, \Qa H* a, 2 202 a=0 for N=4 and N=10 in Fig. Xb). A spin-polarized
= = ) = (1- 7?2 (23 ground state precedes the formation of a Wigner crystal
when further lowering the densitg:*!
In Fig. 1, the total spir of a system of interaction po- (i) In the strong-coupling caser>1 andn<1), it can
larons in their ground state is plotted as a function of théhappen that the ground state is a state with a minimal total
number of electrons in a 3D quantum dot for different valuesspin(0 for even number of electrons aédor odd number of

*

aB_l—n’ ﬁw,_o_ a*B
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FIG. 2. Addition energy of a system of interacting polarons in a . .
parabolic quantum dot as a function of the number of electrons for F!G- 3. The total spiria) and the addition energy) of a system
#0,=0.5H" (a) and foriQy=0.1H" (b). of interacting polarons in a 2D parabolic GaAs quantum dot as a

function of the number of electrons fdi(),=0.5 H". Inset: the

L. experimentally observed addition energy vs number of electrons in
elect_ron$ This is the case When—due ,t_o the phonon'a cylindrical GaAs quantum dot for two values of the diameter
mediated electron-electron attraction—pairing of electrongy =g 5 ;m andD=0.44 um*3

with opposite spins occurs, analogous to a singlet bipolaron
ground state in bulk. The examples are the states=& and  half-filled shells become less pronounced, while those corre-
7=0.1 forN in the range from 4 to 6 in Fig.(& and forN  sponding to closed-shell systems become more prominent as
in the range from 4 to 10 in Fig.(th). This trend to minimize  compared to the weak-coupling case.
the total spin is a consequence of the electron-phonon inter- To the best of our knowledge, the addition energy for
action, presumably due to the fact that the phonon-mediategarabolic quantum dots was obtained using the density func-
electron-electron attraction overcomes the Coulomb repultional theory(DFT) (see, e.g., Refs. 8, 4, angl&nly without
sion. With an increasing number of electrons, at a certainhe electron-phonon interaction. Our results for the addition
value of N, such states with a minimal total spin cease toenergy for a 3D quantum dot as a functionNfin the par-
form the ground state, and the shell filling abruptly returns taticular casex=0 are very close foN< 12 to those calculated
that prescribed by Hund's rulesee a jump in the spin at  within the DFT(Ref. 8 with an optimized effective potential
=5 whenN changes from 10 to 11 in Fig(l)]. This jumpis  and a self-interaction correctidf.
analogous to a transition from states with paired electrons Panels a and b in Fig. 3 represent, respectively, the total
(such as superconducting statés another type of states spin and the addition energy for interacting polarons in a 2D
with unpaired electrongsuch as normal states parabolic GaAs quantum dot with the confinement parameter
The addition energyA(N), which is the variation of the #,=0.5H"~7.67 meV. The pronounced peaksAfiN) at
chemical potential when putting an extra electron into aN=2,6,12,20,...,correspond to the closed-shell systems,
quantum dot, is defined 43 for which the total spin equals zero. In accordance with
A(N) = E(N + 1) - 2E%(N) + EO(N - 1). (24) Hund’s'rule, the upper sh_ell is filled in such a way that t.he
total spin of electrons in this shell takes the maximal possible
Figure 2 presents the addition energy in a 3D quantum dot agalue. Therefore for the half-filled upper shefat N
a function of the number of electrons. The structurd@l)  =4,9,16,..) maxima of the total spin occur as a function of
clearly manifests the shell structure of a quantum dot. Thé\. At these electron numbers, the addition energy manifests
most pronounced peaks in the addition energy occur fopeaks, which are less pronounced than those corresponding
closed-shell systems witN=2,8,20. Thepeaks inA(N) at  to closed shells.
N=5 and N=14 obtained within the present approach for The inset to Fig. @) shows the experimental data for the
relatively weak electron-phonon coupling correspond to theaddition energy in a cylindric GaAs quantum d&#s seen
systems with the half-filled upper shgbee Fig. 2a) for  from Fig. 3, the peak positions for the addition energy of
a=0 anda=0.5. In these cases the total spin for the upperinteracting polarons in a 2D parabolic quantum dot agree
shell takes its maximal possible value, in accordance witlwell with the experimental results for the addition energies
Hund’s rule. At sufficiently large values at, the electron- of cylindrical quantum dots. The height of the calculated
phonon interaction substantially modifies the addition enpeaks of the addition energy falls down as the shell number
ergy. In the strong-coupling case, the peaks corresponding facreases, which is qualitatively consistent with the experi-
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mentally observed behavitt. The peaks inA(N) corre- _ t L L
sponding to the half-filled shells are weaker than those for SIX(t).X" ()] =f [Le(x(1),x(1),1) = Le(X' (1),X" (1), ) ]dt’
the closed shells both in the experinférand in our theory. ‘°°

—iA®[x(t),x (1], (32

whereLe(k_,Y,t) is the Lagrangian oN interacting electrons
For a system of interacting polarons in a parabolic condin a time-dependent uniform electric fiele(t)
finement potential, we calculate the real part of the optical

