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We propose a phenomenological model of dephasing in mesoscopic transport, based on the introduction of
random-phase fluctuations in the computation of the scattering matrix of the system. A Monte Carlo averaging
procedure allows us to extract electrical and microscopic device properties. We show that, in this picture,
scattering matrix properties enforced by current conservation and time-reversal invariance still hold. In order to
assess the validity of the proposed approach, we present simulations of conductance and magnetoconductance
of Aharonov-Bohm rings that reproduce the behavior observed in experiments, in particular as far as aspects
related to decoherence are concerned.
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I. INTRODUCTION

Phase coherence of the electron wave function has a fun-
damental influence on the transport properties of mesoscopic
devices1 and is at the basis of several phenomena ranging
from interference effects(such as Aharonov-Bohm(AB) os-
cillations) to weak localization(WL)2,3 and universal con-
ductance fluctuations(UCF).4,5

The fundamental quantity used to express the degree of
coherence in a system is the so-called phase coherence
length(or “dephasing” length) lf,6 that is typically estimated
on the basis of WL experiments in semiconductor
heterostructures,7 Si metal-oxide-semiconductor field-effect-
transistors(MOSFET’s),8 metal conductors,9 or of interfer-
ence experiments in devices such as AB rings.10,11

Mesoscopic physics deals with devices whose sizes are
smaller or comparable tolf and therefore often operate in an
intermediate regime between coherent transport, in which the
phase information is fully preserved, and incoherent trans-
port. The main phase-breaking mechanisms are due to inter-
action of electrons with other electrons, photons, phonons,
and defects such as magnetic impurities, or due to other
kinds of phase-randomizing interaction with the environ-
ment.12,13

Therefore, it would be very useful to have a unique for-
malism capable to include an arbitrary degree of dephasing
in the evaluation of the transport properties of a system, and
to allow a seamless transition between the coherent and the
fully incoherent limits.

In the case of interfering paths, anad hoc random term
can be added analytically to the difference between the
phases accumulated in the two paths. When generic devices
with two or more leads are considered, two main phenom-
enological models are available for including a partial degree
of dephasing in the transport model:(i) insertion in the de-
vice of an additional “virtual” voltage probe14 that can be
also taken into account by properly adjusting the two-
terminal conductance15,16; or (ii ) addition of an imaginary
part to the Hamiltonian in the device region.17–19 In case(i),
the seeming drawback of spatially localized decoherence can
be overcome either by introducing an adequate number of

virtual probes in different points of the device region,20 or by
considering the limit of a voltage lead that supports an infi-
nite number of modes.15 In case(ii ), the carriers absorbed by
the imaginary term have to be reinjected into the conductor
in order to ensure current conservation.

An additional method to treat dephasing consists in in-
cluding a stochastic absorption in the scattering
description21–23through the insertion of an attenuation factor
in the free propagation region. Also in this case, continuity of
the probability density current requires that absorbed elec-
trons are reinjected.

Dephasing due to the environment can be modeled by two
equivalent approaches:12 One focuses on the changes that the
wave function induces on the state of the environment, and
was adopted, for instance, to simulate electron conduction
interacting with dynamic impurities.24 The other addresses
the phase accumulated by the interfering waves as a statisti-
cal process. In this paper, we adopt the latter perspective and
propose a phenomenological model of decoherence that
treats dephasing as a distributed phenomenon in the device
region, ensures the conservation of current density, and al-
lows us to evaluate the local density of states. We consider
the stochastic behavior of the dephasing process and adopt a
Monte Carlo averaging procedure to extract the electrical and
microscopic properties of the system. We are able to varylf

and gradually move from a coherent to a totally incoherent
transport regime. The model is described in Sec. II and is
applied in Sec. III to evaluate the decoherence on the con-
ductance and magnetoconductance of an AB ring.

