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Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers
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In quantum-dot laser devices containing a quasi-two-dimensional wetting layer, a pump process initially
populates the wetting-layer states. The scattering of carriers from these spatially-extended quasi-two-
dimensional states into the quantum-dot states as well as the relaxation of carriers between the quantum-dot
levels are studied theoretically. Based on the wave functions for the coupled quantum-dot/wetting-layer system
interaction matrix elements are calculated for carrier-carrier Coulomb interaction and carrier-phonon interac-
tion. Scattering rates for various capture and relaxation processes are evaluated under quasiequilibrium con-
ditions. For elevated carrier densities in the wetting layer, Coulomb scattering provides processes with capture
(relaxation times typically faster than 10 @4 p9. When energy conservation allows for interaction with LO
phonons, comparable rates are obtained.
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I. INTRODUCTION scattering rates on the QD geometry has been studied in

. . Ref. 10.
To optimize the design of novel quantum-d@D) based . . .
laser devices?as well as to provide a detailed understanding, ©On the other hand, interaction with LO-phonons can also

of steady-state and dynamical emission properties in thesg2d to efficient scattering channels provided that energy
devices** a quantitative description of various electronic conservation can be fulfilled. While the energy separation of

scattering processes is necessary. Self-assembled QD's 4% States typically does not match the LO-phonon energy,
typically grown on a quasi-two-dimensional wetting |ayercapture processes of carriers from the WL to the QD states

(WL ). Correspondingly, the relevant electronic structure con&r€ Often possible for holes since they have a shallower con-

sists of two parts. The localized QD states with discrete en];g]tir;ehrgvzngre%yn tggpn elljetggoﬂss{nm Ee?;i'i,sll Sggnl%uf:pinge
ergies due to the three-dimensional QD confinement poten- P 9 9 T

tial are energetically below a quasicontinuum of two- population effects are neglected.

dimensional delocalized WL states. While the localized QD esIEs):aZeigm?vr]etﬁllf Vlt(:]eensct?(;r?r fg% c?gairg_:tr;?erelgé?;;grr:ﬁ] rg;_
states are used for the laser transition, the pump process infis 9 y 9 9 P

. N ; cence following an excitation of the WL or barrier states.
fually generates carriers in f[he WL_._Hence the carrier dynamFrom the rise time of the QD photoluminescetiddand the
ics in QD based laser devices critically depends on the CaP- 6 of the QD and WL emissidfthe efficiency of capture
ture of carriers from the WL into the QD’s as well as on the y P

relaxation of carriers between the discrete QD states. An ma"d relaxation at low temperatures has been studied. Also it

portant question is to what extent these processes limit thg?fhge\?\/r‘Lpt?d?ttiz c;lsltati?;gi:ittls(;0;thj;ggé?}'t?:]iziogﬁls?;gge
laser operation in comparison to the extensively studie Y d

quantum-well lasers hat facilitates the scattering processes.

In laser devices the pump process creates a high densi% The aim of this paper is to present a systematic study of

. . e relative importance of various capture and relaxation pro-
electron-hole plasma in the delocalized states. Under thesc%sses due topcarrier carrier and caprrier LO phonon scaptter
conditions carrier-carrier scattering can provide efficientin Previous investigations are extended inpthe followin
transitions for electrons and holes from the delocalized WL"9" 9 9

states into the discrete localized QD statearrier capturg directions: (i) ca_llculations are. hot restr_icted to_ Fermi's
as well as between the discrete QD statesarrier golden rule but include population effectd,) both in- and

relaxation.®” In previous references the transition rates hayePUl-Scattering processes are considered for the calculation of
Sapture and relaxation time§ii) additional scattering pro-

been calculated for processes where an electron or hole R o
scattered from the WL into the QD or between two QD states ©>>¢S anq the role of Coulomb e.xchange contributions to the
and the energy is transfered to another carrier in the WL. pcattering integrals are e_xamme(dg) properly _orthogonal-
detailed inspection of the kinetic equation for Coulomb scat-'zed states are systematically useql and the_ influence of the
tering shows that these are only some of the possible prov_vave function model on the scattering rates is analyzed, and

cesses. A relaxation process starting with two carriers in aﬁv)sf‘e;:]?grert&?:jg:fdel of screening in the coupled QD-WL
excited QD state where one is scattered into the QD grounay P '

state and the other into the WL, studied in Ref. 8, is only one Il. THEORY EOR COULOMB SCATTERING
among other examples. The analysis in Ref. 6 has been sim- , _
plified by assuming QD states of a three-dimensional A. Boltzmann’s equation

infinite-barrier box. More realistic wave functions for this  The carrier dynamics under the influence of various scat-
calculation have been used in Ref. 9 and the dependence td#ring processes can be described by kinetic equations. In
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this section we consider Coulomb-interaction processes up fperpendicular direction. In the presence of the QDs this pic-
quadratic order in the screened Coulomb poterisatond- ture still holds as a good approximation far away from the
order Born approximationand restrict ourselves to time dots. Close to the QD’s, however, strong perturbations are
scales where the Markov approximation is valid. On thisexpected, mainly due to the orthogonality requirement which
level, the changes of the carrier populatibnin the state brings in additional oscillations. Commo#i}# this situation
with energye, due to carrier-carrier scattering are given by is described by using the orthogonalized plane w&eBW)
scheme, summarized in Appendix A.
9 _2m > w (W - ] We consider an ensemble of identical QD’s and assume
S that the states of different QD’s are nonoverlapping. This is
true for low QD densities where the mean QD spacing is
XA -1)f, (A -1)f, - 1,2 -F,)f,(1-f.)} much larger than the confinement length of the oscillator
X, €, +&, —£,). (1)  states. Another instance of interaction between QD's is pro-
o2l vided by the Coulomb matrix elements. As shown below
Two carriers are scattered out of statg@nd v into statesr ~ some scattering channels may, in principle, involve localized
andw, and vice versa. Scattering into a statis proportional  states belonging to different QD’s. Nevertheless, these pro-
to the nonoccupation of that state-f,) while scattering out cesses are limited to QD’s less than a screening length apart.
of this state depends on the populatign Accordingly, the  Considering a regime where the screening length is much
second and third line of Eq1) determine the availability of smaller than the mean QD distanaifficientlly high carrier
scattering partners. Since the scattering involves identicalensities and/or sufficiently dilute QD'si0 such interaction
fermions, the scattering cross section is determined byakes place. The theory can of course be extended beyond
screened Coulomb matrix elements for the direct and exthis regime of parameters, but this will not be done here.
change interactiodWw,, , , [> andW,, , ,W,_  respec- The advantage of the discussed approximation scheme is
273"1 2731 2V1V3 . . .
tively. The total rate involves the sum over ali possible scatthat for all possible combinations of QD and WL states the
tering states;, v, v5. The delta function in the last line of Coulomb matrix elements can be determined to a large ex-

separation of the wave function into in-plane andompo-
nents takes the form
B. Wave functions and Coulomb matrix elements