IV. OPTICAL CONDUCTIVITY

conductivity within the memory-function approach. For a ) Ne s mi022

. . " . _ b |,o b= ~0 Lo
single polaron at arbitrary coupling strength it was developed  Lo(X,x,t) = >, ( > > — X ;- E(t))
in Refs. 25 and 26. For a polaron gas in the weak-coupling o j=1
limit, this technique was applied in Ref. 44. N, Ny’ &2

In the present paper we extend the memory-function ap- B DD e — (32

proach to a system of arbitrary-coupling interacting polarons. oo! J=11=1 ZEB S
Since the optical conductivity relates the curreiit) per ('J-,(,)#L,,r)

electron to a time-dependent uniform electric field) in the
framework of linear response theory, we have to return to th
real-time representation in the path integrals. The Fourier

Jhe influence phase of the phonaisee, e.g., Ref. 46

. . \VJ 2 rt s
components of the electric field are denotedEy ®[x(9),X (5] = —E |ﬁqz| f dsJ dsf[pq(s) —pé(S)]
] q —00 -0
1 —i o * ’
E(t) = zf_m E.e ' “'do, (25) X [qu(s— s')pq(s’) = qu(s— s)pg(s)]
(33

and the similar denotations are used for other time-dependent ) ) ]
quantities. The electric current per electrdf) is related to  describes both a retarded interaction between different elec-

the mean electron coordinate respoR®) by trons anq a.retarded self-interaction pf each el_ectron QUe to
the elimination of the phonon coordinates. This functional
dR(t) contains the free-phonon Green’s function
‘J(t) == e?, (26) eio)t e—iwt
T,(0) = —— + . (39
w _ o Pho hao _
and hence 1-e e’ 1
. The equation of motion foR(t) can be derived by analogy
Jo=iewR,,. (27 with that described in Ref. 47:
Within the linear-response theory, both the electric current d?R(t) 2
and the coordinate response are proportiond jo M2 * MR (1) + eE(t) = Fpr(t), (39
B _o(w) whereF(t) is the average force due to the electron-phonon
Jo=o(wk, R,= ew ¢ (28 interaction,
i ivi 2Vqq (!
where o(w) is the conductivity per electron. Because we g )=—Re> =92 [ dsT (t—s)((
: : : = o Pq(t)p—q(S))s.
treat an isotropic electron-phonon systemiw) is a scalar PR e NioJ_. Lo d a S
function. It is determined from the time evolution of the (36)

center-of-mass coordinate

. The two-point correlation functiof{pg(t)p_4(s)))s should be

1 calculated from Eq(30) using the exact actio(B1), but as
R(t) = N E Xj() ' (29) for the free energy above, this path integral cannot be calcu-
)= S lated analytically. Instead, we perform an approximate calcu-
The symbok{(+)))s denotes an average in theal-timerep-  lation, replacing the two-point correlation function in Eq.
resentation for a system with action functiorSal (36) by ({pq(t)p-q(S)))s, Where S[x(t),x"(1)] is the action

- - functional with the optimal values of the variational param-
Y x X i - eters for the model system considered in the previous section
{EMs= f dxfdxof d%f_ Dﬂt)fﬁ DX’ ()er 0T e presence of )tlhe electric fieH(t). Th(f functional
o %0 SIx(t),x'(t)] is quadratic and describes a system of coupled
X(*) (70|f)(t0)|f('))|toa_x, (30) harmonic oscillators in the uniform electric fieE(t). This
field enters the term eE(t)-E(,EJN;lxj,,, in the Lagrangian,
where (xo|p(to)[Xp) is the density matrix before the onset of which only affects the center-of-mass coordinate. Hence, a
the electric field in the infinite pastty——). The corre-  shift of variables to the frame of reference with the origin at
sponding action functional 1846 the center of mass
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Xa(t) =Xq(t) + R(Y), Re o(w) = - & o Im y(w)
~ my[w® - 05— Re x(0) P+ [Im x()]?’
Xp(1) =Xp(D) + R(1), (37) (41)

results irf®
(oo My = (Do Mg e MROR

where x(w) is given by

2[Vy/q? J c
- lot _
(39) x(w) Eq]—‘*—3Nﬁmb O dt (€t - 1)

This result(38) is valid for any quadratic model actid®,. . .
The applicability of the parabolic approximation for ><Im[-ero(t)g(q’'t|{N”}’B)]' (42)

N=1 is confirmed by the fact, that for the porlgron ground-y; js worth noting that the optical conductivit41) differs
state energy, the results of the Feynman approamie Very oy that for a translationally invariant polaron system both
close to the values obtained using other reliableyy the explicit form ofy(w) and by the presence of the term