II. DEPHASING MODEL

We include our model for dephasing in the scattering ma-
trix formalism for the computation of the device conductance
G. The conductance of a generic structure is related to the
transmission probability matrixT= t†t by the Landauer-
Büttiker formulaG=ge2/hon,m Tnm,25 where t is the trans-
mission matrix,g is the spin degeneracy factor,e is the el-
ementary charge,h is Planck’s constant, andn, m run over all
transverse modes contributing to transport.
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The transmission matrix is obtained by computing the
scattering matrix(S matrix) of the device.26 If we subdivide
the domain along the transport directionx in several slices,
one for each grid pointj =1, . . . ,Nx in the x direction, the
wave function of the electron in thej th slice sxj ,x,xj+1d
can be written as

c jsx,yd = o
n

x j ,nsyd
Îukj ,nu

saj ,ne
ikj ,nx + bj ,ne

−ikj ,nxd, s1d

wherex j ,nsyd is thenth transverse eigenvector of thej th slice
with eigenenergiesEj ,n and the longitudinal wave vectorkj ,n
is related to the total energyE by the conditionE=Ej ,n
+"2kj ,n

2 /2mj. The coefficientsaj ,n and bj ,n are obtained by
imposing the continuity of the wave function and of the
probability current density at the interface between thej th
and thes j +1dth slice. The scattering matrixSj links the in-
coming and the outgoing coefficients:

S bj

aj+1
D = SjS aj

bj+1
D , s2d

whereajsbjd is the column vector of allaj ,n’s (bj ,n’s) for n
=1, . . . ,Nmode, andNmode is the total number of modes con-
sidered in the system. The composition between two adjacent
scattering matrices26, Sj andSj+1, gives the matrixSj ^ Sj+1,
which links aj, bj, aj+2, and bj+2. In order to compute the
scattering matrix of the complete device we have to compose
the matrices of all slices according to well known rules:26

S=S1 ^ ¯ ^ Sj ^ ¯ ^ SNx−1.
We model the effect of decoherence as a random variation

of the phase accumulated by each mode in each slice into
which the device has been divided. In the absence of dephas-
ing, moden accumulates in slicej a phasekj ,nsxj+1−xjd; in
the presence of dephasing it accumulates a phasekj ,nsxj+1

−xjd+Df j ,n, whereDf j ,n is a random term obeying a Gauss-
ian probability distribution with zero average and standard
deviation s j; that depends on the thickness of the slice
sxj+1−xjd and onlf, as we shall show.

For a random choice of allDf j ,n’s, for j =1, . . . ,Nx−1,

n=1, . . . ,Nmode, we can compute an “occurrence”S̃ of the
scattering matrix of the system. We take into account the
probabilistic nature of dephasing, and therefore transport
properties are obtained following a Monte Carlo averaging
procedure over a sufficiently large ensemble of random oc-
currences. For typical devices, in order to obtain stable and
“smooth” averages, we need to consider an ensemble of
about a hundred occurrences.

For the purpose of clarity, we have described the case of
two-terminal devices. However, the method can be applied
without any variation for the computation of many-terminal
scattering matrices.

Using some algebra it is straightforward to verify the uni-

tarity of anyS̃: adding the random-phase term to the scatter-
ing matrix of the j th slice corresponds to substitute the co-

herent matrixSj with S̃j =Sj ^ Sj
random, where Sj

random is a
scattering matrix in which the reflection matrices are zero,
and the transmission matrices are diagonal, theirnth element
sn=1, . . . ,Nmoded being expsiDf j ,nd.

It is easy to verify thatSj
randomis unitary by construction;

since composition of unitary scattering matrices provides a

unitary scattering matrix, eachS̃ is unitary.

The physical reason for unitarity ofS̃ is the conservation
of the incoming current, whereas the time-reversal symmetry
in the presence of a magnetic fluxF implies the validity of
the Onsager-Casimir relations27

TpqsFd = Tqps− Fd, RppsFd = Rpps− Fd, s3d

where the labelsq andp denote the leads of the system and
Tpq is the total transmission probability from leadp to leadq
(summed over all modes), and Rpp is the total reflection
probability at leadp.28 Once again, eachSj

randomis symmetric
and independent of the magnetic field and therefore obeys
(3); it is now sufficient to observe that a composition of
matrices obeying(3) still provides a matrix that obeys
Onsager-Casimir relations.

