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Nonresonant and resonant Zener tunneling
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The Zener tunneling rate is derived by quantum-mechanical perturbation theory, using the Kane functions as
base functions. This result is able to describe both nonresonant and resonant tunneling and is in line with recent
experimental findings on Zener tunneling in superlattices. In contrast, the result published in the literature,
which is the state of art up until now, does not adequately describe resonant Zener tunneling and is not an
improvement over the semiclassical theory. The reason for that is a misconception about the initial condition.
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I. INTRODUCTION ladders become resonances, i.e., nonstationary states with a
long lifetime. In case thatl(z) is an analytic function, the
resonances can be defined as complex eigenvalues of an ana-
lytically continued Hamiltoniad® The imaginary part of the
resonances, which governs the lifetime of wave packets,

The motion of an electron with mass and charge e in
one dimension in a lattice-periodic potentld(z)=U(z+a),
subjected to an electric fiel# is governed by the Hamil-

tonian approaches Zener’s expression for the tunneling rate in the
. 72 P limit of small F.2°
H=- oma2 U(z) +eFz (1) In recent years, the topic of Zener tunneling resurfaced in

the context of superlatticés?® and accelerating optical
This problem has drawn the attention of generations opotentials’®*-32The experimental data and numerical calcula-
physicists in the last 75 yeatsin his famous paper from tions show resonances which cannot be explained by Zener’s
1934, Zener calculated the tunneling rate of an electron fronsemiclassical theory. These resonances are related to interac-
the valence to the conduction band due to an external electrigons (“anticrossings” or “avoided crossingsof Wannier-
field? His calculation was based upon a semiclassical apStark ladders and are often called “resonant Zener tunnel-
proach, where energies in the gap region are assigned toilgg.” This can also be explained in the real-space picture,
complex Bloch wave number. This concept of branch-pointwhere the effective tunneling length of the potentiiz)
tunneling, which has been introduced previously by Lantau,+eFzis proportional to 1F, but also shows oscillations due
is known as Landau-Zener tunneling. to the periodicity ofU(z). Anticrossings of Wannier-Stark

In 1940, Houston derived an approximate solution of theladders have been observed previously in the optical spectra
time-dependent Schrodinger equation, where the wave fun@f superlattices without a direct connection made to Zener
tion is given by a Bloch function with time-dependent wave tunneling3334 In fact, Zener tunneling requires an entirely
number k(t)=k(0)-eFt/4.* Because the pointk and k  continuous spectrum and, therefore, cannot be explained on
+27/a in reciprocal space are equivalent, the electron perthe basis of discrete Wannier-Stark ladders.
forms oscillations with the period=2#%/|eFd, so-called In many cases, the experimental data are in good agree-
Bloch oscillations. In the 1950s and 1960s, approximatement with first-principle or model calculatiod$26.27:30:31
eigenfunctions of the Hamiltonia(l) were derived in the However, the relationship between nonresonant tunneling, as
framework of the crystal-momentum representafidf. described by the original Zener formula, and resonant tun-
These so-called Kane functions give rise to ladders oheling remains largely unclear. In particular, it is not clear, if
equally spaced eigenvaluds =Ej,+eFal; | €7 for each the Houston-Kane formalism—apparently an improvement
bandj, known as Wannier-Stark ladders. It can be shown thabver the semiclassical theory—can explain the effect of reso-
the Houston functions and the crystal-momentum represemant tunneling. The literature is remarkably silent about this
tation are equivalent by Fourier or gauge transfétfmi®The  point. To our knowledge, only one publication by Ao and
Zener tunneling rate has been calculated by quantumRammer deals with this questiéhThese authors found that
mechanical perturbation theory on the basis of both thehe result of perturbation theory containsFléscillations,
Houston and the Kane functions, leading to the samavhich are not found in Zener’s semiclassical result.
result*6-81314 1t was claimed by some authors that the In the present paper we derive a formula for the tunneling
guantum-mechanical result would approach the semiclassicahte which correctly takes into account nonresonant and reso-
result in the limitF — 0.1516 As perturbation theory is also nant Zener tunneling. We show that the result from the lit-
limited to small values oF, it is not clear in which way the erature, derived in the framework of Houston or Kane func-
guantum-mechanical result is an improvement over the semtions, is inconsistent, considerably underestimates the effect
classical result. of resonant tunneling, and cannot be considered an improve-

It was shown only in 1977 that the spectrum of a Blochment over the semiclassical theory. Explicit results are given
electron in an electric field is entirely continuotisyhich is  for a shallow superlattice, which has recently been studied
a prerequisite of Zener tunneling. Then the Wannier-Starlexperimentally and theoretically. In Sec. Il we introduce im-
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A
the semiclassical theory and the Kane functions. The tunnel- dz Y, (2)i =Z;(K).

= i’k
ing rate is derived in Sec. Il on the basis of Kane functions -al2 7k
and it is shown that the assumptions of the Houston-Kangqr symmetric potentials and the phase choice introduced
theory are inconsistent. In Sec. IV we show explicit resultsapove the diagonal matrix elements are eitfigtk) =0 or
for a shallow superlattice and make a comparison with eXij(k)EiaIZ (Kohn's cases A and B, see Ref.)36f a
perimental data. A summary is given in Sec. V. single band is considered, the origin of thaxis can always
be chosen such tha; (k) =0.