8-52 i i i - . . . .
methods’ Thus_, a_self induced polaronic potenhal, cre Q2 in the denominator. Forr— 0, the optical conductivity
ated by the polarization cloud around an electron, is rathe{ends to aslike peak atw={

well described by a parabolic potential whose parameters are
determined by a variational method. FN=2, the lowest
known values of the bipolaron ground-state energy are pro-
vided by the path-integral variational method with parabolic
potentials both in bufé and for confined systerts®® for ~ For a translationally invariant systeft,— 0, and this weak-
realistic values ofa. The aforesaid approximation for the coupling expressio3) reproduces the “central peak” of the
right-hand side of Eq(36) is a direct generalization of the polaron optical conductivity” In the zero-temperature limit,
all-coupling approaci#656to a many-polaron system. For the memory function of Eq42) is derived in the analytical
weak coupling, our variational method is at least of the saméorm of Eq.(B15) in Appendix B for 3D and 2D interacting
accuracy as the perturbation theory, which results from oupolarons.
approach at a special choice of the variational parameters.
For strong coupling, an interplay of the e_Ie(_:tron—phqnon in- V. RESULTS ON THE OPTICAL CONDUCTIVITY
teraction and the Coulomb correlations within a confinement
potential can lead to the assemblage of polarons in multipo- Due to the confinement, the electron motion in a quantum
laron systems. As shown in Refs. 54 and 55 for a systendot is fully quantized. Hence, when a photon is absorbed, the
with N=2, the presence of a confinement potential stronglyelectron recoil can be transferred only by discrete quanta. As
favors the bipolaron formation. Our choice of the modela result, the optical conductivity spectrum of a system of
variational system is reasonable because of this trend, appanteracting polarons in a quantum dot is a seriessdike
ently occurring in a many-polaron system with arbitrddy peaks as distinct from the optical conductivity spectrum of a
for a finite confinement strength. bulk polaron?®2¢ These peaks are related to the internal po-
The correlation function\<pq(t)p_q(s)>so|EZO corresponds laron excitations.
to the model system in the absence of an electric field. For Because Imy(w)=0 for all frequencies except for a dis-
t>s, this function is related to the imaginary-time correla- crete set of combinatorial frequencigl6), the peaks in the
tion functiong(q, 74{N,},B), described in the previous sec- optical conductivity(41) are positioned at the frequencies

imRe o(w) = ﬁ5((0 -Qyp). (43)
a—0 2mb

tion: which are given by the roots of the equation
{pq(Dp-q(IMs |e=01>s= 9@, it = 9N}, B).  (39) w?*-05-Rex(w) =0, (44)
Using the transformation37) and the relation(39), one  which are denoted ad);,(,,...).
readily obtains One of these roots is close to the variational parameter
2|V, [%q (! Q,, which is the eigenfrequency of the motion of a polaron
For(t) = - ReX, —th—f T;Lo(t—s) as a whole. It satisfies the inequalify, <, because the

q polaron effective mass is larger than that of a bare electron.

iq[R®-R(s)] Vb Q, is close to(), in the weak-coupling case and decreases
e 9(@.i(t=9KN, 1. p)ds. (40 with increasinga. Hence, it tends to zero in the limi,

Within the framework of the linear-response theory, the— 0. The peak in Rer(w) corresponding to this root can be

external electric fieldE(t) is a small perturbation, so that considered as the zero-phonon line, which is an analog of the
R(t) is a linear functional ofE(t")]|, <. Expanding the func- “central peak” of the polaron optical conductiv§2® The
tion €941RO-ROGIjn the right-hand side of Eq40) in powers  peaks of Res(w) determined by the other roots of E@4)

of [R(t)—R(s)] up to the first-order term, we obtain the Fou- can be attributed to transitions into excited states of the

rier componentF,(w) of the force due to the electron- many-polaron system.

phonon interaction which is proportional B,,. As a result, The changes of the shell filling schemes, which occur
the optical conductivity can be expressed in terms of thevhen varying the confinement frequency, manifest them-
memory functiony(w) (see Refs. 25 and 26 selves in the spectra of the optical conductivity. In Fig. 4,
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atb 12} @ State obeying Hund's rule Du"'n
10°L CdSe CdSe O Spin-polarized state o7
=0.46,n =0.656 . =046 g & Sweofthethidype
a=babm RO =0.0421 H o= |
= || N=20 0 - 0251 n=0656 k] |
10 . $=10 > - |
3 hQ, =003 H 3 hQ =004 H fay
~< 10 g 0 o\.,oF“‘n;',J‘ e
3 5 0 6 12 18 24
‘é‘ 10” E 020k Number of electrons
s 4 o~ ® State obeying Hund's rule
é 10" ) \s/ O Spin-polarized state
—_ hQ =00422 H A State of the third type
§ 101 S =OO 0.17
s}
0.040 . +0.045|
&’ R hQ, (inH') 0.15 . . . .
1 70, =0.06 H' 0 6 12 18 24
10° m ’ l ]T 0 Number of electrons
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FIG. 5. The first frequency momef) of the optical conduc-
 (in units wLO) tivity as a function of the number of electrons for systems of inter-
acting polarons in CdSe quantum dots witk0.46, »=0.656, and
FIG. 4. Optical conductivity spectra dfi=20 interacting po-  0.143v o(%y~0.04H"). Open squares denote the spin-polarized
larons in CdSe quantum dots with=0.46, =0.656 for different  ground state; full dots denote the ground state, obeying Hund’s rule;
confinement energies close to the transition from a spin-polarize@pen triangles denote the ground state of the third type, with more
ground state to a ground state obeying Hund’s rule. Inset: the firshan one partly filled shells, which is not totally spin-polarized.
frequency momentw) of the optical conductivity as a function of Inset: the total spin of the system of interacting polarons as a func-
the confinement energy. tion of N.

