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Following our previous work[S. Murakami, N. Nagaosa, and S. C. Zhang, Science301, 1348(2003)] on the
dissipationless quantum spin current, we present an exact quantum-mechanical calculation of this novel effect
based on the linear-response theory and the Kubo formula. We show that it is possible to define an exactly
conserved spin current, even in the presence of the spin-orbit coupling in the Luttinger Hamiltonian ofp-type
semiconductors. The light- and the heavy-hole bands form two Kramers doublets, and an SUs2d non-Abelian
gauge field acts naturally on each of the doublets. This quantum holonomy gives rise to a monopole structure
in momentum space, whose curvature tensor directly leads to the novel dissipationless spin Hall effect, i.e., a
transverse spin current is generated by an electric field. The result obtained in the current work gives a quantum
correction to the spin current obtained in the previous semiclassical approximation.
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I. INTRODUCTION

Spintronics, the science and technology of manipulating
the spin of the electron for building integrated information
processing and storage devices, showed great promise.1

Spintronics devices also promises to access the intrinsic
quantum regime of transport, paving the path towards quan-
tum computing. However, many challenges remain in this
exciting quest. Among them, purely electric and dissipation-
less manipulation of the electron spin and its quantum trans-
port is one of the most important goals of quantum spintron-
ics.

In our previous work,2 we discovered a basic law of spin-
tronics, which relates the spin current and the electric field
by the response equation

j j
i = ssei jkEk, s1d

wherej j
i is the current of theith component of the spin along

the directionj andei jk is the totally antisymmetric tensor in
three dimensions. Sinovaet al.3 found a similar effect in the
two-dimensionaln-type semiconductors with Rashba cou-
pling. This law is similar to Ohm’s law in electronics, and
the spin conductivityss has the dimension of the electric
chargee divided by the scale of length. However, unlike the
Ohm’s law, this fundamental response equation describes a
purely topological and dissipationless spin current. It is im-
portant to note here that the spin current is even under the
time-reversal operationT. When the direction of the arrow of
time is reversed, both the direction of the current and the
spin are reversed and the spin current remains unchanged.
Since both the spin current and the electric field in Eq.(1)
are even under time reversalT, the transport coefficientss is
called “reactive” and can be purely nondissipative. This is in
sharp contrast to the Ohm’s law

j i = sEi , s2d

relating the charge currentj i to the electric field. In this case,
the charge currentj i changes sign under time reversalT,
while the electric field is even underT. Since the Ohm’s law
relates quantities of different symmetries under time reversal
T, the charge conductivitys breaks the time-reversal sym-
metry and describes the inevitable joule heating and dissipa-
tion. Quantum Hall current, which is transverse to the elec-
tric field and dissipationless, has the feature similar to Eq.
(1), but the time-reversal symmetry is compensated by the
external magnetic field. Dissipationless current without time-
reversal symmetry breaking is extremely important and fun-
damental in solid-state physics, the most celebrated example
of which is the superconducting current. It is described by
the London equation,

j i =
rse

2

mc
Ai, Ei = −

1

c

] Ai

] t
, s3d

where the currentj i is related to the vector potentialAi in-
stead of the electric field. In the London equation, bothj i and
Ai are odd under time reversalT, therefore, the transport
coefficientrs, also called the superfluid density, describes the
reversible and dissipationless flow of the supercurrent.

In summary, the dissipationless spin current discovered in
Ref. 2 shares some basic features with the superconducting
current and the quantum Hall edge current, in the sense that
(1) the spin Hall conductivityss is a dissipationless or reac-
tive transport coefficient, even under the time-reversal opera-
tion T; (2) the spin Hall conductivityss can be expressed as
an integral over all states below the fermi energy, not only
over states in the vicinity of the fermi energy as in most
dissipative transport coefficients. Furthermore, just like the
case of the quantum Hall effect,4,5 the contribution of each
state to the spin Hall conductivityss can be expressed en-
tirely in terms of the curvature of a gauge field in momentum
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space, which in our case is non-Abelian. The dissipationless
spin current is induced by the electric field through the spin-
orbit coupling, whose characteristic energy scale exceeds the
room temperature in many semiconducting materials.

