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Statistical model of dephasing in mesoscopic devices introduced in the scattering matrix
formalism

Marco G. Paldand Giuseppe lannaccdre
IDipartimento di Ingegneria dell’Informazione, Universita degli Studi di Pisa, via Caruso, I-56122 Pisa, Italy
2IENIT-Consiglio Nazionale delle Ricerche, via Caruso, 1-56122 Pisa, Italy
(Received 26 November 2003; published 3 June 2004

We propose a phenomenological model of dephasing in mesoscopic transport, based on the introduction of
random-phase fluctuations in the computation of the scattering matrix of the system. A Monte Carlo averaging
procedure allows us to extract electrical and microscopic device properties. We show that, in this picture,
scattering matrix properties enforced by current conservation and time-reversal invariance still hold. In order to
assess the validity of the proposed approach, we present simulations of conductance and magnetoconductance
of Aharonov-Bohm rings that reproduce the behavior observed in experiments, in particular as far as aspects
related to decoherence are concerned.
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I. INTRODUCTION virtual probes in different points of the device regf@rar by
considering the limit of a voltage lead that supports an infi-
Phase coherence of the electron wave function has a fumite number of mode¥ In case(ii), the carriers absorbed by
damental influence on the transport properties of mesoscopibe imaginary term have to be reinjected into the conductor
deviced and is at the basis of several phenomena rangingn order to ensure current conservation.

from interference effectgsuch as Aharonov-BohrAB) os- An additional method to treat dephasing consists in in-
cillations) to weak localization(WL)>3 and universal con- cluding a stochastic absorption in the scattering
ductance fluctuationdJCF).*° descriptiod~?3through the insertion of an attenuation factor

The fundamental quantity used to express the degree aif the free propagation region. Also in this case, continuity of
coherence in a system is the so-called phase coherengge probability density current requires that absorbed elec-
length(or “dephasing” Iengthl¢,6 that is typically estimated trons are reinjected.
on the basis of WL experiments in semiconductor Dephasing due to the environment can be modeled by two
heterostructure$ Si metal-oxide-semiconductor field-effect- equivalent approaché3:One focuses on the changes that the
transistorstMOSFET’9,® metal conductor8,or of interfer-  wave function induces on the state of the environment, and
ence experiments in devices such as AB ritys. was adopted, for instance, to simulate electron conduction

Mesoscopic physics deals with devices whose sizes ar@teracting with dynamic impuritie$ The other addresses
smaller or comparable tg, and therefore often operate in an the phase accumulated by the interfering waves as a statisti-
intermediate regime between coherent transport, in which theal process. In this paper, we adopt the latter perspective and
phase information is fully preserved, and incoherent transpropose a phenomenological model of decoherence that
port. The main phase-breaking mechanisms are due to intefreats dephasing as a distributed phenomenon in the device
action of electrons with other electrons, photons, phononsegion, ensures the conservation of current density, and al-
and defects such as magnetic impurities, or due to othdbws us to evaluate the local density of states. We consider
kinds of phase-randomizing interaction with the environ-the stochastic behavior of the dephasing process and adopt a
ment. 1213 Monte Carlo averaging procedure to extract the electrical and

Therefore, it would be very useful to have a unique for-microscopic properties of the system. We are able to Vary
malism capable to include an arbitrary degree of dephasingnd gradually move from a coherent to a totally incoherent
in the evaluation of the transport properties of a system, ang¢tansport regime. The model is described in Sec. Il and is
to allow a seamless transition between the coherent and thgplied in Sec. Ill to evaluate the decoherence on the con-
fully incoherent limits. ductance and magnetoconductance of an AB ring.

In the case of interfering paths, @u hocrandom term
can be added analytically to the difference between the
phases accumulated in the two paths. When generic devices [l. DEPHASING MODEL
with two or more leads are considered, two main phenom-
enological models are available for including a partial degree  We include our model for dephasing in the scattering ma-
of dephasing in the transport modél) insertion in the de- trix formalism for the computation of the device conductance
vice of an additional “virtual” voltage proB&that can be G. The conductance of a generic structure is related to the
also taken into account by properly adjusting the two-transmission probability matrixT=t"t by the Landauer-
terminal conductanée!® or (i) addition of an imaginary Biittiker formulaG=ge?/hS,,, Tom?> Wheret is the trans-
part to the Hamiltonian in the device regibfi2°In case(i), mission matrix,g is the spin degeneracy facta,is the el-
the seeming drawback of spatially localized decoherence caementary chargdy is Planck’s constant, ang m run over all
be overcome either by introducing an adequate number dfansverse modes contributing to transport.
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The transmission matrix is obtained by computing the It is easy to verify thaﬂa”d"mis unitary by construction;

scattering matrixS matrix) of the device?® If we subdivide  since composition of unitary scattering matrices provides a
the domain along the transport directigrin several slices, ynitary scattering matrix, eacBis unitary.

