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In quantum-dot laser devices containing a quasi-two-dimensional wetting layer, a pump process initially
populates the wetting-layer states. The scattering of carriers from these spatially-extended quasi-two-
dimensional states into the quantum-dot states as well as the relaxation of carriers between the quantum-dot
levels are studied theoretically. Based on the wave functions for the coupled quantum-dot/wetting-layer system
interaction matrix elements are calculated for carrier-carrier Coulomb interaction and carrier-phonon interac-
tion. Scattering rates for various capture and relaxation processes are evaluated under quasiequilibrium con-
ditions. For elevated carrier densities in the wetting layer, Coulomb scattering provides processes with capture
(relaxation) times typically faster than 10 pss1 psd. When energy conservation allows for interaction with LO
phonons, comparable rates are obtained.
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I. INTRODUCTION

To optimize the design of novel quantum-dot(QD) based
laser devices1,2 as well as to provide a detailed understanding
of steady-state and dynamical emission properties in these
devices,3,4 a quantitative description of various electronic
scattering processes is necessary. Self-assembled QD’s are
typically grown on a quasi-two-dimensional wetting layer
(WL). Correspondingly, the relevant electronic structure con-
sists of two parts. The localized QD states with discrete en-
ergies due to the three-dimensional QD confinement poten-
tial are energetically below a quasicontinuum of two-
dimensional delocalized WL states. While the localized QD
states are used for the laser transition, the pump process ini-
tially generates carriers in the WL. Hence the carrier dynam-
ics in QD based laser devices critically depends on the cap-
ture of carriers from the WL into the QD’s as well as on the
relaxation of carriers between the discrete QD states. An im-
portant question is to what extent these processes limit the
laser operation in comparison to the extensively studied
quantum-well lasers.5

In laser devices the pump process creates a high density
electron-hole plasma in the delocalized states. Under these
conditions carrier-carrier scattering can provide efficient
transitions for electrons and holes from the delocalized WL
states into the discrete localized QD states(carrier capture)
as well as between the discrete QD states(carrier
relaxation).6,7 In previous references the transition rates have
been calculated for processes where an electron or hole is
scattered from the WL into the QD or between two QD states
and the energy is transfered to another carrier in the WL. A
detailed inspection of the kinetic equation for Coulomb scat-
tering shows that these are only some of the possible pro-
cesses. A relaxation process starting with two carriers in an
excited QD state where one is scattered into the QD ground
state and the other into the WL, studied in Ref. 8, is only one
among other examples. The analysis in Ref. 6 has been sim-
plified by assuming QD states of a three-dimensional
infinite-barrier box. More realistic wave functions for this
calculation have been used in Ref. 9 and the dependence of

scattering rates on the QD geometry has been studied in
Ref. 10.

On the other hand, interaction with LO-phonons can also
lead to efficient scattering channels provided that energy
conservation can be fulfilled. While the energy separation of
QD states typically does not match the LO-phonon energy,
capture processes of carriers from the WL to the QD states
are often possible for holes since they have a shallower con-
finement energy than electrons. In Refs. 11 and 12 capture
rates have been computed using Fermi’s golden rule, i.e.,
population effects are neglected.

Experimental evidence for fast capture and relaxation pro-
cesses is given by the strong QD ground-state photolumines-
cence following an excitation of the WL or barrier states.
From the rise time of the QD photoluminescence13,14and the
ratio of the QD and WL emission15 the efficiency of capture
and relaxation at low temperatures has been studied. Also it
has been pointed out that it is not the two-dimensional nature
of the WL but the availability of a quasicontinuum of states
that facilitates the scattering processes.16

The aim of this paper is to present a systematic study of
the relative importance of various capture and relaxation pro-
cesses due to carrier-carrier and carrier-LO phonon scatter-
ing. Previous investigations are extended in the following
directions: (i) calculations are not restricted to Fermi’s
golden rule but include population effects,(ii ) both in- and
out-scattering processes are considered for the calculation of
capture and relaxation times,(iii ) additional scattering pro-
cesses and the role of Coulomb exchange contributions to the
scattering integrals are examined,(iv) properly orthogonal-
ized states are systematically used and the influence of the
wave function model on the scattering rates is analyzed, and
(v) a theoretical model of screening in the coupled QD-WL
system is provided.

II. THEORY FOR COULOMB SCATTERING

A. Boltzmann’s equation

The carrier dynamics under the influence of various scat-
tering processes can be described by kinetic equations. In
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this section we consider Coulomb-interaction processes up to
quadratic order in the screened Coulomb potential(second-
order Born approximation) and restrict ourselves to time
scales where the Markov approximation is valid. On this
level, the changes of the carrier populationfn in the state
with energy«n due to carrier-carrier scattering are given by

]
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Two carriers are scattered out of statesn1 andn3 into statesn
andn2 and vice versa. Scattering into a staten is proportional
to the nonoccupation of that states1− fnd while scattering out
of this state depends on the populationfn. Accordingly, the
second and third line of Eq.(1) determine the availability of
scattering partners. Since the scattering involves identical
fermions, the scattering cross section is determined by
screened Coulomb matrix elements for the direct and ex-
change interactionuWnn2n3n1

u2 and Wnn2n3n1
Wnn2n1n3

* , respec-
tively. The total rate involves the sum over all possible scat-
tering statesn1,n2,n3. The delta function in the last line of
Eq. (1) ensures energy conservation.

B. Wave functions and Coulomb matrix elements

The interaction matrix elements of the bare Coulomb po-
tential vsr −r 8d,

Vnn2n3n1
=E d3rd3r8Fn

*sr dFn2

* sr 8dvsr − r 8dFn3
sr 8dFn1

sr d,

s2d

contain the single-particle wave functionsFnsr d of electrons
and holes in the confinement potential of the combined
QD-WL system. It is a complicated task on its own and
beyond the scope of this paper to compute these single-
particle states for a given confinement situation that depends
on the QD geometry, the strain profile and possible compo-
sition variations within the QD.

As a simple model for the QD confinement, the wave
functions within a three-dimensional box with infinitely high
walls have been used in Ref. 6 to compute the Coulomb
interaction matrix elements. Wojset al.17 have shown that for
lens-shaped QD’s on a WL with a QD height small in com-
parison to the QD diameter the in-plane component of the
QD wave functions resembles in good approximation that of
a two-dimensional harmonic oscillator. In the following we
adopt this model for the(weak) in-plane confinement while
for the (strong) confinement in the direction perpendicular to
the WL a finite-height potential barrier will be used. To ac-
count for a finite energetic height of the QD confinement
potential only localized states within a given energy range
are considered.

In a WL devoid of QD’s the states would be described by
plane waves for the in-plane part, multiplied by the state
corresponding to the finite-height barrier confinement for the

perpendicular direction. In the presence of the QDs this pic-
ture still holds as a good approximation far away from the
dots. Close to the QD’s, however, strong perturbations are
expected, mainly due to the orthogonality requirement which
brings in additional oscillations. Commonly6,18 this situation
is described by using the orthogonalized plane wave(OPW)
scheme, summarized in Appendix A.