Electronic structure of semiconductors with diamond
structure(e.g., Si, Ge) and zinc blende structure(e.g., GaAs,
InSb) are well understood in terms of thek ·p perturbation
theory. The top of the valence bands are atk =0, i.e.,G point.
They consist of the threep-orbitals px, py, pz with spin up
and down. In the presence of the relativistic spin-orbit cou-
pling, these six states are split into fourfold degenerateS
=3/2 states and twofold degenerateS=1/2 state. HereS
denotes the total angular momentum of the atomic orbital,
obtained through the coupling of the orbital angular momen-
tum L and the spin angular momentums. The second order
perturbation in thek ·p results in the effective Hamiltonian
neark =0, which is called Luttinger Hamiltonian:6

H0 = o
k

cm,k
† Hmnskdcn,k ,

Hmnskd =
1

2m
XSg1 +

5

2
g2Dk2 − 2g2sk ·Sd2C

mn

, s4d

wherek =skx,ky,kzd, S=sSx,Sy,Szd, and k= uk u. The explicit
form of the matricesSi si =1,2,3d is given in Appendix A.
For simplicity, we have putg2=g3 in the original Luttinger
Hamiltonian; most of subsequent discussions are also appli-
cable to more general cases withg2Þg3.

On the other hand, the conduction bands are made out of
the s orbital and hence doubly degenerate. When we neglect
a small effect due to broken inversion symmetry, this degen-
eracy is not lifted due to the Kramers theorem. Therefore the
effect of the spin-orbit interaction is small in the conduction
band, although the Rashba effect7–10 is induced by the elec-
tric field near, e.g., the interface structure. The spin Hall
current in the Rashba system has recently been discussed by
Sinovaet al.3 These authors showed that dissipationless and
intrinsic spin Hall current can take an universal value in this
system. The position of the conduction-band minima de-
pends on the material. For example, they are located at gen-
eral points along the axis between theG and theX points in
Si, while they are at theL points in Ge. We will focus on the
valence bands below because of the intrinsically strong spin-
orbit interaction.

Although the band structure of semiconductors with spin-
orbit coupling has been understood for many years, only re-
cently has it been recognized that the gauge field and its
curvature in the momentum space made out of the Bloch
wave function play important roles in the transport properties
of electrons in solids. The gauge field is defined in terms of
the Bloch stateunkl as

Aniskd = − iknk u
]

] ki
unkl, s5d

wheren is a band index. It represents the inner product of the
two Bloch wave functions infinitesimally separated ink
space. This gauge fieldAniskd describes topological structure
of Bloch wave functions in the momentum space,4,5 and

plays an important role in transport properties11–19 and in
magnetic superconductors.20 In particular, this gauge field is
related to the transverse conductivitysxy as

sxy = −
e2

h
o
n,k

nF„enskd…Bnzskd, s6d

whereBnzskd=Fn,xyskd=s]Anyskd /]kxd−s]Anxskd /]kyd is the
z component of the field strength made fromAniskd, and
nF(enskd) is the Fermi distribution of then th band with
energyenskd. This formula4,5 is the foundation of the integer
quantum Hall effect, and further applied to the anomalous
Hall effect (AHE) in ferromagnetic metals.11–19Especially in
the magnetic semiconductors(Ga,Mn)As,21 the calculation16

by the formula Eq.(3) well explains the experimental results
quantitatively, giving some credit that the AHE is mostly of
intrinsic origin rather than extrinsic origins, e.g., skew scat-
tering and/or side-jump mechanism. However in the pres-
ence of the time-reversal symmetry, the dc transverse con-
ductivity sxy vanishes, and the topological structure of the
Bloch wave functions has not been systematically studied in
the context of transport theory. As we will show below, an
even more beautiful and nontrivial quantum topological
structure is hidden in the valence-band structure in the para-
magnetic state, which is analogous to the fermionic quasipar-
ticles in the SOs5d theory.22 This is also motivated by the
recent work by one of the present authors on the generaliza-
tion of the quantum Hall effect into four dimensions in terms
of the SOs5d symmetry.23 In this paper, we shall show that
the SOs5d group structure of theS=3/2 Bloch states pro-
vides a natural description of the non-Abelian SUs2d ho-
lonomy and its curvature in momentum space. This gauge
structure underlies the dissipationless, topological spin cur-
rent in hole-doped semiconductors.

