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Following our previous workS. Murakami, N. Nagaosa, and S. C. Zhang, Scies@g 1348(2003] on the
dissipationless quantum spin current, we present an exact quantum-mechanical calculation of this novel effect
based on the linear-response theory and the Kubo formula. We show that it is possible to define an exactly
conserved spin current, even in the presence of the spin-orbit coupling in the Luttinger Hamiltopi&ypef
semiconductors. The light- and the heavy-hole bands form two Kramers doublets, andzam&wAbelian
gauge field acts naturally on each of the doublets. This quantum holonomy gives rise to a monopole structure
in momentum space, whose curvature tensor directly leads to the novel dissipationless spin Hall effect, i.e., a
transverse spin current is generated by an electric field. The result obtained in the current work gives a quantum
correction to the spin current obtained in the previous semiclassical approximation.
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I. INTRODUCTION ji= ok, 2

Spintronics, the science and technology of manipulatingelating the charge curreijtto the electric field. In this case,
the spin of the electron for building integrated informationthe charge currenf; changes sign under time reversal
processing and storage devices, showed great prdmisevhile the electric field is even undét Since the Ohm'’s law
Spintronics devices also promises to access the intrinsitelates quantities of different symmetries under time reversal
quantum regime of transport, paving the path towards quarZ, the charge conductivity breaks the time-reversal sym-
tum computing. However, many challenges remain in thismetry and describes the inevitable joule heating and dissipa-
exciting quest. Among them, purely electric and dissipationtion. Quantum Hall current, which is transverse to the elec-
less manipulation of the electron spin and its quantum trangric field and dissipationless, has the feature similar to Eq.
port is one of the most important goals of quantum spintron{1), but the time-reversal symmetry is compensated by the
ics. external magnetic field. Dissipationless current without time-

In our previous work, we discovered a basic law of spin- reversal symmetry breaking is extremely important and fun-
tronics, which relates the spin current and the electric fielddlamental in solid-state physics, the most celebrated example
by the response equation of which is the superconducting current. It is described by

the London equation,

= e e? 19A
Jj UseljkEh (1) ji :ps—Ai, Ei:___" (3)
mcC c Jt

wherej! is the current of théth component of the spin along where the curren}; is related to the vector potentid in-

the directionj and g, is the totally antisymmetric tensor in stead of the electric field. In the London equation, biptnd
three dimensions. Sinowt al2 found a similar effect in the A; are odd under time reversd], therefore, the transport
two-dimensionaln-type semiconductors with Rashba cou- coefficientp, also called the superfluid density, describes the
pling. This law is similar to Ohm’s law in electronics, and reversible and dissipationless flow of the supercurrent.

the spin conductivityos has the dimension of the electric  In summary, the dissipationless spin current discovered in
chargee divided by the scale of length. However, unlike the Ref. 2 shares some basic features with the superconducting
Ohm'’s law, this fundamental response equation describes @rrent and the quantum Hall edge current, in the sense that
purely topological and dissipationless spin current. It is im-(1) the spin Hall conductivityrg is a dissipationless or reac-
portant to note here that the spin current is even under thve transport coefficient, even under the time-reversal opera-
time-reversal operatiofi. When the direction of the arrow of tion 7; (2) the spin Hall conductivityrs can be expressed as
time is reversed, both the direction of the current and then integral over all states below the fermi energy, not only
spin are reversed and the spin current remains unchangealver states in the vicinity of the fermi energy as in most
Since both the spin current and the electric field in Bg.  dissipative transport coefficients. Furthermore, just like the
are even under time reversglthe transport coefficientsis  case of the quantum Hall effett the contribution of each
called “reactive” and can be purely nondissipative. This is instate to the spin Hall conductivitys can be expressed en-
sharp contrast to the Ohm'’s law tirely in terms of the curvature of a gauge field in momentum
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space, which in our case is non-Abelian. The dissipationlesplays an important role in transport propertfe$® and in
spin current is induced by the electric field through the spinimagnetic superconductot$in particular, this gauge field is
orbit coupling, whose characteristic energy scale exceeds tirelated to the transverse conductivity, as
room temperature in many semiconducting materials.

Electronic structure of semiconductors with diamond
structure(e.g., Si, Ggand zinc blende structue.g., GaAs, e?
InSh) are well understood in terms of thep perturbation Oyy = _FE Ne(en(k))BrAK), (6)
theory. The top of the valence bands ar&aD, i.e.,I" point. nk
They consist of the threp-orbitals p,, py, p, with spin up
and down. In the presence of the relativistic spin-orbit cou- )
pling, these six states are split into fourfold degene@te Where By (K)=Fy (k) =(3An(k)/ k) = (dAnK)/Ky) is the
=3/2 states and twofold degeneraB=1/2 state. HereS  Z component of the field strength made frofy;(k), and
denotes the total angular momentum of the atomic orbitalPe(€,(k)) is the Fermi distribution of then th band with
obtained through the coupling of the orbital angular momenenergye,(k). This formuld® is the foundation of the integer
tum L and the spin angular momentusnThe second order quantum Hall effect, and further applied to the anomalous
perturbation in thek -p results in the effective Hamiltonian Hall effect(AHE) in ferromagnetic metats:*°Especially in

neark =0, which is called Luttinger Hamiltoniah: the magnetic semiconductof@a,Mn)As,?! the calculatiot®
) by the formula Eq(3) well explains the experimental results
Ho= 2 ¢} H,.(K)C, k., quantitatively, giving some credit that the AHE is mostly of
k

intrinsic origin rather than extrinsic origins, e.g., skew scat-
tering and/or side-jump mechanism. However in the pres-
_ 5 5 2 ence of the time-reversal symmetry, the dc transverse con-
H(k) = En«y1+ Eyz)k ~ 27k -9 ) ) (4) ductivity o, vanishes, and the topological structure of the
. . Bloch wave functions has not been systematically studied in
wherek=(k,,ky k), S=(S,¥,5), andk=[k|. The explicit  the context of transport theory. As we will show below, an
form of the matricesS (i=1,2,3 is given in AppendiXx A.  even more beautiful and nontrivial quantum topological
For simplicity, we have put,=1y; in the original Luttinger  structure is hidden in the valence-band structure in the para-
Hamiltonian; most of subsequent discussions are also appliagnetic state, which is analogous to the fermionic quasipar-
cable to more general cases wWith# vs. ticles in the S@6) theory?? This is also motivated by the
On the other hand, the conduction bands are made out ¢gcent work by one of the present authors on the generaliza-
the s orbital and hence doubly degenerate. When we neglegfon of the quantum Hall effect into four dimensions in terms
a small effect due to broken inversion symmetry, this degenpf the SQ@5) symmetry?3 In this paper, we shall show that
eracy is not lifted due to the Kramers theorem. Therefore theghe Sq@5) group structure of théS=3/2 Bloch states pro-
effect of the spin-orbit interaction is small in the conduction;;jes 3 natural description of the non-Abelian (8Uho-
band, although the Rashba effeé?is induced by the elec- lonomy and its curvature in momentum space. This gauge

tric field nﬁar,Re.gh.b the mterfﬁce structlljreb. Thedlspln H?j" tructure underlies the dissipationless, topological spin cur-
current in the Rashba system has recently been discussed R i hole-doped semiconductors,