We consider an ensemble of identical QD’s and assume
that the states of different QD’s are nonoverlapping. This is
true for low QD densities where the mean QD spacing is
much larger than the confinement length of the oscillator
states. Another instance of interaction between QD’s is pro-
vided by the Coulomb matrix elements. As shown below
some scattering channels may, in principle, involve localized
states belonging to different QD’s. Nevertheless, these pro-
cesses are limited to QD’s less than a screening length apart.
Considering a regime where the screening length is much
smaller than the mean QD distance(sufficientlly high carrier
densities and/or sufficiently dilute QD’s) no such interaction
takes place. The theory can of course be extended beyond
this regime of parameters, but this will not be done here.

The advantage of the discussed approximation scheme is
that for all possible combinations of QD and WL states the
Coulomb matrix elements can be determined to a large ex-
tent analytically. For a WL extending in thex−y plane the
separation of the wave function into in-plane andz compo-
nents takes the form

Fnsr d = wl
bs%djs

bszdubsr d, s3d

whereubsr d are Bloch functions. The quantum numbers for
the in-plane andz components of the wave functionsl ands,
respectively, as well as the band indexb=e,h for electrons
and holes are combined inn. With the help of the Fourier
transform of the Coulomb potential, this factorization of the
wave functions can be used to introduce in-plane Coulomb
matrix elements with the two-dimensional momentumq,

Vss2s3s1

b,b8 sqd =
e2

2«0q
E dz dz8

3js
bszd*js2

b8sz8d*e−quz−z8ujs3

b8sz8djs1

b szd s4d

and Eq.(2) can be cast into the form

Vnn2n3n1
=

1

A
o
q

Vss2s3s1
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3E d2%wl
bs%d*wl1
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3E d2%8wl2
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It is seen that the in-plane space integrals over% and%8 get
separated, one involving the pair formed by the first and the
last state, the other the pair formed by the second and the
third state of the Coulomb matrix element. In the envelope
function approximation, only pairs having the same band in-
dex (b=b1 andb2=b3) contribute.
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While the above discussion is given for matrix elements
of the bare Coulomb potentialVnn2n3n1

, the kinetic equation
(1) contains screened Coulomb matrix elementsWnn2n3n1

.
Within the approximations outlined in Appendix C screening
due to WL carriers is included by multiplying Eq.(4) with a
generalized quasi-two-dimensional inverse longitudinal di-
electric function.

For the discrete QD states, the in-plane quantum numbers
are l =sn,md where n=0,1,2, . . . determines the energy
(s,p,d, . . ., shell). In case of a two-dimensional harmonic
confinement we haveEn

b=sn+1dEQD
b for the QD energies

whereEQD
b is the constant energy spacing between the shells.

The second quantum numberm=−n, −n+2, . . .,n−2,n char-
acterizes the two-dimensional angular momentum. For QD’s
with confineds and p shell, these states are schematically
shown in Fig. 1. For the quasicontinuum of WL states, the
two-dimensional carrier momentum will be used as in-plane
quantum numbers.

C. Classification of scattering processes

The physical content of Eq.(1) will be more transparent if
we decompose the summation over all quantum numbers
n1,n2,n3 into subclasses. This grouping will depend upon
whether a given state in the summation belongs to the ex-
tended WL or localized QD states. To indicate the particular
choice, n will be replaced for QD states by the quantum
numberm (n is redundant as long as onlys andp shells are
considered) and the WL states are labeled by the in-plane
momentumk. The band indices of population functionsf
and energies« will be explicitly given, all other quantum
numbers are suppressed for notational simplicity.

For the three quantum numbersn1,n2,n3 in the kinetic
equation(1) we find eight combinations between WL and
QD states. In the following we discuss the changes of the QD
population in the staten=m.

When WL states are used for the quantum numbers
sn1,n2,n3d=sk1,k2,k3d, the corresponding scattering rate of
the kinetic equation describes carrier transitions between the

WL and the QD state by means of other carriers scattered
within the WL. Figures 2(a) and 2(b) show examples for the
capture of electrons from the WL to the first excited QD state
by means of scattering another electron or hole within the
WL. The summation of all processes of this type which con-
tribute to the right-hand side(RHS) of Eq. (1) is given by

Sb,m
cap =

2p

"
o

k1,k2,k3,b8

ds«m
b − «k1

b + «k2

b8 − «k3

b8d

3 Wmk2k3k1
f2Wmk2k3k1

* − db,b8Wmk2k1k3

* g

3hs1 − fm
b dfk1

b s1 − fk2

b8dfk3

b8 − sf → 1 − fdj. s6d

The first term in the third line of Eq.(6) accounts for the
scattering out of statesk1 and k3 into m and k2 which in-
creases the QD population. These processes are balanced
with the reverse scattering events described by the second
term in the third line of Eq.(6). Hence the net change of the
QD population depends on the filling factors in both sub-
systems. In the following, we refer to this class of scattering
events ascaptureprocesses.

Assuming that the WL population is independent of the
carrier spin, the spin summation leads to a factor of 2 in the
direct scattering term in the second line of Eq.(6). Note that
the exchange term does not contribute for electron-hole scat-
tering.

The summation over the scattering processes in Eq.(1)
containing the matrix elementsWmk1k2m3

and Wmk1m2k3
can

be decomposed into four separate groups of which three cor-
respond to a redistribution of carriers between different QD
levels (in the following called QDrelaxation) by means of
other WL carriers as shown in Figs. 2(c) and 2(d). The last
group representsmixed scattering processes where, e.g., a
hole is scattered out of a QD state into the WL while an
electron is scattered from the WL into the QD, see Fig. 2(e).

The relaxation processes can be grouped in the following
way: Sn

relax=Sb,m
1D +Sb,m

2D −Sb,m
12X. Here

FIG. 1. Schematic drawing of energy levels in the quantum dot
(QD) on wetting-layer(WL) system. The quasicontinuum of WL
states(grey area) has larger interband transition energies than the
discrete QD states labeled with the shell indexn and the two-
dimensional angular momentumm. The energetically degenerate
statesm= ±1 are visualized by two separated lines.

FIG. 2. Examples of scattering processes:(a) and(b) capture of
electrons.(c) Relaxation processSs1d for electrons.(d) Relaxation
processSs2d for electrons.(e) Mixed relaxation processes.(f) Cap-
ture and(g) relaxation processSs3d assisted by QD carriers. The
grey areas schematically show the energetic continua for delocal-
ized states of electrons or holes while the three lines correspond to
localized states.
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Sb,m
1D =

2p

"
o
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contains the direct Coulomb interaction for scattering of QD
carriers between levelsm and m1 by means of scattering
either electrons or holes within the WL between statesk2 and
k3.

