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Entanglement in mesoscopic structures: Role of projection
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We present a theoretical analysis of the appearance of entanglement in noninteracting mesoscopic structures.
Our setup involves two oppositely polarized sources injecting electrons of opposite spin into the two incoming
leads. The mixing of these polarized streams in an ideal four-channel beam splitter produces two outgoing
streams with particular tunable correlations. A Bell inequality test involving cross-correlated spin currents in
opposite leads signals the presence of spin entanglement between particles propagating in different leads. We
identify the role of fermionic statistics and projective measurement in the generation of these spin-entangled
electrons.
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Quantum entangled charged quasiparticles are perce
as a valuable resource for a future solid state based qua
information technology. Recently, specific designs for me
scopic structures have been proposed which generate
tially separated streams of entangled particles.1–4 In addition,
Bell-inequality-type measurements have been conce
which test for the presence of these nonclassical and no
cal correlations.3,4 Usually, entangled electron pairs are ge
erated through specific interactions~e.g., through the attrac
tive interaction in a superconductor or the repuls
interaction in a quantum dot! and particular measures a
taken to separate the constituents in space~e.g., involving
beam splitters and appropriate filters!. However, recently it
has been predicted that nonlocal entanglement as sign
through a violation of Bell inequality tests can be observ
in noninteracting systems as well.5–9 The important task then
is to identify the origin of the entanglement; candidates
the fermionic statistics, the beam splitter, or the projection
the Bell measurement itself.10,8

Here, we report on our study of entanglement in a non
teracting system, where we make sure that the particles
counter the Bell setup in a nonentangled state. Neverthe
we find the Bell inequality to be violated and conclude th
the concomitant entanglement is produced in a wa
function projection during the Bell measurement. This ty
of entanglement generation is well known in quantu
optics11 where entangled photons are generated through
jection in a coincidence measurement. Also, we note
wave-function projection as a resource of nonlocal entan
ment is known for single-particle sources~Fock states!,10 a
scheme working for both bosons and fermions. What is
ferent in Refs. 5–9 and in the present work is that the sou
are many-particle states in local thermal equilibrium. It
then essential that one deals with fermions; wave-func
projection cannot create entanglement out of a ther
source of bosons.5,8

The generic setup for the production of spatially separa
entangled degrees of freedom usually involves a source
jecting the particles carrying the internal degree of freed
~the spin1,2,7,9or an orbital quantum number4–6,8! and a beam
splitter separating these particles in space, see Fig. 1. In
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dition, ‘‘filters’’ may be used to inhibit the propagation o
unwanted components into the spatially separated lead1–4

thus enforcing a pure flow of entangled particles in the o
going leads. The successful generation of entanglement
is measured in a Bell-inequality-type setup.12 A surprising
new feature has been recently predicted with a Bell inequ
ity test exhibiting violation in a noninteracting system;5–9 the
question arises as to what produces the entanglement m
fested in the Bell inequality violation and it is this questio
which we wish to address in the present work. In order to
so, we describe theoretically an experiment where we m
sure that the particles are not entangled up to the point wh
the correlations are measured in the Bell inequality set
nevertheless, we find them violated. We trace this violat
back to an entanglement which has its origin in the con

FIG. 1. Mesoscopic normal-metal structure with a beam spli
generating two streams of electrons with tunable correlations in
two outgoing arms u and d. The source~left! injects polarized
~along thez axis! electrons into the source leads s and s.̄ The beam
splitter mixes the two incoming streams with a mixing angleq. The
scattered~or outgoing! beams are analyzed in a Bell type coinc
dence measurement involving spin currents projected onto the
rections6a ~in the u lead! and 6b ~in the d lead!. The injection
reservoirs are voltageV biased against the outgoing reservoirs. T
Bell inequality test signals the presence of entanglement within
interval uq245°u,12.235°. We relate this entanglement to t
presence of spin-triplet correlations in the projected part of the s
tered wave function describing electron pairs distributed betw
the arms.
©2004 The American Physical Society12-1
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ence of various elements:~i! the Fermi statistics provides
noiseless stream of incoming electrons,~ii ! the beam splitter
mixes the indistinguishable particles at one point in sp
removing the information about their origin,~iii ! the splitter
directs the mixed product state into the two leads thus o
nizing their spatial separation,~iv! a coincidence measure
ment projects the mixed product state onto its~spin-!
entangled component describing the electron pair split
tween the two leads,~v! measuring the spin-entangled sta
in a Bell inequality test exhibits violation@the steps~iv! and
~v! are united in our setup#. Note that the simple fermionic
reservoir defining the source in Ref. 9 injects spin-entang
pairs from the beginning; hence an analysis of this sys
cannot provide a definitive answer on the minimal setup p
viding spatially separated entangled pairs since both
source and/or the projective Bell measurement could be
sponsible for the violation.