optical conductivity spectra fdi=20 polarons are presented When the confln?ment frequency pa“rame_ter Passes
for a quantum dot with the parameters of Cdge:0.46, » through the valueQg=aw, o, the so-called “confinement-
=0.656 (Ref. 58 and with different values of the confine- Phonon resonanc& occurs. In this case, the peaks( k
ment energy#i(Q. In this case, the spin-polarized ground 31,2,3 have comparable oscillator strengths. The position
state changes to the ground state satisfying Hund's rule witl), of the second peak is substantially shifted from the LO

increasinghi(), in the interval 0.0428" <#0,<0.042H". phonon frequencyw . Moreover, the intensities of the
In the inset to Fig. 4, the first frequency moment of thephonon-assisted transitions increase as compared to the
optical conductivity “weak-confinement” case. This resonance has a clear anal-
o ogy with the magneto-phonon resonargsee, e.g., Ref. 59
J w Re o(w)dw as far as the energy levels of an electron in a parabolic con-
0 finement are similar to the Landau levels of an electron in a
(w)=—2 (45 magnetic field.
J Re o(w)dw
0 8| «=21=060,=060
as a function ofi{); shows a discontinuity, at the value of 02 8,
the confinement energy corresponding to the change of the 0.0F e
shell filling schemes from the spin-polarized ground state to 05t ' & =080,
the ground state obeying Hund’s rule. This discontinuity £ ool | T
should be observable in optical measurements. z ~ Q=0
In Fig. 5, the first frequency momer5) is plotted as a E 05f Tooa
function of the number of electrons for a CdSe quantum dot 'g 0.0 , | A I
with Q;=0.143v o (corresponding tdiQy~0.04H"). The K _ Q, =120,
total spin of the system as a function Nfis shown in the 051 & 8,
inset. As a general trendw) decreases with increasiny, 0.0 I - l '|
with kinks corresponding to the ground-state transitions from 05l 5 3 Q= 14a,
states obeying Hund'’s rule witN=3, 9, and 18, into spin- II |2 | I
polarized states witiN=4, 10, and 19, respectively. 09, ' . >
In Fig. 6, optical conductivity spectra are plotted for sev- oo
eral values of the confinement frequency fox 10 polarons e
in a quantum dot wittw=2, 7=0.6. These values af and » FIG. 6. Optical conductivity spectra dfi=10 interacting po-

are typical for the highF, superconducting cuprates of the larons in a quantum dot with=2, »=0.6 for several values of the
NCCO family?® In the “weak-confinement” regior((), confinement frequency fro,=0.6w, o to Qp=1.4w o. The spec-
=0.6w o and Qy=0.8w o) the zero-phonon peak is expres- trum for Quy=w o corresponds to the confinement-phonon
sively dominant over the other peaks. resonance.
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—_~ L4 a * c
S ‘\ Cdse 0.01} hQ =004 H
3 o1t a=046
2 n-oese /\ K FIG. 7. The functior®(N) and
= 2 e o 0.00 had \ ﬁ*ﬁ‘m \/DW the addition energy(N) for sys-
g .00k ,"/ \ ./ \ R Y SN / g’ 8 tems of interacting polarons in
s - [ 07 eenet e ’ CdSe quantum dots with=0.46,
o1 / -0.01F 7=0.656 for#Q,=0.1H" (panels
. , , , , , , , , , , . a, b and for Qy=0.0H" (panels
= b 031 ® State obeying Hund'srule 4 ¢, d. Open squares denote the
S 06} T O  Spin-polarized state spin-polarized ground state; full
2 \ 4 State of the third type dots denote the ground state,
2z . 02} ?\ obeying Hund’s rule; open tri-
S o4} \ . /\ /.‘ / x . K angles denote the ground state of
g N \ \ the third type, with more than one
§ *e \..’} \ /\ /\ ol / rad [ me partly filled shells, which is not
[ X% T . .
< o} *0% teeed beees 5‘ totally spin-polarized.
0 4 8 12 16 20 24 0 4 g8 12 16 20 24