A redistribution of carries within the QD also takes place
when a carrier from the QD scatters to the WL while another
carrier from a different WL state scatters back to a different
QD level. Such a process is for electrons depicted in Fig.
2(d). The summation of all processes of this type due to
direct Coulomb interaction is given by

Sb,m
2D =

2p

"
o

m1,k2,k3

2uWmk2m1k3
u2ds«m

b − «k3

b + «k2

b − «m1

b d

3hs1 − fm
b dfk3

b s1 − fk2

b dfm1

b − sf → 1 − fdj. s8d

The Coulomb exchange contributions to the scattering
processes described in Eqs.(7) and (8) can be combined to

Sb,m
12X =

2p

"
o

m1,k2,k3

2 RefWmk2k3m1
Wmk2m1k3

* g

3hs1 − fm
b dfm1

b s1 − fk2

b dfk3

b − sf → 1 − fdj

3ds«m
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b + «k2

b − «k3

b d. s9d

Finally we have so-called mixed scattering processes
where, e.g., an electron is captured from the WL into a QD
state by means of a hole which is scattered from a QD into
the WL. Since the capture is typically faster for holes as will
be discussed below, this process can be important to increase
the electron capture with the help of already captured holes.
The scattering rate is given by

Se,m
mixed=

2p

"
o

m1,1k2,n1,1k3

2uWmk2m1k3
u2ds«m

e − «k3
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e s1 − fk2

h dfm1
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and similarly for the holes withse↔hd.
The scattering processes discussed so far describe capture

and relaxationassisted by WL carriers. Another class in-
volves transitions of carriersassisted by QD carriers. Re-
quirements for these processes are more restrictive since(i)
the scattering partners provide only discrete energies which
limits the range of possible transitions and(ii ) populated
initial and (sufficiently) unpopulated final states in the QD
have to be available. As shown in the next section, efficient
capture and relaxation processes can be provided even under
quasiequilibrium conditions for intermediate carrier densi-
ties.

Capture processes assisted by QD carriers are described
by

Sb,m
cap8 =

2p

"
o
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b8 dfm3
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The first term in the third line accounts for the scattering out
of statesk1 into the statem assisted by carriers scattered
from statesm3 into m2 which increases the QD population,
see Fig. 2(f). Again balancing occurs with the reverse pro-
cesses described by the second term of the third line. For
processes involving solely electrons(or holes), energy con-
servation allows only capture from the WL to the excited QD
states.

Relaxation processes assisted by QD carriers can be ob-
tained from

Sb,m
3DX =

2p

"
o

m1,k2,m3,b8

ds«m
b − «m1
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b s1 − fk2

b8dfm3

b8 − sf → 1 − fdj. s12d

Assuming thatm andm1 label energetically lower and higher
QD energies, respectively, carrier relaxation between these
states takes place by means of another QD carrierm3 scat-
tered into the WL statek2, see Fig. 2(g). In a situation where
carrier capture is more efficient for excited QD states, this
process is espected to contribute to the carrier relaxation
within the QD.

There is yet another combination of QD and WL states
contributing to QD-assisted processes

Sb,m
4DX =

2p

"
o

m1,m2,k3,b8

ds«m
b − «m1

b + «m2

b8 − «k3

b8d

3 Wmm2k3m1
f2Wmm2k3m1

* − db,b8Wmm2m1k3

* g

3 hs1 − fm
b dfm1

b s1 − fm2

b8 dfk3

b8 − sf → 1 − fdj, s13d

which describes, e.g., the carrier depletion of the excited QD
states in connection with the relaxation processes of Eq.(12)
or a transition into an excited QD state due to the assisting
scattering partner for a capture processes of Eq.(11). It
should be noted that the out-scattering events of Eqs.(11)
and(13) are directly related to the in-scattering processes of
Eq. (12) and vice versa. However, the rates contain summa-
tions over different states and different filling factors contrib-
ute to the scattering times introduced below.

In the notation of Eqs.(11)–(13) we assume that for the
processesb=b8=e,h only k =0 WL states contribute(see
below). Then nonvanishing Coulomb matrix elements are
only obtained for different angular-momentum states of the
two involved p-shell carriers. In this case both spin combi-
nations of the assisting carriers are allowed which leads to
the factor of two in the direct Coulomb terms. When other
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WL states are involved and twop-shell carriers in the same
angular-momentum states contribute, this factor and the ex-
change term need to be removed.

Scattering contributions involving the following Coulomb
matrix elements are left out:Wmm1m2m3

corresponds to inter-
nal QD scattering and energy conserving processes do not
change the population while terms containingWmm1k2k3

can-
not fulfill the energy conservation given by the delta func-
tion.

For the single-particle energies entering the scattering in-
tegrals, renormalization due to Coulomb interaction has been
neglected. Energy shifts of several meV have been calculated
for the (bare) Coulomb interaction of few carriers in a QD.
The aim of this paper is, however, the description of the laser
regime with a large carrier density in the WL. Efficient
screening of WL carriers is expected to reduce the Coulomb
shifts. One could argue that for nearby carriers(confined to
the same QD) screening due to WL carriers is less efficient,
but this has to be put in relation to the high WL carrier
density we aim at. Simple Hartree-Fock energy renormaliza-
tions are known to strongly overestimate the energy shifts
under high excitation conditions. Calculations beyond this
level are an area of ongoing research in the field of quantum
kinetics and beyond the scope this paper.

D. Model system

For the numerical results presented in this paper we con-
sider an InGaAs QD-WL system. Parabolic dispersion are
assumed for conduction and valence bands with effective
massesme=0.067m0 and mh=0.15m0, respectively, and the
dielectric constant«=12.5. Unless otherwise noted, a 2.2 nm
WL thickness and 2.1 nm additional QD height are used. The
finite height of the confinement potential for electrons and
holes is taken to be 350 and 170 meV, respectively, such that
equalz-confinement wave functionsjs

bszd for electrons and
holes can be adopted.

For a small WL thickness and QD height the energy spac-
ing of the subbands and sublevels due to confinement in the
z direction is large and only the lowest quantum numbers
will be considered. Furthermore, we assume that the har-
monic confinement potential leads to equal QD in-plane
wave functions for electrons and holes. Different electron
and hole masses then result in different level energies. We
investigate QDs where the(double degenerate) ground state
and the(fourfold degenerate) first excited state are confined.
The energies of the ground state for electrons(holes) are
80 meVs30 meVd and for the first excited state
40 meVs15 meVd below the continuum of the WL. A den-
sity of QD’s ndot=1010 cm−2 entering the OPW procedure
discussed in Appendixes A and B will be used. Then, for the
combined QD-WL system in thermodynamic equilibrium at
300 K, inversion of the lowest QD state as a precondition for
optical gain is realized when the WL carrier density exceeds
1.331011 cm−2.

III. RESULTS FOR COULOMB SCATTERING

A. Equilibrium scattering rates

As a general property, for any initial carrier distribution
function the combined action of the discussed scattering pro-

cesses will evolve the distribution functions of electrons and
holes towards Fermi-Dirac functions where the QD and WL
electrons and correspondingly the holes will have the same
chemical potentialme andmh, respectively.