Now the eigenvalue problem for thg (k) reads

portant definitions and notations, and give a brief review on +al2 Ju
Z: r(k) = f
1]
a

Il. PRELIMINARIES

In this section we introduce the basic definitions, nota- {E-(k) +ieF£]"¢>-(k) +eF> Z: (K3 (K) = Egi(K),
tions, and conventions used in Sec. lll. Furthermore, we ) dk| ™ i . ! !

specify the result from the semiclassical theory as derived by o 5
Zener and others. with the boundary conditiofp;(k)="¢;(k+2m/a). The solu-

tion is trivial if the coupling between different bands is ne-

glected and it holds that
A. Bloch, Kane, and Houston functions

+7la o
For F=0, the eigenfunctions of the Hamiltonigf) can Ej= iJ dK'Ej(K')+eFal, 1eZ
be written as Bloch functions, 21 ) _ria
1 ’
(2= =€ u(2; uy(2=uy(z+a), 2 ~ 1 ) e
D= e w@EwE, @) " :exp{ L[ e, -5 )]}, o
0

wherej e N is the band index anl e (-w/a, +m/a] is the
Bloch wave number. The spectrum consists of energy band¥
Ei(k). We assume that) is piecewise continuouslJ(z) = —

| i Ei(k) = E;(k) + eFZ; (k).
=U(-2), and all gaps are open. For this case, a number of ik =Ejk) + eFZ;(k)
analytical properties have been derived in the famous papdrhe resulting functions

here

by Kohn3¢ In the extended zone schenkes R, it holds that rla
Ej(k)=Ej(k+2m/a). Furthermore, the bandg;(k) corre- 0i(2) = /ij dk 3 (K) i (2), (4)
spond to different branches of one multi-valued complex ! 2m) _a . .

analytic functionE(k), the so called “energy function.” The
phase of the Bloch functions can be chosen such th
Y@= (2); ¥ xe2ma(2)=i(2) and thatyy(2) is a com-
plex analytic function ok. A recipe for the numerical calcu-
lation, which ensures analyticity of the Bloch functions, was
given by the present auth&rWe assume the Bloch functions
to be normalized as

hich are the approximate eigenfunctions of the Hamiltonian
1), are known as Kane functioig%123They are orthonor-
mal, i.e.,<<pj||(pj/|/>:5”/t‘)‘||/, and Complete.

It is interesting to see the connection between Kane and
Houston functions. For fixed band indéxthe Kane func-
tions ¢; are a complete system in the subspace ofjthe
band. The expansion of a Bloch function with wave-number

kg in terms of Kane functions gives
a *
(2= il e =\ =2, ¢y (ko) gi (2).
where § is the periodic delta function with periodnZa. Viko(2) 2." <¢”|¢Jk°>¢"( ) 2772,: #iko)en (2
The Bloch functiong2) can be used as base functions for

solving the eigenvalue problem of the Wannier-Stark Hamil-The time dependence of the Kane functions in the absence of
tonian(1). This is done by the ansatz tunneling, i.e., when the nondiagonal matrix eleme#s(j
#]') are neglected, is

+mla
oD=3 /5 J ke (k)43 2). 01(2.0) = &V (2),
J

—-mla

<¢jk|¢j'k'>:J dz@;k(z)‘Pj’k’(Z) =9 ak—-K'),

. o Then the time-dependent Bloch functions
To determine the unknown functiorg(k), we have to cal-

t
culate the matrix elements of the perturbateffz Employ- A _ 1 = )
ing the explicit form of the Bloch functiong) we find*® Vi 2 = exp{ in)o AUELKIT [ ik (@ ®

i - d : with
f dz lﬂjk(Z)eFZlﬂjlkr(Z) =ieF 6”rd_k_5(k_ k )
- k(t) = ko~ eFt/fi
+eFak-k)z;j: (), are identical to the Houston functiohdhe replacement of
where the E;(k) by E;(k) was made latef!!1516
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B. Semiclassical Zener theory

In his famous paper from 1934, Zener calculated the tun

PHYSICAL REVIEW B9, 235317(2004)

ously justified within the theory. As in the semiclassical
theory, the transition probabilitp(T)=[n(0)—n(T)]/n(0) is

neling rate of a Bloch electron in the presence of an electrid€fined as the relative decrease of the occupation number

field? The main idea was to assign the gap region to com

during one Bloch cycle and the tunneling rate is given by

plex values of the Bloch wave number, where the imaginaryV=P(T)/T.

part is responsible for a tunneling probability lower than
unity. By deforming the integral on the complex energy
plane, the tunneling probability can be expresséd#s

1
p= exp{@§ dk E(k)],

(6)