one for each grid poinf=1,... N, in the x direction, the
wave function of the electron in thgh slice (x; <X <Xj;)
can be written as

The physical reason for unitarity &is the conservation
of the incoming current, whereas the time-reversal symmetry
in the presence of a magnetic fldx implies the validity of

(Y . ™ the Onsager-Casimir relatiotfs
hoxy) = B A T @y ot et )
n Vin qu(q)) = qu(_ (I)), Rpp(q)) = Rpp(_ (I)), (3)

wherey; o(y) is thenth transverse eigenvector of thié slice
with eigenenergieg; , and the longitudinal wave vectéy ,

is related to the total energig by the conditionE=E;,
+ﬁ2kin/2mj. The coefficientsa; , and b; , are obtained by
imposing the continuity of the wave function and of the
probability current density at the interface between ftie
and the(j+1)th slice. The scattering matrig links the in-
coming and the outgoing coefficients:

where the labelg| and p denote the leads of the system and
Tpq is the total transmission probability from leado leadq
(summed over all modgsand R, is the total reflection
probability at leadp.28 Once again, eac§2"®°"is symmetric

and independent of the magnetic field and therefore obeys
(3); it is now sufficient to observe that a composition of
matrices obeying(3) still provides a matrix that obeys
Onsager-Casimir relations.

b; a Let us consider a traveling plane wave that loses phase
= ' 2 coherence as it propagates, but conserves its modulus. One
possible description of such a situation is to write the wave

wherea;(b;) is the column vector of alb; ,'s (b;,'s) for n function as the sum of a coherent component whose ampli-
=1, ... Nmode @ndNnogeis the total number of modes con- tude decays exponentially with propagation for a lerigis
sidered in the system. The composition between two adjacert'’?¢ and of an incoherent component totally uncorrelated
scattering matrices, S and S, gives the matrix§ ® §,4,  with the former that ensures conservation of the wave-
which links a;, bj, a2, andbj,,. In order to compute the function modulus. Another possible description is to add to
scattering matrix of the complete device we have to composthe phase of the traveling wave function after a lenigtn
the matrices of all slices according to well known rutés: random term with Gaussian distribution, zero average, and
S=5®--®§®: - ®S\,x_1. standard deviatiowr.

We model the effect of decoherence as a random variation In order to derive the relation betweépand o, we con-
of the phase accumulated by each mode in each slice intsider the case of wave interference. First, let us consider two
which the device has been divided. In the absence of dephasoherent wave functiong; and i, of amplitude unity, ob-
ing, moden accumulates in slicg a phasek; ,(x,1—x;); in  tained, for example, with a beam splitter. We let them inter-
the presence of dephasing it accumulates a pkage;.,  fere again after both propagate along paths of lerigtim
—x;)+Ad; o WhereAg, , is a random term obeying a Gauss- terms of thg former description the amplitude of the interfer-
ian probability distribution with zero average and standardnd pattern is
deviation oj; that depends on the thickness of the slice ) )
(x+1—%;) and onl 4 as we shall show. 1+ Walmax— |4 + dolin = 4 exp=1/1y). (4)

For a random choice of alhé;y's, for j=1,... N—1, On the other hand, if we write the same two wave func-
n=1,... Nmoge We can compute an “occurrenc&’of the  tions with the latter description, they have amplitude unity
scattering matrix of the system. We take into account theand phases containing additional random tegfisand ¢2,
probabilistic nature of dephasing, and therefore transpontespectively, that are uncorrelated, and obey a Gaussian dis-
properties are obtained following a Monte Carlo averagingribution with average zero and standard deviatianThe
procedure over a sufficiently large ensemble of random ocamplitude of the interfering pattern, in this case, is
currences. For typical devices, in order to obtain stable and
“smooth” averages, we need to consider an ensemble 0f<|ei‘f’%<+ei¢§|2)—<|ei¢%<—ei¢§<|2>=4<cos(¢1R—¢§)>=4 o’
about a hundred occurrences.

