
Monte Carlo simulations of hole dynamics in SiGe/Si terahertz quantum-cascade structures

Z. Ikonić,* R. W. Kelsall, and P. Harrison
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT,

United Kingdom
(Received 5 December 2003; revised manuscript received 22 March 2004; published 10 June 2004)

A detailed analysis of hole transport in cascadedp-Si/SiGe quantum well structures is performed using
ensemble Monte Carlo simulations. The hole subband structure is calculated using the 636 k ·p model, and
then used to find carrier relaxation rates due to the alloy disorder, acoustic and optical phonon scattering. The
simulation accounts for the in-planek-space anisotropy of both the hole subband structure and the scattering
rates. Results are presented for prototype terahertz Si/SiGe quantum cascade structures.
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I. INTRODUCTION

There has recently been an increased interest in intersub-
band transitions inp-type strained-layer SiGe based quantum
wells, due to their possible use in intersubband quantum cas-
cade lasers operating from near- to far-infrared wavelength
ranges. This is largely related to the fact that hole intersub-
band transitions are optically active for both the perpendicu-
lar and the in-plane polarization of light, hence enabling the
realization of surface emitting intersubband lasers. These
points, together with the possibility of monolithic integration
of silicon-based electronic and optoelectronic components,
are strong incentives for the development of a SiGe quantum
cascade laser. Following the earlier proposals of suitable
structures,1,2 considerable research effort has been devoted to
this problem. Currently there are reports on successful
growth of long Si/SiGe cascades, and electroluminescence
has been observed in both the midinfrared3,4 and
far-infrared5,6 wavelength ranges, although full laser opera-
tion has yet to be achieved. Bias-tunable emission wave-
length has also been demonstrated7 (as well as tunable ab-
sorption wavelength in detectors8).

Understanding the carrier dynamics is an important issue
for the design of quantum cascade lasers(QCL’s), the gain
depending on the scattering between different subbands and
also between different in-plane momentum states within a
subband. This has been extensively studied in QCL’s based
on conduction-band intersubband transitions. One approach
relies on self-consistent solution of rate equations of different
levels of sophistication.9–13 Another uses microscopic, and
computationally more demanding, methods based on the
Boltzmann equation,14 which employ the Monte Carlo(MC)
technique15–19 (similar MC simulations have also been per-
formed for optically pumped intersubband lasers20). While
the rate equation methods give reasonably good estimates of
device characteristics, they rely on the assumption of equi-
libriumlike carrier distributions over states within any single
subband. In contrast, the MC method does not involve any
such assumption, and gives a deeper insight into the carrier
dynamics.

While there have been detailed theoretical studies of hole
transport in quantum confined Si/SiGe systems,21,22 based
on fully anisotropic 636 k ·p description of the subband
structure, these have focused on in-plane transport, and there

has been no work on vertical transport inp-type quantum-
cascade structures in any material system. The problem is
generally similar to the case ofn-type cascades, but is more
complex because the subband structure and scattering rates
are anisotropic and strongly dependent on the in-plane mo-
mentum of the hole states. Here we describe an implemen-
tation of the MC method for calculating hole dynamics in
p-SiGe quantum-cascade structures.

II. CALCULATION DETAILS

The cascade is a stack of a number(typically around 100)
of unit cells, or periods, each of which may be structurally
simple, comprising a single quantum well and barrier, or
quite complex. To perform simulations of hole dynamics, the
valence subbands of a biased cascade have first to be calcu-
lated. Their wave functions are usually localized in a single
period of the cascade. In a long cascade the states show
quasiperiodicity; i.e., by translating the wave function of a
state by one period, and shifting its energy by the potential
drop across one period, another actual state of the system
(the one mostly localized in the next period) is obtained.
Having a set of states assigned to a particular(hereafter
called the central, or book-keeping) period, the correspond-
ing sets assigned to other periods may be constructed simply
by using quasiperiodicity.