Sinovaet al3 These authors showed that dissipationless and In the presence of the spin-orbit interaction, the conven-
e X . Stionally defined total spin operator is not conserved, and it is
system. The position of the conduction-band minima de'nontrivial to define the spin current in this case. Our formal-
m resolves this issue by discovering conserved quantities in
the Luttinger Hamiltonian(4) and by defining associated
S . conserved spin currents. These quantities have clear physical
valence bands below because of the intrinsically strong SPiNg g geometric meanings. The exact quantum calculation of

orbit interaction. the conserved spin Hall conductivityg is performed in

Although the band structure of semiconductors with Spinye s of the Kubo formula, and the results can be expressed

orbit coupling has been understood for many years, only r€aprely in terms of the non-Abelian gauge curvature in mo-
cently has it been recognized that the gauge field and it

thentum space. Our fully quantum mechanical results iden-

curvature in the momentum space made out of the BI(_)CI?ify the quantum correction to the previous semiclassical
wave function play important roles in the transport propertie esul? in terms of the wave-packet formalism

of electrons in solids. The gauge field is defined in terms o The plan of this paper is as follows. In Sec. II, we refor-

the Bloch staténk) as mulate the Luttinger Hamiltonian in terms of the GDal-
9 gebra and give the definition of the conserved spin current.
An(k) = - i<nk|£|nk>, (5 Based on this definition, the calculation of the spin Hall con-

! ductivity in terms of Kubo formula is presented in Sec. Il
wheren is a band index. It represents the inner product of thevhere the geometrical meaning is stressed, and the compari-
two Bloch wave functions infinitesimally separated kn  son with the previous semiclassical result is given. Section
space. This gauge fieltd (k) describes topological structure 1V is devoted to conclusions. Throughout the paper, we take
of Bloch wave functions in the momentum sp&eand the uniti=1, e=1.

eral points along the axis between theand theX points in
Si, while they are at the points in Ge. We will focus on the
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17 is an SU2) rotation symmetry acting on each band. Com-
bining the LH and the HH bands, there is an (8D
sl | =SU(2) X SU(2) symmetry at everk point. In this section,
we shall develop the mathematical framework in which this
SQ(4) symmetry is made manifest, and this symmetry is
B ] used to define the conserved spin current. SiA¢eand P-
depend ork, the quantization axis for each &) varies as a
141 L function of k. When k is adiabatically changed along a
o] "F "? i closed circuit, the fermionic wave function in general does
Er LH not return to itself; in fact, the final wave function is related
to the starting wave function by an $2) transformation
HH\ ] within each band. Therefore, this problem is a natural gener-
alization of Berry's Ul) phasé* to the case of S(2)
02 4 holonomy?225-30|n particular, Demler and ZhafAgdevel-
oped a formalism of the S12) non-Abelian holonomy in
o3} 4 terms of the S(b) Clifford algebra, which we shall adopt
SO throughout this paper. Upon expanding tkeS)? term in the
Hamiltonian(4), we obtain a product of two quadratic forms,
one of the form&)kik; and another of the forng]SS, where
T &l is a symmetric matrix. A ¥ 3 symmetric matrix can be
Wavenumber k(nm" ) further decomposed into one trace and five traceless parts.
The trace part has the same form as the first term in the
FIG. 1. Schematic piCture of the band structure of GaAs nealHam”tonian(4), and cancels thez contribution by construc-
k=0. CB means the conduction band, HH the heavy-hole band, LHjon. The remaining five traceless symmei(rgﬁzgg,ggzo)
the light-hole band, and SO the split-off band, respectively. Wherbombination Ofgijs‘g‘ can be identified with the Clifford al-
the small inversion symmetry breaking is neglected, all of them aregebra of the Dirala.T matrices. with the identification
doubly degenerate. The Fermi energy shown in the figure corre= '
sponds to the hole density10'° cm3. The splittingA=0.34 eV at ri=gis gy, {rare} =24, (12)
k=0 between the LH, HH, and SO bands are due to the spin-orbit L ) - ) ) )
interaction. The HH and LH bands are degenerate=d, giving 1 he explicit forms ofS, I'%, and&] are given in Appendix A.
rise to a monopole in the gauge field as discussed in Sec. Il In terms of thel' matrices, the Luttinger Hamiltonia(4)
takes the elegant form

Energy E (eV)

01

04

/

II. DEFINITION OF THE SPIN CURRENT

H(K) = e(k) + 22d,I™?, (12)
The Luttinger Hamiltoniari4) has two eigenvalues m
here
nt2y, Y1=2%,, W
E (k) = ks, Enk) = k=, 7
L(k) om H(K) o (7

ek)= 222, dy(k) = - 3¢lkk;,
corresponding to the light-hol¢LH) and the heavy-hole 2m
(HH) bands(See Fig. 1. Each eigenvalues are doubly de- — — -
generate, due to the Kramers theorem based on the time-  d1==V3kks, dy==V3kk, d3==V3Kik,
reversal symmetry. For a fixed valueloflet P-(k) denote a
projection onto the two-dimensional subspace of states of the
LH band. We also defin®"(k) similarly. These operators
are written as

E
\
dy== (&K,

ds= - 3(2C - K2~ K). (13)

We recognize that the vector componentsdgk) are noth-
ing but the fived-wave combinations in th& space. The
five-dimensional vectord provides a mapping from the
PPH=0=pP"pPL, (PY2=P-, (P")2=pP". (9) three-dimensionak space to the five-dimensiondl space
(Fig. 2). Since the Luttinger Hamiltonian depends loonly
In terms of these projectors, the Luttinger Hamiltonian canthrough d(k), we can perform all calculations in the five-
be expressed as dimensional(5D) d space, and finally project back onto the
_ H L 3D k space. This formalism enables a unified treatment for
H= % [En(k)P7(k) + EL(k)P2(K)]. (10 the anisotropic Luttinger Hamiltonian, and more importantly,
reveals the deep connection to the four-dimensional quantum
From this projector form of the Hamiltonian, we see that theHall effect (ADQHE).?® Here and henceforth we adopt the
LH and the HH bands are each twofold degenerate, and themmnvention that indices appearing twice are summed over.