For the purpose of clarity, we have described the case of (5)
two-terminal devices. However, the method can be applie

without any variation for the computation of many-terminal equation has been obtained using the fact ?ﬁﬁfd’é is a

scattering matrices. : . /

Using some algebra it is straightforward to verify the uni- Gaussu?n dvarlable of averga/aizz/ezt%gci_ v_:jgancé and
tarity of anyS: adding the random-phase term to the scatterSCOSfl;rfn pﬁ\;i:rc:S((Z)e;(r?d[ (S(f we c])b:éi: 02;|e/| .that if we
ing matrix of thejth S"fe corresponds to substitute the €0 consider each single slicé in which the stF/)uctur,e is parti-
herent matrix§ with §=5®S*"" where S*""is a  {ioned. means
scattering matrix in which the reflection matrices are zero,
and the transmission matrices are diagonal, thisirelement

(n=1, ... Nmogd being expiAg; ). o= L= (6)

Qj+1 Dj+1

%here angle brackets mean statistical averaging, and the last
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FIG. 2. (Color onling Comparison between the conductance of
the AB ring at 0 K computed with,=0.3 um (thick line) and fully
coherent conductances computed at finite temperathie lines.
For clarity of presentation each line is shifted by one unit of

FIG. 1. (Color onling Conductance of the AB ring as a function
of the Fermi level of electrons: Completely coherent regiién
solid line), partially incoherent regime corresponding tg,
=0.3um (thick solid ling. Results are averaged on 100 random
occurrences. The arrows indicate the energies at which a new coffonductance.
ducting channel in the lead is opened. Inset: the AB ring potential
used in our simulations. The internal radiRgis 350 nm, whereas In addition, as a consequence of the introduction of deco-
the external radiug, is 630 nm. The width of the branch¥éthat  herence we are able to observe the loss of the universality in
connect the ring to drain and source is 200 rig.is the conduc-  the conductance behavior, which now presents a series of
tance quantume/h. noninteger plateaus. Such behavior is typically observed in

experiment®3%31 as is due to backscattering phenomena
Il. SIMULATIONS and to scattering at the interface between one-dimensional
) i . (1D) and 2D electron gas. However, some degree of deco-

In this section we use our proposed model for dephasingerence, which is always present in experiments, is required
to investigate the effect of decoherence on UCF and, cjearly reproduce the phenomenon with simulations.
Aharqnov-Bohm oscillations in mesoscopic rings, for which " \ve want to emphasize that dephasing introduced by our
experimental results are available in the literature. model has a very different effect on the device conductance

The Aharonov-Bohm ringshown the inset of Fig.)lis  {han energy averaging due to a finite temperature of the sys-
broadly used to perform phase coherence measurements Qgq, | Fig. 2 we plot the conductance of the same ring in

cause it provides the possibility to obtain WL, UCF, as We”Fig. 1 versusEr and compare it with the thermal-averaged

as pure interference effectsAs far as this aspect is con- onqctance computed in the case of fully coherent trans-
cerned, analytical predictions of the dephasing rate argort:
available?® which agree very well with the experimenifs.
UCF appears when an external parameter that alters the o JHET)
G(T)=—deG(E)—’ ,

potential profile of the structure is varied. Indeed, such con- E

ductance fluctuations are obtained in experiments by varying
the Fermi leveEg of the electrons through the voltage on the
back gate or on a top gate. The typical amplitude of conducwhere f(E, T) is the Fermi-Dirac occupation factor. As can
tance fluctuations does not depend on the sample size or &¢ seen, the coherent conductance at different temperatures
the degree of disorder and is of the order of the conductanc@oes not exhibit the noninteger plateaus previously observed
quantum 2°/h in a purely coherent transport regirhe®|f and has a behavior qualitatively different from partially co-
this is not the case, decoherence smears out fluctuations reerent conductance.

storing a staircase whe is plotted versu&r or versus the Another way to verify how dephasing influences the
gate voltage, as shown, for example, in the experiments dfansport properties of the ring structure is represented by the
Refs. 10 and 11. study of magnetoconductance. In our code we have added

We have simulated a symmetric AB ring structure definedhe effects of an external magnetic fidda-(0,0,B) perpen-
by etching on a GaAs/AlGaAs heterostructure. With refer-dicular to the propagation plang. We adopt the transverse
ence to the inset of Fig. 1, the internal radius of the ring isgaugeA=(-By, 0,0) for the vector potentiah as described
350 nm, the external radius is 630 nm, and the width of theén Ref. 32. Due to the AB ring geometry the phase difference
leads is 200 nm. Bright regions correspond to a potentiabf wave functions propagating along the two branches de-
energy of 0 eV, dark regions to 0.2 eV. pends on the magnetic field d$p-eA)/h-dr, generating

The thin line in Fig. 1 is the computed conductance as ahe magnetoconductance oscillations. The oscillation period
function of E¢ for fully coherent transport, while the thick can be equal to the quantum fllaXe or to the submultiples
line is the conductance corresponding to a dephasing lengtivne when coherent backscattering is present and the elec-
l4=0.3 um. Results are obtained by averaging on 100 raniron turns around the ring more times. As expected, decoher-
dom occurrences. The fluctuations clearly present in the ccence suppresses the amplitude of magnetoconductance. Re-
herent regime are evidently smoothed out as decoherencessits for the AB ring geometry of the inset of Fig. 1 are
introduced. shown in Fig. 3, where it is possible to appreciate the tran-
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B (T) andh/3e oscillations plotted as a function of the dephasing length