_ b
The interaction matrix elements of the bare Coulomb po- P,(r) =gy (9)$(Z)ub(r)’ (3)

tentialv(r —r’), whereuy(r) are Bloch functions. The quantum numbers for

. . the in-plane and components of the wave functiohando,
VWZ,,S,,l:f d3rd3r’<I>V(r)<I>V ro(r=r")d, (r"d, (r), respectively, as well as the band indexe,h for electrons
2 3 1 . . . .
and holes are combined im With the help of the Fourier
(2) transform of the Coulomb potential, this factorization of the
wave functions can be used to introduce in-plane Coulomb

contain the single-particle wave functiosbs(r) of electrons ; . . X
gle-p (1) dT]atI’IX elements with the two-dimensional momentgm

and holes in the confinement potential of the combine

QD-WL system. It is a complicated task on its own and ) 2

beyond the scope of this paper to compute these single- vggw (q)=—— | dz dZ

particle states for a given confinement situation that depends 2 2eq

on the QD geometry, the strain profile and possible compo- * b (\F iz | D (o

sition variations within the QD. ng(z) §22(z ye §23(Z )5?,1(2) @
As a simple model for the QD confinement, the wave

functions within a three-dimensional box with infinitely high

walls have been used in Ref. 6 to compute the Coulomb 1 -

interaction matrix elements. Wogg al” have shown that for \ e ;E Voo, (@) b, O, b,

lens-shaped QD’s on a WL with a QD height small in com- q

parison to the QD diameter the in-plane component of the . ,

QD wave functions resembles in good approximation that of X J dPoel() @f’ll(e)e_'q'g

a two-dimensional harmonic oscillator. In the following we

adopt this model for théweak) in-plane confinement while boy 1t bar 1 g0’

for the (strong confinement in the direction perpendicular to X J de’erz(e’) ¢iie)ere . 5)

the WL a finite-height potential barrier will be used. To ac-

count for a finite energetic height of the QD confinementlt is seen that the in-plane space integrals qveand o’ get

potential only localized states within a given energy rangeseparated, one involving the pair formed by the first and the

are considered. last state, the other the pair formed by the second and the
In a WL devoid of QD’s the states would be described bythird state of the Coulomb matrix element. In the envelope

plane waves for the in-plane part, multiplied by the statefunction approximation, only pairs having the same band in-

corresponding to the finite-height barrier confinement for thedex (b=b; andb,=bs) contribute.

and Eq.(2) can be cast into the form
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FIG. 2. Examples of scattering process@s:and(b) capture of
electrons.(c) Relaxation process?) for electrons.(d) Relaxation
FIG. 1. Schematic drawing of energy levels in the quantum dofprocessS? for electrons.(e) Mixed relaxation processef) Cap-
(QD) on wetting-layer(WL) system. The quasicontinuum of WL ture and(g) relaxation proces§® assisted by QD carriers. The
states(grey area has larger interband transition energies than thegrey areas schematically show the energetic continua for delocal-
discrete QD states labeled with the shell indexand the two-  ized states of electrons or holes while the three lines correspond to
dimensional angular momentum. The energetically degenerate |ocalized states.
statesm=+1 are visualized by two separated lines.

WL and the QD state by means of other carriers scattered
While the above discussion is given for matrix elementswithin the WL. Figures 2a) and 2b) show examples for the

of the bare Coulomb potentid,,,.,., the kinetic equation  capture of electrons from the WL to the first excited QD state
(1) contains screened Coulomb matrix eIemeWsVzVsyl. by means of scattering another electron or hole within the
Within the approximations outlined in Appendix C screeningWL. The summation of all processes of this type which con-
due to WL carriers is included by multiplying EG}) with a  tribute to the right-hand sidéeRHS) of Eq. (1) is given by
generalized quasi-two-dimensional inverse longitudinal di-
electric function.

For the discrete QD states, the in-plane quantum numbers ap_ 2T b_ b, .b _ 1
are I=(n,m) where n=0,1,2,... determines the energy Sm= R 2 ,5(8"‘ &, + Bk, ™ Eky)
i . ’ k1,Kp.Kgb
(s,p,d,..., shell. In case of a two-dimensional harmonic
confinement we havé&)=(n+1)EQ, for the QD energies L 5b,b'ka2klk3]
whereEgD is the constant energy spacing between the shells. b eb b b’
The second quantum numb@e=-n, -n+2,...,n-2,n char- X{A-ffe A -f ), —(F—=1-0}  (6)

acterizes the two-dimensional angular momentum. For QD’s
with confineds and p shell, these states are schematically
shown in Fig. 1. For the quasicontinuum of WL states, theThe first term in the third line of Eq6) accounts for the
two-dimensional carrier momentum will be used as in-planescattering out of statels; and ks into m and k, which in-
quantum numbers. creases the QD population. These processes are balanced
with the reverse scattering events described by the second
term in the third line of Eq(6). Hence the net change of the
QD population depends on the filling factors in both sub-
The physical content of Eq1) will be more transparent if systems. In the following, we refer to this class of scattering
we decompose the summation over all quantum numbermvents asaptureprocesses.
v1,v,,v3 iNto subclasses. This grouping will depend upon  Assuming that the WL population is independent of the
whether a given state in the summation belongs to the exsarrier spin, the spin summation leads to a factor of 2 in the
tended WL or localized QD states. To indicate the particuladirect scattering term in the second line of E6). Note that
choice, v will be replaced for QD states by the quantum the exchange term does not contribute for electron-hole scat-
numberm (n is redundant as long as ondyandp shells are  tering.
considerey and the WL states are labeled by the in-plane The summation over the scattering processes in(Eg.
momentumk. The band indices of population functiois containing the matrix elementﬂ/mklk2m3 and Wink mk, can
and energieg will be explicitly given, all other quantum be decomposed into four separate groups of which three cor-
numbers are suppressed for notational simplicity. respond to a redistribution of carriers between different QD
For the three quantum numberg, v,,v3 in the kinetic  levels (in the following called QDrelaxatiorn) by means of
equation(1l) we find eight combinations between WL and other WL carriers as shown in Figs(c2 and 2d). The last
QD states. In the following we discuss the changes of the Qroup representsnixed scattering processes where, e.g., a
population in the state=m. hole is scattered out of a QD state into the WL while an
When WL states are used for the quantum numberglectron is scattered from the WL into the QD, see Fig).2
(v1,v2,v3)=(Ky,k5,K3), the corresponding scattering rate of ~ The relaxation processes can be grouped in the following
the kinetic equation describes carrier transitions between theay: S**=S0 + 0 -S12. Here

C. Classification of scattering processes
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2’77' ’ ’ 27T ’ ’
Sm= 7 2 2Wiggm *Sem = en, + el — 6} ) $h=" X dem—e, ten,~em)
my,ko,k3,b’ kq,my,mg,b’
{1 -0 (L =)~ (f — 1-)} 7) X Winmyma, [2Wonmmak, = S.0' Winmg m, ]