Let us consider a traveling plane wave that loses phase
coherence as it propagates, but conserves its modulus. One
possible description of such a situation is to write the wave
function as the sum of a coherent component whose ampli-
tude decays exponentially with propagation for a lengthl as
e−l/2lf and of an incoherent component totally uncorrelated
with the former that ensures conservation of the wave-
function modulus. Another possible description is to add to
the phase of the traveling wave function after a lengthl a
random term with Gaussian distribution, zero average, and
standard deviations.

In order to derive the relation betweenlf ands, we con-
sider the case of wave interference. First, let us consider two
coherent wave functionsc1 and c2 of amplitude unity, ob-
tained, for example, with a beam splitter. We let them inter-
fere again after both propagate along paths of lengthl. In
terms of the former description the amplitude of the interfer-
ing pattern is

uc1 + c2umax
2 − uc1 + c2umin

2 = 4 exps− l/lfd. s4d

On the other hand, if we write the same two wave func-
tions with the latter description, they have amplitude unity
and phases containing additional random termsfR

1 and fR
2,

respectively, that are uncorrelated, and obey a Gaussian dis-
tribution with average zero and standard deviations. The
amplitude of the interfering pattern, in this case, is

kueifR
1

+ eifR
2
u2l − kueifR

1
− eifR

2
u2l = 4kcossfR

1 − fR
2dl = 4e−s2

,

s5d

where angle brackets mean statistical averaging, and the last
equation has been obtained using the fact thatfR

1 −fR
2 is a

Gaussian variable of average zero and variance 2s2, and
kcosfl=edf cosf exp f−f2/4s2g /Î4ps2=e−s2

.
By comparing(4) and (5), we obtains2= l / lf that, if we

consider each single slice in which the structure is parti-
tioned, means

s j =Îxj+1 − xj

lf

. s6d
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III. SIMULATIONS

In this section we use our proposed model for dephasing
to investigate the effect of decoherence on UCF and
Aharonov-Bohm oscillations in mesoscopic rings, for which
experimental results are available in the literature.

The Aharonov-Bohm ring(shown the inset of Fig. 1) is
broadly used to perform phase coherence measurements be-
cause it provides the possibility to obtain WL, UCF, as well
as pure interference effects.1 As far as this aspect is con-
cerned, analytical predictions of the dephasing rate are
available,29 which agree very well with the experiments.10

UCF appears when an external parameter that alters the
potential profile of the structure is varied. Indeed, such con-
ductance fluctuations are obtained in experiments by varying
the Fermi levelEF of the electrons through the voltage on the
back gate or on a top gate. The typical amplitude of conduc-
tance fluctuations does not depend on the sample size or on
the degree of disorder and is of the order of the conductance
quantum 2e2/h in a purely coherent transport regime.4,5,16 If
this is not the case, decoherence smears out fluctuations re-
storing a staircase whenG is plotted versusEF or versus the
gate voltage, as shown, for example, in the experiments of
Refs. 10 and 11.

We have simulated a symmetric AB ring structure defined
by etching on a GaAs/AlGaAs heterostructure. With refer-
ence to the inset of Fig. 1, the internal radius of the ring is
350 nm, the external radius is 630 nm, and the width of the
leads is 200 nm. Bright regions correspond to a potential
energy of 0 eV, dark regions to 0.2 eV.

The thin line in Fig. 1 is the computed conductance as a
function of EF for fully coherent transport, while the thick
line is the conductance corresponding to a dephasing length
lf=0.3 mm. Results are obtained by averaging on 100 ran-
dom occurrences. The fluctuations clearly present in the co-
herent regime are evidently smoothed out as decoherence is
introduced.