For hole transport calculation the scattering rates between
all combinations of states in the cascade are needed: i.e.,
either between states within a period or between those which
belong to different periods(hence state energies and wave
functions for all of them are required). In the latter case, only
scattering processes between adjacent periods are considered
(“nearest-neighbor approximation”16), because there is nor-
mally a very small overlap of wave functions belonging to
more distant periods. To make the problem tractable, the
number of states assigned to a single period must be limited,
based on the expectation that high-energy states will be vir-
tually unpopulated, because most of the carriers will scatter
into lower-energy states of subsequent periods rather than
remaining in ever higher states as they move along the cas-
cade. “Periodic boundary conditions” are also used: the par-
ticle distribution over states assigned to a period is assumed
identical for all periods of the cascade. It is then sufficient to
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account explicitly only for particles in a single period, rather
than in the whole cascade, and “fold back” the carriers which
have scattered out of the book-keeping period. For example,
the carriers which have scattered out to the right are replaced
with those which have scattered in from the left.

A. Hole subband structure

The hole band structure is calculated using the 6
36 k ·p scheme in the plane wave implementation, as de-
scribed previously,23 using Foreman’s boundary conditions.24

The accuracy of the method is good for the class of struc-
tures of interest in this work,25 although for midinfrared cas-
cades, which involve higher transition energies and therefore
larger in-plane wave vectorssk id involved in scattering, it
may be necessary to include more bands and use, e.g., the
recently developed 14314 k ·p model.26 For the scattering
rates calculation one would then also need the hole-phonon
coupling Hamiltonian and its parameters, beyond those es-
tablished for the 636 k ·p model, so the latter seems a rea-
sonable choice at present. The energies and wave functions
of the subbands of interest are tabulated at a number ofk i

values in the irreducible wedge of the two-dimentional(2D)
Brillouin zone (for the usual,[001] grown structures this is
1/8 of the full 2D Brillouin zone), and the symmetry prop-
erties are used to reconstruct states outside this wedge by
rotation. Forelectronsone would just find the set of states at
k i=0, and use these wave functions for any value ofk i,
while the energy then acquires the in-plane kinetic contribu-
tion of "2ki

2/2m* , where the electron effective massm* is
assumed to be constant. This approximation cannot be used
for holes: mixing of heavy-hole(hh), light-hole (lh), and
spin-orbit split-off (so) valence band states results in both a
prominent in-plane nonparabolicity and anisotropy of hole
subbands. A note should be added concerning the(non) de-
generacy of the two hole “spin” states. The 636 Hamil-
tonian is block diagonalized into two 333 blocks, and the
eigenstates are found for each block, one at a time, because it
reduces the computation time by a factor of 4, as compared
to solving the full 636 Hamiltonian. The procedure is exact
in bulk materials, but in heterostructures it relies on the po-
sition independence of the ratio of Luttinger parameters
g3/g2, and to perform it we use the averaged value ofg3/g2
in the structure. For the case of a symmetric potential the two
blocks deliver identical sets of states. However, in a biased
cascade the degeneracy is lifted fork iÞ0. The splitting is
not very large, typically up to a few meV in the range ofk i

where most of holes reside. This behavior is similar to that of
electrons, where the degeneracy of the two spin states is also
lifted by the asymmetric potential. The similarity between
the electronic and hole “spin” states ends there, however,
because electron spin is conserved in all important scattering
processes, while hole “spin”(i.e., block) is not: scattering, as
well as optical transitions, occurs both within a block or
between different blocks.

Tracking particle dynamics in a cascade requires all the
states to be assigned to individual periods, generally based
on the wave function localization. States in a long cascade
are usually found by solving the Schrödinger equation for a

three-period-long structure subject to either box or periodic
boundary conditions, and appropriately selecting the states
from the “middle” of the structure for further work. How-
ever, hybridization(anticrossing) of states may occasionally
appear, when they are close in energy. If this is of a “cross-
period” type, involving two states otherwise localized in two
adjacent periods, the two states are about evenly distributed
between the two periods. When performing the state assign-
ment, one has to take care of the fact that the hole states
which are well separated in energy atk i=0 may come closer
and anticross at some other value ofk i. If the two states
originate from different periods, their anticrossing along
some k i direction swaps their localization properties. The
assignment of states to a period has thus to be done indepen-
dently for each value ofk i. Practically, we find the overlaps
of states of a triple-period cascade with those of a single
period of a cascade(where no cross-period hybridization ex-
ists). The states of the former, which show the largest over-
laps with states of the latter, are selected and assigned to the
central period, so that the “cross-period” hybridization does
not lead to double counting of states. The states of adjacent
periods are then constructed by applying quasiperiodicity
(Fig. 1). This complication is absent in parabolic-dispersion
n-type cascades, where the assignment can be performed
simply by visual inspection of the wave functions.