During such a time evolution towards equilibrium the
relative importance of various scattering processes is ex-
pected to change via their dependence on the(nonequilib-
rium) carrier distribution functions for WL and QD states. To
uniquely compare the influence of various processes, we as-
sume that an equilibrium situation(at 300 K) has been
reached and study the dependence of the scattering processes
on the WL carrier density.

Equation(1) can be cast into the form

]

] t
fn = s1 − fndSn

in − fnSn
out, s14d

and based on the above classification we analyze in detail the
in- and out-scattering ratesSn

in and Sn
out for capture, relax-

ation, and mixed processes.
In Fig. 3 the scattering rates for the electron and hole

capture processes are shown. First we discuss results for the
capture assisted by WL carriers. In scattering becomes more
efficient for increasing WL carrier density. The same applies
to out scattering up to intermediate WL carrier densities. In
both cases the scattering rate increases due to the larger
population of available scattering partners. When the popu-
lation of the energetically lower WL states approaches unity,
Pauli blocking starts to reduce the out scattering, i.e., the
reverse of the processes schematically depicted in Figs. 2(a)
and 2(b), due to the reduction of available final states. The
population factors might still allow WL carriers at higher
energies to assist the QD-WL scattering. Their contribution
is, however, strongly reduced due to the Gaussian decay of
the Coulomb interaction matrix elements with the WL carrier
momenta.

FIG. 3. Scattering rates for capture processes to QD ground
states(solid and dashed-dotted lines: assisted by WL and QD car-
riers, respectively) and to first excited states(dashed and dotted
lines: assisted by WL and QD carriers, respectively) for electrons
(a), (b) and holes(c), (d) as a function of the carrier density in the
WL at 300 K. In-scattering rates for processes assisted by QD car-
riers are scaled up for better visibility.
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Processes assisted by QD carriers are only important in an
intermediate density range and are typically weaker than the
processes assisted by WL carriers. For low carrier densities
the initial states of the assisting scattering partners are not
populated and for higher carrier densities Pauli blocking pre-
vents scattering into possible final QD states.(Note that we
assume a quasiequilibrium situation for the coupled QD-WL
system.) For the used level spacing, energy conservation
does not allow electron capture to thes shell by means of
QD electrons or holes while capture of holes to thes shell is
possible by means of QD electrons.

Generally, the processes related to the QD ground states
are slower than those for the first excited QD states since the
larger energy difference requires WL carriers with larger mo-
menta which again leads to smaller Coulomb interaction ma-
trix elements. For the same reason, the corresponding scat-
tering rates for holes are larger than for electrons. In earlier
references, exchange contributions to the scattering rates are
often omitted. For processes assisted by WL carriers curves
without exchange interaction exhibit a similar shape but re-
sults are overestimated by about 20s10%d for thep ssd shell,
respectively. For processes assisted by QD carriers direct and
(possible) exchange Coulomb matrix elements are equal.
Hence, contributing exchange terms reduce the scattering
rates for these channels by 50%.

The scattering rates for various relaxation processes are
shown in Fig. 4. In and out scattering refer to the QD ground
states. When the relaxation processes involve only two(de-
generate) confined levels, the corresponding out-scattering
rate for the ground state equals the in-scattering rate due to
relaxation for the excited state and vice versa.

Processes assisted by WL and QD carriers will be dis-
cussed separately. Regarding the first class, the qualitative
behavior of the WL carrier density dependence for in and out
scattering is similar to the capture processes for the reasons
discussed above. In all casesS1D provides the dominant con-
tribution whileS2D andS12X are much smaller. SinceS2D and
S12X contribute with opposite sign, they partly compensate
each other. TheS1D relaxation rates dominate mainly because

the Coulomb interaction matrix elements make it more favor-
able to scatter between two QD carriers assisted by a transi-
tion between two WL carriers, in comparison to two coupled
transitions between QD and WL carriers. Furthermore,S1D

also contains electron-hole scattering which does not contrib-
ute toS2D andS12X.

For the comparison of scattering rates of electrons and
holes, two counteracting contributions need to be considered.
The energy spacing between QD states is smaller for holes
which increases their scattering rates. The smaller population
of holes due to their larger effective mass, on the other hand,
decreases their in-scattering rate and increases their out-
scattering rate. As a result, the in-scattering rates of electrons
and holes are comparable while the out-scattering rates are
larger for holes.

The relaxation processes assisted by QD carriers require a
rather detailed discussion. The rates depend more strongly on
the QD energy spacing in comparison to the energetic dis-
tance of the excited QD states from the WL continuum. For
the used example, relaxation of electrons assisted by QD
electrons(ditto for holes) according to Eq.(12) involves only
the k =0 WL state. This requiresp-shell carriers in opposite
angular-momentum states form1 and m3 to obtain nonvan-
ishing Coulomb matrix elements. On the other hand, electron
relaxation assisted by holes allowsk Þ0 and also the same
angular-momentum states form1 andm3 contribute. The cor-
responding Coulomb matrix elements can be up to an order
of magnitude larger(in comparison to thek =0 matrix ele-
ments) depending on the involved WL momentum. Hence,
the large rateS3DX for electrons is due to efficiente-h scat-
tering while energy conservation does not allowh-e contri-
butions to the hole relaxation and theh-h process involving
k =0 is weak. While this situation clearly changes with dif-
ferent spacing of the excited QD states from the WL con-
tinuum, the obtained relaxation rates for electrons and holes
can be considered as limiting cases(other choices for the QD
energy levels are typically in between these extremes).

In Fig. 5 the mixed scattering rates are shown in the same
notation used in Fig. 4. Finding the same WL carrier-density
dependence as above, we notice however that in-scattering

FIG. 4. Scattering rates for QD carrier relaxation processes ac-
cording to Eqs.(7)–(9) and(12). (a) and(c) represent scattering out
of the QD ground state into the QD excited states while(b) and(d)
show results for the reverse processes.

FIG. 5. Rates for mixed scattering processes.(a) and (b) show
electron in and outscattering while(c) and (d) are hole in and out-
scattering, respectively.
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processes are faster for electrons than for holes. Scattering an
electron from the bottom of the WL into the QD ground
state, as schematically shown in Fig. 2(e), puts a QD hole far
up in the valence band WL(where the final state population
is small) due to the larger QD confinement energy for elec-
trons. The probability for the reverse process(hole in scat-
tering) is strongly reduced due to the small initial-state popu-
lation for holes and large final-state population for electrons.