Below, we pursue the following strategy: We first define
particle source and investigate its characteristic via an an
sis of the associated two-particle density matrix. We th
define the corresponding pair wave function~thus reducing
the many-body problem to a two-particle problem! and
determine its concurrence following the definition
Schliemannet al.13 for indistinguishable particles~more gen-
erally, one could calculate the Slater rank of the wave fu
tion, cf. Ref. 13; here, we deal with a four-dimensional on
particle Hilbert space where the concurrence provide
simple and quantitative measure for the degree of entan
ment!. For our specially designed source we find a zero c
currence and hence our incoming beam is not entangled
then go over to the scattering state behind the~tunable! beam
splitter and reanalyze the state with the help of the tw
particle density matrix. We determine the associated tw
particle wave function and find its concurrence; compar
the results for the incoming and scattered wave function,
will see that the concurrence is unchanged, a simple co
quence of the unitary action of the beam splitter. Howev
the mixer removes the information on the origin of the p
ticles, thus preparing an entangled wave-function compon
in the output channel. Third, we analyze the componen
the wave function to which the Bell setup is sensitive a
determine its degree of entanglement; depending on the
ing angle of the beam splitter, we find concurrencies betw
0 ~no entanglement! and unity~maximal entanglement!. Fi-
nally, we determine the violation of the Bell inequality a
measured through time-resolved spin-current cross corr
tors and find agreement between the degree of violation
the degree of entanglement of the projected state as
pressed through the concurrence.

Our source draws particles from two spin-polarized res
voirs with opposite polarization directed along thez axis.
The polarized electrons are injected into source leads s ā
and are subsequently mixed in a tunable four-channel b
splitter, see Fig. 1. The outgoing channels are denoted b
~for the upper lead! and d~the down lead!. The spin correla-
tions in the scattering channels u and d are then analyze
a Bell-inequality test. The polarized reservoirs are volta
biased witheV5mBH/2 equal to the magnetic energy in th
23531
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polarizing field H; the incoming electron streams then a
fully polarized ~the magnetic field is confined to the rese
voirs!.

The spin correlations between electrons in leads x an
are conveniently analyzed with the help of the two-parti
density matrix~or pair-correlation function!

gsW
xy~x,y!5Tr„r̂Ĉxs1

† ~x!Ĉys2

† ~y!Ĉys3
~y!Ĉxs4

~x!… ~1!

with trace over states of the Fermi sea. Here,Ĉxs are field
operators describing electrons with spins in lead x andr̂ is
the density operator. The pair-correlation function~1! is con-
veniently expressed through the one-particle correla
Gss̄

xy (x,y)[^Ĉxs
† (x)Ĉys̄(y)&,

gsW
xy~x,y!5Gs1s4

xx ~0!Gs2s3

yy ~0!2Gs1s3

xy ~x2y!Gs2s4

yx ~y2x!.

~2!

The one-particle correlators can be written in terms o
product of orbital and spin parts, Gss̄

xy (x,y)5

Gxy(x,y)xxy(s,s̄), and split into equilibrium and exces
terms,

Gss̄
xy ~x,y!5Geq~x,y!xeq

xy~s,s̄ !1Gex~x,y!xex
xy~s,s̄ !,

~3!

with Gex(x,y) vanishing at zero voltageV and zero polariza-
tion field H.