B. Scattering rate calculation

The absence of polar optical phonon scattering leaves the
deformation potential scattering(via acoustic and nonpolar
optical modes) as the main inelastic scattering mechanism in
SiGe. Optical phonon scattering in the alloy layers is de-
scribed by assuming three distinct modes, corresponding to

FIG. 1. Relevant hole states in the central and the two adjacent
periods of a p-Si/SiGe cascade comprising 16 monolayer
s4.41 nmdGe0.3Si0.7 wells and 8 monolayers2.15 nmd Si barriers,
grown on Ge0.2Si0.8 virtual substrate. The wave functions of HH
and LH states, as well as the valence band edges for heavy and light
holes (different in this strained system), are denoted by solid and
dashed lines, respectively. The labels(L) and (R) denote states lo-
calized in wells lying to the left and right, respectively, of the “cen-
tral” well.
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Ge-Ge, Ge-Si, and Si-Si interatomic vibrations, each with its
own frequency and deformation potential(the values for
Ge-Si mode are assumed to be the average of those for the
Ge-Ge and Si-Si), as well as appropriate weight, according to
the number of interatomic bonds present in the alloy.27 For
acoustic phonons, on the other hand, the weighted averages
of the sound velocities and deformation potentials of Si and
Ge are taken. The phonons are considered to be bulklike, and
the tensorial, rather than scalar, form of the hole-phonon in-
teraction Hamiltonian is used.28–31 In quantum well struc-
tures this is important for optical,31 though not so much for
acoustic phonon scattering.32 Optical phonons are assumed
to be nondispersive, while acoustic phonons are taken to
have linear dispersion; i.e., the quasielastic approximation is
not used. Another important scattering mechanism in SiGe is
the alloy disorder scattering, which is purely elastic, but,
nevertheless, can induce hole transitions between different
subbands.23,33–35

Due to hole subband’s nonparabolicity and anisotropy, the
scattering rates are evaluated numerically, using the linear
tetrahedron method21,36–39of appropriate dimensionality. For
alloy scattering the 2D tetrahedron method is required, for
acoustic phonon scattering the 3D method is necessary, while
for optical phonons the dispersionless approximation results
in a degenerate case of 3D tetrahedron integration, so that the
2D method is sufficient.

In this work we do not account for the hole-hole scatter-
ing. This would be quite involved at the same level of detail
as is used for single-carrier scattering processes(i.e., with
nonparabolicity and anisotropy). Since carrier-carrier scatter-
ing increases with increasing carrier density, the results ob-
tained here should be valid in the low-density limit.

C. Monte Carlo simulation

The Monte Carlo simulation uses a cellular scheme, in
which the 2D Brillouin zone is subdivided into a grid of
phase space cells and, using the band-structure data tabulated
on a mesh in thek i plane, the microscopic(differential) scat-
tering rates from each cell into any other cell are calculated.
The results are stored in a look-up table(each type of scat-
tering process being a separate entry in this table), to be used
for the hole trajectory simulations. This approach is known
as “cellular automata” or “transition matrix” method,40–42

and has much larger memory requirements than the conven-
tional MC implementations, but is faster in the limit of a
large number of particles and/or long simulation times. This
is because, at the time of simulating the individual hole tra-
jectories, the precalculated differential scattering data are
used in a manner which does not require much additional
calculation, so this costly phase need not be repeated for
each hole as the need arises. The computer memory require-
ments are reduced considerably by using symmetry: for
[001] grown structures the scattering rates are calculated
only for initial k ii states in 1/8 of the 2D Brillouin zone
(with the final k i f states lying anywhere in the zone). If a
hole lies outside the 1/8 segment, its wave vector is folded
to fall within it, and the outcome is unfolded to obtain the
true wave vector of the final state. Further memory reduction

was obtained by using quasiperiodicity, which relates up-
stream and downstream scattering rates asw(i → jsLd)
=w(isRd→ j) (see Fig. 1), so that there is no need to store the
w(i → jsLd) rates.

