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The Zener tunneling rate is derived by quantum-mechanical perturbation theory, using the Kane functions as
base functions. This result is able to describe both nonresonant and resonant tunneling and is in line with recent
experimental findings on Zener tunneling in superlattices. In contrast, the result published in the literature,
which is the state of art up until now, does not adequately describe resonant Zener tunneling and is not an
improvement over the semiclassical theory. The reason for that is a misconception about the initial condition.
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I. INTRODUCTION

The motion of an electron with massm and charge −e in
one dimension in a lattice-periodic potentialUszd=Usz+ad,
subjected to an electric fieldF is governed by the Hamil-
tonian

Ĥ = −
"2

2m

d2

dz2 + Uszd + eFz. s1d

This problem has drawn the attention of generations of
physicists in the last 75 years.1 In his famous paper from
1934, Zener calculated the tunneling rate of an electron from
the valence to the conduction band due to an external electric
field.2 His calculation was based upon a semiclassical ap-
proach, where energies in the gap region are assigned to a
complex Bloch wave number. This concept of branch-point
tunneling, which has been introduced previously by Landau,3

is known as Landau-Zener tunneling.
In 1940, Houston derived an approximate solution of the

time-dependent Schrödinger equation, where the wave func-
tion is given by a Bloch function with time-dependent wave
number kstd=ks0d−eFt/".4 Because the pointsk and k
+2p /a in reciprocal space are equivalent, the electron per-
forms oscillations with the periodT=2p" / ueFau, so-called
Bloch oscillations. In the 1950s and 1960s, approximate
eigenfunctions of the Hamiltonian(1) were derived in the
framework of the crystal-momentum representation.5–10

These so-called Kane functions give rise to ladders of
equally spaced eigenvaluesEjl =Ej0+eFal; l PZ for each
bandj , known as Wannier-Stark ladders. It can be shown that
the Houston functions and the crystal-momentum represen-
tation are equivalent by Fourier or gauge transform.11–13The
Zener tunneling rate has been calculated by quantum-
mechanical perturbation theory on the basis of both the
Houston and the Kane functions, leading to the same
result.4,6–8,13,14 It was claimed by some authors that the
quantum-mechanical result would approach the semiclassical
result in the limitF→0.15,16 As perturbation theory is also
limited to small values ofF, it is not clear in which way the
quantum-mechanical result is an improvement over the semi-
classical result.

It was shown only in 1977 that the spectrum of a Bloch
electron in an electric field is entirely continuous,17 which is
a prerequisite of Zener tunneling. Then the Wannier-Stark

ladders become resonances, i.e., nonstationary states with a
long lifetime. In case thatUszd is an analytic function, the
resonances can be defined as complex eigenvalues of an ana-
lytically continued Hamiltonian.18 The imaginary part of the
resonances, which governs the lifetime of wave packets,19

approaches Zener’s expression for the tunneling rate in the
limit of small F.20

In recent years, the topic of Zener tunneling resurfaced in
the context of superlattices21–29 and accelerating optical
potentials.30–32The experimental data and numerical calcula-
tions show resonances which cannot be explained by Zener’s
semiclassical theory. These resonances are related to interac-
tions (“anticrossings” or “avoided crossings”) of Wannier-
Stark ladders and are often called “resonant Zener tunnel-
ing.” This can also be explained in the real-space picture,
where the effective tunneling length of the potentialUszd
+eFz is proportional to 1/F, but also shows oscillations due
to the periodicity ofUszd. Anticrossings of Wannier-Stark
ladders have been observed previously in the optical spectra
of superlattices without a direct connection made to Zener
tunneling.33,34 In fact, Zener tunneling requires an entirely
continuous spectrum and, therefore, cannot be explained on
the basis of discrete Wannier-Stark ladders.

In many cases, the experimental data are in good agree-
ment with first-principle or model calculations.22,26,27,30,31

However, the relationship between nonresonant tunneling, as
described by the original Zener formula, and resonant tun-
neling remains largely unclear. In particular, it is not clear, if
the Houston-Kane formalism—apparently an improvement
over the semiclassical theory—can explain the effect of reso-
nant tunneling. The literature is remarkably silent about this
point. To our knowledge, only one publication by Ao and
Rammer deals with this question.35 These authors found that
the result of perturbation theory contains 1/F oscillations,
which are not found in Zener’s semiclassical result.