In addition, as a consequence of the introduction of deco-
herence we are able to observe the loss of the universality in
the conductance behavior, which now presents a series of
noninteger plateaus. Such behavior is typically observed in
experiments10,30,31 as is due to backscattering phenomena
and to scattering at the interface between one-dimensional
(1D) and 2D electron gas. However, some degree of deco-
herence, which is always present in experiments, is required
to clearly reproduce the phenomenon with simulations.

We want to emphasize that dephasing introduced by our
model has a very different effect on the device conductance
than energy averaging due to a finite temperature of the sys-
tem. In Fig. 2 we plot the conductance of the same ring in
Fig. 1 versusEF and compare it with the thermal-averaged
conductance computed in the case of fully coherent trans-
port:

ḠsTd = −E dEGsEd
] fsE,Td

] E
,

where fsE,Td is the Fermi-Dirac occupation factor. As can
be seen, the coherent conductance at different temperatures
does not exhibit the noninteger plateaus previously observed
and has a behavior qualitatively different from partially co-
herent conductance.

Another way to verify how dephasing influences the
transport properties of the ring structure is represented by the
study of magnetoconductance. In our code we have added
the effects of an external magnetic fieldB=s0,0,Bd perpen-
dicular to the propagation planexy. We adopt the transverse
gaugeA =s−By,0 ,0d for the vector potentialA as described
in Ref. 32. Due to the AB ring geometry the phase difference
of wave functions propagating along the two branches de-
pends on the magnetic field asesp−eAd /h·dr , generating
the magnetoconductance oscillations. The oscillation period
can be equal to the quantum fluxh/e or to the submultiples
h/ne when coherent backscattering is present and the elec-
tron turns around the ring more times. As expected, decoher-
ence suppresses the amplitude of magnetoconductance. Re-
sults for the AB ring geometry of the inset of Fig. 1 are
shown in Fig. 3, where it is possible to appreciate the tran-

FIG. 1. (Color online) Conductance of the AB ring as a function
of the Fermi level of electrons: Completely coherent regime(thin
solid line), partially incoherent regime corresponding tolf

=0.3mm (thick solid line). Results are averaged on 100 random
occurrences. The arrows indicate the energies at which a new con-
ducting channel in the lead is opened. Inset: the AB ring potential
used in our simulations. The internal radiusRa is 350 nm, whereas
the external radiusRb is 630 nm. The width of the branchesW that
connect the ring to drain and source is 200 nm.G0 is the conduc-
tance quantum 2e2/h.

FIG. 2. (Color online) Comparison between the conductance of
the AB ring at 0 K computed withlf=0.3 mm (thick line) and fully
coherent conductances computed at finite temperature(thin lines).
For clarity of presentation each line is shifted by one unit of
conductance.
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sition from a coherent transport regime to an only partially
coherent one aslf is decreased.

In Fig. 4 we show a comparison with experimental results
presented by Hansenet al.10 for a symmetric AB ring with
internal radius 280 nm, external radius 560 nm, and wire
width 100 nm. On the left we show the fast Fourier trans-
form (FFT) of experimental magnetoconductance oscilla-
tions (Fig. 2 of Ref. 10) for different values of temperature,
while on the right we show the same quantity computed with
our model for different values of the dephasing length. In
both cases all frequency components are damped by deco-
herence. At small values oflf only the first peak correspond-
ing to theh/e frequency is clearly visible.

It is important to verify whether the dephasing length mi-
croscopically introduced by our model through Eq.(6)
agrees with the value that can be extracted from the electrical
properties of the device. Following Ref. 10 we assume that
the amplitudeAn of the h/ne oscillation can be written as

An ~ e−nL/lf, s7d

whereL is the circumference of the ring. Such assumption is
confirmed by the experimental results shown in Fig. 5(a)
(Fig. 2 of Ref. 10).