In order to find the two-particle density matrix in th
source leads s, s¯we make use of the scattering states

Ĉs5(
ks

eikxâks1e2 ikx~cosqe2 iwĉks1sinqeicd̂ks!,

Ĉ s̄5(
ks

eikxb̂ks1e2 ikx~cosqeiwd̂ks2sinqe2 icĉks!,

where âks , b̂ks denote the annihilation operators for ele
trons in the source reservoirs s and s¯with momentumk and
spin sP$↑,↓% polarized along thez axis and time evolution
}exp(2iekt/\), ek5\2k2/2m; the operatorsĉks and d̂ks an-
nihilate electrons in the reservoirs attached to the outgo
leads u and d, respectively. Also, we make use of the s
dard parametrization of a reflectionless four-beam splitte

S u

dD 5S eiwcosq 2eicsinq

e2 icsinq e2 iwcosq
D S s

s̄D , ~4!

with the anglesqP(0,p/2), w,cP(0,2p); without loss of
generality we will assumew5c50 in what follows. The
orbital part of the one-particle correlatorGxy(x2y)
[G(x2y) takes the form

Geq~x!5
sinkF

px
, ~5!

Gex~x!5e2 i (kF1kV)x
sinkVx

px
, ~6!
2-2
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ENTANGLEMENT IN MESOSCOPIC STRUCTURES: . . . PHYSICAL REVIEW B69, 235312 ~2004!
with kV5kF(eV/eF) and eF (kF) the Fermi energy~wave
vector! in the unbiased system. The spin factors for the eq
librium and excess parts read,

xeq
xx~s,s̄ !5^sus̄&,

xex
ss~s,s̄ !5^su↑&^↑us̄&, xex

s̄s̄~s,s̄ !5^su↓&^↓us̄&, ~7!

the latter describing the injection of polarized electrons i
the leads s and s.̄ Finally, the cross correlation function be
tween the source leads vanishes,Gss̄

ss̄ (x2y)50, and the fi-
nal result for the excess part of the pair-correlation funct
between source leads reads

@gsW
ss̄~x,y!#ex5uGex~0!u2^s1u↑&^↑us4&^s2u↓&^↓us3&. ~8!

This result then describes the injection of two uncorrela
streams of polarized electrons into the leads s and s.̄ Further-
more, statistical analysis14 tells that the Fermi statistics en
forces injection into each lead of a regular stream of partic
separated by the single-particle correlation timetV5\/eV.
The full many-body description then is conveniently reduc
to a two-particle problem where the two reservoirs injec
sequence of electron pairs residing in the wave funct
C in

125@fs↑
1 f s̄↓

2 2f s̄↓
1 fs↑

2 #/A2 with fs↑ (f s̄↓) the single-
particle wave functions associated with electrons in the
per~lower! source lead. This wave function is a simple Sla
determinant and hence nonentangled according to Ref. 1

Next, we extend the above analysis to the outgoing le
u and d. The scattering states in the outgoing leads take
form

Ĉu5(
ks

e2 ikxĉks1eikx~cosqâks2sinqb̂ks!,

Ĉd5(
ks

e2 ikxd̂ks1eikx~cosqb̂ks1sinqâks!.

The excess particles injected by the source leads now
mixed in the beam splitter and thus nonvanishing cross
relations are expected to show up in the leads u and d.
one-particle correlation function assumes the form~3! with
the orbital correlators~5! and ~6! and spin correlators

xeq
xx~s,s̄ !5^sus̄&, xPu,d,

xex
uu~s,s̄ !5cos2q^su↑&^↑us̄&1sin2q^su↓&^↓us̄&,

xex
dd~s,s̄ !5sin2q^su↑&^↑us̄&1cos2q^su↓&^↓us̄&,

xex
ud~s,s̄ !5xex

du~s,s̄ !5cosq sinq@^su↑&^↑us̄&

2^su↓&^↓us̄&#. ~9!

Evaluating the excess part of the two-particle cross corr
tions between the leads u and d at the symmetric positiox
5y we find
23531
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@gsW
ud~x,x!#ex5uGex~0!u2@cos4q^s1u↑&^↑us4&^s2u↓&^↓us3&

1sin4q^s1u↓&^↓us4&^s2u↑&^↑us3&

1cos2qsin2q^s1u↑&^↑us3&^s2u↓&^↓us4&

1cos2q sin2q^s1u↓&^↓us3&^s2u↑&^↑us4&#.

~10!