The MC code uses a constant time step,43,44 which is de-
termined initially by inspection of the look-up table. When
tracking the hole dynamics, fast linear tetrahedron
interpolation45 in 2D k i space is used to construct a subtable
of scattering rates from the particular hole state(with the
actual value ofk ii) into other states(cells). After assembling
its entries, multiplied by the time step, into a table of accu-
mulated scattering probabilities, a random number is gener-
ated and ranked in this table, wherefrom it is decided
whether the particular event is a real scattering or a self-
scattering. If it is a real scattering, the ranking simulta-
neously decides not only the cell that the final state belongs
to, but also the type of scattering that occurred. At that stage
the Pauli-exclusion-based acceptance or rejection of this
event is applied46 and, if the event is accepted, the precisek i f
of the final state is then determined.

When simulating hole dynamics in a quantum cascade
structure, an arbitrary(e.g., equilibriumlike) initial distribu-
tion of holes over the available states in the central period is
generated, and implicitly replicated over all periods. To rec-
ognize the approach to the steady state, as the system evolves
in time, we calculate the overlap of square roots of the dis-
tributions (cell populations), normalized to unity, found at
two distinct time intervals, and watch for the convergence of
this quantity to unity. Due to the inevitable stochastic fluc-
tuations the test must not be performed with two instanta-
neous distributions, but rather with those averaged over a
number(,50–100) of time steps. An alternative way of rec-
ognizing the steady state might rely on tracking the total
entropy of the system.47

It is also worth mentioning the problem of parasitic cur-
rent spikes, discussed for the case of simulations ofn-type
QCL’s,19 which appear in narrow bias ranges when hybrid-
ization of remote states occurs, opening a new current path.
Such events are considered to be unrealistic because remote
states’ coupling should be destroyed by dephasing. Inp-type
cascades the problem appears in a diffuse form, with cou-
pling of states depending on both the bias and thek i vector:
well-coupled states may appear at appropriatek i’s for almost
any bias, inducing some excess current rather than a current
spike, but it is difficult to eliminate the phenomenon in any
rigorous manner.

III. NUMERICAL RESULTS AND DISCUSSION

MC simulations have been performed for severalp-
Si/SiGe quantum cascade structures. In the band-structure
calculation the material parameters for Si and Ge were take
from Refs. 48 and 49, and the phonon deformation potentials
from Ref. 30(set C). There is a considerable spread of the
reported values of the alloy scattering potential.35 We have
used the value 0.3 eV(normalized to the volume of the
primitive cell), because it gave good agreement with mea-
sured intersubband relaxation times.50

We consider cascades with the simplest possible structure;
i.e., stacks of alternating wells and barriers. One such ex-
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ample is a structure comprising 16 monolayer
s4.41 nmd Ge0.3Si0.7 wells and 8 monolayers2.15 nm wide)
Si barriers, grown on a Ge0.2Si0.8 virtual substrate. This is a
strain-balanced structure, and therefore can be grown with an
arbitrarily large number of periods. It has just two low-lying
subbands per period, the ground HH1 and the first excited
LH1 subband; the next, HH2 subband is sufficiently higher
in energy to remain almost inaccessible to holes throughout
the range of biases used in the calculation. The LH1-HH1
energy spacing is 27.5 meV, mostly determined by the strain
in the quantum well layers. In a biased cascade the alignment
of the HH1 state from the “preceding”(higher) well and the
LH1 state of the next(lower) well at k i=0 occurs at a field of
42 kV/cm. However, for finitek i the alignment appears at
different fields, because of the different dispersions of the
HH and LH subbands, so the phenomenon of “resonance” is
more diffuse than inn-type cascades. As the bias varies, the
intrawell HH1-LH1 spacing changes only slightly, and most
of the potential drop per period manifests in the displacement
of the sets of subbands belonging to adjacent periods. The
position of subbands at 60 kV/cm bias is shown in Fig. 1.