To calculate the tunneling rate from the first to the second
band, it is assumed that tunneling from the second to the
third band is much more effective than from the first to the
second band, etc., so that downward tunneling is negligible
in comparison to upward tunneling. Then, from the point of
view of the theory, the excited states can be considered
empty. Interestingly, the increase of tunneling probability

where the integration is carried out on a closed contour, cywith increasing band index, which holds true for all realistic
cling in clockwise direction both conjugated complex branchpotentialsU(z), can be employed to prove the continuous
points, which connect the two energy bands. The tunnelingpectrum of the Wannier-Stark Hamiltoni&h).* In turn, a

rate is then given by the tunneling probabiljty divided by
the period of the Bloch oscillations=2x7/|eFd.

continuous spectrum is necessary for Zener tunneling, other-
wise there would be closed subspaces of Wannier-Stark lad-

In the case of nearly free electrons, the above integral caders with stationary states. Because much of the Zener theory

be carried out explicitly and the tunneling probability from
the first to the second bandi%

leFla p( m a E/
= expl - ——
27h 412|eF

with E;=E2(k0)—E1(k0) being the first gap, located &
=+xq/a. The function(7) monotonously increases with

w

)

and does not show any oscillations. The behavior in the ga

region is parabolic

Ex(K) — Ex(K) = Ej +

nAk=ko?
2m’

was developed before the continuous nature of the spectrum
was established, these assumptions and approximations are
not always clearly stated.

As a consequence of the above assumptions, the decrease
of the occupation number is linearly exponential with the
number of Bloch cycles and tunneling during different Bloch
cycles is uncorrelated. The first condition is in contradiction
to the time-reversal symmetry. Niu and Raizen found a non-
gxponential behavior af(t) neart=0, which goes over into
an exponential decay at larger tinf@éddolthaus found that
the ablation of daughter wave packets during different Bloch
cycles is not uncorrelated. The above-mentioned difficul-
ties are avoided in the mathematical theory, where the tun-

and the tunneling rate as function of the effective-mass paneling rate is defined as the imaginary part of the resonances.

rametersE; andm’ is3®

leFla p( Vm' 7E? )
w= expl — . 8
Py 2h|eF] ®

This formula was also derived by Franz without the assump
tion of nearly free electrofi and by Eilenberger for tightly
bound electron& It is also found true for the crossing of any
two bands, in the approximation of nearly free electrons
Hence, it is reasonable to consider E8) as the most gen-
eral form of the semiclassical result.

It was claimed that in the limiE — 0 the result of pertur-

bation theory would go over into the semiclassical result
(8)'>'%and in the mathematical theory, the imaginary part of

the resonance for smdflis found to be asymptotically equal
to expression(6).2° The results between perturbation theory

and semiclassical theory were found to differ by a factor of

(7/3)?~1.079. We shall come back to thig/3 problem in
the next section.

IIl. TUNNELING RATE

In this section we derive the tunneling rate by means of
quantum-mechanical perturbation theory and make a com-
parison with the result published in the literature. The per-
turbational approach is more rigorous than the original Zener
theory, but also makes assumptions which cannot be rigor-

This approach, which can also be used for numerical
calculationg®3! is restricted to analytic potentials. Alterna-
tively, one can numerically calculate the density of states
with no restriction in the number of subbands. Then the tun-
neling rate is manifested as a natural linewidth of the
Wannier-Stark resonancéx?®

As base functions for the following time-dependent per-
turbation theory we use the Kane functiqdg, which are the
eigenfunctions in the absence of band-to-band coupling. The
diagonal matrix element§=j’) of the Hamiltonian(1) are
given by Wannier-Stark ladders

Hjjiv :<‘le||:||99jl’>: Ejdi. 9
For the nondiagonal matrix elemenjs#j’) we find
+oo
Hjl’j”,:f dZ(,D“(Z)EFZ(Pj/V(Z)
a +ala
= ;J;ﬂ/a dk (,D”(k)eFZ”r(k)(pqu(k)
F +mla 1 k _
=288 gk ;j,(k)exp{,—f dK'[E; (')
2’7T —mla |eF 0
_Ejr(k,)_E“ +Ejr|r]}. (10)
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Without loss of generality, we consider tunneling between gt |2
two bands =1 andj’ =2. The von Neumann equation for the p(t)= >, _hf dt’ eEo Bt ||, 4|2
density matrix takes the form 1= | 17 Jo
(Eo— Ext
= SiNG—"—"—[Hy 4/%,
-3 (1) snelEa Sy,

d ) ‘ _(Hu|Hp\
ih— N =[HN@O]; H= (E’E)

. . . as
where for convenience, we introduced the block notations
+=(Hji i) and Njj =(Nj ). As we neglect downward
scatterlng from the second to the first minibandt=al, we
assume the first Wannier-Stark ladder to be completely filled
and the second Wannier-Stark ladder to be completely empty
so that the initial condition for the density matrix is

_ (Nu N12>
N21 N22 ’
(11) where sincx=sin(x)/x. With the explicit form of the interac-
tion matrix elementg10), the tunneling rate can be written

+7la
dky f
-7la

+mla

_P(T) _|eHa
T 2mh )

X (ky ~ ko, b)f(ko),

dk, (kg
(15

where

N(t = 0) = Diag(1,0). (12)

This is in line with the translational symmetry of the prob-
lem, because no Wannier-Stark level stands out against the

others.