In the present paper we derive a formula for the tunneling
rate which correctly takes into account nonresonant and reso-
nant Zener tunneling. We show that the result from the lit-
erature, derived in the framework of Houston or Kane func-
tions, is inconsistent, considerably underestimates the effect
of resonant tunneling, and cannot be considered an improve-
ment over the semiclassical theory. Explicit results are given
for a shallow superlattice, which has recently been studied
experimentally and theoretically. In Sec. II we introduce im-
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portant definitions and notations, and give a brief review on
the semiclassical theory and the Kane functions. The tunnel-
ing rate is derived in Sec. III on the basis of Kane functions
and it is shown that the assumptions of the Houston-Kane
theory are inconsistent. In Sec. IV we show explicit results
for a shallow superlattice and make a comparison with ex-
perimental data. A summary is given in Sec. V.

II. PRELIMINARIES

In this section we introduce the basic definitions, nota-
tions, and conventions used in Sec. III. Furthermore, we
specify the result from the semiclassical theory as derived by
Zener and others.

A. Bloch, Kane, and Houston functions

For F=0, the eigenfunctions of the Hamiltonian(1) can
be written as Bloch functions,

c jkszd =
1

Î2p
eikz ujkszd; ujkszd = ujksz+ ad, s2d

where j PN is the band index andkP s−p /a, +p /ag is the
Bloch wave number. The spectrum consists of energy bands
Ejskd. We assume thatU is piecewise continuous,Uszd
=Us−zd, and all gaps are open. For this case, a number of
analytical properties have been derived in the famous paper
by Kohn.36 In the extended zone scheme,kPR, it holds that
Ejskd=Ejsk+2p /ad. Furthermore, the bandsEjskd corre-
spond to different branches of one multi-valued complex
analytic functionEskd, the so called “energy function.” The
phase of the Bloch functions can be chosen such that
c jkszd=c j ,−k

* szd; c j ,k+2p/aszd=c jkszd and thatc jkszd is a com-
plex analytic function ofk. A recipe for the numerical calcu-
lation, which ensures analyticity of the Bloch functions, was
given by the present author.37 We assume the Bloch functions
to be normalized as

kc jkuc j8k8l =E
−`

+`

dzw jk
* szdw j8k8szd = d j j 8dIsk − k8d,

wheredI is the periodic delta function with period 2p /a.
The Bloch functions(2) can be used as base functions for

solving the eigenvalue problem of the Wannier-Stark Hamil-
tonian (1). This is done by the ansatz

wszd = o
j

Î a

2p
E

−p/a

+p/a

dkw̃ jskdc jkszd.

To determine the unknown functionsw̃ jskd, we have to cal-
culate the matrix elements of the perturbationeFz. Employ-
ing the explicit form of the Bloch functions(2) we find38

E
−`

+`

dz c jk
* szdeFzc j8k8szd = ieF d j j 8

d

dk
dIsk − k8d

+ eFdIsk − k8dZjj 8skd,

where

Zjj 8skd =
1

a
E

−a/2

+a/2

dz ujk
* szdi

] uj8kszd

] k
= Zj8 j

* skd.

For symmetric potentials and the phase choice introduced
above the diagonal matrix elements are eitherZjjskd;0 or
Zjjskd; ±a/2 (Kohn’s cases A and B, see Ref. 36). If a
single band is considered, the origin of thez axis can always
be chosen such thatZjjskd;0.

Now the eigenvalue problem for thew̃ jskd reads

FEjskd + ieF
d

dk
Gw̃ jskd + eFo

j8

Zjj 8skdw̃ j8skd = Ew̃ jskd,

with the boundary conditionw̃ jskd=w̃ jsk+2p /ad. The solu-
tion is trivial if the coupling between different bands is ne-
glected and it holds that

Ejl =
a

2p
E

−p/a

+p/a

dk8Ējsk8d + eFal; l P Z

w̃ jlskd = expH 1

ieF
E

0

k

dk8fEjl − Ējsk8dgJ , s3d

where

Ējskd = Ejskd + eFZjjskd.

The resulting functions

w jlszd =Î a

2p
E

−p/a

+p/a

dk w̃ jlskdc jkszd, s4d

which are the approximate eigenfunctions of the Hamiltonian
(1), are known as Kane functions.8,10,12,38They are orthonor-
mal, i.e.,kw jl uw j8l8l=d j j 8dll8, and complete.

It is interesting to see the connection between Kane and
Houston functions. For fixed band indexj , the Kane func-
tions w jl are a complete system in the subspace of thej th
band. The expansion of a Bloch function with wave-number
k0 in terms of Kane functions gives

c jk0
szd = o

l

kw jl uc jk0
lw jlszd =Î a

2p
o

l

w̃ jl
* sk0dw jlszd.