B. Equilibrium capture and relaxation times

In- or out-scattering rates alone determine the population
changes of the considered QD states when these states are
completely empty or completely populated, respectively, as
can be seen from Eq.(14). On the other hand, when all QD
and WL states are in thermodynamic equilibrium with
Fermi-Dirac distribution functionsFn, characteristic scatter-
ing timestn can be introduced in response to small pertur-
bationsdfn. Solving the kinetic equation(14) for a carrier
distribution function fn=Fn+dfn we assume that the influ-
ence ofdfn on the scattering ratesSn

in and Sn
out can be ne-

glected:

]

] t
fn = −

fn − Fn

tn

,
1

tn

= sSn
in + Sn

outdFn
. s15d

(For example, whenfn andFn correspond to the same total
carrier density,dfn is a symmetric perturbation which tends
to averages out in the scattering integrals.) Then the inverse
of the scattering timetn is given by the sum of in- and
out-scattering rates calculated with the RHS of Eq.(1) using
Fermi-Dirac functions, i.e., the scattering rates discussed in
the previous subsection. The scattering timetn determines
the evolution back to equilibrium.

In Fig. 6(a) capture times calculated from the in- and
out-scattering rates of Eq.(6) are shown, Fig. 6(b) contains
the relaxation times according to Eqs.(7)–(9). The decreas-
ing scattering times for increasing WL carrier density and the

relative magnitude of the displayed capture and relaxation
processes can be directly traced back to the above given
detailed discussion of the scattering rates. The nearly con-
stant hole relaxation time for WL carrier densities between
431011 and 1012 cm−2 is a result of the interplay of filling
factors leading to a decreasing out-scattering rate and in-
creasing in-scattering rate shown in Fig. 4.

As a function of carrier density the capture processes as-
sisted by QD carriers, Fig. 7(a), initially dominate in com-
parison to the WL assisted ones in a range where both types
of processes are slow. For intermediate to high carrier den-
sities processes assisted by WL carriers provide the main
capture channels. The results in Fig. 7(b) show only slightly
smaller efficiency for the electron relaxation assisted by QD
carriers in comparison to WL assisted processes. However,
the values in Fig. 7(b) depend on the QD-QD vs QD-WL
energy spacing. For other parameters, relaxation of holes can
be as fast as for electrons but times are typically larger than
for relaxation assisted by WL carriers.

The computed scattering times suggest the following dy-
namical scenario for the chosen material system. WL carriers

FIG. 8. (a), (b) Scattering rates for hole capture from the WL to
the QD ground states(solid line: OPW, dashed-dotted line: PW) and
to first excited states(dotted line: OPW, dashed line: PW) and cor-
responding capture times(c) at 300 K.

FIG. 6. Scattering times for processes assisted by WL carriers.
(a) Capture times for WL carriers to the QD ground statesueSl and
first excited statesuePl for electrons and correspondingly for holes.
(b) Relaxation times for carrier scattering from first excited states to
ground states. The temperature is 300 K. Different axis scaling for
capture and relaxation times should be noted.

FIG. 7. Same as Fig. 6 but for processes assisted by QD
carriers.
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are dominantly captured to the excited states. Filling of the
QD ground states occures on almost the same time scale due
to fast relaxation of carriers within the QD. Electronic cap-
ture processes are an order of magnitude slower than the
corresponding processes for holes. Direct capture to the hole
QD ground states also weakly contributes while direct cap-
ture to the electron QD ground state can be neglected for the
considered large energy difference between the electron QD
ground state and the WL.

IV. THEORY AND RESULTS FOR CARRIER-PHONON
INTERACTION

In this section we consider the interaction of carriers with
LO phonons. In the Markov approximation the kinetic equa-
tion determining the changes of the carrier populationfn is
given by

]

] t
fn =

2p

"

MLO
2

e2/«0
o
n8

Wn8nn8n

3hs1 − fndfn8fs1 + nLOdds«n − «n8 + "vLOd

+ nLOds«n − «n8 − "vLOdg

− fns1 − fn8dfnLOds«n − «n8 + "vLOd

+ s1 + nLOdds«n − «n8 − "vLOdgj, s16d

where vLO is the LO-phonon frequency. For the phonon
populationnLO a Bose-Einstein function at the lattice tem-
perature will be used to describe the crystal lattice in ther-
modynamic equilibrium. The Fröhlich coupling has been
formulated in a general eigenfunction basis with the
Coulomb matrix elements, Eq.(2). Hence, the calculation of
the polar-coupling interaction matrix elements for WL and
QD states can be done along the lines of Sec. II and Appen-
dix B. The coupling constantMLO=se2/«0ds1/«`−1/
«ds"vLO/2d contains the static and high-frequency relative
dielectric constants« and «`, respectively.MLO can be ex-
pressed in terms of the dimensionless coupling constanta
=se2/4p«0"dÎm/2"vLOs1/«`−1/«d with the reduced
electron-hole-massm.

Various terms on the RHS of Eq.(16) describe the scat-
tering of carriers from statesn into n8 under the emission and
absorption of an LO phonon as well as the reverse processes.
Under the asumption of strict energy conservation, carrier
relaxation between the QD states is only possible when the
LO-phonon energy matches the level spacing. Furthermore,
contributions to carrier capture are obtained only for an en-
ergy difference between the QD states and the WL larger
than"vLO.

For our InGaAs system with"vLO=36 meV and a
=0.06 only hole capture is possible. According to Fig. 8,
capture to bothp ands shells is possible with an in-scattering
rate comparable to the hole capture due to Coulomb scatter-
ing in Fig. 3 which shows also a similar WL carrier density
dependence. Note that the capturetime is defined according
to Eq. (15) as the response time of the system to small per-
turbations from equilibrium and, hence, contains both in- and
out-scattering rates. Since the out-scattering rate only weakly

depends on the WL carrier-density, the same holds for the
capture time. In addition to the results obtained with OPW
wave functions for the WL states(solid and dotted lines) also
the plane-wave(PW) results are given(dashed and dashed-
dotted lines). In this case the rates are strongly overestimated
which emphasises again the importance of the OPW scheme
discussed in Appendixes A and B.

In Refs. 11 and 12 also two-phonon processes have been
studied based on Fermi’s golden rule. For weak polar cou-
pling, their efficiency is clearly reduced in comparison to
one-phonon processes. Furthermore, in a perturbational treat-
ment state filling effects of the intermediate states is ne-
glected, which further reduces the scattering efficiency.

V. CONCLUSIONS

We have discussed in- and out-scattering rates as well as
scattering times for capture and relaxation processes in the
QD-WL system. In general, in- and out-scattering rates enter
in a kinetic equation(14) from which the population dynam-
ics for a given initial situation can be determined. The in-
scattering rates solely describe the population changes as
long as the final-state population can be neglected. This situ-
ation is closely connected to calculations based on Fermi’s
golden rule where fully populated initial states and empty
final states are assumed. In an intermediate situation with
existing final-state population, capture and relaxation pro-
cesses will be less efficient due to Pauli blocking as well as
out-scattering contributions. For completely filled states, the
discussed out scattering rates solely determine the population
losses.

On the other hand, the given scattering times characterize
relaxation and capture processes under the assumption that
all states are populated according to Fermi-Dirac statistics.
The carriers in a laser operating under cw conditions are
typically near a quasiequilibrium distribution. If, for ex-
ample, the stimulated recombination depletes the lower QD
states then the QD relaxation time determines the refilling of
this state with carriers from the exited QD states and the
capture times determine the refilling from the WL.