9 1
L2 _ LQ)2 Hoq1_pL
Pr=g-oak 9% PH=1-P- (8)

They obviously satisfy
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a _9) -
Pab,cd(pvq)|:da<p + 2) +da(p 2>:| =0. (17)

From these relations it follows that

FIG. 2. Mapping from the three-dimensiorialvector space to pab(p,q)[da<p + 9) + da(p - 9)] =0. (18
the five-dimensionall vector space. The gauge structures of the 2 2

spin current are associated with the magnetic monopoles located at
the origins of thek andd spaces. There are five such linear equations, but only four of them

are linearly independent because of the antisymmetpf'of
. . ab .
The eigenvalues of Eq.(12) are E (k)=e(k) Orlgmal_ly, p?® has ten degrees of freedom, subtracting four

constraints gives the remaining six degrees of freedom, ex-
+(y2/m)d(k) and Ey(k)=e(k)=(y,/m)yd(k), where d(k) :
-\d d.=k2 They are of course the same as B, In terms actly the same as the number of generators it43@lgebra.

Therefore, the projection operatdét,,.q projects the full
g];et:?se eg arlr;atrlces the projection operatof8) can be ex- SO(5) symmetry generators into the $4) subspace which

is orthogonal to a given direction af.

- - In the limit =0, Eq.(17) is satisfied b
Pr=i@+d,r?, PH=ia-4ry, (14 9=0. Ea.(4n y

=1 - + 8..0hd. — 8id-d. — 5..dd
where d,=d,/d. The ' matrices are convenient for subse- Pabied 2(5acA6b? P * Oadfle ™ oolale ~ Oacl
quent calculations, since a product of any numbel” oha- + Spdady) - (19
trices can be easily reduced to a linear combination df?1,
andI'®=[T"2 T?]/2i. The fiveI'® matrices contain the most It satisfies P, cqPcqef=Paper implying that it is properly
general quadratic terms of the spin operaowhile the ten  normalized as a projection. It is interesting to note af.q
I'? matrices contain both the three spin operarand the can also be expressed as
seven cubic, symmetric, and traceless combinations of spin
operators of the form8SS, as discussed in Appendix A. Pabca™= fabart farbrea fabed= 5 €apodde- (20)
These ten spin operators are generated under the Heisenberg
time evolutions of the single spin operators, and it is naturalnserting Eq.(19) into the spin density15), we obtain
to group them all into a unified object. Fes=0, I'® com-
mutes with the Hamiltonian and generates a8 @ymme- p= ¢l Paped(k)(IC
try group of the Hamiltonian[In fact, the Hamiltonian has a e
higher, SW4) symmetry in this casgFor a givenk, a fixed

),uVCkV

d vector singles out a particular direction in the five- => clﬂ<rab— I—[Eial“b— abra,afrf]> Ce,- (22)
dimensionald vector space, and the second term in 8c) k 2 v

breaks the S®) symmetry to an S@) symmetry. This is b A et o b .
nothing but S@4) = SU(2) X SU(2) symmetry which we dis- B€cauUSI™?, del]=2i(daI"-dy?), we get
cussed earlier. In this way, we see that the(®@ormalism

gives an elegant geometric interpretation of the (BU pP=2 CLL(Fab— A2, dgl e],afrf]) ko
X SU(2) symmetry of the LH and the HH bands. It is in fact K
a subgroup of S®) rotation which keeps a fixed vector =3 CLL(PLFabPL " PHFabPH)MCkV_ (22)

invariant. As we shall see later in the paper, and in Appendix

C, the 3D monopole structure kspace can be best under-

stood in terms of the monopole structure in the &Bpace. Thus it corresponds to projecting out the interband matrix
To find the conserved quantities, let us define the conelements of "2, The conservation gp*® becomes manifest

served spin density explicitly as in EqQ. (22), because the Hamiltonian is diagonal in each
subspace, i.e., the LH or the HH band.
p®(p,q) :Cg+q/z,MPab,cd(PlQ)Ffﬁcp—q/z,w (15 The equation of continuity determines the uniform spin
current to be
where Pyp ca=Pedab= —Pbaca= —Pabde: FOr the conservation
of the spin, we require thatip®®(p,q)=[H, p®(p,q)] is pro- ab_1 Ly o dH e
portional toq for small |g|. This is realized by imposing a Ji zk L | gk Pap,d Vck"
condition onPyy ¢4 as M .
- = E { y2(9df Ff pLrabpl
q a\l._ 2= G m ak;
Pab,cd(p!q)[dc(p"'E) +dc(p_§>] =0, (16) Ho
+PHFabPH} C,- (23
or equivalently, uv
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To connect this spin current with the physical spin currentabove equation, only the terms of products of four or five
in Ref. 2, we define a tensorp,, by S=7,I*  matrices are nonzero, and the result is
=7, 3,I'?]/2i. Explicit forms and properties oy, are

H _ 2
summarized in Appendix A. By contracting withr%;, the Q (w+i0) = 4'_“’2 M(ﬁ)
conserved spin takes the form !y V < d(w? - 4yad?m?) \ m
1 1 b%
g(c) =3 o™= 52 CI,L(PLg P-+ PHS PH) G, (29) X (jﬂjkkzkikk - Eijkkzkkkl> , (29
k 2

The subscript(c) denotes the fact that this spin current is where ¢ (K)=E (k)-u and ey(k)=Ey(k)-u are one-
conserved. Here, we inserted a factogpbecause in the LH  Particle energies for the two bands, measured form the
and HH bandsi.e., S=3/2 subspacg the expectation value chemical potentiaj.