Number of electrons Number of electrons

With further increasingly, when(Qy> o o, the dominant of the optical conductivity in parallel. In Figs. 7 and 8,
part of the optical conductivity spectrum shifts to higher fre-we show both the function
quencies. For |rlstance,_a§lo—_1._4w|_o the most intensive ON) = (@)|ne1~ 2(@)[n+ (@)N-1 (46)
peak is that with()5. The intensities of the peaks, beginning
with the second peak, increase in comparison with theind the addition energ(N) for interacting polarons in dif-
intensities of their “weak-confinement” analogs. The posi-ferent 3D quantum dots.
tions of the zero-phonon line and the subsequent peaks As seen from Figs. 7 and 8 for quantum dots of CdSe and
are substantially shifted from the “weak-confinement”with a=35° respectively, distinct peaks appear@iN) and
values towards higher frequencies. These effects are A(N) at the “magic numbers” corresponding to closed-shell
manifestation of the mixing of the zero-phonon stateconfigurations aN=8,20 for thestates obeying Hund’s rule
with different excited states of the many-polaron systemin panels a, b and to half-filled-shell configurations Nt
A similar behavior of the optical absorption spectra at=10,20 for the spin-polarized states in panels c, d of Fig. 8.
and above the magnetophonon resonance is explaindd the case when the shell filling scheme is the same for
by the mixing of zero-phonon and one-phonon quantundifferentN (see panels a, b in Figs. 7 and 8, where the filling
states?® obeys Hund’s rulg each of the peaks db(N) corresponds
The shell structure for a system of interacting pola-to a peak of the addition energy. In the case when the shell
rons in a quantum dot is clearly revealed when analyzindilling scheme changes with varyirg (panels c, d in Figs. 7
the addition energy and the first frequency momentand 8, the function®(N) exhibits pronounced minima fox

~o 0.08} b4 o j (3) 25 al|l 0.08f n=0.3 c

g e . hQ = 001361 H'

o 004} o hQ =003125H 0.04}

= [ .

g 0.00} M / \ .—0-0-0/ \.—o—o-to/ e-e-00 [ 000}

= g

o= L J

~ 0.04} / -0.04}

Z oosl * FIG. 8. The functior®(N) and
@ bver ./ -0.08} the addition energy(N) for sys-

! * ! * * — ! tems of interacting polarons in

3 . b osl ® State obeying Hund's rule  d quantum dots withw=3, 7=0.25,
s 121 ol O Spin-polarized state and Qp=w_o (panels a, p and
< . - with @=3, 2=0.3, and Q,
= . 0.6} =0.5w ¢ (panels c, d

= 0.8 i /. 05F

e | / \ 04}
2 ‘.f.f.-. ._._._.
H 04} ® eeee 03}
0 5 10 15 20 25 0 5 10 15 20 25
Number of electrons Number of electrons
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corresponding to the change of the filling scheme from the2000, IUAP, FWO-V Projects Nos. G.0306.00, G.0274.01N,
states, obeying Hund'’s rule, to the spin-polarized states. G.0435.03, the WOG Grant No. WO.025.99Bklgium) and

It follows that measurements of the addition energy andhe European Commission GROWTH Programme,
the first frequency moment of the optical absorption as &NANOMAT project, Contract No. G5RD-CT-2001-00545.
function of the number of polarons in a quantum dot can

reflect the difference between open-shell and closed-shefiPPENDIX A: PARTITION FUNCTION OF THE MODEL
configurations. In particular, the closed-shell configurations SYSTEM
may be revealed through peaks in the fu_nct@(N). The In this appendix we discuss the analytical calculation of
filling patterns for a many-polaron system in a quantum dothe partition functionZ({N,}, ) [Eq. (18)] for the model
can be_ determmeq from the analysis of the first moment o ystem of interacting polarons. It can be expressed in terms
the optical absorpt!on fpr dlfferent'number.s of po'largns. Thet the partition functiorz,,({N,},N;, ) of the model system
appearance of minima in the funqtlﬁl(N) W'." then |nd|ca_1te of interacting electrons and fictitious particles with the La-
a transition from the states which are filled according tograngianL [Eq. (17)] as follows:
Hund’s rule to the spin-polarized states. M ' ’
Z ({Nu—}er!B)
Zo(IN}, ) = =07 —F—

VI. CONCLUSIONS Zi(Ny,w;, B)

We presented a formalism for calculating the ground-statévhereZ(N,wt, 8) is the partition function of fictitious par-
energy and the optical conductivity spectra of a system of ticles
interacting polarons in a parabolic confinement potential for
arbitrary electron-phonon coupling strength. The path inte- Z«(N;,B) =
gral treatment of the quantum statistics of indistinguishable (
particles®3* allows us to find an upper bouffdto the .

- with

ground-state energy of a finite number of polarons. The pa-
rameters from the variational procedure are used as input for Wy = VOZ + KN/my (A3)
the calculation of the optical conductivity spectrum of the
system. and D=3(2) for 3D (2D) systems. The partition function

Two types of transitions were found fox polarons con-  Zu({N.},N;, 8) is the path integral for both the electrons and
fined in a parabolic potential, with the corresponding groundhe fictitious particles:
states characterized by different values of the total spin. In

(A1)

. A2
2 sinh ghw;) N (A2)

the weak-confinement regime, the polaron system is in the 7 (N3 N, 8) = (_—1)&’ f dyJPX DX(7)
spin-polarized state. When increasing the confinement fre- P Nip! Nyl x

quency(),, the system goes into a state obeying Hund'’s rule v

at a specific value of),. For a strongly coupled system of % f dyf DV(T)e—sw[x_(r)%)] (A4)
interacting polarons, a third type of state appears, for which m

the total spin takes its minimal value. The analysis is per- . R .
formed for both closed-shell and open-shell systems. with the “action” functional