. . _ {1 - Q- —(f-1-f)}). (11
contains the direct Coulomb interaction for scattering of QD i@ f”‘)fkl( ”‘2) M3 (f- b D

carriers between levelsn and m; by means of scattering

either electrons or holes within the WL between stiteand The first term in the third line accounts for the scattering out
Ks of statesk, into the statem assisted by carriers scattered

from statesm; into m, which increases the QD population,

when a carrier from the QD scatters to the WL while another’®® Fig. &). Again balancing occurs with the reverse pro-

carrier from a different WL state scatters back to a differenCeSSeS described by the second term of the third line. For

QD level. Such a process is for electrons depicted in FigProcesses involving solely electrotmr holes, energy con-

2(d). The summation of all processes of this type due toServation allows only capture from the WL to the excited QD

A redistribution of carries within the QD also takes place

: | : L states. _ _
direct Coulomb interaction is given by Relaxation processes assisted by QD carriers can be ob-
2 tained from
o
Sn= 5 2 AWy *Slem = eie, + e, = em,) ,
my Kok rs , ’
' 2b3 b b \¢b iﬁx:? E 5(821_812"1+852_8213)
}{A-f)R -1 - (f—1-0}. (9 mkpmab’
The Coulomb exchange contributions to the scattering Xkazmsml[ZV\fmkzm3ml_ 5b,b’V\fmk2mlma]
processes described in Eq$) and(8) can be combined to b b b o’
x{(1- fm)fml(l - sz)fms_ (f—1-H}. (12
2
Sn= & > 2 RG[kazksle\fmkzmlka] Assuming thatm andm, label energetically lower and higher
mykzks QD energies, respectively, carrier relaxation between these
x{(1 _ff’n)fﬁ1 (1 —fE )fE -(f—1-f)} states takes place by means of another QD camigscat-
' 2 tered into the WL stat&,, see Fig. 2g). In a situation where
><6(s?n—sﬁ11+s{22—aﬁ3). (9)  carrier capture is more efficient for excited QD states, this

) ) . process is espected to contribute to the carrier relaxation
Finally we have so-called mixed scattering processegithin the QD.

where, e.g., an electron is captured from the WL into @ QD There s yet another combination of QD and WL states

state by means of a hole which is scattered from a QD intQontributing to QD-assisted processes

the WL. Since the capture is typically faster for holes as will

be discussed below, this process can be important to increase 2 ) )

the electron capture with the help of already captured holes.  S\0‘==—~ X dlep—eh, +ep, — Q)

The scattering rate is given by h my,my,kg,b’

- o . . . ) X errbk3ml[2V\fmrThk3m1 - 5D,b'V\fmrrbm1k3]

T iy, a6k oh ¢ o~ o) X{L-Tf, - )R- (f~1-0), (13

e\ fe h \¢h

XA = i (= fie ) fm = (F = 1=} 10 \which describes, e.g., the carrier depletion of the excited QD

states in connection with the relaxation processes of Ez).

and similarly for the holes witlie« h). or a transition into an excited QD state due to the assisting
The scattering processes discussed so far describe captugeattering partner for a capture processes of @d). It

and relaxationassisted by WL carriersAnother class in- should be noted that the out-scattering events of EtH.

volves transitions of carrierassisted by QD carrietrsRe-  and(13) are directly related to the in-scattering processes of

quirements for these processes are more restrictive gince Eq.(12) and vice versa. However, the rates contain summa-

the scattering partners provide only discrete energies whictions over different states and different filling factors contrib-

limits the range of possible transitions afid) populated ute to the scattering times introduced below.

initial and (sufficiently) unpopulated final states in the QD  In the notation of Eqs(11)—«(13) we assume that for the

have to be available. As shown in the next section, efficienprocessed=b’=e,h only k=0 WL states contributgsee

capture and relaxation processes can be provided even undsglow). Then nonvanishing Coulomb matrix elements are

quasiequilibrium conditions for intermediate carrier densi-only obtained for different angular-momentum states of the

ties. two involved p-shell carriers. In this case both spin combi-
Capture processes assisted by QD carriers are describedtions of the assisting carriers are allowed which leads to
by the factor of two in the direct Coulomb terms. When other
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WL states are involved and twp-shell carriers in the same o5 scattering o I scattering
angular-momentum states contribute, this factor and the ex- ' () S-F "L 4 b T T T L
change term need to be removed. b — sswe | 4 o4l i

Scattering contributions involving the following Coulomb > v A I A %
matrix elements are left OUW i, mm, COrresponds to inter- Y P | ] ooop 7 1@
nal QD scattering and energy conserving processes do not g %} ] YL ]
change the population while terms containiVg, ., can- P R
not fulfill the energy conservation given by the delta func- & 0;. o ] e PR
tion. A T 1 F W

For the single-particle energies entering the scattering in- osf ] sﬁ; e 18
tegrals, renormalization due to Coulomb interaction has been 04 f/' T o4l /,/ JF
neglected. Energy shifts of several meV have been calculated i o.z:—.‘;’“,;}"'.;:::-_-:-_-@{.’f.lf,_
for the (bare Coulomb interaction of few carriers in a QD. L T minr
The aim of this paper is, however, the description of the laser Wetting-layer carrier density ( 10" cm

regime with a large carrier density in the WL. Efficient

screening of WL carriers is expected to reduce the Coulomb FIG. 3. Scattering rates for capture processes to QD ground
shifts. One could argue that for nearby carri@gsnfined to  states(solid and dashed-dotted lines: assisted by WL and QD car-
the same QDscreening due to WL carriers is less efficient, riers, respectively and to first excited state@lashed and dotted
but this has to be put in relation to the high WL carrier lines: assisted by WL and QD carriers, respectiyéty electrons
density we aim at. Simple Hartree-Fock energy renormaliza(®: (b) and holeg(c), (d) asa function of the carrler_densny in the
tions are known to strongly overestimate the energy shifté’_‘”- at 300 K. In-scattering rate_s_fc_nr_ processes assisted by QD car-
under high excitation conditions. Calculations beyond thig€'s are scaled up for better visibility.

level are an area of ongoing research in the field of quantum

kinetics and beyond the scope this paper. cesses will evolve the distribution functions of electrons and
holes towards Fermi-Dirac functions where the QD and WL
D. Model system electrons and correspondingly the holes will have the same