Hence, a symmetric splitter (q5p/4) produces the spin cor
relations of a triplet state@ ux tr

ud&5u↑&uu↓&d1u↓&uu↑&d]/A2 in-
volving two electrons separated in different leads u and d
at equivalent locationsx5y. The general case with arbitrar
mixing angleq results in a density matrix describing a pu
state involving the superpositionux tr

ud&1cos 2quxsg
ud& of the

above triplet state and the singlet stateuxsg
ud&5@ u↑&uu↓&d

2u↓&uu↑&d]/A2. The analogous calculation for the two
particle density matrix describing electrons in the same o
going lead x equal u or d points to the presence of sing
correlations,

@gsW
xx~x,y!#ex5uGex~0!u2^s1us4&^s2us3&

2uGex~x2y!u2^s1us3&^s2us4&. ~11!

Again, the above results can be used to reduce the p
lem from its many-body form to a two-particle problem
Given the incoming Slater determinantC in

12 we obtain the
scattered stateCout

12 through the transformationfs↑
→cosq fu↑1sinqfd↑ describing scattered spin↑ electrons
originating from the source lead s andf s̄↓→2sinqfu↓
1cosqfd↓ for excess spin-↓ electrons from s̄@the wave
functionsfxs5fxxs describe electrons with orbital~spin!
wave functionfx (xs) propagating in lead x#. The resulting
scattering wave function has the form

Cout
12 5sinqcosq@fu

1fu
2xsg

122fd
1fd

2xsg
12#1Fud

12x tr
12

1cos 2qF̄ud
12xsg

12, ~12!

where the first two terms describe the propagation of a s
singlet pair with the wave functionxsg

125(x↑
1x↓

22x↓
1x↑

2)/A2
in the upper and the lower lead. The last two terms desc
the component where the electron pair is split between th
and d leads; it is a superposition of singlet and triplet sta
@x tr

125(x↑
1x↓

21x↓
1x↑

2)/A2# with corresponding symmetrize
and antisymmetrized orbital wave functionsF̄ud

125(fu
1fd

2

1fd
1fu

2)/2 and Fud
125(fu

1fd
22fd

1fu
2)/2. The entanglemen

present in these wave functions is easily determined us
the formalism developed by Schliemannet al.:13 The wave
function associated with a pair of electrons can be written
terms of a single-electron basis$f i%, C125( i j f i

1wi j f j
2 ,

where the antisymmetric matrixwi j 52wji guarantees for
the proper symmetrization. The analysis simplifies dra
cally for the case where the one-particle Hilbert space is f
dimensional; then theconcurrence C(C)58Adetw(C)
gives a quantitative measure for the entanglement prese
the wave functionC, C(C)50 for a nonentangled state an
C(C)51 for a fully entangled wave function. For our setu
2-3
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LEBEDEV, BLATTER, BEENAKKER, AND LESOVIK PHYSICAL REVIEW B69, 235312 ~2004!
the one-particle basis is defined as$fu↑ ,fu↓ ,fd↑ ,fd↓% and
the matrix w(Cout) describing the scattered state~12! as-
sumes the form

wi j
out5

1

A2F 0 2sin 2q/2 0 cos2q

sin 2q/2 0 sin2q 0

0 2sin2q 0 sin 2q/2

2cos2q 0 2sin 2q/2 0

G .

The concurrence of the scattering state~12! vanishes, hence
Cout is nonentangled and takes the form of an elemen
Slater determinant. Next, let us analyze the concurrenc
that part of the scattering wave function to which our co
cidence measurement in leads u and d is sensitive. The c
ponent describing the two particles split between the le
readsCud

125Fud
12x tr

121cos 2q F̄ud
12xsg

12, cf. Eq. ~12!. This pro-
jected state is described by the matrix

wi j
ud5

1

A2F 0 0 0 cos2q

0 0 sin2q 0

0 2sin2q 0 0

2cos2q 0 0 0

G ,

from which one easily derives the concurrenceC(Cud
12)

5sin22q; we conclude that the componentCud
12 detected in a

coincidence measurementis entangled. Furthermore, the
concurrence is equal to unity for the symmetric splitterf
5p/4 where we deal with a maximally entangled triplet sta
@note the loss of information about which electron~from s or
s̄! enters the lead u or d#. We conclude that a Bell inequalit
test sensitive to the split part of the wave function will e
hibit violation. We attribute this violation to the combine
action of~i! the splitter where the information on the identi
of the particles is destroyed and the entangled compo
Cud

12 is ‘‘prepared’’ and~ii ! the wave-function projection in
herent in the coincidence measurement and ‘‘realizing’’
entanglement.