The time dependence of the Kane functions in the absence of
tunneling, i.e., when the nondiagonal matrix elementsZjj 8s j
Þ j8d are neglected, is

w jlsz,td = eEjl t/i"w jlszd.

Then the time-dependent Bloch functions

c jk0
sz,td = expH 1

i"
E

0

t

dt8Ēfkst8dgJ c j ,kstdszd s5d

with

kstd = k0 − eFt/"

are identical to the Houston functions.4 The replacement of

the Ejskd by Ējskd was made later.7,11,15,16
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B. Semiclassical Zener theory

In his famous paper from 1934, Zener calculated the tun-
neling rate of a Bloch electron in the presence of an electric
field.2 The main idea was to assign the gap region to com-
plex values of the Bloch wave number, where the imaginary
part is responsible for a tunneling probability lower than
unity. By deforming the integral on the complex energy
plane, the tunneling probability can be expressed as20,32

p = expF 1

i ueFu
R dk EskdG , s6d

where the integration is carried out on a closed contour, cy-
cling in clockwise direction both conjugated complex branch
points, which connect the two energy bands. The tunneling
rate is then given by the tunneling probabilityp, divided by
the period of the Bloch oscillationsT=2p" / ueFau.

In the case of nearly free electrons, the above integral can
be carried out explicitly and the tunneling probability from
the first to the second band is2,32

w =
ueFua
2p"

expS−
m a Eg

*2

4"2ueFu
D s7d

with Eg
* =E2sk0d−E1sk0d being the first gap, located atk0

= ±p /a. The function (7) monotonously increases withF
and does not show any oscillations. The behavior in the gap
region is parabolic

E2skd − E1skd = Eg
* +

"2sk − k0d2

2m* + ¯ ,

and the tunneling rate as function of the effective-mass pa-
rametersEg

* andm* is39

w =
ueFua
2p"

expS−
Îm* pEg

*3/2

2"ueFu
D . s8d

This formula was also derived by Franz without the assump-
tion of nearly free electrons40 and by Eilenberger for tightly
bound electrons.16 It is also found true for the crossing of any
two bands, in the approximation of nearly free electrons.
Hence, it is reasonable to consider Eq.(8) as the most gen-
eral form of the semiclassical result.

It was claimed that in the limitF→0 the result of pertur-
bation theory would go over into the semiclassical result
(8)15,16and in the mathematical theory, the imaginary part of
the resonance for smallF is found to be asymptotically equal
to expression(6).20 The results between perturbation theory
and semiclassical theory were found to differ by a factor of
sp /3d2<1.079. We shall come back to thisp /3 problem in
the next section.

III. TUNNELING RATE

In this section we derive the tunneling rate by means of
quantum-mechanical perturbation theory and make a com-
parison with the result published in the literature. The per-
turbational approach is more rigorous than the original Zener
theory, but also makes assumptions which cannot be rigor-

ously justified within the theory. As in the semiclassical
theory, the transition probabilitypsTd=fns0d−nsTdg /ns0d is
defined as the relative decrease of the occupation number
during one Bloch cycle and the tunneling rate is given by
w=psTd /T.

To calculate the tunneling rate from the first to the second
band, it is assumed that tunneling from the second to the
third band is much more effective than from the first to the
second band, etc., so that downward tunneling is negligible
in comparison to upward tunneling. Then, from the point of
view of the theory, the excited states can be considered
empty. Interestingly, the increase of tunneling probability
with increasing band index, which holds true for all realistic
potentialsUszd, can be employed to prove the continuous
spectrum of the Wannier-Stark Hamiltonian(1).41 In turn, a
continuous spectrum is necessary for Zener tunneling, other-
wise there would be closed subspaces of Wannier-Stark lad-
ders with stationary states. Because much of the Zener theory
was developed before the continuous nature of the spectrum
was established, these assumptions and approximations are
not always clearly stated.

As a consequence of the above assumptions, the decrease
of the occupation number is linearly exponential with the
number of Bloch cycles and tunneling during different Bloch
cycles is uncorrelated. The first condition is in contradiction
to the time-reversal symmetry. Niu and Raizen found a non-
exponential behavior ofnstd neart=0, which goes over into
an exponential decay at larger times.42 Holthaus found that
the ablation of daughter wave packets during different Bloch
cycles is not uncorrelated.32 The above-mentioned difficul-
ties are avoided in the mathematical theory, where the tun-
neling rate is defined as the imaginary part of the resonances.
This approach, which can also be used for numerical
calculations,29,31 is restricted to analytic potentials. Alterna-
tively, one can numerically calculate the density of states
with no restriction in the number of subbands. Then the tun-
neling rate is manifested as a natural linewidth of the
Wannier-Stark resonances.25,26