The calculations of the optical conductivity spectra for a o 1 (fB ..
finite number of polarons in a quantum dot are based on the Sulx(7),y(n)] =~ %f Lu(xy;x,y)dr,  (A5)
memory-function approach. The dependence of the optical 0
conductivity spectra on the confinement paramédgrre- \\here the Lagrangian is given by Ed.7).

veals a resonant behavior ft¥y~ w o. Transitions between Let us consider an auxiliary “ghost” subsystem with the
states with different values of the total spin manifest themlagrangian

selves through discontinuous changes of the optical conduc-

tivity spectra and of the addition energy as a function of the, . - MmN g oo MmN o 2

number of electrons. Lg(XgY g XgYg) = 2 (X3+WXg) 2 (Yot W'?Yg)
The first frequency moment of the optical conductivity as

a function of the number of electrons clearly shows the tran-

sition between the spin-polarized ground state of interactingvith two frequenciesv andw;, wherew is given by

polarons in a quantum dot and the ground state obeying — -

Hund’s rule, and it also can be used to discriminate between W= = N+ kNi/m,. (A7)

open-shell and closed-shell conflguratlons. Optical measurerq partition functiorz, of this subsystem

ments are therefore suggested as possible tools for examin-

ing the shell structure of a system of interacting polarons. Xg Yg
Zy= | dX4 | dYq DX4(7) DY4(7)
Xg Yg
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where LW(T ,X") and wa('_’ ,y') are Lagrangians of nonin-

1 ("B . )
SXq(7), Yo(n] =~ %fo Ly XgXg Y Ygdr (A9) teracting identical oscillators with the frequencigandw;,

respectively,
is readily calculated:
N(T
R m . ,
S 1 1 A10 La(¥' X == 22 2 S0 ,)% WK )7,
97 [2 sinh(8awi2) P [2 sinh(Bhw/2) P Tz

(A16)
The productZ,Z, of the two partition functionsZy and

Zu({N,},N¢, B) is a path integral in the state space Mf o
eIgctrons,Nf f|(_:t|t|ous particles, and two “ghost” p_a[t'lcles Lu, (Y'Y :—?fz [V 2+W$(le,a)2]- (A17)
with the coordinate vectorXy andY 4. The Lagrangiary =1
of this system is a sum dfy andL,, _ .
The LagrangiarLc(X,X;Y,Y) describes the combined mo-
tion of the center-of-mass of the electrons and of the ficti-

~ e, — tious particles
Lm(X,Y,Xg, Y i %Y, Xg, Y g) P

= Ly(y oy + Ly(Xg Vg Xg Yy, (A1D)  Lo(X,X;Y,Y)=- m'?(x2 +OPX) = Y2+ wiY?)
+KNNX - Y, Al18
The “ghost” subsystem is introduced because the center-of- N (AL8)
mass coordinates iy, can be explicitly separated more eas- yith
ily than inLy,. This separation is realized by the linear trans-
formation of coordinates 5
0= VQZ + ka/mb. (Alg)
Xjo =X+ X = Xg, It is reduced to a diagonal quadratic form in the coordinates

and the velocities by a standard transformation for two inter-
acting oscillators
yjzr:yj,o-+Y _ng (A12)

X= ! (ayr + a,R)
- 1 2 ’
: VmpN
whereX andY are the center-of-mass coordinate vectors of
the electrons and of the fictitious particles, correspondingly: 1
Y = =—=(-ay +R) (A20)
1 N, 1 N¢ meNf
X== i Y =— i A13 . .
N% EXW N%yl ALY ith the coefficients
Before the transformatiofAl12), the independent variables 1+y |¥? 1-y |¥?
are(X,y,Xg4,Y ), with the center-of-mass coordinatésand q=| I A e (A21)

Y determined by Eq(A13). After this transformation the
independent variables can be considered téxbey’,X,Y),

i i 02-0? / NN
where the coordinatelXy,Y ) obey the equations =—— f ’ — L (A22)
[(QZ _ Qf2)2 + 4’}/2]1/2 myMmy

1 No , 1M , The eigenfrequencies of the center-of-mass subsystem are
Xg= NE 22X 5 Yg= EE U (A14)  then given by the expression
o j=1 j=1
1102+ 0 02-0
A substitution of Eq.(A13) into Eq. (A11) results in the 0= \/5[92+sz+ \/(QZ‘Q?)2+47’Z]v

following three terms:

Q= U024+ 52— \(@2- 092+ 497 (A23)

’L’M(?lTlxly;Tl?leY) = LW(TIT) + LWf(TlV)
) ) As a result, four independent frequenciesg, ,, w andw;
+Lc(OX,X5Y,Y), (A1) appear in the problem. Three of theif};, (2, w) are the
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eigenfrequencies of the model syste.is the frequency of 1 (- 1P
the relative motion of the center of mass of the electrons with  9(d, 7H{N}.8) = 70N} ,8)2 N TN
respect to the center of mass of the fictitious partidiesis ol 27 P 2R

the frequency related to the center of mass of the model _(Px _

system as a whole, and is the frequency of the relative X f dxf DX(7)e % p,(7)p_g(0).
motion of the electrons with respect to their center of mass. X