of the spin angular momentum is one-third of that of the total  Therefore, in the static limit the linear response is given
angular momentuns’. Thus, Eq.(24) corresponds to ne- by

glecting interband matrix elements of the spin angular mo- |

mentum. In a matrix form, the corresponding conserved spin ! — |im Qj(w) = iz wq“ <£ i 1)

current is w—0 —lw 3V k2 Yo
1 1)oH 1 ( y )
(- L L H H — H L 1
| == x =1 — P-9pL+pPHIpH ;. 2 =—eke —kp)| = +1]). 30
‘]|(c) 3 2{ t9ki’ s s } (25 67726IJ|( F F) 27, (30)
This resulttr:j in Eg. (30) does not vanish in the limit of
IIl. KUBO FORMULA CALCULATION OF THE SPIN 7,—0, ie., the absence of the s_pln_—orblt coupling. Itis not a
CURRENT contradiction, because the two limitgs—0 andw— 0 can-
o _ _ o not be exchanged in Eg29), and Eq.(30) is the one which
A. Difficulties with the conventional definition is valid in the dc limit, wheny,k?/ m> w. We have learned
of the nonconserved spin current that Hu, Bernevig, and Wu have also obtained a similar result

In order to calculate the spin current response based ofidependently We note that this resul30) is reproduced
Kubo formula, we should first define the “spin current opera-Py Wave-packet dynamics in Ref. 32. _
tor.” The conventional definition of the spin current, with ~ 1he conventional definition of the spin curre(#6) is

spin along thd axis flowing along the axis, is given by physically admissible, as is usually adopted. However, its
mathematical meaning as a “current” is ill defined. A current
g = 1 v }{ﬁ g} (26) is always associated with a corresponding conserved quan-

"3 2|9k’ |’ tity. A current is then defined by using the Noether’s theo-

L | . rem, or equivalently, by the equation of continuity. Since the
Because the spif§ is not conserved]; does not satisfy the conyentionally defined spin current is not conserved for the
equation of continuity without any source term. Before pre-| ttinger Hamiltonian due to the spin-orbit coupling, we
senting the full calculation based on the conserved spin culshg)| use the conserved spin current constructed in the pre-
rent discussed in the preceding section, we first calculate thgoys chapter.
linear response of this nonconserved spin current to the ap- There are also physical reasons to take this conserved spin

Kubo formula gives quantity to have slow dynamics and to contribute to the low-
1 (8 . ’ frequency response. One is a conservation law and the other

Qv =- —f (T3 (u)J;)e*mdu is a critical slowing down. In the present context, the latter is
Vo irrelevant and we need to look for a conserved current as we
1 have done in the preceding chapter. When we separate the
== tr(J!G(k,i(wn +vp))JG(K,iwy)), spin into the conserved and the nonconserved parts, the non-

VBicn conserved part
(27) S(n) — %(PLg PH + PHsl PL), (31)

where v,=27m/ B (m: intege), w,=(2n+1)7/B (n: inte- _
gen, B=1/kgT, T in Eq. (27) represents the time ordering, has an oscillating factor in timt—’?'(ELfEH)t in the Heisenberg
picture. Its frequency i&€, —E4 and is nominally 0.1-1 eV
Jde ad or 1-10 fsec. As we are observing spins averaged over th
= t 2= ZHhh g spins averaged over the
3= 2 Ck“(akj +% ak r ) Cicr 8 fime scale much longer than 1-10 fsec, the only remaining
v part is the conserved part. Thus, in addition to mathematical
and G(k,iwy) is the Matsubara Green’s function, given in soundness, the conserved part of the spin current automati-
Eqg. (BL). cally takes into account this averaging over time. In the fol-
In the clean case, the summation ovgy can be calcu- lowing section we shall calculate the dc response in terms of
lated by a contour integral. In the trace operation in thethe conserved part of the spin current.

K,pm,v
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B. Kubo formula calculation for the conserved spin current
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the 6 term in the (1+1)-dimensional @3) nonlinear o

In contrast with the previous approach, the approach usModel, which takes the form of

ing conserved spiS@ gives well defined and conserved spin
current(25). This approach is equivalent to neglect interband

matrix elements of spin operato®s as seen from Eq24).

an on,

Xk 36
Ik, kg (36

€45EijkN;

This is justified in calculation of spin current because of theln fact, Eq.(34) describes the mapping of an area form from
following reason. Let us consider the problem in a semiclasthe three-dimensionalR®) k space to the five-dimensional
sical way. Two wave packets in different bands are movingR®) d,(k) space. An area element & has three orienta-
with different velocities, and they will move apart inside the tions dk Odk;, while an area element OR° has ten orienta-
sample. Meanwhile, in the sample there are sources causin@ns, d(d,) Jd(d,). Our formula describes the Jacobian of
decoherence between wave packets, e.g., inelastic scatteringe area map. Out of the ten possible orientations of an area

This decoherence effect smears out the interband matrix ef . in RS thef
ements. Therefore, in the measurement of the spin current
what is measured is only an intraband matrix element of spir(l)
carried by a hole coming out of the sample. Thus in the®
measurement of the spin current, we should consider onlf?
the intraband matrix element &. This is in contrast with
calculation of susceptibility, where intraband matrix ele-

ments of spin gives significant contributions.

By applying the electric field, thisconserveg spin cur-

abod™ 5 €apcadle tENSOF in Eq(34) selects six

rientations which are locally transverse dg. Geometric
roperties of th(—:G;"]-Ib tensor are further summarized in Ap-
endix C.

By substituting the formul&C17) for Gf}b, we get

ab _

4
gij — 5_7T277131b5ijl (kE - kk)- (37

rent is induced by spin-orbit coupling. Let us calculate thisBy contracting With%n!ab’ the linear response of the corre-
linear response according to Kubo formula. Hence we shakponding current is

calculate
by; 1(* 4 b i
Qi (ivy) =- \—/fo (TIP(u)J;)e"m'du

1 ab .
= V—ﬁ% tr[I°G(K, i (wn + 1) I, G(K, i wp)].

(32

By evaluating the summation over, and taking the trace as

presented in Appendix B, we get

Qi) = i 16””“<ﬁ)22 Nele) = Nelen)_ g san

Vo\m/ E (iv)?-4y5ddn? -
(33
where
1 ddgad
b_ _~ gHd% e
Gié} = 4d3eab°déj°(9ki (9kj (34)

is a purely geometric tensor. In the static limit we have,

ab,
o2 = lim I - \ﬂ,E [n.(k) = n (k)]G
k

o
! w—0 —lw

4
= 52 [ = ny(k)J(FG 2 - i), (35
k

1 1
O':j © éﬂgbgﬁb: 52 (kf - kg), (38)

where we used EqA33) in Appendix A. In contrast to the
result(30) of the nonconserved spin current, the conductivity
for the conserved spin curre(@8) vanishes in the dc limit
when the spin-orbit coupling, vanishes.