In the presence of the spin-orbit interaction, the conven-
tionally defined total spin operator is not conserved, and it is
nontrivial to define the spin current in this case. Our formal-
ism resolves this issue by discovering conserved quantities in
the Luttinger Hamiltonian(4) and by defining associated
conserved spin currents. These quantities have clear physical
and geometric meanings. The exact quantum calculation of
the conserved spin Hall conductivityss is performed in
terms of the Kubo formula, and the results can be expressed
entirely in terms of the non-Abelian gauge curvature in mo-
mentum space. Our fully quantum mechanical results iden-
tify the quantum correction to the previous semiclassical
result2 in terms of the wave-packet formalism.

The plan of this paper is as follows. In Sec. II, we refor-
mulate the Luttinger Hamiltonian in terms of the SOs5d al-
gebra and give the definition of the conserved spin current.
Based on this definition, the calculation of the spin Hall con-
ductivity in terms of Kubo formula is presented in Sec. III,
where the geometrical meaning is stressed, and the compari-
son with the previous semiclassical result is given. Section
IV is devoted to conclusions. Throughout the paper, we take
the unit"=1, e=1.
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II. DEFINITION OF THE SPIN CURRENT

The Luttinger Hamiltonian(4) has two eigenvalues

ELskd =
g1 + 2g2

2m
k2, EHskd =

g1 − 2g2

2m
k2, s7d

corresponding to the light-hole(LH) and the heavy-hole
(HH) bands(See Fig. 1). Each eigenvalues are doubly de-
generate, due to the Kramers theorem based on the time-
reversal symmetry. For a fixed value ofk, let PLskd denote a
projection onto the two-dimensional subspace of states of the
LH band. We also definePHskd similarly. These operators
are written as

PL =
9

8
−

1

2k2sk ·Sd2, PH = 1 − PL. s8d

They obviously satisfy

PLPH = 0 = PHPL, sPLd2 = PL, sPHd2 = PH. s9d

In terms of these projectors, the Luttinger Hamiltonian can
be expressed as

H = o
k

fEHskdPHskd + ELskdPLskdg. s10d

From this projector form of the Hamiltonian, we see that the
LH and the HH bands are each twofold degenerate, and there

is an SUs2d rotation symmetry acting on each band. Com-
bining the LH and the HH bands, there is an SOs4d
=SUs2d3SUs2d symmetry at everyk point. In this section,
we shall develop the mathematical framework in which this
SOs4d symmetry is made manifest, and this symmetry is
used to define the conserved spin current. SincePH and PL

depend onk, the quantization axis for each SUs2d varies as a
function of k. When k is adiabatically changed along a
closed circuit, the fermionic wave function in general does
not return to itself; in fact, the final wave function is related
to the starting wave function by an SUs2d transformation
within each band. Therefore, this problem is a natural gener-
alization of Berry’s Us1d phase24 to the case of SUs2d
holonomy.22,25–30 In particular, Demler and Zhang22 devel-
oped a formalism of the SUs2d non-Abelian holonomy in
terms of the SOs5d Clifford algebra, which we shall adopt
throughout this paper. Upon expanding theskiS

id2 term in the
Hamiltonian(4), we obtain a product of two quadratic forms,
one of the formja

ijkikj and another of the formja
ijSiSj, where

ja
ij is a symmetric matrix. A 333 symmetric matrix can be

further decomposed into one trace and five traceless parts.
The trace part has the same form as the first term in the
Hamiltonian(4), and cancels theg2 contribution by construc-
tion. The remaining five traceless symmetricsja

ij =ja
ji ,ja

ii =0d
combination ofja

ijSiSj can be identified with the Clifford al-
gebra of the DiracG matrices, with the identification

Ga = ja
ijhSi,Sjj, hGa,Gbj = 2dab. s11d

The explicit forms ofSi, Ga, andja
ij are given in Appendix A.

In terms of theG matrices, the Luttinger Hamiltonian(4)
takes the elegant form

Hskd = eskd +
g2

m
daGa, s12d

where

eskd =
g1

2m
k2, daskd = − 3ja

ijkikj ,

d1 = − Î3kykz, d2 = − Î3kxkz, d3 = − Î3kxky,

d4 = −
Î3

2
skx

2 − ky
2d,

d5 = − 1
2s2kz

2 − kx
2 − ky

2d. s13d

We recognize that the vector components ofdaskd are noth-
ing but the fived-wave combinations in thek space. The
five-dimensional vectord provides a mapping from the
three-dimensionalk space to the five-dimensionald space
(Fig. 2). Since the Luttinger Hamiltonian depends onk only
through dskd, we can perform all calculations in the five-
dimensional(5D) d space, and finally project back onto the
3D k space. This formalism enables a unified treatment for
the anisotropic Luttinger Hamiltonian, and more importantly,
reveals the deep connection to the four-dimensional quantum
Hall effect (4DQHE).23 Here and henceforth we adopt the
convention that indices appearing twice are summed over.