Such a structure offers potential as an intersubband tera-
hertz laser, where the lasing transition would be the interwell
(diagonal) HH1→LH1sRd transition, while the intrawell
(vertical) LH1→HH1 is the relaxation transition, emptying
the lower laser subband(see Fig. 1 for notation). This is
because:(i) the optical matrix element near the zone center,
for both in-plane and normally polarized light, is larger for
the interwell than for the intrawell transition, and(ii ) it is
plausible to expect that the upper state will be less populated
than the lower state in the same well, which would imply
that a population inversion would automatically exist for the
interwell transition. The HH1→LH1sRd interwell transition
energy can be tuned by the bias field: atk i=0 it is zero at
42 kV/cm, and increases by 6.6 meV for each 10 kV/cm of
excess bias.

The results of MC simulations of such a quantum cascade
structure are shown in Fig. 2. The population of the LH1
subband has a peak approximately at the HH1-LH1(R) align-
ment bias(hence the population inversion is worst there, but
this is not the working bias for lasing anyway, as explained
above). The current generally increases with bias, although
there is a broad region of negative differential resistance
(NDR). The peak/valley current ratio is very small, which is
favorable in respect of avoiding domain formation. Figure 2
also shows the effective temperatures of the holes in the two
subbands. The hole distributions obtained from the MC
simulation do not correspond to Fermi-Dirac(FD) distribu-
tions for any values of hole temperatures, Figs. 3(a) and 3(b).
Therefore, the effective temperature of a subband is defined
as the temperature which, when used in the FD distribution,
gives the same value of total kinetic energy as that obtained
from the MC simulation. The temperatures clearly vary non-
monotonically with bias, and may be quite different for the
HH1 and LH1 subbands. The hole temperatures are generally
well above the lattice temperature, which is related to the
fact that the bias in this structure has to be rather large.

The actual hole distributions in the HH1 and LH1 sub-
bands are shown in Figs. 3(a) and 3(b) for two different
values of bias, one below and the other above the alignment

bias. Also shown are the FD distributions calculated for the
subband effective temperatures shown in Fig. 2. The actual
distributions clearly differ in shape from the FD form. A
common feature is that the HH1 distribution has an over-
shoot aroundk i=0 and then falls off rather steeply, but a
number of hot holes still remain. In contrast, the LH1 sub-
band distribution appears broadened when compared to the
FD distribution for this subband. Both effects may be attrib-
uted to the state mixing properties of hole quantized states.
At k i=0 the HH1 subband is purely hh-like in character,
while the lh and so admixtures increase with increasingk i.
Similarly, the LH1 subband is lh-like in character(with some
content of so) at k i=0, while the hh admixture increases for
k i away from this point. The confined state wave function
decays in the Si barriers, but the decay is slower for the lh
than the hh component. This is because the hh effective mass
in the perpendicular direction is somewhat larger than the lh
mass(though not very much in Si-abundant SiGe), and the
hh band discontinuity is larger, since the SiGe well material
has compressive strain, while the Si barriers have tensile
strain. Therefore, the HH1 state is best confined in the well
near k i=0, and the LH1 state confinement increases away
from k i=0. Consequently, with the smallest overlap with
states from the adjacent periods, the retention time of HH1
states neark i=0 is largest, hence their abundance in the dis-
tribution function. The opposite argument applies for the
LH1 distribution. It is interesting to note a similar observa-
tion regarding hole tunneling from the(heavy-hole) ground
state of GaAs/AlGaAs based quantum wells: it occurs
mostly via the light-hole component of the wave function.51

If hole-hole scattering was included in the calculation, one
would expect the distribution profiles to become more FD-
like, because this scattering tends to drive the distribution
towards its equilibrium form52 (with a temperature unrelated
to the lattice temperature, however). An increased interwell
total scattering rate would then also lead to increased current
density, and would therefore heat the hole distributions fur-
ther above the values predicted here.