Now, we apply Dirac’s perturbation theory, where the un-

perturbed operator is given by the diagonal p&tt”
=Diag(H1;,H,

and Dirac picture is given by

H]l,j'l’(t) = e_Ej|I/ifi H};?j,l,e+Ej’l’t/iﬁ;

|t/IhN il /|/(t)e+EJ |/t/IfL

j| ]’I/(t) (13)

Importantly, it holds thafH® ,N(0)]=0. The quantities with
the tilde obey the same equation of motighl) and the

initial condition is N(O):N(O). The first nonvanishing con-

tribution to sz is found second order in time and it holds
that

1 t t - - -
B = J dy f dty Har(t) N0 Hialty).  (14)
0 0

With Nll(O):Nll(O):l and Eq(13), the explicit expressions
in the Heisenberg picture are

NG 0= [ [

X Hy gttty o g*Ear (a0l

dtz E e+E2|(t Il)/lﬁ

""=—o

The elements oN(ZZZ) depend only on-I" because of the

translational symmetry. The tunneling probability in lowest

order is given byp(t) =Ny, ()=N% ,t)=NZ ,t) and it
follows that

| ,) and the perturbation by the nondiagonal
part HV=H-H®©, The correspondence between Heisenberg

[, = —
f(k) :le(k)exp{ E:fo dK'[E, (k") - Ez(kr)]},

+oo

gkb)= X smc{(b alh= } grib-alk. =

|=—

EZO_ ElO
eF
(16)

The latter sum can be carried out explicil§ppendix B
and it holds that

2mb ka . 2@b
(k,b):l—u<1— o] T >+i—sini;
a 2 a
—Z—Wsks +2—Tr. (17)
a a

The result(15) is the same for any integration limits
(kg,ko+2m/a), because the shift of the origin in the defini-
tion of the Kane functiong3) results only in a phase factor,
which is canceled in all measurable quantities. This is also
expected from the periodicity of the Bloch functions in re-
ciprocal space. The functiag(k,b) in Eq.(15) is a source of
1/F oscillations with periocea/ (E;g—E;g), which is the re-
sult of anticrossings between the first and second Wannier-
Stark ladders.

We mention that the result does not depend on a particular
initial condition and would be the same for aly0) that is
diagonal in the band indices, if the tunneling probability is
defined asp=[N1,,1,(0)—N(lf?ll(t)]/Nl,,ﬂ(O). In particular, for

a pure stateN(0)=|¢y){¢y|, the solution of the von Neu-
mann equation is equivalent to the solution of a time-
dependent Schrodinger equation with an initial statg).
This is a result of second-order perturbation theory, where
the second band is considered always empty.

Let us now compare our result to the literature. In the
context of the crystal-momentum approximation, a tunneling
rate of the form

235317-4
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—@fdkz K ifkdk'Ek’ — E, (K
W= ot 1o(K)ex ieFJ, [Ei(k") o(k")]

(18)

2 |eF|a a +mla g+mla
= d dk f(k)|? 19
w="— 27J_ q (k)| (19

mla q-mla

) with f(k) defined in Eq(16). It can be showriAppendix Q
has been derived by many auth6fs®+344In SOme Cases,  that this result is equivalent to the previous formulatjt).
the integration is carried out froms/a to +m/a, in other The result(19) is closely related to the expression used in
cases from 0 to #/a, and some authors do not specify in- the |iterature(18). The spurious dependence of the tunneling
tegral limits. One would expect that the result is '”deDe”de”brobability on the integration limits is fixed by taking the
on the limits of the outer integral, except that the domai”average over all intervals of lengthr2a.
length has to be 2/a, but this is not the case, as we shall see | ¢t s now discuss the assumption that lead to the result
in the next section. Formuld8) is very similar to our result i, the Jiterature. In order to obtain formutd8), the initial

(15), except thag(k,b) is set equal to unity. However, this condition has to be chosen such tMl(q,t:O):Nll(q,t

function ensures independence of the integration limits. Fur- . _ : S . .
thermore, having identified(k,b) as a major source of F/ =0)=2m/ad(q-do), which is compatible with the symmetry

© itN©, This i
oscillations, the question arises, in which way formld) is of th_e problem,_t_)uH dc_J_es not commute with'™. 'I_'h|s IS
. : recisely the initial condition for the Houston functions. The
able to describe resonant tunneling and goes beyond the . - L
. ) popular view that Bloch oscillations are a prerequisite for
semiclassical approach. . .
: . . . . tunneling, in other words, that the electron needs some
To find out which misconceptions lead to the expression 'k tore iumping. is the reason why the existing works
(18), we shall rederive Eq(15) in a slightly different way, P jumping, y 9

which will also lead to a much simpler form of the present(ljgmcz)ener tunneling only rederive Houston's resuilt from

result. In the Dirac picture, as a result of the translation sym- Let us come back to the/3 problem, mentioned in Sec.