The Bell-type setup12 in Fig. 1 measures the correlation
in the spin-entangled scattered wave functionCout

12 . It in-
volves the finite-time current cross correlatorsCa,b(x,y;t)
[^^ Î a(x,t) Î b(y,0)&& between the spin-currentsÎ a(x,t) pro-
jected onto directionsa ~in lead u! and partnersÎ b(y,0) ~in
lead d! projected ontob. These correlators enter the Be
inequality (ā and b̄ denote a second set of directions!

uE~a,b!2E~a,b̄!1E~ ā,b!1E~ ā,b̄!u<2 ~13!

via the current difference correlators

E~a,b!5
^@ Î a~t!2 Î 2a~t!#@ Î b~0!2 Î 2b~0!#&

^@ Î a~t!1 Î 2a~t!#@ Î b~0!1 Î 2b~0!#&
. ~14!

The cross measurement in different leads implies that
setup is sensitive only to the spin-entangled split-pair p
Cud

12 of the scattering wave function and hence the Bell
equality can be violated. Making use of the field operat
Ĉu and Ĉd describing the scattering states in the outgo
23531
ry
of
-
m-
s

nt

e

e
rt
-
s
g

leads, we determine the irreducible current cross correl
and factorize into orbital and spin parts,Ca,b(x,y;t)
5Cx,y(t)Fa,b , with Fa,b accounting for the spin projections
Using standard scattering theory of noise,15 one obtains the
orbital cross correlator~only the excess part gives a finit
contribution!

Cx,y~t!52
e2sin22q

h2
sin2

eV~t2t2!

\
a~t2t2 ,u!,

~15!

with a(t,u)5p2u2/sinh2@put/\#, t25(x6y)/vF , u the
temperature of the electronic reservoirs, andvF the Fermi
velocity. In order to arrive at the result~15! we have dropped
terms small in the parameterue82eu/eF .15 The spin projec-
tion Fa,b assumes the form

Fa,b5^au↑&^↑ub&^bu↑&^↑ua&1^au↓&^↓ub&^bu↓&^↓ua&

2^au↑&^↑ub&^bu↓&^↓ua&2^au↓&^↓ub&^bu↑&^↑ua&.

We express this result in terms of the anglesua andwa de-
scribing the direction of magnetization in the u lead filte
andub , wb referring to the filters in the d lead and find th
Fa,b5F2a,2b5Fa,b

1 , F2a,b5Fa,2b5Fa,b
2 , and

Fa,b
6 5~16cosuacosub7coswabsinuasinub!/2,

with wab5wa2wb . The correlatorE(a,b) takes the form

E~a,b!5
2Cx,y~t!@Fa,b

1 2Fa,b
2 #1L2

2Cx,y~t!@Fa,b
1 1Fa,b

2 #1L1

,

with L65@^ Î a&6^ Î 2a&#@^ Î b&6^ Î 2b&#. Evaluating the
projected current averages one obtainsL2

52e2(2eV/h)2cosua cosub cos22q and L15e2(2eV/h)2.
The triplet state is rotationally invariant within the planeua
5ub5p/2 and choosing filters within this equatorial plan
the Bell inequality~BI! takes the form

UCx,y~t!@coswab2coswab̄1cosw āb1cosw āb̄#

2Cx,y~t!1L1
U<1.

Its maximum violation is obtained for the set of angleswa
50, wb5p/4, w ā5p/2, w b̄53p/4,

EBI[U 2Cx,y~t!

2Cx,y~t!1L1
U< 1

A2
. ~16!

Evaluating the above expression in the limit of low tempe
turesu,eV and at the symmetric positionx5y, we arrive at
the simple form

sin22q sin2~eVt/\!

2~eVt/\!22sin22q sin2~eVt/\!
<

1

A2
. ~17!