As base functions for the following time-dependent per-
turbation theory we use the Kane functions(4), which are the
eigenfunctions in the absence of band-to-band coupling. The
diagonal matrix elementss j = j8d of the Hamiltonian(1) are
given by Wannier-Stark ladders

Hjl ,jl8 = kw jl uĤuw jl8l = Ejldll8. s9d

For the nondiagonal matrix elementss j Þ j8d we find

Hjl ,j8l8 =E
−`

+`

dz w jl
* szdeFzw j8l8szd

=
a

2p
E

−p/a

+p/a

dk w̃ jl
* skdeFZjj 8skdw̃ j8l8skd

=
eFa

2p
E

−p/a

+p/a

dk Zjj 8skdexpH 1

ieF
E

0

k

dk8fĒjsk8d

− Ēj8sk8d − Ejl + Ej8l8gJ . s10d
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Without loss of generality, we consider tunneling between
two bandsj =1 andj8=2. The von Neumann equation for the
density matrix takes the form

s11d

where, for convenience, we introduced the block notations
Hjj 8=sHjl ,j8l8d and Njj 8=sNjl ,j8l8d. As we neglect downward
scattering from the second to the first miniband, att=0, we
assume the first Wannier-Stark ladder to be completely filled
and the second Wannier-Stark ladder to be completely empty
so that the initial condition for the density matrix is

Nst = 0d = Diags1,0d. s12d

This is in line with the translational symmetry of the prob-
lem, because no Wannier-Stark level stands out against the
others.

Now, we apply Dirac’s perturbation theory, where the un-
perturbed operator is given by the diagonal partHs0d

=DiagsH11,H22d and the perturbation by the nondiagonal
part Hsid=H−Hs0d. The correspondence between Heisenberg
and Dirac picture is given by

H̃jl ,j8l8std = e−Ejl t/i" Hjl ,j8l8
sid e+Ej8l8t/i";

Ñjl ,j8l8std = e−Ejl t/i"Njl ,j8l8stde
+Ej8l8t/i". s13d

Importantly, it holds thatfHs0d ,Ns0dg=0. The quantities with
the tilde obey the same equation of motion(11) and the

initial condition is Ñs0d=Ns0d. The first nonvanishing con-

tribution to Ñ22 is found second order in time and it holds
that

Ñ22
s2dstd =

1

"2E
0

t

dt1E
0

t

dt2 H̃21st1dÑ11s0dH̃12st2d. s14d

With Ñ11s0d=N11s0d=1 and Eq.(13), the explicit expressions
in the Heisenberg picture are

N2l,2l8
s2d std =

1

"2E
0

t

dt1E
0

t

dt2 o
l9=−`

+`

e+E2lst−t1d/i"

3H2l,1l9e
+E1l9st1−t2d/i"H1l9,2l8 e+E2l8st2−td/i".

The elements ofN22
s2d depend only onl − l8 because of the

translational symmetry. The tunneling probability in lowest

order is given bypstd=N2l,2l
s2d std=N20,20

s2d std=Ñ20,20
s2d std and it

follows that

pstd = o
l=−`

+` U 1

i"
E

0

t

dt8esE20−E1ldt8/i"U2

uH20,1lu2

= o
l=−`

+` S t

"
D2

sinc2sE20 − E1ldt
2 "

uH20,1lu2,

where sincx=sinsxd /x. With the explicit form of the interac-
tion matrix elements(10), the tunneling rate can be written
as

w =
psTd

T
=

ueFua
2p"

E
−p/a

+p/a

dk1E
−p/a

+p/a

dk2 f*sk1dg

3sk1 − k2,bdfsk2d, s15d

where

fskd = Z12skdexpH 1

ieF
E

0

k

dk8fĒ1sk8d − Ē2sk8dgJ ,

gsk,bd = o
l=−`

+`

sinc2Fsb − ald
p

a
Ge+isb−aldk; b =

E20 − E10

eF
.

s16d

The latter sum can be carried out explicitly(Appendix B)
and it holds that

gsk,bd = 1 −
ukua
2p

S1 − cos
2pb

a
D + i

ka

2p
sin

2pb

a
;

−
2p

a
ø k ø +

2p

a
. s17d

The result (15) is the same for any integration limits
sk0,k0+2p /ad, because the shift of the origin in the defini-
tion of the Kane functions(3) results only in a phase factor,
which is canceled in all measurable quantities. This is also
expected from the periodicity of the Bloch functions in re-
ciprocal space. The functiongsk,bd in Eq. (15) is a source of
1/F oscillations with periodea/ sE20−E10d, which is the re-
sult of anticrossings between the first and second Wannier-
Stark ladders.