FIG. 1. Schematic picture of the band structure of GaAs near
k =0. CB means the conduction band, HH the heavy-hole band, LH
the light-hole band, and SO the split-off band, respectively. When
the small inversion symmetry breaking is neglected, all of them are
doubly degenerate. The Fermi energy shown in the figure corre-
sponds to the hole density,1019 cm−3. The splittingD=0.34 eV at
k =0 between the LH, HH, and SO bands are due to the spin-orbit
interaction. The HH and LH bands are degenerate atk =0, giving
rise to a monopole in the gauge field as discussed in Sec. III.
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The eigenvalues of Eq. (12) are ELskd=eskd
+sg2/mddskd and EHskd=eskd−sg2/mddskd, where dskd
=Îdada=k2. They are of course the same as Eq.(7). In terms
of the G matrices, the projection operators(8) can be ex-
pressed as

PL = 1
2s1 + d̂aGad, PH = 1

2s1 − d̂aGad, s14d

where d̂a=da/d. The G matrices are convenient for subse-
quent calculations, since a product of any number ofG ma-
trices can be easily reduced to a linear combination of 1,Ga

andGab=fGa,Gbg /2i. The fiveGa matrices contain the most
general quadratic terms of the spin operatorSi, while the ten
Gab matrices contain both the three spin operatorsSi and the
seven cubic, symmetric, and traceless combinations of spin
operators of the formSiSjSk, as discussed in Appendix A.
These ten spin operators are generated under the Heisenberg
time evolutions of the single spin operators, and it is natural
to group them all into a unified object. Forg2=0, Gab com-
mutes with the Hamiltonian and generates an SOs5d symme-
try group of the Hamiltonian.[In fact, the Hamiltonian has a
higher, SUs4d symmetry in this case.] For a givenk, a fixed
d vector singles out a particular direction in the five-
dimensionald vector space, and the second term in Eq.(12)
breaks the SOs5d symmetry to an SOs4d symmetry. This is
nothing but SOs4d=SUs2d3SUs2d symmetry which we dis-
cussed earlier. In this way, we see that the SOs5d formalism
gives an elegant geometric interpretation of the SUs2d
3SUs2d symmetry of the LH and the HH bands. It is in fact
a subgroup of SOs5d rotation which keeps a fixedd vector
invariant. As we shall see later in the paper, and in Appendix
C, the 3D monopole structure ink space can be best under-
stood in terms of the monopole structure in the 5Dd space.

To find the conserved quantities, let us define the con-
served spin density explicitly as

rabsp,qd = cp+q/2,m
† Pab,cdsp,qdGmn

cdcp−q/2,n, s15d

where Pab,cd=Pcd,ab=−Pba,cd=−Pab,dc. For the conservation
of the spin, we require that −i ṙabsp ,qd=fH ,rabsp ,qdg is pro-
portional toq for small uqu. This is realized by imposing a
condition onPab,cd as

Pab,cdsp,qdFdcSp +
q

2
D + dcSp −

q

2
DG = 0, s16d

or equivalently,

Pab,cdsp,qdFdaSp +
q

2
D + daSp −

q

2
DG = 0. s17d

From these relations it follows that

rabsp,qdFdaSp +
q

2
D + daSp −

q

2
DG = 0. s18d

There are five such linear equations, but only four of them
are linearly independent because of the antisymmetry ofrab.
Originally, rab has ten degrees of freedom, subtracting four
constraints gives the remaining six degrees of freedom, ex-
actly the same as the number of generators in SOs4d algebra.
Therefore, the projection operatorPab,cd projects the full
SOs5d symmetry generators into the SOs4d subspace which
is orthogonal to a given direction ofd.