C. Spectral representation of the response function in terms
of the non-Abelian gauge field

The Kubo formula result for the conserved spin current
obtained in the preceding section can also be obtained by the
spectral representation of the response function in terms of
the eigenstates of the Hamiltonian. This treatment is similar
to the one in quantum Hall effect by Thouless al* By
expressing the Kubo formula in terms of the eigenstates, we
can directly obtain the spin Hall conductivity in terms of the
curvaturef;; of the non-Abelian gauge field for each band.

Inserting a set of complete eigenstates into B3), we
obtain

((aLk|J?b|,8Hk><BHk|Jj|aLk)
2y, d/m+ivy,

1
b/s - _ =
Qﬁ (Ivm) o Va,Eﬁ,k
_ (BHK]I"laLk)(aLk|3;|BHK)

= 2y,dim+iv,

)(nH -ny),
(39

wheren, =ng(€ ), ny=ng(€ey) are the Fermi functions of the
LH and the HH bands. Herg** andF{"*" are non-Abelian

gauge-field strengths, i.e., curvature of the gauge field in thg
LH and the HH bands, and their definition and formulas are

given in Appendix C. In contrast to the result of the noncon- JH w L) OH e

served spin current, the conductivity of the conserved spin Jj = J =5 a_ki’P I'¥P=+ PTTPP™ ) (40)
current(35) is expressible in terms of purely geometric quan- !

tities. Here we note thzﬁf’}b as given in Eq(34) is similar to

where |aLk) and |BHk) (@=1,2,8=1,2) are the periodic
art of the Bloch wave function with wave numbeiin the
H and the HH bands, respectively. By substituting

we get
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-1
QRivy === > (ny-n)
PRI oy e T

JH JH
LK|—|yHk){yHK| —]aLk
(BLKI L IPHIOOHKI k)

2y, dim+ivy,

JH JH
LK|—|yHK){yHk|—|aLk
(RIS, IPHIOGHKI oLk

2'}/2d/m - | Vm
X {alLk|T3% BLk)

aH aH
Hk|—|yLk){yLk|—|aHk
(B |akj|7 Xy |aki|a )

2y,d/m+ivy,

oH oH
HK| = [ yLk )} k| — | aHk
(B |aki|7 Xy |akj|a )

2y,dim—ivy,

X {aHK|T3 BHK) |.

It can be checked th@f}b(i vm=0)=0. Here we shall use the
Feynman-Hellman theorem. Becaudp/Hk)=E,|yHk) im-

plies

|yHK) + Eyy

7(HK) \ _ 9By
ok | ok

dH
—|yHk) + H

it follows that

JH 2y,d(k a (yHk
(LI i) = - 272000 )</3Lk o )>

_ 29,000 9(pL)
m ﬂk,

Therefore, in the dc limit

ab .
a’f}b= |imM=—§/2 (ny—ny)

w—0 —lo
X{(_<a(,8Lk) o a(aLk)>
ok ki
>>(aLk|Fab|BLk>

+<&(,8Lk) | 2tatk
ok Ik
+<_<a(,8Hk) . a(aHk)>
ok ik
+<<9(,8Hk) o | 7(aHK)
Ik 7k,

L

This formula can be expressed with the field strerfgfhof

d (yHk)

vH k> . (43

>><aHk|Fab|BHk>].

PHYSICAL REVIEW B 69, 235206(2004

the SU2) gauge field for each band. We define the gauge
field for the LH band as

. J
(A ap= = i{alk| - [BLK), (45)
1
and similarly forAiH. The corresponding field strength is
IA- GAF
Fl=—"1 -1 4irfab At 46
1) 5k| akj I[AI 1 J]’ ( )

and F{/, respectively. While in this definitio\ is a 2x 2
matrix, it can be embedded into<d4 matrix by identifying it
with |aLk>(Ai'-)aﬁ<,8Lk|. We use the same notatidr to de-
note the 4x 4 matrix defined in this way. The X4 matrices
A, F;, andFj are defined similarly. They can be expressed
as linear combinations df?° as

Fij=F52Te, F =T, (47)

Then the resulting form of the spin Hall conductivity is ob-
tained as

4
o= 52 (=) (= F™+ FI), (48)
k

in exact agreement with E¢35). By contracting with% n'ab
as in Eq.(38), we get

1 4
Tt = 370 = gy Mo (M~ M) (= F 7+ FiI<

1
= injl (kE - klﬁ)’ (49)
in exact agreement with E@38).

D. Semiclassical limit

The above result can be written as correlation functions in
a real-time formalism;

1 * o
O':J © = @tl’fo dt é(‘”""&)t[{\]i(t)’g(c)}'Jj]e_BH' (50)

whereZ=tre” is the partition function of the equilibrium.
This quantity does not change if we repla@g defined in

Eq. (24 by S(’c'):)\k', which follows from the fact that the
helicity is a conserved quantum number.
In a semiclassicalsc) approximation, one treats the spin
’é) as a classical variable, commuting with the currgnt

Under this approximation, one obtains

[

1 I "o
O':j(c)(SC) = 372”]0 dt é<w+l§)t[‘]i(t)v ‘]j]s(cl)e o,

(51)

where we used the fact thS('é) commutes withH. Direct

computation of this correlation function leads to the semi-
classical result
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1 Our fully quantum mechanical results are compared with
":i(c)(sc) = 3_\/2 (nyy tr F’?PHgPH +ntr ':iLjPLS PY) previous semiclassical on®2), and a quantum correction
k due to the entanglement of spin and velocity is identified.
_ 1 The quantum correction can be traced to the noncommuta-
T 12742 tivity and entanglement between the spin and the current
operator. In physical systems where this entanglement is de-

which agrees exactly W.'th the semlclassmal reduftssed on. stroyed by some decoherence mechanisms, the semiclassical
the wave-packet equation of motion. The honcommutativity

bet th " . d t ¢ tained result might be realized. In Ref. 32, Culcstral. developed a
etween the quantum spin and current operators contained i), o packet formalism, and discussed the difference be-
Eq. (50) leads to a quantum correction

tween our semiclassical resuind the Kubo-formula result
| | | 1 T (30) using the conventional definition of the spin current.
Adij() = 0ij(¢) ~ Tij(o(89 = = 127,26 (ke +ke).  (53) They incorporated the nonzero correlation between spin and
velocity into a “spin dipole” and “torque moment” terms in
to the semiclassical resul2). their wave-packet formalism, and reproduced the Kubo-