For the numerical results presented in this paper we conshemical potentiak, and u;, respectively.
sider an InGaAs QD-WL system. Parabolic dispersion are During such a time evolution towards equilibrium the
assumed for conduction and valence bands with effectiveelative importance of various scattering processes is ex-
massean,=0.06M, and m,=0.15m,, respectively, and the pected to change via their dependence on (tr@equilib-
dielectric constang=12.5. Unless otherwise noted, a 2.2 nm rium) carrier distribution functions for WL and QD states. To
WL thickness and 2.1 nm additional QD height are used. Theiniquely compare the influence of various processes, we as-
finite height of the confinement potential for electrons andsume that an equilibrium situatiotat 300 K) has been
holes is taken to be 350 and 170 meV, respectively, such thaeached and study the dependence of the scattering processes
equalz-confinement wave functiong(2) for electrons and on the WL carrier density.
holes can be adopted. Equation(1) can be cast into the form

For a small WL thickness and QD height the energy spac-
ing of the subbands and sublevels due to confinement in the J i ut
z direction is large and only the lowest quantum number = -f)8 1,87 (14)
will be considered. Furthermore, we assume that the har-
monic confinement potential leads to equal QD in-plane e . .
wave functions for electrons and holes. Different electronand bZSEd on the a_bove Cla-s,’]s'f'cgt's?)ﬂt \:cve analyze in dletall the
and hole masses then result in different level energies. - and out-scattering rateS;" and 5" for capture, relax-

ation, and mixed processes.

investigate QDs where thelouble degeneratground state . .
and the(fourfold degenerabefirst excited state are confined. In Fig. 3 the scattering rates for the.electron and hole
capture processes are shown. First we discuss results for the

The energies of the ground state for electrghsley are ; . :
g 9 0 9 capture assisted by WL carriers. In scattering becomes more

80 meV(30 meV) and for the first excited state M . g ; ; :
. efficient for increasing WL carrier density. The same applies
40 meV (15 meV) below the continuum of the WL. A den- . . i . =
to out scattering up to intermediate WL carrier densities. In

. : 10 D .
sity of QD's ngo=10"" cmi* entering the OPW procedure both cases the scattering rate increases due to the larger

discussed in Appendixes A and B will be used. Then, for thepopulation of available scattering partners. When the popu-

combined QD-WL system in thermodynamic equilibrium at|__: . .
300 K, inversion of the lowest QD state as a precondition forIatlon of the energetically lower WL states approaches unity,

. T . ) ) Pauli blocking starts to reduce the out scattering, i.e., the
optical gain is realized when the WL carrier density exceed%verse of the processes schematically depicted in Figs. 2

1 a2
1.3x 10" c®, and 2b), due to the reduction of available final states. The
. RESULTS FOR COULOMB SCATTERING population factors might still allow WL carriers at higher
o ) energies to assist the QD-WL scattering. Their contribution
A. Equilibrium scattering rates is, however, strongly reduced due to the Gaussian decay of

As a general property, for any initial carrier distribution the Coulomb interaction matrix elements with the WL carrier
function the combined action of the discussed scattering pronomenta.
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FIG. 4. Scattering rates for QD carrier relaxation processes ac-
cording to Eqs(7)—(9) and(12). (a) and(c) represent scattering out
of the QD ground state into the QD excited states wiileand (d)
show results for the reverse processes.

FIG. 5. Rates for mixed scattering procesges.and (b) show
electron in and outscattering while) and(d) are hole in and out-
scattering, respectively.

the Coulomb interaction matrix elements make it more favor-
Processes assisted by QD carriers are only important in asible to scatter between two QD carriers assisted by a transi-
intermediate density range and are typically weaker than théon between two WL carriers, in comparison to two coupled
processes assisted by WL carriers. For low carrier densitiegansitions between QD and WL carriers. Furtherm@é,
the initial states of the assisting scattering partners are neflso contains electron-hole scattering which does not contrib-
populated and for higher carrier densities Pauli blocking preute to 2P and S'%.
vents scattering into possible final QD stat@dote that we For the comparison of scattering rates of electrons and
assume a quasiequilibrium situation for the coupled QD-WLholes, two counteracting contributions need to be considered.
system) For the used level spacing, energy conservatiorrhe energy spacing between QD states is smaller for holes
does not allow electron capture to tBeshell by means of which increases their scattering rates. The smaller population
QD electrons or holes while capture of holes to #fehell is  of holes due to their larger effective mass, on the other hand,
possible by means of QD electrons. decreases their in-scattering rate and increases their out-
Generally, the processes related to the QD ground statesattering rate. As a result, the in-scattering rates of electrons
are slower than those for the first excited QD states since thand holes are comparable while the out-scattering rates are
larger energy difference requires WL carriers with larger modarger for holes.
menta which again leads to smaller Coulomb interaction ma- The relaxation processes assisted by QD carriers require a
trix elements. For the same reason, the corresponding scatther detailed discussion. The rates depend more strongly on
tering rates for holes are larger than for electrons. In earliethe QD energy spacing in comparison to the energetic dis-
references, exchange contributions to the scattering rates asnce of the excited QD states from the WL continuum. For
often omitted. For processes assisted by WL carriers curvete used example, relaxation of electrons assisted by QD
without exchange interaction exhibit a similar shape but reelectrongditto for holeg according to Eq(12) involves only
sults are overestimated by about @®%) for thep (s) shell,  the k=0 WL state. This requirep-shell carriers in opposite
respectively. For processes assisted by QD carriers direct arsthgular-momentum states far, and m; to obtain nonvan-
(possible exchange Coulomb matrix elements are equalishing Coulomb matrix elements. On the other hand, electron
Hence, contributing exchange terms reduce the scatteringlaxation assisted by holes allows# 0 and also the same
rates for these channels by 50%. angular-momentum states for; andms contribute. The cor-
The scattering rates for various relaxation processes amesponding Coulomb matrix elements can be up to an order
shown in Fig. 4. In and out scattering refer to the QD groundof magnitude largecin comparison to th&c=0 matrix ele-
states. When the relaxation processes involve only(@e  menty depending on the involved WL momentum. Hence,
generatg confined levels, the corresponding out-scatteringthe large rateS*°* for electrons is due to efficiers-h scat-
rate for the ground state equals the in-scattering rate due tering while energy conservation does not allbve contri-
relaxation for the excited state and vice versa. butions to the hole relaxation and theh process involving
Processes assisted by WL and QD carriers will be disk=0 is weak. While this situation clearly changes with dif-
cussed separately. Regarding the first class, the qualitatiferent spacing of the excited QD states from the WL con-
behavior of the WL carrier density dependence for in and outinuum, the obtained relaxation rates for electrons and holes
scattering is similar to the capture processes for the reasomsin be considered as limiting cagether choices for the QD
discussed above. In all cas®'® provides the dominant con- energy levels are typically in between these extremes
tribution while $’° andS'*¢ are much smaller. Sincg® and In Fig. 5 the mixed scattering rates are shown in the same
S'X contribute with opposite sign, they partly compensatenotation used in Fig. 4. Finding the same WL carrier-density
each other. Th&!P relaxation rates dominate mainly becausedependence as above, we notice however that in-scattering
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FIG. 6. Scattering times for processes assisted by WL carriers. FIG. 7. Same as Fig. 6 but for processes assisted by QD
(a) Capture times for WL carriers to the QD ground std@sand  carriers.