FIG. 3. (Color onling The conductance oscillations of the AB !¢ Each dot corresponds to a different Fermi energy of the propa-

ring shown in the inset of Fig. 1 as a function of the magnetic field,9ating electrons.

for dephasing length},=-,15=5um,13=14m,13=0.3um. G is av-

eraged over 100 simulation runs. For clarity of presentation, each A,oce e, (7)
line is shifted by one conductance unit.

whereL is the circumference of the ring. Such assumption is
confirmed by the experimental results shown in Figa)5
JFig. 2 of Ref. 10.

sition from a coherent transport regime to an only partially
coherent one ak, is decreased.

In Fig. 4 we show a comparison with experimental result . _ . :
presented by Hanseet al° for a symmetric AB ring with The FFT of the simulated oscillation amplitudes for dif-

internal radius 280 nm, external radius 560 nm, and wird€'€ntn exhibits an exponential dependencelgras shown

width 100 nm. On the left we show the fast Fourier trans-" the semilog plot of Fig. &) for the casesi=1 andn=3.
form (FFT) of experimental magnetoconductance oscilla-Both the slopes of tha/3e and theh/e oscillations, accord-

tions (Fig. 2 of Ref. 10 for different values of temperature, N9 to Eq.(7), are consistent with the nominal value provided

while on the right we show the same quantity computed withPY EG: (6). Results forn>3 are not reliable in the whole
our model for different values of the dephasing length. Inf@N9€ ofl , due to numerical fluctuations and therefore are

both cases all frequency components are damped by decBOt Shown.

herence. At small values 6§ only the first peak correspond- Finally, we emphasize the possibility of a microscopic
ing to theh/e frequency is clearly visible. description of the effects of decoherence in the system. In

It is important to verify whether the dephasing length mi-

croscopically introduced by our model through E@®)
agrees with the value that can be extracted from the electrical £
properties of the device. Following Ref. 10 we assume that 3.
the amplitudeA, of the h/ne oscillation can be written as o
°
 h T T=032K— T —_
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FIG. 4. (Color onling Left: fast Fourier transforniFFT) of the B=0.055T B=0.085T
AB experimental oscillations measured by Hansemrl. (Fig. 2 of FIG. 6. (Color onling Partial density of states for different

Ref. 10 at different temperatures. Right: the same FFT obtaineddephasing lengths in the AB ring of Fig. 1 when only the first mode
with our simulations for values of the dephasing Iend;hoc, |<21> is populated. The magnetic field is 55 mT and 85 mT,
=5 um, If/):l um, Ij,:O.S,um. In the simulation results, the DC corresponding to a maximum and a minimum of conductance

component has been removed. (see Fig. 3
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Fig. 6 we show the partial local density of states correspondmethod ensures the physical validity of each occurrence of
ing to one mode injected from the lefp(x,y,E) the scattering matrix.

«|i(x,y,E)|? for three different values df and two differ- Here we want to underline the fact that the proposed
ent values of the magnetic fieR| corresponding to the cases Method provides a unique description applicable to systems
of maximum constructive interferencé8=55mT) and With an arbitrary degree of dephasing. This represents the

maximum destructive interferencd8=85mT), as can be main advantage of the proposed method, since common

seen in Fig. 3. Also in this case the density of states is Ob[nethods for determining transport properties of generic de-

tained by averaging over 100 Monte Carlo runs vices consider only the limit of completely coherent trans-
y ging ) ' port (with scattering matrix or recursive Green’s functions
For |,=5 um transport is almost fully coherent, a clear

pattern of nodes forms in both branches, and in the outp fechniques or the limit of fully incoherent transportwith

; : ) Wemiclassical approaches
lead we have maximum modulation of the density of states \ne have also shown that such method allows us to re-

as a function oB. For smaller dephasing lengths the station-.qyer experimental results observed in Aharonov-Bohm
ary wave pattern in the branches smooths out. In particulaﬁngs, when a certain degree of decoherence is always
for 1,=0.3 um, when the interference pattern is almost de-present and responsible for some typical features, such as the
stroyed, as can be seen in Fig. 3, the density of states isoninteger conductance plateaus at zero magnetic field.
quasiconstant in the branches and in the leads. We believe that the proposed model can be very useful in
understanding the effect of dephasing on the transport prop-
erties of mesoscopic devices, and enables to accurately re-
IV. CONCLUSIONS produce experimental results with numerical simulations. It
can also have a significant effect in assessing the effect of

In this paper we have presented a phenomenological Mdephasing on the noise properties of nanoscale devices.
croscopic model for the simulation of dephasing in meso-
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