For the processes due to Coulomb interaction, relaxation
within the QD is typically on a faster time scale than the
carrier capture from the WL into the QD. Processes involv-
ing holes are typically faster than the corresponding pro-
cesses involving electrons and capture to the excited states is
faster than capture to the ground states. Hence in a dynami-
cal scenario, first the holes are captured to the excited QD
states and immediately scattered via relaxation to the QD
ground states. Capture of electrons is somewhat slower, the
subsequent relaxation for electrons is only slightly slower
than for holes. When capture processes due to emission of
LO phonons are possible, their efficiency is comparable to
Coulomb scattering at elevated WL carrier densities.

Depending on the density of QD’s the capture and relax-
ation processes in turn will change the WL carrier distribu-
tion. Together with the different time scales of the discussed
processes involving QD carriers, a nontrivial interplay in dy-
namical situations is expected.

One of the goals of the paper is to study the influence of
terms often neglected previously. In addition to the above
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summarized interplay of in and out scattering and scattering
times it is shown that the Coulomb vertex contributions typi-
cally cannot be neglected in comparison to the direct Cou-
lomb interaction. Scattering processes assisted by QD carri-
ers contribute especially at lower carrier densities and can
add to the relaxation at higher densities. The use of WL wave
functions properly orthogonalized to the QD states is found
to be important for the evaluation of scattering rates. The
relative contribution of OPW corrections depends on how the
density of QD’s enters. In the discussed Coulomb matrix
elements for carrier capture and for relaxation(except inS1D)
the orthogonalization even contributes if one would have a
single QD in an infinite system, i.e., for zero QD density.
Results for these processes based on plane wave WL states
can strongly deviate from OPW calculations. On the other
hand, screening due to WL carriers is somewhat less influ-
enced by OPW corrections since the derived generalized
Lindhard formula for OPW states contains the PW result plus
corrections starting in first power of the QD density. Essen-
tially, screening is a “global” effect less influenced by a
small number of QDs whereas processes in the QD depend
on the “local” features of the wave function. Here the or-
thogonalization is more important, because it changes the
wave function exactly in the region of the QD where the
transitions take place.

ACKNOWLEDGMENTS

We thank H.C. Schneider for valuable discussions. This
work was supported by the Deutsche Forschungsgemein-
schaft and with a grant for CPU time at the Forschungszen-
trum Jülich.

APPENDIX A: ORTHOGONALIZATION PROCEDURE

Our starting point for the constuction of wave functions
are WL states in the absence of QD’s, which are considered
as plane-waveswk

0s%d=s1/ÎAdeik·% with two-dimensional
carrier momentumk. To describe the combined system we
use plane waves orthogonalized to the QD states(OPW)6,18

uwkl =
1

Nk
Suwk

0l − o
a

uwalkwauwk
0lD , sA1d

whereNk is the normalization constant. The sum includes all
localized states. In the following we assume an ensemble of
identical, independent QD’s with nonoverlapping wave func-
tions. Thena=sm,Rd contains various QD statesm at dif-
ferent QD positionsR. The QD states are thus mutually or-
thogonalkwa uwa8l=da,a8.

By construction the OPW states for the WL are orthogo-
nal to the QD states,kwa uwkl=0. To study the orthogonality
of OPW states, we use

kwkuwk8l =
1

NkNk8
Skwk

0uwk8
0 l − o

a

kwk
0uwalkwauwk8

0 lD .

sA2d

As the plane wave overlap integrals with the QD
states at different positions differ only by a phase

factor kwa uwk
0l=ed2%wms%−Rdwk

0s%d=ed2%wms%dwk
0s%

+Rd;kwmuwk
0leik·R, we have

kwkuwk8l =
1

NkNk8
sdk,k8 − o

m,R
kwk

0uwmlkwmuwk8
0 leisk8−kd·Rd.

sA3d

The sum overR now involves only the phase factors. For
randomly distributed QDs these phase factors will average to
zero except fork =k8. More precisely, in the large area limit
(A→` with the number of QD’sN→` such that the QD
densityndot=N/A remains constant) one has

1

N
o
R

eisk8−kd·R = dk,k8. sA4d

Hence, “on average,” different OPW states are also orthogo-
nal with the normalization

Nk =Î1 − No
m

ukwk
0uwmlu2. sA5d

Using the normalization areaA of the plane waves, the pref-
actor of the sum over the QD states is accordingly given by
the QD densityndot.

APPENDIX B: COULOMB MATRIX ELEMENTS

When the first and last or the second and third arguments
of the Coulomb matrix elements belong to OPW states, the
corresponding in-plane integrals in Eq.(5) can be explicitly
calculated using Eq.(A1):

kwkueiq·%uwk8l =
1

NkNk8
Skwk

0ueiq·%uwk8
0 l

+ o
a,a8

kwk
0uwalkwaueiq·%uwa8lkwa8uwk8

0 l

− o
a

kwk
0ueiq·%uwalkwauwk8

0 l

− o
a

kwk
0uwalkwaueiq·%uwk8

0 lD . sB1d

Again, in the large area limit the random QD distribution
restores the translation invariance(momentum conservation)
of the problem, and one obtains

kwkueiq·%uwk8l = dk−q−k8
1

NkNk8

3S1 − No
m

ukwk
0uwmlu2 − No

m

ukwmuwk8
0 lu2

+ N o
m,m8

kwk
0uwmlkwmueiq·%uwm8lkwm8uwk8

0 lD ,

sB2d

where the remaining overlap integrals of localized QD wave
functions and plane waves can be calculated analytically for
harmonic oscillator states.
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In the case when the pairing of the states in the Coulomb
matrix elements involves one OPW state and one QD state
the in-plane integrals in Eq.(5) lead to

kwaueiq·%uwkl =
1

NkSkwaueiq·%uwk
0l

− o
a8

kwaueiq·%uwa8lkwa8uwk
0lD . sB3d

With the above given arguments we find for a QD at position
R that kwaueiq·%uwk

0l=ed2%wms%−Rdeiq·%wk
0s%d

=kwmuwk+q
0 leisk+qd·R. Since we neglect the wave function

overlap of different QD’s, this results in

kwaueiq·%uwkl =
1

NkSkwmuwk+q
0 l

− o
m8

kwmueiq·%uwm8lkwm8uwk
0lDeisk+qd·R.