We would like to stress that this difference arises from theformula result Eq(30) after also including a first-order field
definition of spin current. In Eq(49), we defined the spin  orrection to the wave-packet spin.

current as an anticommutator between velocity and the spin |, the calculations of the spin current presented in this

as(25). This definition of spin current amounts to taking the

) b he initial q rﬁaper, we assumed an absence of impurities. On the other
Spin as a quantum average between the Initial state and t fand, we have also done a calculation including a scattering
intermediate state in the Kubo formula, as can be seen fro

Eq. (41). On the other hand, the semiclassical résedtre- rBy randomly distributed impurities. By assuming that the

sponds to taking the spin as that of the initial state. In thisscattering potential i‘?’ isotropic a_nd_ accompanies no §pin flip,
semiclassical formalism, the wave packets with different he!Ve calculated the spin current within the Born approximation
' nd the ladder approximation for the vertex correction. The

licities have the opposite transverse velocities with respect t8 ! S .
the external electric field. Self-energy obtains a finite imaginary parf27 as usual,

where 7 is a lifetime. The vertex correction, on the other

hand, vanishes due to the parity, namely, because the Hamil-

tonian is an even function &. Thus as far as the broadening
IV. CONCLUSIONS AND DISCUSSIONS of the energyi/ 7 is much smaller than the energy difference

In the present paper, we studied the spin Hall effect inP€tween two bandg, -E,,, the spin current calculated in Eq.
hole-doped semiconductors such as Ge and GaAs. The fo{8) remains unchanged. The details of the calculation are
valence bands, which are made outpbrbitals with the involved and will be presented elsewhere.
spin-orbit interaction, consists of the doubly degenerate The dissipationless spin current discovered in recent the-
heavy-hole band and light-hole bar@Vvhen we assume the oretical works has many profound consequences both in fun-
inversion symmetry, the Kramers theorem requires at leagfamental science and in technological applications. How-
double degeneracy at eakkpoint) These two bands touch €Ver, in models investigated so far, there is still a finite
at theT" point. The effective Hamiltonian describing these longitudinal charge conductivity and dissipation associated
valence bands, so-called the Luttinger Hamiltonian, has #ith charge transport. A key objective along the current line
beautiful mathematical structure described by the(m0 Of research is to identify spin-orbit coupled system with a
Clifford algebra. At a given momentufn the spin-orbit cou- 9ap in the elect_ronlc excitation spectrum, Whlch_mlght lead
pling singles out a fixed direction in the five-dimensional ©© quantized spin Hall effect, similar to the familiar quan-
space of thed vectors, and breaks the symmetry down tolized Hall Ief‘fect. This exciting poss_lblllty is suggested by the
SO(4)=SU(2) X SU(2). This symmetry property can be used fact thatoj; is represen.ted as the integral of the gauge cur-
to define conserved spin currents in both the LH and the HHyaturé over the occupied states, and does not require the

bands. The quantum response of the conserved spin currergrmi surface across which the particle-hole excitation oc-

can be calculated exactly within the Kubo formalism, and the"Urs-

result is summarized in Eg49). This result can be expressed

in terms of purely geometric quantities, or equivalently, in

terms of the non-Abelian Yang monopole field strength, de- ACKNOWLEDGMENTS
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APPENDIX A: T' MATRICES AND RELATED IDENTITIES 1
. . . [?=¢*® ¢*= =(FS+ 39, (A9)
With the expressions for th® matrices V3

3

1
2 MP=eil= ,—g(sxsv +9%9, (A10)
\!

N

1
M=ceoil= —E(SX2 -97?), (A11)
AY

_g %=o?® o= 2~ 3. (A12)

SincelP+I°r2=24,,, These five matrices generate the
3 SQ(5) Clifford algebra3* We shall define the traceless sym-
metric tensorg) by Eq.(12), i.e.,

3 re=gissh d=d, d=0. (A1
= 2 (A1) Explicitly they are written as

N[ G

-
wl

N |
1‘”

and those obtained bg=¢&.. They form the vector repre-
9= — sentation of the SB) algebra, and are expressed as 4}
i - Hermitian matrices. When we define a representation in this
space of 44 Hermitian matrices a§2°|Ay=|[I"3°,A]), AT
3 =A, I'®=[T2 T?]/2i, it is shown to be a product of two
?i four-dimensional spinor representations of(SQThis prod-
uct of two spinor representations can be classified into the
we get irreducible representations of $8), and each irreducible
= representation is expressed as a product of the elements of
2= Lgax ®1 _}01@) o+ §, (A2) the Clifford algebra. ThuglxX4=1+5+10, where4 is the
2 2 4 spinor representatiod, is a trivial representatiorg is a vec-
tor representation spanned b§, and 10 is an adjoint repre-

,_ \3 1 5 sentation spanned by2°. These matrices 112, and I'?",
== ?0)(‘@ 1 ‘501@ o+ 2 (A3)  span the space ofx44 Hermitian matrices. Moreover, be-
causel''I?I°I“I°=-1, a product of more than twid matri-
ces can be written as a linear combination of'3, andI"2®.

RL=?® o+ 2 (A4) It is thus possible to writ& in terms of these matrices as
a Sx-ﬁl 0'X+1(0'X o +o'® o’
SY+95=\3o¥® 1, (A5) "Rpleorrecrded)
— |2 y \’/é 1
95+ =V3"® o, (AB) = 71“15— 5(1“23— ), (A14)
TS+ ST =307 @ o, (A7)
whered' (i=1,2,3 are the Pauli matrices. Let us define the = L31 Q oV + }(_ @ oY+ ¥ ® )
I' matrices as 2 2
1 V3 25, L3, roa
1“1:01®0V:—§(S/SZ+ §9), (A8) :—?F +§(F + %%, (A15)
\/!
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F=0?@1+:1® o?=-T3%-IT%2 (A16) tr(T3rPICT9r8) = - degpege (A31)