metry, all submatrices matrices bf andN are Toeplitz ma- || |t can be shown that the correct prefactor is unity, if all
trices, i.e., their elements depend onIy_on the difference ofgers of the perturbation series are taken into acctiFfte
the indicesl —I". A product of such matrices can be conve- gason is that the passage through the forbidden gap does not
niently calculated by Fourier transforthppendix A). With  gccyr infinitely slowly. A systematic treatment of nonadia-
the Fourier-transformed Hamiltonian, batic transitions is possible by introducing a sequence of
superadiabatic bases, where, with increasing order, the pref-
actor reduces fromr/3 to unity?44°

Finally, we discuss the influence of the result on the num-
ber of Bloch periods. The functiof, defined in Eq.(16),
(E10-E209 12< eFt) fulfills f(k+2m/a)=e*2™/af(k). Therefore, the tunneling rate

+oo

ﬁlz(q,t)=ﬁ;1(q,t): > gaald) ﬁ1|,2|/(t)

|=—o0

=eFe er =% for N periods is
1 fq—eFt/ﬁ _ _
xXexpy — do'[Es(a’) —Ex(q)] ¢,
ieFJy ! ? i
p(NT) a_
Equation(14) goes over into NTONT mh
N Sinzg

t t
Nosa0 =25 | ot [ ot Pl @M@ 0Pl
o -0 wherew is the tunneling rate for one Bloch cyci&9). The
eE (! ) eFt same prefactor also appears in form@®) whenN Bloch
= ?J dt'Zy5\ - 5 cycles are consideréd.The “spectrometer function” has
0 -1 zeros between the ladder crossidgs e Z and for N
1 (aeftih  — — oo goes over intod(b/a) with period 1, which is Fermi’'s
xex E:J dg'[Es(q’) golden rule. Therefore, the occurrence of nonresonant tun-
0 neling, which means that is nonzero for alF # 0, crucially
2 _ depends on the restriction to one Bloch cycle or, equiva-
N11(q,0). lently, the assumption that tunneling during different Bloch
cycles is uncorrelated. As the memory is located in the non-
diagonal elements of the density matrix, this means that their
dephasing timgnot to be confused with the lifetime of the

—E(q’)]}

The transition probability during one Bloch cycle is given by

5 a [t . Wannier-Stark states, which is equal to the inverse tunneling
P(T) =N ,dT) =N& ,dT) = o dgN3(q,T) rate) needs to be well below so that the next Bloch cycle
TJ ~mla starts again with a diagon&l. So far, all perturbational ap-

_ proaches of Zener tunneling implicitly make this assumption,
and with the initial conditiorN;4(q,0)=N;;(q,0)=1 we find  as the dephasing on the account of higher Wannier-Stark lad-
for the tunneling rate ders is not included in the two-band model.
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FIG. 1. Left: Sketch of the superlattice potential. Right: First
and second miniban@solid line) and approximation of nearly free
electrong(dashed ling

F (kV/cm)

IV. NUMERICAL EXAMPLE

. . . . FIG. 2. Theoretical tunneling ratkw versus electric field-.
Superlattices are ideal objects to study Zener tunnellngSolid line: present resul(tl9). Dashed line: formul&l8) with inte-

The parameters of the potentld(z) can be controlled by the g ation Jimits (0, 27/a). Dash-dotted line: formulal8) with inte-
sample geometry and the material combination and the tunyration limits (-/a, +/a). Dotted line: semiclassical resuB).
neling rate can be directly measured as an increase of the