sB4d

Hence for QD’s at positionsR, phase factorseisk+qd·R enter
the Coulomb matrix elements of the discussed structure
which contribute in Eqs.(6) and(8)–(10). When the capture
of carriers in a particular QD is calculated from Eq.(6) these
phase factors cancel exactly, i.e., the processes are indepen-
dent of the QD position. The same applies when carriers are
scattered within the same QD according to Eqs.(8)–(10). It
should be noted that the first Coulomb matrix element in Eq.
(9) requires that the two QD quantum numbersm and m1
belong to the same QD position as long as the wave function
overlap between different QD’s vanishes. For the same rea-
son, Eq.(7) describes only carrier scattering within the same
QD. However, Coulomb interaction can couple carriers in
different QD’s (even for vanishing overlap of their wave
functions) according to processes described in Eqs.(8) and
(10) and depicted in Figs. 2(d) and 2(e) where a carrier from
one QD is scattered into the WL while another carrier from
the WL is scattered into a different QD. It can be seen by
direct inspection of Eq.(2) that these matrix elements are
controlled by the strength of the Coulomb interaction at the
distance between the two QD’s involved. Hence the screen-
ing length of the Coulomb interaction in comparison to the
QD separation limits these processes. In this paper we as-
sume sufficiently large screening of the Coulomb interaction
due to WL carriers in order to neglect these processes.(For a
typical WL carrier density of 1011 cm−2 at 300 K the Debye
screening length is 0.76 in units of the 3d exciton Bohr ra-
dius.) Therefore, Eqs.(6)–(13) describe scattering processes
involving each QD separately and taking place identically in
all QD’s.

APPENDIX C: SCREENING OF THE COULOMB
INTERACTION

While the discussion of interaction matrix elements in
Sec. II B refers to the bare Coulomb potential, the effect of
screening will be included in the following. The screened

Coulomb interactionwsr 1,r 2d obeys the integral equation

wsr 1,r 2d = vsr 1 − r 2d +E d3r3d
3r4vsr 1 − r 3dPsr 3,r 4dwsr 4,r 2d

sC1d

with the bare Coulomb interactionvsr −r 8d and the longitu-
dinal polarizationPsr ,r 8d.19 In the equilibrium situation dis-
cussed in this paper,w and P additionally depend on the
frequencyv in connection with dynamical screening effects.
In a nonstationaly situation treated in Markov approxima-
tion, they furthermore depend on the macroscopic timet. For
notational simplicity, these arguments are omitted.

The random-phase approximation19 for the longitudinal
polarization leads to the eigenfunction expansionPsr ,r 8d
=onn8 Fnsr dFn8sr 8dPnn8Fn

*sr 8dFn8
* sr d. In the above dis-

cussed limit of large WL carrier densities and/or small den-
sity of QDs on the WL we consider only screening of the
Coulomb interaction due to WL carriers, i.e.,n and n8 are
WL states. With the OPW description of the previous appen-
dices, the WL states are “on average” spatially homogeneous
and the longitudinal polarization possesses in-plane transla-
tional invariance. This can be directly seen from

E d2%E d2%8e−iq·%Psr ,r 8deiq8·%8

= o
k,k8

kwk8ue
−iq·%uwklkwkueiq8·%8uwk8lPk,k8sz,z8d

=dq,q8o
k

Pk,k−qsz,z8duFk,k−qu2, sC2d

where in the eigenfunction expansion only the in-plane com-
ponents of the wave functions has been used. For the evalu-
ation of the overlap integrals involving OPW states we have
introduced the short notation

kwkue−iq·%uwk8l = dk−q−k8Fk,k8, sC3d

where Fk,k8 can be obtained from a comparison with Eq.
(B2) and describes the OPW corrections of the plane-wave
result.

Already at this point one can conclude[e.g., from an it-
erative solution of Eq.(C1) with the structurew=v+vPv
+vPvPv+¯] that since Psr ,r 8d=Ps%−%8 ,z,z8d, the
screened Coulomb interaction depends also only on the dif-
ference of the in-plane space arguments. This behavior is to
be expected on intuitive grounds since we consider a uniform
distribution of QD’s that translates into in-plane homogene-
ity of the screened Coulomb interaction. The property essen-
tially simplifies the following calculation of screened Cou-
lomb matrix elements along the lines demonstrated for the
bare Coulomb interaction in Eqs.(2)–(5).

Our starting point is the Fourier transform of the bare
Coulomb potential with respect to the in-plane space depen-
dence
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vsr − r 8d =
1

A
o
q

eiqs%−%8dvsq,z− z8d, sC4d

as well as the corresponding in-plane Fourier transform of
the screened Coulomb interaction

ws% −%8,z,z8d =
1

A
o
q

eiqs%−%8dwsq,z,z8d. sC5d

From Eq. (C1) an integral equation for the Fourier coeffi-
cients is readily obtained,

wsq,z1,z2d = vsq,z1 − z2d

+E dz3dz4vsq,z1 − z3dPsq,z3,z4dwsq,z4,z2d.

sC6d

The interaction matrix elements for the bare Coulomb po-
tential are given by Eq.(2) and similarly for the screened
Coulomb potential. The assumed separation of wave func-
tions into in-plane andz components allows us to introduce
quasi-two-dimensional matrix elements. For the bare Cou-
lomb interaction, the quasi-two-dimensional matrix elements
are given by Eq.(4) wherevsq ,z−z8d=se2/2«0qde−quz−z8u has
been used. Then the interaction matrix elements follow from
Eq. (5) or in the short notation

Vn1n2n3n4
=

1

A
o
q

Vs1s2s3s4
sqdkwn1

ue−iq·%uwn4
lkwn2

ueiq·%uwn3
l,

sC7d

wheresi are the quantum numbers for the confinement in the
z direction and the band indicesb are suppressed for nota-
tional simplicity. For the screened Coulomb interaction we
obtain in complete analogy

Wn1n2n3n4
=

1

A
o
q

Ws1s2s3s4
sqdkwn1

ue−iq·%uwn4
lkwn2

ueiq·%uwn3
l,

sC8d

where the corresponding in-plane matrix elements are given
by

Ws1s2s3s4
sqd =E dzdz8js1

* szdjs2

* sz8dwsq,z1,z2djs3
sz8djs4

szd.

sC9d

The in-plane overlap integrals in the second line of Eq.
(C8) have been discussed in Appendix B for the required
combinations of WL and QD states. The remaining task is
the computation of the in-plane matrix elements
Ws1s2s3s4

sqd. Introducing in-plane matrix elements for the
longitudinal polarization

Psq,z3,z4d = o
s,s8

jsszdjs8sz8dPs,s8sqdjs
* sz8djs8

* szd,

sC10d

and using Eqs.(C9) as well as the corresponding equation
for the bare Coulomb potential, the integral equation(C6)

can be reduced to the algebraic set of equations

Ws1s2s3s4
sqd = Vs1s2s3s4

sqd

+ o
ss8

Vs1s8ss4
sqdPss8sqdWss2s3s8sqd.

sC11d

A simple solution can be given if we assume identical
confinement wave functions for the QD statesjQ