These are used to calculate the correlation function in the By substitutingS = 7;,,I'® into the commutation relation
Kubo formula. To formulate the problem in a covariant fash-[S,S]=i€S<, one can easily derive
ion, we definer,, asS =7, I'®, wherel'*=[I'%,I*]/2i are

generators of the S@) algebra, andz,,=-7,, Nonzero _ [, 71 = = G’ | (A32)
components ofy,, are where 7 is a 5X5 matrix with componentsy,. In other
3 words, the matrices -4' form the spin-two representation
e= \7 Mea=—3 Ta=1, of the SU2) algebra. It can also be shown that
- T =~ (7] 7) = § 6, (A33)
V3
77\2/5:_Zr 77{3:%1’ ”7%4:711’ and
77 =-3. (A34)
734= = % 712= " iv Let us write down the formula fad,. We can easily check
and the ones obtained by,,=—7,.. The ten[® matrices 1t
contain both the three spin operatd@®sand seven cubic, dig=1s 81+ 81510 — 158 (A35)
. . . . 2\ ik |
symmetric, and traceless combinations of the spin operators
of the formS9SK. These seven cubic operators are Then it follows that
932 DB, T Bras a1y (elkk)T? = gl (S48} = 3k - S~ 2. (A36)
8 8 8 Therefore, by substituting
3 (k - S)2=2k? + 3¢l Kk T2 (A37)
(9)3 - _ EF25+ ZF24+ 1_31'*13’ (A18) . . . 4 . gla 1M . . '
8 8 8 into the Luttinger Hamiltoniari4) and comparing it with Eq.
13 . (12), we get
(§)P=-Fr12- 1%, (A19) i
L= — 363kik;, (A38)
) o é 15, 3114 in accordance with Eq13). This tensorg‘J can be expressed
8.8 - ()%=~ 2 =+ 2F ’ (A20) in terms of 7, as calculated below.
3 3 (k - 9)? = 3{k 75", K % =5k + K K EaboddTanedl -
{87 - (89 =~ T*- 1%, (A2D) (A39)
By comparing with Eq(A37) we get
(892~ (93 = \3r®, A22 i = |
(ARG A ( ) gé - %Eabcden:ab”lcd' (A40)
V3 One can also check that
ST+ FIS = - —TI', (A23) .
2 €268 = 6 %abr (A41)

There are several useful formulas 6%, which are used in
the calculation in this paper:

[Fab,rc] — 2i(5acrb - 8,0, (A24) APPENDIX B: DETAILS OF THE KUBO FORMULA
CALCULATIONS

{I'3,I'% = €apead ™, (A25) The electron Green’s function is written as
(120, = = 20(8el ™ = Gyl ™ = G+ 9,g1™), K i) = ( 1 )
(A26) “HAu
X a 1
{r# ,FCU} = 2€apcdd €+ 2026004 = 28236 (A27) - [l +pm— E(k)]2 _ ,ygdZ/mZ
arby —
(1) = 40, (A28) X (iwn - e(k) + %da(k)l“a>
tr(rarvre) = o, (A29) .
=f(k, |wn)<g(k fwp) + = a(k)ra> . (B1)
tr(T3PTTY) = 4( 8,00+ GadObe — Gacdod),  (A30) uy
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In the clean limit, the Kubo formula calculation proceeds as _ Q?%b(w) 4
follows: ofP = lim === =3 [n (k) - ny(k) JG}°
w-0 —lw V7
1(F . ) 2 €k
Qi =- 3 | e = 2 G160k - 3)°+ KK i, 1), (B6)
0 k

1 b ) , where we substitutedC17). Because of the spherical sym-
= V_BkE (I G (K, i(0n + vm) I G(K,iwy)) metry of the problem, the summation overcan be simpli-
i fied further. By using identities

= LS fKiwn+ v (ks iwn)

1
VBEL % P(Kkk; = 55@ DKk, (B7)
de 1y,0d
th’|: (ﬁpab,cdl—‘cd + éaza_kifpab,cdefcdmrrmn) 1
| 2 D(0kikjkidi= (0580 + 810y + 8 80 2 P(RKY,
. Y2 Jde ’}/2(9dh h) k k
X\ 9(k,i(wp+ +=d 9| —+ =T
{g( |(wn Vm)) m g }(ﬁkj m &kj (B8)
_ Yo oy where®(k) is an arbitrary function ok=|k|, we can calcu-
X3 o(k,iwp) + Edlr ) (B2) late as
1 l-n —n
where we usedA25). 2 gk pne-ng =33 =57 (B9)
To evaluate the summation ovey,, we use a formula k k
1
1 fl 3N —
53 MK+ ko Catkion +D) 2 kil m =g
n
~ivp =25 Linn + g+ A -n
m\ 2 C+D |[ne(e) — ne(eny)] 155 K2
=— : : (B3)
y2 d(K)((ivy)? — 495d(k)%/m?) A o (B10)
2407 Kk
whereC, D are constants. By noting that the term propor-
tional to g(k,iw,+iv,g(k,iw, becomes zero in taking the Where we used Eq$A32) and(A34). Hence
trace of the matrix, we have, 8 n -n 4
Uﬁb: - _77|ab5ijIE L—ZH == _77|ab5ij|(k||5 - kE)-
lam ne)-ne(e) ; 5V =k 572
abs: s Fler) ~ Neley ( € cd
By ==, — tr| | =—Papedl
P = el - arAcin? { T (B
190 mn| [ Vm L Y24 1 APPENDIX C: MAGNETIC MONOPOLES
T o mak Pabcateand t e IN d=3 AND d=5
de y,dd v, From Eqg.(12) we see that the microscopic Hamiltonian
X(&_k + ﬁﬁ_;m)(_ 7”1 + ﬁdlrl)} (B4)  depends ork only through the 5D vectod(k); therefore, it
i j

is natural to define the most general 5D gauge connection in
thed space, and then project the gauge connection to the 3D
k space. LeP- andPH the projections onto the LH and HH
bands. These projections have the following properties;

The matrix inside the trace is a linear combination of prod-
ucts of two, three, four, and fivE matrices. By taking the
trace, only the products of four and fitfematrices survive.

It is worth noting that thele/ Jk; and de/ Jk; gives no contri- P-=11 +d-T), PH= la -d-T)=1-P,
bution; the former is because &%, qdy=0 and eyqndyd
=0, and the latter is due tdgfgd|F':d2. After some calcu- (PY2=pP-, (PH)2=pH  pHPL=Q=pLPH,

lation it becomes,
We can define the covariant gauge-field strength, i.e., curva-

T ~ 16vn/ 72 2 ne(e) - ne(en) - ture F4, in terms of these projection operators as
ij Ao Vo\m/) < (vm?- a2 | aP-a9P-| | gP" gP"
Fab_ - v ., | T | y . (Cl)
(B5) dd, ddy ddy ddy
This gauge field is defined over the Dspace, with spatial
In the dc limit we have, indicesa,b=1,2,3,4,5. It is a &4 matrix, being a linear
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combination of the S(®) Lie algebra matriceE2®. It can be
explicitly evaluated as

Fop= %{j—i‘rc,%rd] 2dz(rab+ 0oy~ Ao,
(C2
It can also be written as
Fab= Zidzpab,cdr(:d: Zidzfabeffefcder- (C3

wheref gy is given in Eq.(20).