first excited statefep) for electrons and correspondingly for holes. . ) ) .
(b) Relaxation times for carrier scattering from first excited states td€lative magnitude of the displayed capture and relaxation

ground states. The temperature is 300 K. Different axis scaling foProcesses can be directly traced back to the above given
capture and relaxation times should be noted. detailed discussion of the scattering rates. The nearly con-

stant hole relaxation time for WL carrier densities between
. 4x 10" and 16° cm™ is a result of the interplay of filling
processes are faster for electrons than for holes. Scattering @ty leading to a decreasing out-scattering rate and in-
electron from the bottom of the WL into the QD ground creasing in-scattering rate shown in Fig. 4.
state, as schematically shown in FigeR puts a QD hole far As a function of carrier density the capture processes as-
up in the valence band W{where the final state population gjsted by QD carriers, Fig.(a), initially dominate in com-
is smal) due to the larger QD confinement energy for elec-parison to the WL assisted ones in a range where both types
trons. The probability for the reverse procebsle in scat-  of processes are slow. For intermediate to high carrier den-
tering) is strongly reduced due to the small initial-state popu-sities processes assisted by WL carriers provide the main
lation for holes and large final-state population for electronscapture channels. The results in Figb)7show only slightly
smaller efficiency for the electron relaxation assisted by QD
B. Equilibrium capture and relaxation times carriers in comparison to WL assisted processes. However,
ﬁhe values in Fig. (b) depend on the QD-QD vs QD-WL

In- or out-scattering rates alone determine the populatio . :
?éergy spacing. For other parameters, relaxation of holes can

changes of the considered QD states when these states
completely empty or completely populated, respectively, a
can be seen from E@l4). On the other hand, when all QD
and WL states are in thermodynamic equilibrium with
Fermi-Dirac distribution function§,, characteristic scatter-

e as fast as for electrons but times are typically larger than
or relaxation assisted by WL carriers.

The computed scattering times suggest the following dy-

namical scenario for the chosen material system. WL carriers

ing times 7, can be introduced in response to small pertur- _ Out scattering In scattering
bations of,. Solving the kinetic equationl4) for a carrier =~ 2 T T~ T T ] ® 1T T T T ]
distribution functionf,=F,+&f, we assume that the influ- Z°F el (ay 4 LL (& P
ence of 5f, on the scattering rateS! and S can be ne- g ¢ e 1 ¢ L 2
. S 6 m~——— -4 10} - 4 =
glected: I L -~ { =
‘g 0 I Y L _
J fV - FV 1 in ut % b T R 7] L ,/. __________
!, =—-— — = + B T t + I PR L iesiiqeraates s
mfv n, T, (S)+S) )Fv' (15) B %4 e s 10 e s o
~ 15 T T T T
(For example, wheri, andF, correspond to the same total g b (¢) - B
. . . . . . Nt - opw
carrier density5f, is a symmetric perturbation which tends o 1 4 .. )
to averages out in the scattering integnalhen the inverse gt s
of the scattering timer, is given by the sum of in- and 8 oS 1 [-- |p>l:v
out-scattering rates calculated with the RHS of 8g.using g b
Fermi-Dirac functions, i.e., the scattering rates discussed ir L R SR

the previous subsection. The scattering timedetermines
the evolution back to equilibrium.

In Fig. 6@) capture times calculated from the in- and  F|G. 8. (a), (b) Scattering rates for hole capture from the WL to
out-scattering rates of E@6) are shown, Fig. @) contains  the QD ground statesolid line: OPW, dashed-dotted line: B\ahd
the relaxation times according to Eq3)—(9). The decreas- to first excited stategotted line: OPW, dashed line: Pveind cor-
ing scattering times for increasing WL carrier density and thaesponding capture times) at 300 K.

Wetting-layer carrier density ( 10" em ™)
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are dominantly captured to the excited states. Filling of thedepends on the WL carrier-density, the same holds for the
QD ground states occures on almost the same time scale daapture time. In addition to the results obtained with OPW
to fast relaxation of carriers within the QD. Electronic cap-wave functions for the WL statdgsolid and dotted linesalso

ture processes are an order of magnitude slower than thee plane-wav&PW) results are giveriddashed and dashed-
corresponding processes for holes. Direct capture to the holdotted line$. In this case the rates are strongly overestimated
QD ground states also weakly contributes while direct capwhich emphasises again the importance of the OPW scheme
ture to the electron QD ground state can be neglected for theiscussed in Appendixes A and B.

considered large energy difference between the electron QD In Refs. 11 and 12 also two-phonon processes have been

ground state and the WL. studied based on Fermi's golden rule. For weak polar cou-
pling, their efficiency is clearly reduced in comparison to

IV. THEORY AND RESULTS FOR CARRIER-PHONON one-phonon processes. Furthermore, in a perturbational treat-
INTERACTION ment state filling effects of the intermediate states is ne-

) ) ) ) _ ) ~glected, which further reduces the scattering efficiency.
In this section we consider the interaction of carriers with

LO phonons. In the Markov approximation the kinetic equa- V. CONCLUSIONS

tlﬁ/rérc]i%termmlng the changes of the carrier populatipis We have discussed in- and out-scattering rates as well as
9 y scattering times for capture and relaxation processes in the
9 20 Mfo QD-WL system. In general, in- and out-scattering rates enter

—f,= ——=22 W, in a kinetic equatiori14) from which the population dynam-

ot h e2/80 ’ . . .. . . . .

v ics for a given initial situation can be determined. The in-

X{(1 - ), [(1+n.0)d(e,— &, +hiwLo) scattering rates solely descr!be the population chan_ges_ as
long as the final-state population can be neglected. This situ-
+Nodle, — &, —hoo)] ation is closely connected to calculations based on Fermi’s