linewidth of the optical transitions. middle of the period. In this cagelashed ling the tunneling
Here ~ we  present explicit results for & rate i nearly a monotonous function of the field. It reveals
GaAs/Gg Al 0gAs superlattice, which was studied experi- yery small oscillations which are negligible, compared to the
mentally and theoretically in Refs. 25-28. The electron conggcijjations observed in the present regatilid line). It also
finement is modeled by a rectangular poteritléd), which is  ¢josely resembles the semiclassical regdttted ling. For
shown in the left part of Fig. 1. The parameters ate |argeF, the tunneling rate is by about 50% larger than the
=76 A; b=39 A; a=115 A, andh=63.2 meV. The electron semiclassical result. Taking into account the factdf9, the
effective mass igm,=0.067my, with my=9.109x10°"kg (ifference reduces to about 40%. It is not clear if the semi-
being the electron rest mass. classical result is too small and the result of perturbation
The eigenvalue problem dfi for F=0 was solved nu- theory is too large, or both, because both approaches become
merically using third-order(i.e., sectionally quadraticB inaccurate for large fields. A numerical calculation by Holth-
splines with a step size @/230=0.5 A. The Brillouin zone aus also gives a tunneling rate which is larger than the semi-
was sampled by 400 points and convergence of all resultslassical resuff? For smallF, the resul{18) with integration
was ensured. The right part of Fig. 1 shows the dispersion dfmits (0,27/a) closely approaches the semiclassical result,
the first two miniband$; (k). The approximation of nearly multiplied by 72/9. This has also been found in analytical
free electrongdashed lingis very accurate already for the calculations by Frar2 and Eilenberge¥® However, both
first two minibands and is nearly indistinguishable from thefunctions are not asymptotically equal, because the role of
numerical solution for higher minibandsot shown. There-  oscillations increases for the dashed curve.
fore, the conduction-electron states can be reasonably de- In the opposite case, with integration limi{s-7/a,
scribed in the approximation of nearly free electrons and i+ w/a) (dash-dotted ling the tunneling rate has an infinite
makes no difference if the semiclassical tunneling rate isiumber of zeros, which appear between the level crossings.
calculated by formulg7) or by formula(8). For this choice By averaging over all possible integration intervél9), the
of the origin, both the first and the second miniband belongresent result(solid line) combines features of both the
to case A so thaE;(k)=E;(k) and Ex(k) =E,(K). dashed curve and the dash-dotted curve and, therefore, de-
The tunneling rate is shown in Fig. 2, where the quantityscribes nonresonant and resonant tunneling. All three results
Aw, which has the dimension of an energy, is plotted versugsolid line, dashed line, dash-dotted lirere equal at those
the electric fieldF. The result of the present papeolid  points whereE,,—E;o=eFal,l € Z, or, equivalently, where
line) is compared with the result of the literature for integra-b/a is an integer. In this case, the integtaB) is the same
tion limits (0,2w/a) (dashed lingand(—w/a, +m/a) (dash-  for all integration limits(qgg,go+27/a).
dotted ling, and with the semiclassical result, given by ex-  The explicit results shown in Fig. 2 demonstrate that the
pression(8) (dotted ling. perturbational result from the literatu¢@8) with appropriate
The present resufsolid line) shows an overall increase of integration limits symmetric around the gap cannot be con-
the tunneling rate with the electric field, but also exhibitssidered an improvement over the semiclassical r¢8uknd
pronounced oscillations, which are the result of interactingany physical conclusions drawn from the difference between
Wannier-Stark ladders. The relative role of these oscillationshe semiclassical resul8) and the expressio(l8) are spu-
increases for decreasing field amdF) reveals an infinite rious. Thus the state of art in the field is a result from 1940,
number of maxima and minima. which after all does not go beyond the semiclassical result
The result(18) strongly depends on the integration limits, from 1934! The result derived in this pap@®), which is not
which is widely unnoticed in the literature. An obvious based upon the assumption of Bloch oscillations, consis-
choice would bg0,27/a) so that the electron jumps in the tently takes into account resonant tunneling, which is mani-
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9 results are found in better agreement of the the experimental
/ . data than the result of perturbation thedtylhe reason is
. that the full numerical calculation takes into account all
/ a minibands and does not rely on assumptions about the

B

% oy’ dephasing of nondiagonal elem_ents. An even better agree-
£ — ment between theory and experiment is achieved by calcu-
= .
e

P lating the absorption including Coulomb interacti@row-
3 v ever, some discrepancies remain, which can be addressed to
ﬁ/ the neglect of band mixing in the calculation.

0 Y ol V. SUMMARY AND CONCLUSIONS

0 20 40 60 In this paper we have derived the Zener tunneling rate by

F (kV/cm) means of quantum-mechanical perturbation theory using the
Kane functions as base functions. The tunneling rate in-
creases with field, like the semiclassical result, but also
shows pronounced F/oscillations, which are the result of
interacting Wannier-Stark levels. Therefore, the formula de-
rived in this paper, Eq(19), is capable of describing both
fested in pronounced oscillations of the tunneling rate. nonresonant and resonant tunneling.

Let us now make a comparison with recent experimental |y contrast, the result derived in the context of the crystal-
results?’. The Zener tunneling leads to an increase of thenomentum representatiq.8), which is the state of the art
exponential decay of the wave function, the resulting absorpeontrary to statements in the literature. The tunneling rate as
tion line is a Lorentzian with a half width at half maximum 5 fynction of the electric field is very similar to the semiclas-
given by the decay constant. Then the tunneling rate, whickjca) result(8) in the whole field range. For small fields, both
describes exponential decay of the probability, should bgynctions are nearly identical, even though they are not as-
absorption lines. Experimentally, it is observed that the lineygjitative features and cannot be considered as an improve-
shape is not exactly Lorentzian, but falls off more rapidly. ment over the semiclassical result. The inadequacy of the
This is in line with the fact that, contrary to the assumptionspre\,iOus resul{18) to describe resonant tunneling and a spu-
of Zener theoryp(t) is a smooth function at=0. rious dependence on the integration interval result from the

The comparison between theory and experiment is showgyct that the initial wave function is a Bloch function, which
in Fig. 3. The present resulsolid line) and the semiclassical s not an eigenstate of the unperturbed Hamiltonian. In the
result (dashed ling are compared with the linewidth present approach, these problems are fixed by choosing a
(FWHM) of the optical transitiongblack circles; cf. Fig. 2 0of  Kane function as initial wave function or, equivalently, an
Ref. 27. The broadening &t =0, which is due to other de- jnjtial density matrix which is diagonal in the basis of Kane
cay mechanisms, was subtracted from the experimental lingynctions.
width. Although the theory does not use any adjustable pa- The formula derived in this paper E(L9) reproduces the
rameters, we observe good agreement between theory aagolution of the line broadening in the optical absorption of
experiment. The overall increase of the linewidth is de-3 pijased superlattice. The oscillations observed in the experi-
scribed by the semiclassical result. The experimental ”nement are somewhat Stronger than in theory, which indicates

width shows strong oscillations, which are due to interactionhat the transitions during different Bloch cycles are not
of Wannier-Stark laddergf. Fig. 1 of Ref. 26. For interme-  completely uncorrelated.