The parametew; is an analog of the second variational pa- (B1)

rameterw of the one-polaron Feynman model. Further, the . :
Lagrangian(A18) takes the form We observe thag(q, 7{N,},8) can be rewritten as an aver

age within the model “action'Sy[x(7),y(7)] of interacting
electrons and fictitious particles:

1. 1.
ch__(r2+Q§r2)—E(R2+Q§RZ), (A24) 1 (%

2 9(d, 7N}, B) =
. . . . " Zy({NgtN;, B) 5 Nyja! Nyl
leading to the partition function corresponding to the com-
bined motion of the centers-of-mass of the electrons and of

o _
the fictitious particles « J d;J " D%07) f dVJ e
1 1 x v
Ze= ' -SulX(7).5(7)]
(BRI (P [ BRQ,) [P x e MDY lp,(7)p_g(0). (B2)
2 sin 2 2 sin 2 Indeed, one readily derives that the elimination of the ficti-

tious particles in Eq(B2) leads to Eq(B1). The representa-
(A25) tion (B2) allows one to calculate the correlation function
Taking into account EqgA10) and(A25), we obtain finally ~ 9(d, 71{N,}, 8) in a much simpler way than through E&1),

the partition function of the model system for interacting using the separation of the coordinates of the centers of mass
polarons of the electrons and of the fictitious particles. This separation

o is performed for the two-point correlation functigB2) by
sinl—(’%w>sinr<’8ﬁwf) the same method as it has been done for the partition func-
2 2

- tion (A4). As a result, one obtains
Zy({N,}. B = r( Bm) r( Bﬁﬂz) Ze({Nobw, B).
sin sin (explig - (X(7) = X (o))
2 2 9(0, HN}.B) =5(, AN}, B) T

(A26) (expliq - (Xg(7) = Xg(0)) s,
Here (B3)

~ . . whereg(q, 7{N,}, B) is the time-dependent correlation func-
Ze(iNohW. B) = Ze(Nyyo W, B) Ze(N-1 2 W, ) - (A27) tion of N noninteracting electrons in a parabolic confinement

is the partition function oN=N,,,+N_;,, noninteracting fer- ~ potential with the frequencw,
mions in a parabolic confinement potential with the fre-

quencyw. The analytical expressions for the partition func- 9(9, 7Ny}, B) = (pg(Dp-4(0))s, (B4)
i“nogg |\|3,,45p|n-polar|zed fermionge(N,.,w, B) were derived .0 4ction functionalS,[x.] is related to the Lagrangian
o Lu(X,X) [EQ. (A16)]
1 ("8 )
APPENDIX B: TWO-POINT CORRELATION FUNCTION: SN[X_T] = —f LW1X,Xid7'. (B5)
MEMORY FUNCTION fiJo

The two-point correlation functio22) is represented as The averages in EqB3) are calculated using Feynman’s
the following path integral: method of generating functiotfs

A Qilr=o]\ . [ QGRB-|T-0])
he? | 2 sin 5 Jsin 5
(exliq - (X(1) - X(0)Dg = exp) — | 2 af

M| i=1 O sinh(—’8 ﬁzﬂ')
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f2(n10-; n, 1 0-, |{N(r}!B)

sinr<W|T_o|>sinr<W(ﬁﬁ_ Ir—ol)> 1 "
ho? 2 2 —

- ) 272e(N,, W, B8) J .,
NM, w sinf(%v) - if

f(‘Sn! G)f(sn/, G)CD(H,E, N(r)dﬁy

o' =0

fi(n,a|N,, B)f1(n,d’'|N,,B), if o #o
The two-point correlation functiog(q, 7{N,}, 8) is derived (B9)
using the generating-function technique for identical
particles3* After the path integration, the following expres- with the notations
sion is obtained:
®(6,8.N,) = ex‘”[ > In(L +e#Ehon) - N (£ +i6) |,
9(a,~i7{N,}.8) "0
(B10)
= 2 (@€ )y o fanoin’ o’ [N}, B)
n,on’ o’ 1
f(e,0) = (B11)