We mention that the result does not depend on a particular
initial condition and would be the same for anyNs0d that is
diagonal in the band indices, if the tunneling probability is
defined asp=fN1l,1ls0d−N1l,1l

s2d stdg /N1l,1ls0d. In particular, for

a pure stateN̂s0d= uw1llkw1lu, the solution of the von Neu-
mann equation is equivalent to the solution of a time-
dependent Schrödinger equation with an initial stateuw1ll.
This is a result of second-order perturbation theory, where
the second band is considered always empty.

Let us now compare our result to the literature. In the
context of the crystal-momentum approximation, a tunneling
rate of the form
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w =
ueFua
2p"

UE dkZ12skdexpH 1

ieF
E

0

k

dk8fĒ1sk8d − Ē2sk8dgJU2

s18d

has been derived by many authors.4,6–8,13,14In some cases,
the integration is carried out from −p /a to +p /a, in other
cases from 0 to 2p /a, and some authors do not specify in-
tegral limits. One would expect that the result is independent
on the limits of the outer integral, except that the domain
length has to be 2p /a, but this is not the case, as we shall see
in the next section. Formula(18) is very similar to our result
(15), except thatgsk,bd is set equal to unity. However, this
function ensures independence of the integration limits. Fur-
thermore, having identifiedgsk,bd as a major source of 1/F
oscillations, the question arises, in which way formula(18) is
able to describe resonant tunneling and goes beyond the
semiclassical approach.

To find out which misconceptions lead to the expression
(18), we shall rederive Eq.(15) in a slightly different way,
which will also lead to a much simpler form of the present
result. In the Dirac picture, as a result of the translation sym-

metry, all submatrices matrices ofH̃ andÑ are Toeplitz ma-
trices, i.e., their elements depend only on the difference of
the indicesl − l8. A product of such matrices can be conve-
niently calculated by Fourier transform(Appendix A). With
the Fourier-transformed Hamiltonian,

H̃12sq,td = H̃21
* sq,td = o

l=−`

+`

e−iqasl−l8d H̃1l,2l8std

=e F e
sE10−E20dq

ieF Z12Sq −
eFt

"
D

3expH 1

ieF
E

0

q−eFt/"

dq8fĒ1sq8d − Ē2sq8dgJ ,

Equation(14) goes over into

Ñ22sq,td =
1

"2E
0

t

dt1E
0

t

dt2 H̃21sq,tdÑ11sq,0dH̃12sq,td

= UeF

"
E

0

t

dt8Z12Sq −
eFt8

"
D

3expH 1

ieF
E

0

q−eFt8/"

dq8fĒ1sq8d

− Ē2sq8dgJU2

Ñ11sq,0d.

The transition probability during one Bloch cycle is given by

psTd = N20,20
s2d sTd = Ñ20,20

s2d sTd =
a

2p
E

−p/a

+p/a

dqÑ22
s2dsq,Td

and with the initial conditionÑ11sq,0d=N11sq,0d=1 we find
for the tunneling rate

w =
ueFua
2p"

a

2p
E

−p/a

+p/a

dquE
q−p/a

q+p/a

dk fskdu2 s19d

with fskd defined in Eq.(16). It can be shown(Appendix C)
that this result is equivalent to the previous formulation(15).

The result(19) is closely related to the expression used in
the literature(18). The spurious dependence of the tunneling
probability on the integration limits is fixed by taking the
average over all intervals of length 2p /a.

Let us now discuss the assumption that lead to the result
in the literature. In order to obtain formula(18), the initial

condition has to be chosen such thatÑ11sq,t=0d=N11sq,t
=0d=2p /adIsq−q0d, which is compatible with the symmetry
of the problem, butHs0d does not commute withNs0d. This is
precisely the initial condition for the Houston functions. The
popular view that Bloch oscillations are a prerequisite for
tunneling, in other words, that the electron needs some
run-up before jumping, is the reason why the existing works
on Zener tunneling only rederive Houston’s result from
1940.