* szd to be
distinguished from thez confinement in the WL,jW

* szd.
Finally we list the results for the Coulomb matrix ele-

ments used in Eqs.(6)–(10) to describe carrier capture and
relaxation processes

Wm1k2k3k4
=

1

A
WQWWWsk2 − k3dkwm1

ue−isk2−k3d·%uwk4
lFk2,k3

,

sC12d

Wm1k2k3m4
=

1

A
WQWWQsk2 − k3dkwm1

ue−isk2−k3d·%uwm4
lFk2,k3

,

sC13d

Wm1k2m3k4
=

1

A
o
q

WQWQWsqdkwm1
ue−iq·%uwk4

lkwk2
ueiq·%uwm3

l.

sC14d

The in-plane Coulomb matrix elements are given by

WQWWWsqd =
VQWWWsqd

1 − VWWWWsqdPsqd
, sC15d

WQWWQsqd =
VQWWQsqd

1 − VWWWWsqdPsqd
, sC16d

WQWQWsqd = fVQWQWsqd − VQWQWsqdPsqdVWWWWsqd

+ VQWWWsqdPsqdVWWQWsqdg

/f1 − VWWWWsqdPsqdg sC17d

with Psqd=PWWsqd.
For the matrix elementsWQWWWandWQWWQ it is directly

possible to introduce a longitudinal dielectric function that
obeys a generalized Lindhard formula when the longitudinal
polarization is computed in random-phase approximation19

for the OPW states

Psq,vd =
1

A
o
b,k

fk−q
b − fk

b

"v + «k−q
b − «k

b + id
uFk,k−qu2, sC18d

where the frequency dependence has been added for com-
pleteness. The matrix structure of Eq.(C11) in principle pre-
vents the simple structure with a generalized dielectric func-
tion for WQWQW but the additional terms containing the
polarization in the numerator of Eq.(C17) nearly compen-
sate.

In conclusion, the assumed separation of the wave func-
tions into in-plane andz components results in quasi-two-
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dimensional matrix elements of the bare Coulomb interaction
(4). Screening due to WL carriers can be included in this
formula (for Wm1k2k3k4

and Wm1k2k3m4
strictly and for

Wm1k2m3k4
in good approximation) by dividing with a longi-

tudinal dielectric function esq ,vd=1−VWWWWsqdPsq ,vd
that contains the in-plane Coulomb interaction between WL
states and their longitudinal polarization calculated with
OPW corrections. For the presented calculations the general-
ized Lindhard formula is used in quasistatic approximation.

APPENDIX D: ROLE OF THE WAVE-FUNCTION
MODEL

In this appendix we discuss the influence of various as-
sumptions of the wave-function model on the calculated
scattering rates. In lens-shaped QD’s on a WL the spatial
height of thez confinement changes within the QD. In the
adiabatic approximation discussed in Ref. 17 the wave func-
tion contains in-plane andz-confinement parts according to

Fnsr d = wl
bs%djs

bs%,zdubsr d. sD1d

For a confinement potential with cylindrical symmetry, the
in-plane part can be expressed usingwl

bs%d=eimf /Î2pf ls%d
with the in-plane anglef. For a discretization of the poten-
tial into ring-shaped regions of(approximately) constantz
confinement f ls%d obeys Bessel’s differential equation.
Boundary conditions determine the matching of wave func-
tions in different regions. This procedure allows us to con-
struct piecewise analytically determined wave functions for a
given confinement geometry. Nevertheless, using these wave
functions in Eq.(5) is a challenging task since for an appro-
priate discretisation of the WL continuum a large number of
Coulomb matrix elements is required.

Instead of using this approach we checked on a simpler
level, how sensitive the discussed calculations of scattering
rates are to the particular choice of confinement wave func-
tions. We consider two limiting cases.

(i) Constant heightzQD within the QD and smaller height
zWL throughout the WL.(For shallow QD’s the wave func-
tions average over a weakly changing height.)

(ii ) In the limit of equalz confinement for QD and WL
the QD confinement would be purely due to composition
changes and/or strain in thex-y plane.

In both cases, Eq.(D1) reduces to Eq.(3). In the first case
of different confinement functionsjs

bszd for the QD and WL
states, a three-dimensional OPW scheme according to

uFkl =
1

Nk
SuFk

0l − o
a

uFalkFauFk
0lD sD2d

is necessary. We compared results for the QD relaxation rates
S1D based on this scheme(solid line in Fig. 9) with a sim-
plified calculation where only the in-plane part of the wave
functionswl

bs%d is subject to the OPW scheme according to
Eq. (A1) and differentz-confinement functions enter in the
form factor of the in-plane Coulomb-matrix elements, Eq.
(4). Both in- and out-scattering rates of electrons and holes
are practically unchanged and differences would not be vis-
ible in Fig. 9.

The result using plane waves for the in-plane part of the
WL states is shown as short-dashed line in Fig. 9. For the
relaxation ratesS1D the Coulomb interaction matrix elements
contain only pairing of WL states or pairing of QD states.
Hence the missing orthogonality of plane waves and QD
states does not influence the results and OPW corrections are
small. The situation is different for the carrier capture rates
where Coulomb interaction matrix elements contain pairings
of WL and QD states. For the capture rates to the first excited
states, Fig. 10, the plane-wave results(short-dashed lines)
strongly depart from the OPW calculations. On the other
hand, deviations between 3D-OPW results(solid lines) and
the 2D-OPW model(dotted lines) are small. Similar results
(not shown) are found for the scattering ratesS2D, S12X and
Smixed. Since the 2D-OPW model greatly simplifies the cal-
culations, it has been used in Figs. 3–8.

FIG. 9. Scattering rates for QD carrier relaxation processesS1D

similar to Fig. 4 but with different approximations for the confine-
ment wave functions. Solid line: OPW calculation, short-dashed
line: plane-wave WL states, long-dashed line: larger QD height and
smaller WL thickness, dashed-dotted line: equal confinement in
growth direction for QD and WL.

FIG. 10. Scattering rates for carrier capture from WL to first
excited QD states similar to Fig. 3 but with different approxima-
tions for the confinement wave functions. Solid line: 3D-OPW cal-
culation, dotted line: 2D-OPW model. For other lines, see Fig. 9.
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Next we investigate the dependence of the results on the
particular choice of parameters for the confimenent potential.
While variations of the confinement potential will also affect
the QD energies, we are here only interested in the influence
of the confinement potential on the Coulomb matrix ele-
ments. Hence, we artificially use the same QD energies as
before but take different functionsjs

bszd. While previous cal-
culations are done for 2.2 nm WL height and additional
2.1 nm QD height, the long-dashed lines in Figs. 9 and 10
correspond to a 1.6 nm WL height and additional 4.4 nm QD
height (using the 2D-OPW model). While this is a rather

large change of the confinement situation, the changes of the
scattering rates are relatively small. The dashed-dotted lines
in Figs. 9 and 10 show results for the limiting case of equal
confinement in thez direction for QW and WL discussed
above. Calculations are done for a 4 nm finite-height con-
finement potential. Due to the maximized overlap for thez
components of the QD and WL wave functions, the scatter-
ing rates are larger than in the previous cases. The capture
and relaxation times for this situation using GaAs parameters
are given in Ref. 20.
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