expBe - E-if)+1
+ E |(eiq'x)n,n,|2exp[%(sn—snr)}

nn'.o The functionf(e, 6) formally coincides with the Fermi-Dirac

distribution function of the energy with the “chemical po-

X[f1(n,al{Ny},B) = fo(n,o;n", 0N}, B)], (B6)  tantial” (£+i0)]B.
From here on we consider the zero-temperature limit, for
) which the integral§B8) and(B9) can be calculated analyti-
where(€9%), ,, is the one-electron matrix element,
10
- a |
s b
. o g |e=2 N |
(elq.x)n,n’ :f elq.xlpn(x)lﬂn’(x)dx- (B7) g n=0.6 Q1 :
£ [a=060, I
E e
< | - |
8
For a 3D quantum doty;,(x) is the eigenfunction of a 3D 3 sk // Re p(wyw
oscillator with the frequencw [see, e.g. Ref. §1The index f |/ ——— (- QOZ)/(O
n denotes the set=(n,l,m), wheren is the number of the ~ " | .
energy levek,=aw(n+3/2), | is the quantum number of the o0 05
orbital angular momentum and is the quantum number of s )
the z projection of the orbital angular momentum. Similarly, 3 **[b 000
for a 2D quantum doty,(x) is the eigenfunction of a 2D ;
oscillator with the frequenc. 2 (O D03
The one-electron distribution functiofy(n,o|N,,B) is 5 o
. . . . =] 001 ('0010 [0)
the average number of electrons with the spin projeacti@t 2 02 | 020
the nth energy level, while the two-electron distribution ,gi
functionf,(n,o;n", 0’ {N,}, B) is the average product of the <
numbers of electrons with the spin projectiomsand ¢’ at E
the levelsn andn’. These functions are expressed through ' 00 MIRIMINIA AP
the following integralgsee Ref. 35 0 1 2 3
oo,

w

finoiNB) =5 B ).

f(en, O)P(6,8,N,)d0,

(B8)

FIG. 9. Real(@ and imaginaryb) parts of the memory function
x(w)/ w for a system of interacting polarons in a quantum dot for
N=10, «=2, »=0.6, and(;=0.6w . The dashed line in panel a
represents{wz—ﬂg)/w. The vertical arrows in panel a indicate the
roots of Eq.(44). The height of peaks in panel b represents the
relative intensity of thes-like peaks off—Im y(w)/ w].
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cally. The result for the one-electron distribution function is %(n+ 1)(n+2), (3D)
" n+1 (2D)
1, n<L,, is the degeneracy of thath shell. N, is the number of
0, n>L,, electrons in all the closed shells with the spin projectign
NO’ NLU n=L,. L1 ELG(LU—'_ 1)(L0.+ 2) (3D),
%, N, = 2 6=, (B13)
n=0 SLolla+ 1) (2D).
According to Eq(B12), L, is the number of the lowest open The two-electron distribution function
shell, and fo(n,o;n’,a’'|{N,}, B) at T=0 takes the form

p
fi(n, ol BNy g f2(N', '[BNy)|ge, N# N Or o # 0,

1, o=o0' andn=n' <L,
o5, o' [BANG g =4 O o=’ andn=n'>L, (B4
N-N, N-N, -1
“ at o=c andn=n'=L,.
L 9., o,-1

Finally, using the two-point correlation functi@gB7), the one-electrofB12) and the two-electro(B14) distribution functions,
the memory function of Eqi42) can be represented in the unified form for 3D and 2D interacting polarons

()= lim 2u (37T>3—D<wLO>3/2§ i % (- 1)Ps ( a2 )m( a’ )Pz( 1 )Ps
w) = _ —

X [ 2 E E [fl(nio-HNa'}uB) - f2(n10-; m7 0-|{N0'}1B)]|B~>oc

m=0n=0 o

1 1
>< —
(w—wLO—[p191+p292+(p3—m+n)w]+is o+ oo+ P+ P+ (Pz-m+Mw+ie

7 2 )
oo+ Py + Pl + (P3— M+ mMw
. (—1)n_m+l+kr(p1+P2+p3+k+|+%)( 1 )I+k<”+D_1>( 2k )]

1=0 k=n—m ki WA n-k k=l-n+m

1 1 2
: - -l )
[(w — 0o~ (P11 + P+ PaW) Hie @+ o+ P+ Pl + paW+ie o+ Py + Pd, + paw

0 o . , n m (_ 1)k+|I‘l(pl+ p2+ p3+ k+| + g)( 1 >k+|
><m20202 fo(n,oim,o I{Ng},ﬁ)lﬁﬁ%g T =
X<n+D—1)<m+D—1) e
n-k m-| ’ (B15)

whereD=2,3 is thedimensionality of the spacé& denotes model systema; anda, are the coefficients of the canonical

the principal value,A is defined asAE[Ei2 a1-2/Qi+(N transformation which diagonalizes the model Lagrangian

=1
-1)/w]/N, Q4,9Q,, andw are the eigenfrequencies of the (17) derived in Appendix A.
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The typical spectra of the real and imaginary parts of theion to an excited state of the model system.
memory functiony(w), are plotted in Figs. @ and gb), The roots of Eq.(44), which provide the peaks in the

respectively. According to E¢B15), the poles of Re((w)  optical conductivity,(Q4,€,, ...), are indicated in Fig. @)

and the &like peaks of[-Im x(w)] are positioned at the py the vertical arrows. For the chosen parameters, the peak at

combinatorial frequenciesy,, which are linear combina- 0. is the zero-ohonon line. Fiquréd also reveals peaks of
tions of the LO-phonon frequency and three eigenfrequen-1 €ro-p !Ine. 19 ad) als pe: .
cies Re o(w) with frequencies in between two neighboring dis-

crete values ofw,, €.g., atf)z. Following the physical in-
om= o o+ KQ; +1Q,+mw, (B16) terpretation of the memory function in Refs. 25, 26, and 56,
with integer coefficientk, I, m=0,1, ....Each combinato- these peaks can be related to transitions into excited states of
rial frequencywy, corresponds to a phonon-assisted transi-the many-polaron system.
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