In the limit q=0, Eq.(17) is satisfied by

Pab,cd = 1
2sdacdbd − daddbc + dadd̂bd̂c − dbdd̂ad̂c − dacd̂bd̂d

+ dbcd̂ad̂dd. s19d

It satisfiesPab,cdPcd,ef=Pab,ef, implying that it is properly
normalized as a projection. It is interesting to note thatPab,cd
can also be expressed as

Pab,cd = faba8b8fa8b8cd, fabcd= 1
2eabcded̂e. s20d

Inserting Eq.(19) into the spin density(15), we obtain

rab = o
k

ckm
† Pab,cdskdsGcddmnckn

= o
k

ckm
† SGab −

i

2
fd̂aGb − d̂bGa,d̂fG

fgD
mn

ckn. s21d

BecausefGab,deG
eg=2isdaGb−dbGad, we get

rab = o
k

ckm
† sGab − 1

4†fG
ab,d̂eG

eg,d̂fG
f
‡dmnckn

= o
k

ckm
† sPLGabPL + PHGabPHdmnckn. s22d

Thus it corresponds to projecting out the interband matrix
elements ofGab. The conservation ofrab becomes manifest
in Eq. (22), because the Hamiltonian is diagonal in each
subspace, i.e., the LH or the HH band.

The equation of continuity determines the uniform spin
current to be

Ji
ab =

1

2 o
k,m,n

ckm
† H ] H

] ki
,Pab,cdG

cdJ
mn

ckn

=
1

2 o
k,m,n

ckm
† H ] «

] ki
+

g2

m

] df

] ki
G f ,PLGabPL

+ PHGabPHJ
mn

ckn. s23d

FIG. 2. Mapping from the three-dimensionalk vector space to
the five-dimensionald vector space. The gauge structures of the
spin current are associated with the magnetic monopoles located at
the origins of thek andd spaces.
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To connect this spin current with the physical spin current
in Ref. 2, we define a tensorhab

i by Si =hab
i Gab

=hab
i fGa,Gbg /2i. Explicit forms and properties ofhab

i are
summarized in Appendix A. By contracting with13hab

k , the
conserved spin takes the form

Sscd
l =

1

3
hab

l rab =
1

3o
k

ckm
† sPLSlPL + PHSlPHdmnckn. s24d

The subscriptscd denotes the fact that this spin current is
conserved. Here, we inserted a factor of1

3, because in the LH
and HH bands(i.e., S=3/2 subspace), the expectation value
of the spin angular momentum is one-third of that of the total
angular momentumSk. Thus, Eq.(24) corresponds to ne-
glecting interband matrix elements of the spin angular mo-
mentum. In a matrix form, the corresponding conserved spin
current is

Jiscd
l =

1

3
3

1

2
H ] H

] ki
,PLSlPL + PHSlPHJ . s25d

III. KUBO FORMULA CALCULATION OF THE SPIN
CURRENT

A. Difficulties with the conventional definition
of the nonconserved spin current

In order to calculate the spin current response based on
Kubo formula, we should first define the “spin current opera-
tor.” The conventional definition of the spin current, with
spin along thel axis flowing along thei axis, is given by

Ji
l =

1

3
3

1

2
H ] H

] ki
,SlJ . s26d

Because the spinSl is not conserved,Ji
l does not satisfy the

equation of continuity without any source term. Before pre-
senting the full calculation based on the conserved spin cur-
rent discussed in the preceding section, we first calculate the
linear response of this nonconserved spin current to the ap-
plied electric field and then comment on its difficulties. The
Kubo formula gives

Qij
l sinmd = −

1

V
E

0

b

kT̂Ji
lsudJjleinmudu

=
1

Vb
o
k,n

tr„Ji
lGsk,i„vn + nm…dJjGsk,ivnd…,

s27d

where nm=2pm/b (m: integer), vn=s2n+1dp /b (n: inte-

ger), b=1/kBT, T̂ in Eq. (27) represents the time ordering,

Jj = o
k,m,n

ckm
† S ] e

] kj
+ o

h

] dh

] kj
GhD

mn

ckn, s28d

and Gsk , ivnd is the Matsubara Green’s function, given in
Eq. (B1).

In the clean case, the summation overvn can be calcu-
lated by a contour integral. In the trace operation in the

above equation, only the terms of products of four or fiveG
matrices are nonzero, and the result is

Qij
l sv + idd =

4iv

V
o
k

nFseLd − nFseHd
dsv2 − 4g2

2d2/m2d
Sg2

m
D2

3S g1

2g2
el jkk2kikk − ei jkk2kkklD , s29d

where eLskd=ELskd−m and eHskd=EHskd−m are one-
particle energies for the two bands, measured form the
chemical potentialm.