Let us come back to thep /3 problem, mentioned in Sec.
II. It can be shown that the correct prefactor is unity, if all
orders of the perturbation series are taken into account.43 The
reason is that the passage through the forbidden gap does not
occur infinitely slowly. A systematic treatment of nonadia-
batic transitions is possible by introducing a sequence of
superadiabatic bases, where, with increasing order, the pref-
actor reduces fromp /3 to unity.44,45

Finally, we discuss the influence of the result on the num-
ber of Bloch periods. The functionf, defined in Eq.(16),
fulfills fsk+2p /ad=e+i2pb/afskd. Therefore, the tunneling rate
for N periods is

wN =
psNTd
N T

=

sin2Npb

a

N sin2pb

a

w,

wherew is the tunneling rate for one Bloch cycle(19). The
same prefactor also appears in formula(18) when N Bloch
cycles are considered.13 The “spectrometer function” hasN
−1 zeros between the ladder crossingsb/aPZ and for N
→` goes over intodIsb/ad with period 1, which is Fermi’s
golden rule. Therefore, the occurrence of nonresonant tun-
neling, which means thatw is nonzero for allFÞ0, crucially
depends on the restriction to one Bloch cycle or, equiva-
lently, the assumption that tunneling during different Bloch
cycles is uncorrelated. As the memory is located in the non-
diagonal elements of the density matrix, this means that their
dephasing time(not to be confused with the lifetime of the
Wannier-Stark states, which is equal to the inverse tunneling
rate) needs to be well belowT so that the next Bloch cycle
starts again with a diagonalN. So far, all perturbational ap-
proaches of Zener tunneling implicitly make this assumption,
as the dephasing on the account of higher Wannier-Stark lad-
ders is not included in the two-band model.
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IV. NUMERICAL EXAMPLE

Superlattices are ideal objects to study Zener tunneling.
The parameters of the potentialUszd can be controlled by the
sample geometry and the material combination and the tun-
neling rate can be directly measured as an increase of the
linewidth of the optical transitions.

Here we present explicit results for a
GaAs/Ga0.92Al0.08As superlattice, which was studied experi-
mentally and theoretically in Refs. 25–28. The electron con-
finement is modeled by a rectangular potentialUszd, which is
shown in the left part of Fig. 1. The parameters ared
=76 Å; b=39 Å; a=115 Å, andh=63.2 meV. The electron
effective mass isme=0.067m0, with m0=9.109310−31 kg
being the electron rest mass.

The eigenvalue problem ofĤ for F=0 was solved nu-
merically using third-order(i.e., sectionally quadratic) B
splines with a step size ofa/230=0.5 Å. The Brillouin zone
was sampled by 400 points and convergence of all results
was ensured. The right part of Fig. 1 shows the dispersion of
the first two minibandsE1,2skd. The approximation of nearly
free electrons(dashed line) is very accurate already for the
first two minibands and is nearly indistinguishable from the
numerical solution for higher minibands(not shown). There-
fore, the conduction-electron states can be reasonably de-
scribed in the approximation of nearly free electrons and it
makes no difference if the semiclassical tunneling rate is
calculated by formula(7) or by formula(8). For this choice
of the origin, both the first and the second miniband belong

to case A so thatĒ1skd=E1skd and Ē2skd=E2skd.
The tunneling rate is shown in Fig. 2, where the quantity

"w, which has the dimension of an energy, is plotted versus
the electric fieldF. The result of the present paper(solid
line) is compared with the result of the literature for integra-
tion limits s0,2p /ad (dashed line) ands−p /a, +p /ad (dash-
dotted line), and with the semiclassical result, given by ex-
pression(8) (dotted line).

The present result(solid line) shows an overall increase of
the tunneling rate with the electric field, but also exhibits
pronounced oscillations, which are the result of interacting
Wannier-Stark ladders. The relative role of these oscillations
increases for decreasing field andwsFd reveals an infinite
number of maxima and minima.

The result(18) strongly depends on the integration limits,
which is widely unnoticed in the literature. An obvious
choice would bes0,2p /ad so that the electron jumps in the

middle of the period. In this case(dashed line), the tunneling
rate is nearly a monotonous function of the field. It reveals
very small oscillations which are negligible, compared to the
oscillations observed in the present result(solid line). It also
closely resembles the semiclassical result(dotted line). For
large F, the tunneling rate is by about 50% larger than the
semiclassical result. Taking into account the factorp2/9, the
difference reduces to about 40%. It is not clear if the semi-
classical result is too small and the result of perturbation
theory is too large, or both, because both approaches become
inaccurate for large fields. A numerical calculation by Holth-
aus also gives a tunneling rate which is larger than the semi-
classical result.32 For smallF, the result(18) with integration
limits s0,2p /ad closely approaches the semiclassical result,
multiplied by p2/9. This has also been found in analytical
calculations by Franz15 and Eilenberger.16 However, both
functions are not asymptotically equal, because the role of
oscillations increases for the dashed curve.