FIG. 2. The LH1 subband population(solid), the current density
(dashed), and the effective temperatures of the HH1 and LH1 sub-
bands (dotted lines), vs electric field in thep-Si/SiGe cascade
shown in Fig. 1, calculated using the MC method. The lattice tem-
peratureTlatt is 20 K, and the sheet hole density 531011 cm−2 per
period.
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An alternative type ofp-Si/SiGe cascade structure was
considered, which was designed to have an inverted-mass(or
negative-mass) feature. This appears when two subbands
happen to be almost degenerate for somek i (usually atk i

=0), giving rise to a strong interaction which “repels” the
bands in energy space, such that the lower of the two bends
downwards in energy ask i increases, creating the inverted

mass feature. Once the two states are sufficiently apart, their
interaction weakens and both acquire the normal, positive-
mass dispersion. For this mechanism to be possible, one of
the states should be hh and the other lh in character, e.g.,
LH1 and HH2. The net effect is a subband with an energy
minimum at some finitek i, Fig. 4. This type of structure has
been proposed as a possible intersubband laser, based on a

FIG. 3. The MC generated(la-
bel MC) steady-state hole distri-
butions (on the left) for the HH1
and LH1 subbands in thep
-Si/SiGe cascade shown in Fig. 1,
with (a) 30 kV/cm, and (b)
80 kV/cm bias. The lattice tem-
peratureTlatt is 77 K. The quasi-
equilibrium FD distributions(la-
bel eq) corresponding to the
carrier temperatures shown in Fig.
2 are given on the right for
comparison.
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local-in-k-space, rather than a global, population
inversion,53,54and has also been discussed specifically for the
p-Si/SiGe system.55,56 The rationale was that holes in the
upper laser state, which is the subband with the negative
mass feature, should accumulate around the minimum atk i0,
while those in the lower laser state, which is a lower subband
with normal dispersion(HH1), accumulate around the band
minimum atk i=0. At the same time the HH1 states around
k i0 should be almost empty, creating a local population in-
version aroundk i0 (this is a ring in the the 2Dk i plane,
although not exactly circular because of anisotropy). Gain
might thus appear for photon energies aroundELH1sk i0d
−EHH1sk i0d (indicated by arrows in Fig. 4), even though
there may be no global population inversion between the
LH1 and HH1 subbands.

An inverted-mass feature can be engineered in a strain-
balanced cascade comprising 38 monolayer
s10.47 nmdGe0.3Si0.7 wells and 19 monolayers5.13 nmd Si
barriers, grown on a Ge0.2Si0.8 virtual substrate. The local
minimum of the upper subband occurs atk i0=0.015 Å−1,
and is about 3 meV below the energy atk i=0. Although the
above description suggests that it suffices to consider just the
two working subbands per period of the cascade—HH1 and
LH1 in this instance—it is strictly necessary to include HH2
and LH2 as well. HH2 should be included because it is al-
most degenerate with LH1 atk i=0, and there may be non-
negligible scattering to/from it. The LH2 subband should be
included since one peculiarity of the Si/SiGe system is that
the LH2-LH1 spacing is similar to the HH2-HH1 spacing,
due to the effective masses and band offsets mentioned
above. Therefore, just as the HH1 subband of the preceding
period injects holes into the LH1 and HH2 subbands of the
next period, so do these two subbands inject carriers into the
LH2 subband of the subsequent period.

The results of MC simulations performed for this struc-
ture are given in Fig. 5. The alignment of the HH1 subband
from the preceding period with the LH1 subband of the next
occurs at a bias of 19 kV/cm. The population of the LH1

subband has a very broad peak in this range, never exceeding
that of the HH1 subband, but this is not required for this
system. The population of the upper two subbands(HH2 and
LH2) is found to be very small after all, because of their
larger energies(hence the optical phonon scattering becomes
fast). The hole temperatures are considerably lower than for
the interwell cascade described previously. This is due to a
lower bias, and a much lower current(the barriers are much
thicker than in the previous example, which makes interwell
scattering slow), so holes do not have to be heated much
above the lattice temperature in order to dissipate the input
power. These are generally favorable conditions for carrier
thermalization, i.e., settling around the local minima in both
the upper and lower laser states. Another beneficial feature is
the absence of NDR in the range of biases of interest; i.e., no
domain formation is to be expected in this structure. Figure 6
shows the calculated hole distributions in the two lowest
subbands for 20 kV/cm and 23 kV/cm bias. These show
that there is a small local population inversion around a few
“islands” in thek i plane at 20 kV/cm[and generally around
the HH1(L)-LH1 alignment bias], but the inversion disap-
pears further away from the alignment bias, e.g., for a field
of 23 kV/cm. However, if the subband populations and hole

FIG. 4. The hole subbands’ dispersion along thek10l and k11l
in-plane directions in a 38 monolayers10.47 nmd Ge0.3Si0.7/19
monolayers5.13 nmd Si cascade on Ge0.2Si0.8 virtual substrate, with
the inverted-mass feature in the second subband. The arrows denote
optical transitions where a local population inversion is expected.