PHYSICAL REVIEW B69, 235206(2004

the second Chern numbergiven by +1 and -1,
respectively?

Because of the projection operatd®s and P*, F5, and
ng can be expressed as &) matrices operating within the
LH and the HH bands, respectively. In fact, we can see that
they agree exactly with the conventional definitions of the
non-Abelian holonomy or the S@) Berry connection. In the
conventional definition, the SQ) gauge field in the LH
band as(A )aﬂ——i(aLk|((9/z9da)|,8Lk> and its field strength
is FLp= d.Ab— duA-+i[AL,AL], wherea, 8=1,2 characterize
two eigenvectors forming the basis of the LH subsp@(*;b
and FHb can be defined in a similar way. The proof of the

The gauge potential corresponding to the gauge-fiel@quivalence between the conventional definition and the

strength F,, is given by A,=-1/2d?d,I'®". This can be

definition (C6) can be seen in the following way, which is

shown by explicit calculations, using the standard definitionessentially the same as in Ref. 29;

A, A, .
Fa= - +i[ALA]. C4
ab ﬁda 3db [ a Ab] ( )
FromF,, we can define the dual field strendg®;, by
ab = %{Faba dcrc} 2d2 abcdrc (C5)

where we used Eq$A25) and(C2).

We now define the gauge field strength for each band as

JP- 9P
Fip=—iP" T C6
% {ada o?db] (o

P gpPH
Fh,=—iP" T C7
ab {ada adb} €

It is easy to see that

Fao=Fzo* Fly  Gan=Fap—Fip (C9

Since F,, and G,, are related to each other by a duality

transformation

1:abcchd = Fab7 1Eabco':cd = Gabv (C9)

L, andFLi are self-dual and antiself-dual, in the sense that

fabodoa =~ Fab (C10

We can explicitly see thas, andF}, describes a gauge-field
strength with Yang monopole dt=0. Let us define the two-
form F- andF" as

abchcd - I:ab;

Ft=2F.dd,0dd,, F"=2Fidd,0dd, (C1))
One can calculate that
tr(F- OFY) = - tr(FH OFY)
1
= 8 o5 €abcadaddy, U dd. [1ddy Cdd.
(C12

LaPLa_PL_ P L)ZaPH&PL 9P Ha_PL
dd, ad, ad, ad, dd, ady,
gP- L ,dP- 9P~ 9P
_PL PHZ PL PH PL
dd, (P™) ady dd,  ad,
PLaPLPHaPLPL
dd, ady,
d(BL
-EI L>< (5 )> , (C13

where|aL)=|aLk) and so forth. Then it follows that
5 ( JP- 9P )
9d, 9dy

-E| L><

ry(ﬁL)><ﬁL| ~(a

Pr
=3 L>< dlal)) 98 L)><BLI > lab)
a &db a,B,y
L
><< ad 7L><7L a(ﬁ)><ﬁL|

(C14)

=i [al)(F}
a.p

which establishes the equivalence between(E®) and the
conventional definition of the gauge fields, for example,
those used in Refs. 22 and 23. The equivalence between Eq.
(C7) and the conventional definitions can be shown in a
similar way.

From these 5D monopole gauge fields, one can easily
obtain the 3D monopole gauge fields by the pull-back map-
ping. For example,

9d,ad,
— 222G, =

- cdrcd 1
Gy = aki dk; G (€19

When this is integrated on a four-dimensional hypersurfac&ubstituting the definition 0,4, as given in Eq(C5) we see
surroundingd =0, it gives the second Chern number multi- easily thatGC is glven by Eq.(34).

plied by 8. ThereforeF- and F" describe a gauge field
with the Yang monopole at the origin, with its strengile.,

Calculatlon ofG"j1 and Fab is straightforward but some-
what cumbersome By USIngATHEMATICA, we obtain
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1
FiP= genkil16(k - m)°+ 4% mlsp,  (C1H

GiP= peykl16k - 7%+ KK - gl (C17)

k6
wheren=(7*, ¥, ’) and 7 is regarded as a’85 spin-two
representation of the SB) Lie algebra, satisfying the com-
mutation relation(A32). In these formulask-,, and G,,, are
written in terms of" matrices. Alternatively, we can write
them in terms of the spin matricék

k

= —x(zx )6”'k_|3' (C19
13\ k

G :x(xz )em k;, (C19

where \=k-S is the helicity matrix¥ Equation (C18) has
been obtained in Ref. 7; one can show EG19 in the
similar way. Equivalence between E@€.18), (C19), (C16),
and(C17) can be shown by substitutirg= 7,1 and using
Eq. (A27). From Eqs(C18) and(C19), we get

3

A% 27
€ijl
(C20

ES:
2 8
As is expectedFi'?:O for the LH band(A\=+1/2), and F}]
=0 for the HH band\A=+3/2), This is the field strength of
the U(1) (Dirac) monopole with monopole strength +3 for
A=%3/2 (HH band and 3 for A\=+1/2 (LH band.

Finally we would like to establish the exact equivalence

K

ij

between the gauge fields introduced above and the Yang-

Mills instanton in Euclidean four-spatieor the Yang mono-
pole gauge fields over the four sphéfeThe proof essen-
tially follows that of Jackiw and RebBf. The two-form
SQ(5) gauge field orR® can be converted to @) two-form

PHYSICAL REVIEW B 69, 235206(2004

gauge field orR® by gauge transformatiobl such that

utd,rau =T°. (C21)
For example, we can take
4
1+dg+i>, I'*d,
U= = (C22)
J 2(1+ds)

By this gauge transformation, the gauge fidlgand the field
strengthF,, are transformed to

U ~

UTAU-iUT—=A,, (C23
ddy

UTF U = Fap. (C24)

These quantities&a and I~:ab are linear combinations of
I'"(m,n=1,2,3,4, belonging to the S@) algebra. Ex-
plicitly they are written as

4

1 >dl (a=1,2,3,4, As=0,

Rgz————
2d(1 +ds) b=1

4

as =~

2d22 dbrab (a 112!3 4
(rab

aar'm))
(ab=1,2,3,9,

which are exactly the S@)=SU(2) X SU(2) gauge fields
used in the context of 4DQHE.

4

— > dy(dpl2e-
1+ d50=1

1
2

Lk

ab~
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