olden rule where fully populated initial states and empt
~ A -f)nede, ~ ey + o) ?inal states are assumyeg. IIon an intermediate situation \?w)t/h
+(1+n)de, e, —hoo)l}, (16) existing final-state population, capture and relaxation pro-
cesses will be less efficient due to Pauli blocking as well as
where o o is the LO-phonon frequency. For the phonon out-scattering contributions. For completely filled states, the
populationn o a Bose-Einstein function at the lattice tem- discussed out scattering rates solely determine the population
perature will be used to describe the crystal lattice in therjgsses.
modynamic equilibrium. The Fréhlich coupling has been  On the other hand, the given scattering times characterize
formulated in a general eigenfunction basis with therelaxation and capture processes under the assumption that
Coulomb matrix elements, EqR). Hence, the calculation of 3| states are populated according to Fermi-Dirac statistics.
the polar-coupling interaction matrix elements for WL andThe carriers in a laser operating under cw conditions are
QD states can be done along the lines of Sec. Il and Appenypically near a quasiequilibrium distribution. If, for ex-
dix B. The coupling constantM o=(e*/go)(1/e..~1/  ample, the stimulated recombination depletes the lower QD
&)(hw o/2) contains the static and high-frequency relativestates then the QD relaxation time determines the refilling of
dielectric constants ande.., respectivelyM o can be ex- this state with carriers from the exited QD states and the
pressed in terms of the dimensionless coupling constant capture times determine the refilling from the WL.
=(e?/4megh)\ml 2hw o(1/e,—1/e) with the reduced For the processes due to Coulomb interaction, relaxation
electron-hole-massn. within the QD is typically on a faster time scale than the
Various terms on the RHS of E@L6) describe the scat- carrier capture from the WL into the QD. Processes involv-
tering of carriers from statesinto v’ under the emission and ing holes are typically faster than the corresponding pro-
absorption of an LO phonon as well as the reverse processasesses involving electrons and capture to the excited states is
Under the asumption of strict energy conservation, carriefaster than capture to the ground states. Hence in a dynami-
relaxation between the QD states is only possible when theal scenario, first the holes are captured to the excited QD
LO-phonon energy matches the level spacing. Furthermorestates and immediately scattered via relaxation to the QD
contributions to carrier capture are obtained only for an enground states. Capture of electrons is somewhat slower, the
ergy difference between the QD states and the WL largesubsequent relaxation for electrons is only slightly slower
thanfiw o. than for holes. When capture processes due to emission of
For our InGaAs system withhw =36 meV and « LO phonons are possible, their efficiency is comparable to
=0.06 only hole capture is possible. According to Fig. 8,Coulomb scattering at elevated WL carrier densities.
capture to bottp ands shells is possible with an in-scattering  Depending on the density of QD’s the capture and relax-
rate comparable to the hole capture due to Coulomb scatteation processes in turn will change the WL carrier distribu-
ing in Fig. 3 which shows also a similar WL carrier density tion. Together with the different time scales of the discussed
dependence. Note that the capttiree is defined according processes involving QD carriers, a nontrivial interplay in dy-
to Eq.(15) as the response time of the system to small pernamical situations is expected.
turbations from equilibrium and, hence, contains both in-and One of the goals of the paper is to study the influence of
out-scattering rates. Since the out-scattering rate only weaklerms often neglected previously. In addition to the above
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summarized interplay of in and out scattering and scatteringactor  (¢,|¢0)=[d?een(@—R)¢i(0)=[d?eom(@) ep(e
times it is shown that the Coulomb vertex contributions typi-+R) = (¢p| (pE)eik-R, we have

cally cannot be neglected in comparison to the direct Cou-
lomb interaction. Scattering processes assisted by QD carri-
ers contribute especially at lower carrier densities and can
add to the relaxation at higher densities. The use of WL wave
functions properly orthogonalized to the QD states is found (A3)

to be important for the evaluation of Scattering rates. The]'he sum overR now involves 0n|y the phase factors. For
relative contribution of OPW corrections depends on how thgandomly distributed QDs these phase factors will average to
density of QD’s enters. In the discussed Coulomb matrixzero except fok =k’. More precisely, in the large area limit
elements for carrier capture and for relaxatiercept inStP) (A— o with the number of QD'sSN— such that the QD
the orthogonalization even contributes if one would have gjensityn,,,=N/A remains constapbne has

single QD in an infinite system, i.e., for zero QD density.
Results for these processes based on plane wave WL states 1 2 kR = 5
- k!-
N R ’

1 .
(o) = (8w = 2 {eplem{emop )& R,
NNy mR

can strongly deviate from OPW calculations. On the other (A4)

hand, screening due to WL carriers is somewhat less influ-

enced by OPW corrections since the derived generalizetience, “on average,” different OPW states are also orthogo-
Lindhard formula for OPW states contains the PW result plug1al with the normalization

corrections starting in first power of the QD density. Essen-
tially, screening is a “global” effect less influenced by a Ny = \/1—'\'2 Kepleml?. (A5)
small number of QDs whereas processes in the QD depend m

on the “local” features of the wave function. Here the or- Using the normalization are& of the p|ane waves, the pref-

thogonalization is more important, because it changes thgctor of the sum over the QD states is accordingly given by
wave function exactly in the region of the QD where thethe QD densityny,,

transitions take place.
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APPENDIX A: ORTHOGONALIZATION PROCEDURE (oleTelec) = NN, (<¢’k|e'q %@y

Our starting point for the constuction of wave functions 0 - 0
are WL states in the absence of QD’s, which are considered + 2 (Pl @) @al €7@ X @url @)
as plane-wavesp)(g)=(1/VA)é¥e with two-dimensional aa’
carrier momentunk. To describe the combined system we =S (0l o, N |<PO )
use plane waves orthogonalized to the QD sta@RW)518 ~ Tk AT alTk!

90 = Nik(lwb “Sleeded)  AD -2 <¢(k’|%><%|éq""|¢3r>)- (B1)

whereN, is the normalization constant. The sum includes allAgain, in the large area limit the random QD distribution
localized states. In the following we assume an ensemble destores the translation invariangeomentum conservation
identical, independent QD’s with nonoverlapping wave func-of the problem, and one obtains
tions. Thena=(m,R) contains various QD staten at dif- 1
ferent QD positionsR. The QD states are thus mutually or- (¢, |€99| /) = 5k_q_k,W
thogona|<§oa| <)Da’>: 5&,0(’ kK’

By construction the OPW states for the WL are orthogo- 0 2 02

- : X[1=N2 (oplem|? = N2 Kenl@p )]

nal to the QD state<ep,|¢,)=0. To study the orthogonality ( - m Tk
of OPW states, we use

+N 2 (@0 @m! @l €9 @y X @y

1 )
(ol @) = W((qo%so(k)/) - <QDEI%><%|<P2/>)- mm

@ﬁ&),
(B2)

(A2) where the remaining overlap integrals of localized QD wave
As the plane wave overlap integrals with the QD functions and plane waves can be calculated analytically for
states at different positions differ only by a phaseharmonic oscillator states.
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In the case when the pairing of the states in the Coulomi€oulomb interactiorw(r,r,) obeys the integral equation
matrix elements involves one OPW state and one QD state
the in-plane integrals in Eq5) lead to
W(ry,rp) =v(ry—ry) + J @Prad®rgu(ry = ra) P(ra,r JW(r 4,r2)