FIG. 5. (a) The subband populations(solid) and current density
(dashed) and (b) the effective temperatures, vs electric field in the
quantum cascade structure described in Fig. 4. The lattice tempera-
ture Tlatt is 20 K, and the sheet hole density 131011 cm−2 per
period.
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temperatures found in the MC simulation are used in FD
distributions, there would be no inversion at all. Therefore,
the inversion is largely due to the “condensation” of holes
aroundk i=0 in the HH1 subband(the effect described in the
previous example), because the effective hole temperature in
the LH1 subband is still too high, and the local minimum of
the LH1 subband is too shallow for any significant carrier
accumulation to occur in this region due to temperature
alone. In view of the fact that hole-hole scattering, if in-
cluded, would drive the distributions towards their equilibri-
umlike forms, and would make the carrier temperatures both
higher and closer to each other,57 one may infer that it would
probably further diminish, if not completely destroy, the
fragile inversion found in the present simulation.

Another set of calculations was performed for an
inverted-mass cascade comprising 34 monolayer Ge0.43Si0.57
wells and 12 monolayer Si barriers, grown on a Ge0.3Si0.7
virtual substrate. The barriers in this design are considerably
thinner and, despite the deeper wells, this results in a larger
current and larger carrier temperatures, so the structure was
found to be very remote from achieving a local population
inversion, as might have been expected.

The main obstacle for larger inversion in inverted-mass
structures is the shallowness of the energy minimum in the

upper subband(ø3 meV for the LH1/HH2 degenerate set).
The HH-LH subband coupling is determined by theg3 Lut-
tinger parameter, which is relatively small in the Si-abundant
SiGe. Using pure Ge wells(or GaAs/AlGaAs heterostruc-
tures) would improve the situation in this respect. An alter-
native approach could involve using higher subbands, be-
cause this produces deeper inverted-mass minima. However,
with a larger range of energies involved, the holes would
encounter more complex and much faster intersubband dy-
namics, due to optical phonon scattering, which would re-
duce the lifetime of states in the local minimum, and hence
mitigate against population inversion.

IV. CONCLUSION

Hole transport inp-Si/SiGe quantum-cascade structures
was studied using ensemble Monte Carlo simulation that in-
cludes the alloy disorder, acoustic and optical phonon scat-
tering, accounting for the anisotropy of the subband structure
and the scattering rates. It does not assume any functional
form for the carrier distribution, but instead derives the dis-
tributions directly from an ensemble average of the states of
the simulated devices. This is an advantage of the MC ap-
proach over rate-equation models, particularly valuable for

FIG. 6. The MC generated
hole distributions for the(a) HH1
and (b) LH1 subband, and(c) the
population inversion in the
inverted-massp-SiGe cascade de-
scribed in Fig. 5 at 20 and
23 kV/cm bias.
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p-type structures because their electronic and optical proper-
ties are more sensitive to the carrier distribution than is the
case inn-type cascades.

Simulations have been carried out for two types of proto-
type THz Si/SiGe strain-balanced quantum cascade struc-
tures. In structures designed to achieve local population in-
version around an inverted mass feature in the LH1 subband,
only marginal inversion was found, which is likely to be
destroyed in the presence of hole-hole scattering. The main
reason for the poor inversion is the shallowness of the energy
minimum in the LH1 dispersion. However, substantial popu-
lation inversion was predicted inp-Si/SiGe cascades de-
signed to operate via interwell(diagonal) radiative transi-
tions between the ground(HH1) subband of one well and the
upper(LH1) subband of the next well. Despite the high car-

rier temperatures, the population inversion exists across a
wide range of applied biases, with over 90% of carriers in
the upper laser subband at the desired operating point. These
results imply that such heterostructures have strong potential
for Si/SiGe quantum cascade laser action, although it should
be noted that the calculations presented here do not account
for any domain formation which may occur in many-period
heterostructures.
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