In the opposite case, with integration limitss−p /a,
+p /ad (dash-dotted line), the tunneling rate has an infinite
number of zeros, which appear between the level crossings.
By averaging over all possible integration intervals(19), the
present result(solid line) combines features of both the
dashed curve and the dash-dotted curve and, therefore, de-
scribes nonresonant and resonant tunneling. All three results
(solid line, dashed line, dash-dotted line) are equal at those

points whereĒ20−Ē10=eFal, l PZ, or, equivalently, where
b/a is an integer. In this case, the integral(18) is the same
for all integration limitssq0,q0+2p /ad.

The explicit results shown in Fig. 2 demonstrate that the
perturbational result from the literature(18) with appropriate
integration limits symmetric around the gap cannot be con-
sidered an improvement over the semiclassical result(8) and
any physical conclusions drawn from the difference between
the semiclassical result(8) and the expression(18) are spu-
rious. Thus the state of art in the field is a result from 1940,
which after all does not go beyond the semiclassical result
from 1934! The result derived in this paper(19), which is not
based upon the assumption of Bloch oscillations, consis-
tently takes into account resonant tunneling, which is mani-

FIG. 1. Left: Sketch of the superlattice potential. Right: First
and second miniband(solid line) and approximation of nearly free
electrons(dashed line).

FIG. 2. Theoretical tunneling rate"w versus electric fieldF.
Solid line: present result(19). Dashed line: formula(18) with inte-
gration limits s0,2p /ad. Dash-dotted line: formula(18) with inte-
gration limits s−p /a, +p /ad. Dotted line: semiclassical result(8).
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fested in pronounced oscillations of the tunneling rate.
Let us now make a comparison with recent experimental

results.27. The Zener tunneling leads to an increase of the
linewidth with increasing field in the optical absorption. For
exponential decay of the wave function, the resulting absorp-
tion line is a Lorentzian with a half width at half maximum
given by the decay constant. Then the tunneling rate, which
describes exponential decay of the probability, should be
compared to the full width at half maximum(FWHM) of the
absorption lines. Experimentally, it is observed that the line
shape is not exactly Lorentzian, but falls off more rapidly.
This is in line with the fact that, contrary to the assumptions
of Zener theory,pstd is a smooth function att=0.

The comparison between theory and experiment is shown
in Fig. 3. The present result(solid line) and the semiclassical
result (dashed line) are compared with the linewidth
(FWHM) of the optical transitions(black circles; cf. Fig. 2 of
Ref. 27). The broadening atF=0, which is due to other de-
cay mechanisms, was subtracted from the experimental line-
width. Although the theory does not use any adjustable pa-
rameters, we observe good agreement between theory and
experiment. The overall increase of the linewidth is de-
scribed by the semiclassical result. The experimental line-
width shows strong oscillations, which are due to interaction
of Wannier-Stark ladders(cf. Fig. 1 of Ref. 26). For interme-
diate and large fields, the positions of the maxima and
minima agree with the prediction of the theory(solid line).
The differences for small fields result from Coulomb inter-
action, which leads to excitonic Stark ladders.46 With regard
to the oscillations, the theoretical result is in good qualitative
agreement with the experimental data, compared to the result
of the literature(dashed curve in Fig. 2), which underesti-
mates the oscillations by orders of magnitude. However, the
amplitude of the oscillations in the experiment is systemati-
cally larger than predicted by theory. This is due to a princi-
pal limitation of the theory, which assumes tunneling during
different Bloch cycles to be uncorrelated, while the experi-
mental results suggest a weak correlation between tunneling
during subsequent Bloch cycles.

For the superlattice under consideration there exist also
all-numerical results for the optical density of states.25 These

results are found in better agreement of the the experimental
data than the result of perturbation theory.26 The reason is
that the full numerical calculation takes into account all
minibands and does not rely on assumptions about the
dephasing of nondiagonal elements. An even better agree-
ment between theory and experiment is achieved by calcu-
lating the absorption including Coulomb interaction.27 How-
ever, some discrepancies remain, which can be addressed to
the neglect of band mixing in the calculation.

V. SUMMARY AND CONCLUSIONS

In this paper we have derived the Zener tunneling rate by
means of quantum-mechanical perturbation theory using the
Kane functions as base functions. The tunneling rate in-
creases with field, like the semiclassical result, but also
shows pronounced 1/F oscillations, which are the result of
interacting Wannier-Stark levels. Therefore, the formula de-
rived in this paper, Eq.(19), is capable of describing both
nonresonant and resonant tunneling.