diate and large fields, the positions of the maxima and
minima agree with the prediction of the theqsolid line). ACKNOWLEDGMENTS

The differences for small fields result from Coulomb inter- _
action, which leads to excitonic Stark laddé¥aVith regard The author wishes to thank F. Bechstedt and J.-M. Wagner
for comments on the manuscript and B. Rosam for interest-

to the oscillations, the theoretical result is in good qualitative; X . ;
agreement with the experimental data, compared to the resdft9 discussions and the experimental data.
of the literature(dashed curve in Fig.)2 which underesti-
mates the oscillations by orders of magnitude. However, the
amplitude of the oscillations in the experiment is systemati- Letv be a complex-valued function of real variatd@and
cally larger than predicted by theory. This is due to a princi-u(k+27/a); a>0. Then the Fourier series ofis given by
pal limitation of the theory, which assumes tunneling during

FIG. 3. Tunneling rateiw versus electric field=. Solid line:
present resul(19). Dotted line: semiclassical resul®). Circles:
experimental datéfrom Ref. 27.

APPENDIX A: FOURIER SERIES

+oo

different Bloch cycles to be uncorrelated, while the experi- : _ikal. ! *mla ikal

mental results suggest a weak correlation between tunneling v(k) = |—2 vie ™ v = 2m) dk é“v(k). (A1)
=—00 -7

during subsequent Bloch cycles.
For the superlattice under consideration there exist alsMany rules for Fourier series are in complete analogy to the
all-numerical results for the optical density of state$hese  rules for the Fourier transform, for example
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a +mla Foo .
— dk’ v(k-=k)wk') = >, vwe @  (A2)
277 —mla |=—o0
and
a +mla +oo
— dk " (Kw(k) = X vw, (A3)
2] _a |=—0

can be considered as the convolution theorem and Parseval’s

theorem for Fourier series.

APPENDIX B: PROOF OF EQ. (17)

We wish to calculate the function

+0o0

g(k,b)= >, sinc{(b - a|)ﬂei<b-a'>k = ek (Kk).

|=—
(B1)

For fixedb we define a function as

ka

+mla (1 +
a 21
o= f dk’ wik — k" )w(k')=

ka

-7la

21

The functionu is periodic with period zr/a and continuous.

The functional form ofv is the same for —-#Z/as<k

<-w/a and -m/a<k=0 and also for k< +x/a and
+m/a<k< +27/a. Multiplication with e"'* gives the result

17).
APPENDIX C: EQUIVALENCE OF EXPRESSIONS (15)
AND (19)

The transition probability in Eq(19) is equal to

a +mla g+mla 2
p=— J dg J dk f(k)
2m —mla

q-mla
with f defined in Eq.(16). The functionf(k)e®*=u(k) is
periodic. Thereforef can be represented as

+oo

f(k) — u(k)e+ibk: E U|e+i(b_al)k-

|=—c0

(C1)

With

“ikb K& ir2mab

X8 citk-2mab o (1 _ @)e—ikb for

PHYSICAL REVIEW B 69, 235317(2004)

+oo

(k)= > sin&[(b—ang]e—iam

|=—o0

(B2)

and notice that

+0o0

S sin (b—al)g]e‘iak'zw(k)

|=—c0

W(k):e-ikb for k€<—§,+§); W(""‘%):W(k),

which can be directly verified by calculating the Fourier co-
efficients. In order to calculate the Fourier seri&2), we
use the convolution theore(®2) and it follows that

— for -
2

o[y
N
=~
i
o

o
I
=
A
+
S|

2

+mla g+m/a gt+mla
a dqf dk e—i(b—al)kf die etitb-al K’

27) _oa q-mla q-mla

2
= (2—77> sinc{(b - al)z} S/
a a

expressionCl) becomes

5 +o0
p= (2;77) > Juf? sinc’-{(b— al)g} :

|=—o0

With the convolution theorenfA2) and Parseval’s theorem
(A3) it follows that

+mla +mla
p= f dk; u (ky) dko v(ky = ko)u(ky)
—mla —-mla

with v defined in Eq(B2). If u andv are substituted bj and
g we obtain the transition probability in E¢L5).

235317-8



NONRESONANT AND RESONANT ZENER TUNNELING PHYSICAL REVIEW B9, 235317(2004)

*Electronic address: stephan@ifto.physik.uni-jena.de and A. Wacker, Phys. Rev. Let82, 3120(1999.
1F. Bloch, Z. Phys.52, 555(1928. 253, Glutsch and F. Bechstedt, Phys. Rev66 16 584(1999.
zC- Zener, Proc. R. Soc. London, Ser.J45, 523 (1934). 268, Rosam, D. Meinhold, F. Léser, V. G. Lyssenko, S. Glutsch, F.
L. Landau, Phys. Z. Sowjetuniof, 88 (1932; 2, 46 (1932. Bechstedt, F. Rossi, K. Kéhler, and K. Leo, Phys. Rev. L88.
4\W. V. Houston, Phys. Re\57, 184 (1940. 1307(2003)
5 .
E. N. Adams, J. Chem. Phy21, 2013(1953. 27S. Glutsch, F. Bechstedt, B. Rosam, and K. Leo, Phys. Re&3,B

6E. N. Adams, Phys. Rev107, 698 (1957.