) 1 )
<¢a|e'q-@|¢k>:N—k<<%|e'q-e|so8> c

-> <%|e'q'9|%/><%/|¢g>)- (B3)  with the bare Coulomb interactian(r —r’) and the longitu-
' dinal polarizationP(r ,r’).1° In the equilibrium situation dis-
With the above given arguments we find for a QD at positioncussed in this papew and P additionally depend on the
R that <(Pa|eiq-g|(PE>:J‘d29(Pm(Q_R)eiq-gcpg(g) frequencyw in conne'ctlon. with dynamllcal screening effepts.
In a nonstationaly situation treated in Markov approxima-
tion, they furthermore depend on the macroscopic tinfer
notational simplicity, these arguments are omitted.
. 1 0 The random-phase approximatidrfor the longitudinal
(@ole g|‘Pk>=N_<<‘Pm|(Pk+q> polarization leads to the eigenfunction expansie,r’)
X =S, ©,(N®,(r")P,,®,(r")®",(r). In the above dis-
wf()))é(kw)-R. cussed limit of large WL carrier densities and/or small den-
sity of QDs on the WL we consider only screening of the
(B4) Coulomb interaction due to WL carriers, i.ez,and v’ are
WL states. With the OPW description of the previous appen-
Hence for QD’s at position®, phase factorg®*9R enter  dices, the WL states are “on average” spatially homogeneous
the Coulomb matrix elements of the discussed structur@nd the longitudinal polarization possesses in-plane transla-
which contribute in Eqs(6) and(8)—<10). When the capture tional invariance. This can be directly seen from
of carriers in a particular QD is calculated from E6) these
phase factors cancel exactly, i.e., the processes are indepen- _ L
dent of the QD position. The same applies when carriers are f d’e f do’e ¥ epP(r,r')ed @
scattered within the same QD according to E&—(10). It

[e3

:<¢m|¢g+q>é<k+Q>-R. Since we neglect the wave function
overlap of different QD’s, this results in

= > Pl €9 @y X Py
m/

should be noted that the first Coulomb matrix element in Eq. = D (@€ o oy | €979 | @y WPy 1 (2,2)

(9) requires that the two QD quantum numbensand m KK’

belong to the same QD position as long as the wave function

overlap between different QD’s vanishes. For the same rea- :5q,q'% P k-q(2.2)[Fic k=gl (C2)

son, Eq.7) describes only carrier scattering within the same

QD. However, Coulomb interaction can couple carriers in

different QD’s (even for vanishing overlap of their wave Where in the eigenfunction expansion only the in-plane com-
functiong according to processes described in E§g.and  ponents of the wave functions has been used. For the evalu-
(10) and depicted in Figs.(8) and 2e) where a carrier from  ation of the overlap integrals involving OPW states we have
one QD is scattered into the WL while another carrier fromintroduced the short notation

the WL is scattered into a different QD. It can be seen by

direct inspection of Eq(2) that these matrix elements are (@ €719 @) = SegqrFrekr (C3)
controlled by the strength of the Coulomb interaction at the

distance between the two QD's involved. Hence the screen- . . .
ing length of the Coulomb interaction in comparison to theWhere Fi can be obtained from a comparison with Eq.
QD separation limits these processes. In this paper we agl__%Z) and describes the OPW corrections of the plane-wave
sume sufficiently large screening of the Coulomb interactio esult. . . .

due to WL carriers in order to neglect these procegses.a Already at this point one can concluge.g., from an it-
typical WL carrier density of 18 cmi2 at 300 K the Debye ©rative solution of Eq(C1) with t’he structurew=u +vPv
screening length is 0.76 in units of thel 8xciton Bohr ra- TvPvPU+ -] that since P(r,r')=P(e-e’,z,2)), the
dius) Therefore, Eqs(6)—(13) describe scattering processes screened Coulomb interaction depends also only on the dif-

involving each QD separately and taking place identically inférénce of the in-plane space arguments. This behavior is to
all QD’s. be expected on intuitive grounds since we consider a uniform

distribution of QD’s that translates into in-plane homogene-
ity of the screened Coulomb interaction. The property essen-
tially simplifies the following calculation of screened Cou-
lomb matrix elements along the lines demonstrated for the
bare Coulomb interaction in Eq&)—(5).

While the discussion of interaction matrix elements in  Our starting point is the Fourier transform of the bare
Sec. Il B refers to the bare Coulomb potential, the effect ofCoulomb potential with respect to the in-plane space depen-
screening will be included in the following. The screeneddence

APPENDIX C: SCREENING OF THE COULOMB
INTERACTION
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1 . , can be reduced to the algebraic set of equations
u(r _r/):;E gileey(q,z-7), (C4
q WO'10'20'30'4(q) = V0'10'20'30'4(q)
as well as the corresponding in-plane Fourier transform of +Sv = W
the screened Coulomb interaction E, 10", ( D) Py (0) W1 (0)

oo

1 . )

we-g'z27)= ;S e%eewazz).  (CY (C1D
q A simple solution can be given if we assume identical

From Eq.(C1) an integral equation for the Fourier coeffi- confinement wave functions for the QD statgiz) to be

cients is readily obtained, distinguished from the confinement in the WL§,(2).
Finally we list the results for the Coulomb matrix ele-
w(9,21,2) =v(9,2 - 2) ments used in Eqg6)—<10) to describe carrier capture and
relaxation processes
+ J dz5dz (0,2, ~ 23) P(Q, 23, Z)W(0), 24, Zp) - .
(C6) Wingkakaky = 4 owwvikz — Ka){om [€7* 2 g )P,
The interaction matrix elements for the bare Coulomb po- (C12

tential are given by Eq(2) and similarly for the screened

Coulomb potential. The assumed separation of wave func- _ ~i(kyka)o

tions into in-plane and components allows us to introduce Winyk kgm, = A Qwwdkz — k3)<<Pm1|e 2 |€Dm4>Fk2,k3a
quasi-two-dimensional matrix elements. For the bare Cou-

lomb interaction, the quasi-two-dimensional matrix elements (C13
are given by Eq(4) wherev(q,z-2')=(€*/2eq)e 922 | has L

been used. Then the interaction matrix elements follow from == -ig-o ia-e

Eq. (5) or in the short notation Win,k,mak, A% WQWQv&Q)(QDmJe |<Pk4><<Pk2|e' |<Pm3>-

Vigssra™ 22 Voronr@(00]€7710, )0, /7], e
VVVV:_ 010,070, (PV (PV (PV ()DV 1 . . .
e Pien, v 3 The in-plane Coulomb matrix elements are given by
(C7) V,
. . Wowwwd) = Quuni Q) : (C1H9
whereg; are the quantum numbers for the confinement in the 1 = Vywww @) P(a)
z direction and the band indicdsare suppressed for nota-
tional simplicity. For the screened Coulomb interaction we Vowwda)
in i W )= : (C16
obtain in complete analogy owwdd 1 =V @ P(@)
1 ig. iq-
W"1V2V3V4 = ;% \/\1‘71‘72"3”4((:1)<(’D"l|e . g|(p”4><¢”2|elq g|(p”3>’ Wowowld) = [VQWQV\£CI) = Vowow @) P(@) Viywww )
(C9 + Vowwwk®) P(Q) Vivwow )]
\t/)vhere the corresponding in-plane matrix elements are given 1 =V @) P(@)] (C17)
y

with P(q)=Pyw(Q).
_ * x , For the matrix elementd/owwwandWowwolt is directly
W”1”2”3‘74(q) - J dZdig"l(z) 502(2 )W(q’zl’ZZ)g"s(Z )5‘74(2)' possible to introduce a Ion%itudinal diglect(EiC function that
(C9) obeys a generalized Lindhard formula when the longitudinal
polarization is computed in random-phase approximéafion
The in-plane overlap integrals in the second line of Eq.for the OPW states
(C8) have been discussed in Appendix B for the required b b
combinations of WL and QD states. The remaining task is P(q, ) = 12 fi-q ~ fi
the computation of the in-plane matrix elements ' Atk hw+sE_q—sE+i6
W01020304(q). Introducing in-plane matrix elements for the
longitudinal polarization