Therefore, in the static limit the linear response is given
by

si j
l = lim

v→0

Qij
l svd

− iv
=

1

3V
o
k

nFseLd − nFseHd
k2 el jiS g1

2g2
+ 1D

=
1

6p2ei jl skF
H − kF

LdS g1

2g2
+ 1D . s30d

This resultsi j
l in Eq. (30) does not vanish in the limit of

g2→0, i.e., the absence of the spin-orbit coupling. It is not a
contradiction, because the two limitsg2→0 andv→0 can-
not be exchanged in Eq.(29), and Eq.(30) is the one which
is valid in the dc limit, wheng2k

2/m@v. We have learned
that Hu, Bernevig, and Wu have also obtained a similar result
independently.31 We note that this result(30) is reproduced
by wave-packet dynamics in Ref. 32.

The conventional definition of the spin current(26) is
physically admissible, as is usually adopted. However, its
mathematical meaning as a “current” is ill defined. A current
is always associated with a corresponding conserved quan-
tity. A current is then defined by using the Noether’s theo-
rem, or equivalently, by the equation of continuity. Since the
conventionally defined spin current is not conserved for the
Luttinger Hamiltonian due to the spin-orbit coupling, we
shall use the conserved spin current constructed in the pre-
vious chapter.

There are also physical reasons to take this conserved spin
current. Generally speaking, there must be some reason for a
quantity to have slow dynamics and to contribute to the low-
frequency response. One is a conservation law and the other
is a critical slowing down. In the present context, the latter is
irrelevant and we need to look for a conserved current as we
have done in the preceding chapter. When we separate the
spin into the conserved and the nonconserved parts, the non-
conserved part

Sisnd
l = 1

3sPLSlPH + PHSlPLd, s31d

has an oscillating factor in timee±isEL−EHdt in the Heisenberg
picture. Its frequency isEL−EH and is nominally 0.1–1 eV
or 1–10 fsec. As we are observing spins averaged over the
time scale much longer than 1–10 fsec, the only remaining
part is the conserved part. Thus, in addition to mathematical
soundness, the conserved part of the spin current automati-
cally takes into account this averaging over time. In the fol-
lowing section we shall calculate the dc response in terms of
the conserved part of the spin current.
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B. Kubo formula calculation for the conserved spin current

In contrast with the previous approach, the approach us-
ing conserved spinSscd

l gives well defined and conserved spin
current(25). This approach is equivalent to neglect interband
matrix elements of spin operatorsSl, as seen from Eq.(24).
This is justified in calculation of spin current because of the
following reason. Let us consider the problem in a semiclas-
sical way. Two wave packets in different bands are moving
with different velocities, and they will move apart inside the
sample. Meanwhile, in the sample there are sources causing
decoherence between wave packets, e.g., inelastic scattering.
This decoherence effect smears out the interband matrix el-
ements. Therefore, in the measurement of the spin current,
what is measured is only an intraband matrix element of spin
carried by a hole coming out of the sample. Thus in the
measurement of the spin current, we should consider only
the intraband matrix element ofSl. This is in contrast with
calculation of susceptibility, where intraband matrix ele-
ments of spin gives significant contributions.

By applying the electric field, this(conserved) spin cur-
rent is induced by spin-orbit coupling. Let us calculate this
linear response according to Kubo formula. Hence we shall
calculate

Qij
absinmd = −

1

V
E

0

b

kT̂Ji
absudJjleinmudu

=
1

Vb
o
k,n

trfJi
abG„k,isvn + nmd…JjGsk,ivndg.

s32d

By evaluating the summation overvn and taking the trace as
presented in Appendix B, we get

Qij
absinmd =

− 16nm

V
Sg2

m
D2

o
k

nFseLd − nFseHd
sinmd2 − 4g2

2d2/m2d2Gij
ab,

s33d

where

Gij
ab =

1

4d3eabcdedc
] dd

] ki

] de

] kj
s34d

is a purely geometric tensor. In the static limit we have,

si j
ab = lim

v→0

Qij
absvd
− iv

=
4

V
o
k

fnLskd − nHskdgGij
ab

=
4

V
o
k

fnLskd − nHskdgsFij
L,ab − Fij

H,abd, s35d

wherenL=nFseLd, nH=nFseHd are the Fermi functions of the
LH and the HH bands. HereFij