The FFT of the simulated oscillation amplitudes for dif-
ferentn exhibits an exponential dependence onlf as shown
in the semilog plot of Fig. 5(b) for the casesn=1 andn=3.
Both the slopes of theh/3e and theh/e oscillations, accord-
ing to Eq.(7), are consistent with the nominal value provided
by Eq. (6). Results forn.3 are not reliable in the whole
range oflf due to numerical fluctuations and therefore are
not shown.

Finally, we emphasize the possibility of a microscopic
description of the effects of decoherence in the system. In

FIG. 4. (Color online) Left: fast Fourier transform(FFT) of the
AB experimental oscillations measured by Hansenet al. (Fig. 2 of
Ref. 10) at different temperatures. Right: the same FFT obtained
with our simulations for values of the dephasing lengthlf

1 =`, lf
2

=5 mm, lf
3 =1 mm, lf

4 =0.3 mm. In the simulation results, the DC
component has been removed.

FIG. 6. (Color online) Partial density of states for different
dephasing lengths in the AB ring of Fig. 1 when only the first mode
is populated. The magnetic fieldB is 55 mT and 85 mT,
corresponding to a maximum and a minimum of conductance
(see Fig. 3).

FIG. 3. (Color online) The conductance oscillations of the AB
ring shown in the inset of Fig. 1 as a function of the magnetic field,
for dephasing lengthlf

1 =` , lf
2 =5mm,lf

3 =1mm,lf
4 =0.3mm. G is av-

eraged over 100 simulation runs. For clarity of presentation, each
line is shifted by one conductance unit.

FIG. 5. Left: Measured oscillation amplitude for theh/e and
h/4e frequencies(Fig. 2 of Ref. 10). Right: Amplitude of theh/e
andh/3e oscillations plotted as a function of the dephasing length
lf. Each dot corresponds to a different Fermi energy of the propa-
gating electrons.
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Fig. 6 we show the partial local density of states correspond-
ing to one mode injected from the leftrsx,y,Ed
~ ucsx,y,Edu2 for three different values oflf and two differ-
ent values of the magnetic fieldB, corresponding to the cases
of maximum constructive interferencesB=55 mTd and
maximum destructive interferencesB=85mTd, as can be
seen in Fig. 3. Also in this case the density of states is ob-
tained by averaging over 100 Monte Carlo runs.

For lf=5 mm transport is almost fully coherent, a clear
pattern of nodes forms in both branches, and in the output
lead we have maximum modulation of the density of states
as a function ofB. For smaller dephasing lengths the station-
ary wave pattern in the branches smooths out. In particular,
for lf=0.3 mm, when the interference pattern is almost de-
stroyed, as can be seen in Fig. 3, the density of states is
quasiconstant in the branches and in the leads.

IV. CONCLUSIONS

In this paper we have presented a phenomenological mi-
croscopic model for the simulation of dephasing in meso-
scopic devices. The stochastic nature of the dephasing pro-
cess is taken into account with a Monte Carlo methodology
used to extract average conductance, magnetoconductance,
and density of states. We have shown that the proposed

method ensures the physical validity of each occurrence of
the scattering matrix.

Here we want to underline the fact that the proposed
method provides a unique description applicable to systems
with an arbitrary degree of dephasing. This represents the
main advantage of the proposed method, since common
methods for determining transport properties of generic de-
vices consider only the limit of completely coherent trans-
port (with scattering matrix or recursive Green’s functions
techniques) or the limit of fully incoherent transport(with
semiclassical approaches).

We have also shown that such method allows us to re-
cover experimental results observed in Aharonov-Bohm
rings, when a certain degree of decoherence is always
present and responsible for some typical features, such as the
noninteger conductance plateaus at zero magnetic field.

We believe that the proposed model can be very useful in
understanding the effect of dephasing on the transport prop-
erties of mesoscopic devices, and enables to accurately re-
produce experimental results with numerical simulations. It
can also have a significant effect in assessing the effect of
dephasing on the noise properties of nanoscale devices.
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