2. (c19

|Fk,k—q

where the frequency dependence has been added for com-
pleteness. The matrix structure of EG.11) in principle pre-

P(0,2525) = 2 éDé(Z )P, o (QE(Z)E, (2, vents the simple structure with a generalized dielectric func-
o0 ' tion for Wowow but the additional terms containing the
(C10 polarization in the numerator of EC17) nearly compen-
sate.

and using Eqs(C9) as well as the corresponding equation In conclusion, the assumed separation of the wave func-
for the bare Coulomb potential, the integral equati@®) tions into in-plane and components results in quasi-two-
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dimensional matrix elements of the bare Coulomb interaction S Out scattering In scattering
(4). Screening due to WL carriers can be included in this 3 N '
formula (for Wingkkak, and Wink,kam, strictly and for
Wm1k2m3k4 in good approximationby dividing with a longi-
tudinal dielectric function e(q, w)=1-V\yywwwa)P(Q, )

that contains the in-plane Coulomb interaction between WL
states and their longitudinal polarization calculated with
OPW corrections. For the presented calculations the general-
ized Lindhard formula is used in quasistatic approximation.

[=]

o £

=
Electrons

e
]

=]
T

Scattering rate  ( ps_l )
5w

Holes

APPENDIX D: ROLE OF THE WAVE-FUNCTION
MODEL

e
n

In this appendix we discuss the influence of various as-
sumptions of the wave-function model on the calculated
scattering rates. In lens-shaped QD’s on a WL the spatial g, 9. scattering rates for QD carrier relaxation proceSses
height of thez confinement changes within the QD. In the similar to Fig. 4 but with different approximations for the confine-
adiabatic approximation discussed in Ref. 17 the wave funcment wave functions. Solid line: OPW calculation, short-dashed
tion contains in-plane angtconfinement parts according to |ine: plane-wave WL states, long-dashed line: larger QD height and

_ b smaller WL thickness, dashed-dotted line: equal confinement in

®,(1) = ¢f(@)én(. Dup(r). (DY) growth direction for QD and WL.

For a confinement potential with cylindrical symmetry, the
in-plane part can be expressed usigie) =™/ 27 (0)
with the in-plane anglep. For a discretization of the poten-
tial into ring-shaped regions afpproximately constantz
confinement f,(¢) obeys Bessel's differential equation.
Boundary conditions determine the matching of wave func

Wetting-layer carrier density ( 10" em )

The result using plane waves for the in-plane part of the
WL states is shown as short-dashed line in Fig. 9. For the
relaxation rate$t® the Coulomb interaction matrix elements
contain only pairing of WL states or pairing of QD states.

- S : ) Hence the missing orthogonality of plane waves and QD
tions in d|ffergnt regions. This proc_edure allows US 10 CON-ia105 does not influence the results and OPW corrections are
struct piecewise analytically determined wave functions for %mall. The situation is different for the carrier capture rates

given confinement geometry. Nevertheless, using these Wa\fhere Coulomb interaction matrix elements contain pairings

functions in Eq/S) is a challenging task since for an appro- of WL and QD states. For the capture rates to the first excited

gréitlirzlscr::?iitggrﬁgmg i\gvke%%?:;nduum a large number 0fstates, Fig. 10, the plane-wave resulsiort-dashed lings

strongly depart from the OPW calculations. On the other

Instead of us_ing this approach we checked on a Simp.leltnand deviations between 3D-OPW resuslid lineg and
level, how sensitive the discussed calculations of scattering, 2,D-OPW modeldotted lines are small. Similar results
rates are to the particular choice of confinement wave func(-not shown are found for the scattering rétSéD 512X and

tions. We consider two limiting cases. xed o i e i
(i) Constant heightqp within the QD and smaller height f:latibrimi:fhtgs bZeDer?E:Zdni]r??:%grzitéy simplifies the cal
zy. throughout the WL(For shallow QD’s the wave func- ' ' '

tions average over a weakly changing height. Out scattering In scattering

(i) In the limit of equalz confinement for QD and WL T 2
R ()] [ (&) P

the QD confinement would be purely due to composition
changes and/or strain in they plane.

In both cases, EqD1) reduces to Eq.3). In the first case g
of different confinement functionég(z) for the QD and WL
states, a three-dimensional OPW scheme according to

)

Electrons

Scattering rate ( ps

wo=(19D-Se)@)ed)  ©2
k a

Holes

is necessary. We compared results for the QD relaxation rates
StP based on this schem@olid line in Fig. 9 with a sim-
plified calculation where only the in-plane part of the wave
functions<p|b(g) is subject to the OPW scheme according to
Eqg. (A1) and differentz-confinement functions enter in the
form factor of the in-plane Coulomb-matrix elements, Eq. FIG. 10. Scattering rates for carrier capture from WL to first
(4). Both in- and out-scattering rates of electrons and holegxcited QD states similar to Fig. 3 but with different approxima-
are practically unchanged and differences would not be Vvistions for the confinement wave functions. Solid line: 3D-OPW cal-
ible in Fig. 9. culation, dotted line: 2D-OPW model. For other lines, see Fig. 9.

Wetting-layer carrier density ( 10" em )
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Next we investigate the dependence of the results on thiarge change of the confinement situation, the changes of the
particular choice of parameters for the confimenent potentialscattering rates are relatively small. The dashed-dotted lines
While variations of the confinement potential will also affect in Figs. 9 and 10 show results for the limiting case of equal
the QD ene_rgies, we are he_re only interested in the "?ﬂue”C@onfinement in thez direction for QW and WL discussed
of the confinement potential on the Coulomb matrix ele-ahoye Calculations are done for a 4 nm finite-height con-

ments. Hence, we artificially use the same QD energies Hhement potential. Due to the maximized overlap for the

before but take different functiors,(z). While previous cal- -
culations are done for 2.2 nmrﬁvfllz heightpand additional.Cornponents of the QD and WL wave functions, the scatter-
2.1 nm QD height, the long-dashed lines in Figs. 9 and 14ng rates are larger than in the previous cases. The capture

correspond to a 1.6 nm WL height and additional 4.4 nm QDand relaxation times for this situation using GaAs parameters
height (using the 2D-OPW modgl While this is a rather are given in Ref. 20.
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