L,ab andFij
H,ab are non-Abelian

gauge-field strengths, i.e., curvature of the gauge field in the
LH and the HH bands, and their definition and formulas are
given in Appendix C. In contrast to the result of the noncon-
served spin current, the conductivity of the conserved spin
current(35) is expressible in terms of purely geometric quan-
tities. Here we note thatGij

ab as given in Eq.(34) is similar to

the u term in the s1+1d-dimensional Os3d nonlinear s
model, which takes the form of

eabei jkni
] nj

] ka

] nk

] kb

. s36d

In fact, Eq.(34) describes the mapping of an area form from
the three-dimensionalsR3d k space to the five-dimensional
sR5d daskd space. An area element onR3 has three orienta-
tions dki ∧dkj, while an area element onR5 has ten orienta-
tions, dsdad∧dsdbd. Our formula describes the Jacobian of
the area map. Out of the ten possible orientations of an area

form in R5, the fabcd=
1
2eabcded̂e tensor in Eq.(34) selects six

orientations which are locally transverse tod̂a. Geometric
properties of theGij

ab tensor are further summarized in Ap-
pendix C.

By substituting the formula(C17) for Gij
ab, we get

si j
ab =

4

5p2hab
l ei jl skF

H − kF
Ld. s37d

By contracting with1
3hab

l , the linear response of the corre-
sponding current is

si j scd
l ;

1

3
hab

l si j
ab =

1

6p2ei jl skF
H − kF

Ld, s38d

where we used Eq.(A33) in Appendix A. In contrast to the
result(30) of the nonconserved spin current, the conductivity
for the conserved spin current(38) vanishes in the dc limit
when the spin-orbit couplingg2 vanishes.

C. Spectral representation of the response function in terms
of the non-Abelian gauge field

The Kubo formula result for the conserved spin current
obtained in the preceding section can also be obtained by the
spectral representation of the response function in terms of
the eigenstates of the Hamiltonian. This treatment is similar
to the one in quantum Hall effect by Thoulesset al.4 By
expressing the Kubo formula in terms of the eigenstates, we
can directly obtain the spin Hall conductivity in terms of the
curvatureFij of the non-Abelian gauge field for each band.

Inserting a set of complete eigenstates into Eq.(32), we
obtain

Qij
absinmd = −

1

V
o

a,b,k
S kaLk uJi

abubHklkbHk uJjuaLkl
2g2d/m+ inm

−
kbHk uJi

abuaLklkaLk uJjubHkl
− 2g2d/m+ inm

DsnH − nLd,

s39d

where uaLkl and ubHkl sa=1,2,b=1,2d are the periodic
part of the Bloch wave function with wave numberk in the
LH and the HH bands, respectively. By substituting

Jj =
] H

] kj
, Ji

ab =
1

2
H ] H

] ki
,PLGabPL + PHGabPHJ , s40d

we get
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Qij
absinmd =

− 1

2V
o

a,b,g,k
snH − nLd

331 kbLk u
] H

] ki
ugHklkgHk u

] H

] kj
uaLkl

2g2d/m+ inm

+

kbLk u
] H

] kj
ugHklkgHk u

] H

] ki
uaLkl

2g2d/m− inm
2

3kaLk uGabubLkl

+ 1 kbHk u
] H

] kj
ugLklkgLk u

] H

] ki
uaHkl

2g2d/m+ inm

+

kbHk u
] H

] ki
ugLklkgLk u

] H

] kj
uaHkl

2g2d/m− inm
2

3kaHk uGabubHkl4 . s41d

It can be checked thatQij
absinm=0d=0. Here we shall use the

Feynman-Hellman theorem. BecauseHugHkl=EHugHkl im-
plies

] H

] ki
ugHkl + HU ] sgHkd

] ki
L =

] EH

] ki
ugHkl + EHU ] sgHkd

] ki
L ,

s42d

it follows that

kbLk u
] H

] ki
ugHkl = −

2g2dskd
m

KbLkU ] sgHkd
] ki

L
=

2g2dskd
m

K ] sbLkd
] ki

UgHkL . s43d

Therefore, in the dc limit

si j
ab = lim

v→0

Qij
absvd
− iv

= −
i

2V o snH − nLd

3FS−K ] sbLkd
] ki

UPHU ] saLkd
] kj

L
+K ] sbLkd

] kj
UPHU ] saLkd

] ki
LDkaLk uGabubLkl

+ S−K ] sbHkd
] kj

UPLU ] saHkd
] ki

L
+K ] sbHkd

] ki
UPLU ] saHkd

] kj
LDkaHk uGabubHklG .