7 L. V. Keldysh, zh. Eksp. Teor. Fiz33, 994 (1957 [Sov. Phys.
JETP 6, 763(1958)].

8E. 0. Kane, J. Phys. Chem. Solid®, 181 (1959.

085307(200D).
28D, Meinhold, K. Leo, N. A. Fromer, D. S. Chemla, S. Glutsch, F.
Bechstedt, and K. Kdhler, Phys. Rev. @&, 161307(2002.
29 o ;
9G. H. Wannier, Phys. Rev117, 432 (1960). M. Glick, A. R. Kolovsky, H. J. Korsch, and F. Zimmer, Phys.

10g O, Kane, J. Appl. Phys32, 83 (1961). 5o V- B 65, 115302(2002. N
11 Fritsche, Phys. Status Solidi3, 487 (1966). C. F. Bharucha, K. W. Madison, P. R. Morrow, S. R. Wilkinson,

12p_E. Aspnes and N. Bottka, iSsemiconductors and Semimetals " B. Sundaram, and M. G. Raizen, Phys. Rev5B, R857(1997).
Vol. 9, edited by. R. K. Willardson and A. C. Beghcademic, M. Glick, A. R. Kolovsky, and H. J. Korsch, Phys. Rev. Le88,

New York, 1973, p. 457. 891(1999.
133, B. Krieger and G. J. lafrate, Phys. Rev.3B, 5494(1986: J.  >M. Holthaus, J. Opt. B: Quantum Semiclassical Off. 589
Zak, ibid. 38, 6322(19898; G. J. lafrate and J. B. Kriegeihid. (2000.
38, 6324(1988. 33H. Schneider, H. T. Grahn, K. v. Klitzing, and K. Ploog, Phys.
143, B. Krieger and G. J. lafrate, Phys. Rev.3B, 9644(1987). Rev. Lett. 65, 2720(1990).
15W. Franz, Z. Naturforsch. AL4A, 415(1959. 34R. Till, H. Kiimmel, A. Philipp, G. Béhm, and G. Weimann,
16G. Eilenberger, Z. Phys164, 59 (1961). Superlattices Microstruct24, 227 (1999.
173, E. Avron, J. Zak, A. Grossmann, and L. Gunther, J. Math. Phys®*P. Ao and J. Rammer, Phys. Rev.4}, 11 494(1991).
18, 918(1977. 36\, Kohn, Phys. Rev115, 809 (1959.
18] W. Herbst and J. S. Howland, Commun. Math. Phg§, 23 87S. Glutsch, J. Phys.: Condens. Mattkt, 5533(1999.
(19812). 38]. Callaway,Quantum Theory of the Solid Statend ed.(Aca-
191, W. Herbst, Commun. Math. Phyg5, 197 (1980. demic Press, San Diego, 1991
20y, Grecchi, M. Maioli, and A. Sacchetti, J. Phys. 26, L379  3°K. B. McAfee, E. J. Ryder, W. Shockley, and M. Sparks, Phys.
(1993; Commun. Math. Phys159, 605 (1994). Rev. 83, 650(1951).

2LA. Di Carlo, P. Vogl, and W. Pdtz, Phys. Rev. 1), 8358(1994. 4OW. Franz, inEncyclopedia of Physicsdited by S. Fliigge, Vol.
22K, Murayama, H. Nagasawa, S. Ozaki, M. Morifuji, C. Hamagu- 17 (Springer, Berlin, 1956 p. 155.

chi, A. Di Carlo, P. Vogl, G. Béhm, and G. Weimann, Superlat- 4'P. Ao, Phys. Rev. B41, 3998(1990).

tices Microstruct.20, 493 (1996; M. Morifuji, K. Murayama,  42Q. Niu and M. G. Raizen, Phys. Rev. Le0, 3491(1998.

C. Hamaguchi, A. Di Carlo, P. Vogl, G. Béhm, and M. Sexl, 43J. P. Davis and P. Pechukas, J. Chem. Pliys.3129(1976.

Phys. Status Solidi B204, 368(1997). 44M. V. Berry, Proc. R. Soc. London, Ser. A29, 61 (1990).
23A. Sibille, J. F. Palmier, and F. Laurelle, Phys. Rev. L&0,  “°M. V. Berry and R. Lim, J. Phys. A26, 4737(1993.
4506(1999. 46 M. M. Dignam and J. E. Sipe, Phys. Rev. Le®4, 1797(1990;

24M. Helm, W. Hilber, G. Strasser, R. De Meester, F. M. Peeters, Phys. Rev. B43, 4097 (1991).

235317-9