We observe that the violation of the Bell inequality is r
stricted to short timest,tBI5tV[\/eV ~Ref. 9; the rel-
evance of a coincidence measurement involving the s
time tV was noticed in Refs. 6 and 4!. At high temperatures
u.eV the BI is violated as well, although the time interv
2-4
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ENTANGLEMENT IN MESOSCOPIC STRUCTURES: . . . PHYSICAL REVIEW B69, 235312 ~2004!
for the violation shrinks totBI5\/u, cf. Eq. ~15!. The de-
gree of violation strongly depends on the mixing angleq of
the beam splitter, with a maximal violation realized for
symmetric splitterq5p/4 generating a pure triplet stat
across the two arms. The Bell inequality cannot be viola
for asymmetric splitters withuq2p/4u.0.2135~correspond-
ing to an angular widthuq245°u.12.235°): evaluating the
BI ~17! at zero time difference~i.e., in a coincidence mea
surement! we find the condition

sin22q

22sin22q
<

1

A2
, ~18!

from which one derives the critical angleqc

5„arcsin@2/(A211)#1/2
…/250.572 ~or qc532.765°). The

appearance of a critical angle naturally follows from the f
that the measured wave-function componentCud

12 assumes
the form of a simple Slater determinant in the limitsq
50,p/2 and hence is not entangled. Note that the produc
average currentsL1 is the largest term in the denominator
Eq. ~16! and hence always relevant. A similar setup w
bosonic thermal reservoirs does not violate the BI at a
time, a consequence of the sign change in the irreduc
current-current correlator implying the addition of two po
tive terms in the denominator of Eq.~16!. Qualitatively, the
absence of the BI violation for thermal bosons follows fro
the property of Bose statistics allowing for the simultaneo
emission of two identical particles by the same reservoir8

In conclusion, we have described a mesoscopic setup
a source injecting nonentangled electron pairs into t
source leads s and s.̄ Subsequent mixing of these partic
streams in a four-channel beam splitter does not gene
entanglement between the particles in the two output lea
and d. However, proper mixing of the incoming beams in
splitter removes the information on the path of the incom
particles and generates a wave function component des
ing electrons split between the leads u and d which is
tangled. It is this component which manifests itself in t
coincidence measurement of a Bell-inequality test and pro
violation is observed at short times. This analysis answ
the question regarding the origin of entanglement obser
in the Bell inequality test applied to the present nonintera
ing system. A modified setup where the particles propag
downstream after a coincidence measurement lends itse
a source for spin-entangled particles, cf. Ref. 10.

Experimental realizations may be more simply imp
mented using entangled orbital rather than spin degree
. B
nd
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,
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freedom. For example, the pair of edge channel states in
quantum Hall devices of Refs. 5 and 8 assume the role of
spin-up and spin-down states with particles injected fr
independent reservoirs as required in our setup. In Ref.
Hall bar is divided up through a split gate electrode playi
the role of the tunable (q) splitter in our setup. The device
described in Ref. 8 involves a Mach-Zehnder geome
where the tunable splitter is implemented through a com
nation of constrictions~labeled C and D in Ref. 8! and an
additional flux penetrating the loop. Alternatively, a set
where the mixing is realized in a chaotic quantum dot h
been described in Ref. 6.

It is interesting to analyze the setup described in Ref. 9
the light of the findings reported here. The setup in Ref
involves a simple normal reservoir injecting pairs of ele
trons into a source lead which are subsequently separate
space by a beam splitter. The injected pairs reside in a s
singlet state involving the identical orbital wave functio
C in

125fs
1fs

2xsg
12; the entanglement observed in a Bell i

equality test then has been attributed to the entanglem
associated with this spin-singlet state. One may criticize t
this incoming singlet, being a simple Slater determina
is not entangled according to the definition given
Schliemannet al.13 However, after the beam splitter the o
bital wave functionfs is delocalized between the two lead
fs→F5tsufu1tsdfd , with tsu and tsd the corresponding
scattering amplitudes. While the scattered state remain
Slater determinantCout

12 5F1F2xsg
12, the singlet correlations

now can be observed in a coincidence measurement te
the cross correlations between the leads u and d. Hence
spin entanglement is produced by the reservoir, but its ob
vation requires proper projection. It is then difficult to trace
unique origin for the entanglement manifested in the vio
tion of a Bell-inequality test. The appropriate setup to a
dress this question should involve a reservoir injecting p
ticles with opposite spin residing in a Slater determinant
the form C in

125@fs↑
1 f̄s↓

2 2f̄s↓
1 fs↑

2 #/A2, which is not en-
tangled in the spin variable. Such an analysis has been
sented here with the result that the orbital projection in
coincidence measurement is sufficient to produce a s
entangled state.
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