In contrast, the result derived in the context of the crystal-
momentum representation(18), which is the state of the art
until now, does not adequately describe resonant tunneling,
contrary to statements in the literature. The tunneling rate as
a function of the electric field is very similar to the semiclas-
sical result(8) in the whole field range. For small fields, both
functions are nearly identical, even though they are not as-
ymptotically equal. The result(18) does not contain new
qualitative features and cannot be considered as an improve-
ment over the semiclassical result. The inadequacy of the
previous result(18) to describe resonant tunneling and a spu-
rious dependence on the integration interval result from the
fact that the initial wave function is a Bloch function, which
is not an eigenstate of the unperturbed Hamiltonian. In the
present approach, these problems are fixed by choosing a
Kane function as initial wave function or, equivalently, an
initial density matrix which is diagonal in the basis of Kane
functions.

The formula derived in this paper Eq.(19) reproduces the
evolution of the line broadening in the optical absorption of
a biased superlattice. The oscillations observed in the experi-
ment are somewhat stronger than in theory, which indicates
that the transitions during different Bloch cycles are not
completely uncorrelated.
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APPENDIX A: FOURIER SERIES

Let v be a complex-valued function of real variablek and
vsk+2p /ad; a.0. Then the Fourier series ofv is given by

vskd = o
l=−`

+`

vle
−ikal; vl =

a

2p
E

−p/a

+p/a

dk eikalvskd. sA1d

Many rules for Fourier series are in complete analogy to the
rules for the Fourier transform, for example

FIG. 3. Tunneling rate"w versus electric fieldF. Solid line:
present result(19). Dotted line: semiclassical result(8). Circles:
experimental data(from Ref. 27).
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a

2p
E

−p/a

+p/a

dk8 vsk − k8dwsk8d = o
l=−`

+`

vlwle
−ikal sA2d

and

a

2p
E

−p/a

+p/a

dk v*skdwskd = o
l=−`

+`

vl
*wl , sA3d

can be considered as the convolution theorem and Parseval’s
theorem for Fourier series.

APPENDIX B: PROOF OF EQ. (17)

We wish to calculate the function

gsk,bd = o
l=−`

+`

sinc2Fsb − ald
p

a
Geisb−aldk = e+ikbvskd.

sB1d

For fixedb we define a functionv as

vskd = o
l=−`

+`

sinc2Fsb − ald
p

a
Ge−iakl sB2d

and notice that

o
l=−`

+`

sincFsb − ald
p

a
Ge−iakl = wskd

wskd = e−ikb for k P S−
p

a
, +

p

a
D ; wSk +

2p

a
D = wskd,

which can be directly verified by calculating the Fourier co-
efficients. In order to calculate the Fourier series(B2), we
use the convolution theorem(A2) and it follows that

vskd =
a

2p
E

−p/a

+p/a

dk8 wsk − k8dwsk8d=5S1 +
ka

2p
De−ikb −

ka

2p
e−isk+2p/adb for −

p

a
ø k ø 0

ka

2p
e−isk−2p/adb + S1 −

ka

2p
De−ikb for 0 ø k ø +

p

a
.

The functionv is periodic with period 2p /a and continuous.
The functional form of v is the same for −2p /aøk
ø−p /a and −p /aøkø0 and also for 0økø +p /a and
+p /aøkø +2p /a. Multiplication with e+ikb gives the result
(17).

APPENDIX C: EQUIVALENCE OF EXPRESSIONS (15)
AND (19)

The transition probability in Eq.(19) is equal to

p =
a

2p
E

−p/a

+p/a

dqUE
q−p/a

q+p/a

dk fskdU2

sC1d

with f defined in Eq.(16). The function fskde−ibk=uskd is
periodic. Therefore,f can be represented as

fskd = uskde+ibk = o
l=−`

+`

ule
+isb−aldk.

With

a

2p
E

−p/a

+p/a

dqE
q−p/a

q+p/a

dk e−isb−aldkE
q−p/a

q+p/a

dk8 e+isb−al8dk8

= S2p

a
D2

sinc2Fsb − ald
p

a
Gdll8

expression(C1) becomes

p = S2p

a
D2

o
l=−`

+`

uulu2 sinc2Fsb − ald
p

a
G .

With the convolution theorem(A2) and Parseval’s theorem
(A3) it follows that

p =E
−p/a

+p/a

dk1 u*sk1dE
−p/a

+p/a

dk2 vsk1 − k2dusk2d

with v defined in Eq.(B2). If u andv are substituted byf and
g we obtain the transition probability in Eq.(15).
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