s44d

This formula can be expressed with the field strengthFij of

the SUs2d gauge field for each band. We define the gauge
field for the LH band as

sAi
Ldab = − ikaLk u

]

] ki
ubLkl, s45d

and similarly forAi
H. The corresponding field strength is

Fij
L =

] Aj
L

] ki
−

] Ai
L

] kj
+ ifAi

L,Aj
Lg, s46d

and Fij
H, respectively. While in this definitionAi

L is a 232
matrix, it can be embedded into 434 matrix by identifying it
with uaLklsAi

LdabkbLk u. We use the same notationAi
L to de-

note the 434 matrix defined in this way. The 434 matrices
Ai

H, Fij
L, andFij

H are defined similarly. They can be expressed
as linear combinations ofGab as

Fij
L = Fij

L,abGab, Fij
H = Fij

H,abGab. s47d

Then the resulting form of the spin Hall conductivity is ob-
tained as

si j
ab =

4

V
o
k

snH − nLds− Fij
L,ab + Fij

H,abd, s48d

in exact agreement with Eq.(35). By contracting with1
3hab

l

as in Eq.(38), we get

si j scd
l ;

1

3
hab

l si j
ab =

4

3V
hab

l o
k

snH − nLds− Fij
L,ab + Fij

H,abd

=
1

6p2ei jl skF
H − kF

Ld, s49d

in exact agreement with Eq.(38).

D. Semiclassical limit

The above result can be written as correlation functions in
a real-time formalism;

si j scd
l =

1

6vZ
trE

0

`

dt eisv+iddtfhJistd,Sscd
l j,Jjge−bH, s50d

whereZ=tre−bH is the partition function of the equilibrium.
This quantity does not change if we replaceSscd

l defined in

Eq. (24) by Sscd8l =lk̂l, which follows from the fact that the
helicity is a conserved quantum number.

In a semiclassical(sc) approximation, one treats the spin
Sscd8l as a classical variable, commuting with the currentJj.
Under this approximation, one obtains

si j scd
l sscd =

1

3vZ
trE

0

`

dt eisv+iddtfJistd, JjgSscd8l e−bH,

s51d

where we used the fact thatSscd8l commutes withH. Direct
computation of this correlation function leads to the semi-
classical result
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si j scd
l sscd =

1

3V
o
k

snH tr Fij
HPHSlPH + nL tr Fij

LPLSlPLd

=
1

12p2ei jl s3kF
H − kF

Ld, s52d

which agrees exactly with the semiclassical results2 based on
the wave-packet equation of motion. The noncommutativity
between the quantum spin and current operators contained in
Eq. (50) leads to a quantum correction

Dsi j scd
l = si j scd

l − si j scd
l sscd = −

1

12p2ei jl skF
H + kF

Ld. s53d

to the semiclassical result(52).
We would like to stress that this difference arises from the

definition of spin current. In Eq.(49), we defined the spin
current as an anticommutator between velocity and the spin
as(25). This definition of spin current amounts to taking the
spin as a quantum average between the initial state and the
intermediate state in the Kubo formula, as can be seen from
Eq. (41). On the other hand, the semiclassical result2 corre-
sponds to taking the spin as that of the initial state. In this
semiclassical formalism, the wave packets with different he-
licities have the opposite transverse velocities with respect to
the external electric field.

IV. CONCLUSIONS AND DISCUSSIONS

In the present paper, we studied the spin Hall effect in
hole-doped semiconductors such as Ge and GaAs. The four
valence bands, which are made out ofp orbitals with the
spin-orbit interaction, consists of the doubly degenerate
heavy-hole band and light-hole band.(When we assume the
inversion symmetry, the Kramers theorem requires at least
double degeneracy at eachk-point.) These two bands touch
at the G point. The effective Hamiltonian describing these
valence bands, so-called the Luttinger Hamiltonian, has a
beautiful mathematical structure described by the SOs5d
Clifford algebra. At a given momentumk, the spin-orbit cou-
pling singles out a fixed direction in the five-dimensional
space of thed vectors, and breaks the symmetry down to
SOs4d=SUs2d3SUs2d. This symmetry property can be used
to define conserved spin currents in both the LH and the HH
bands. The quantum response of the conserved spin current
can be calculated exactly within the Kubo formalism, and the
result is summarized in Eq.(49). This result can be expressed
in terms of purely geometric quantities, or equivalently, in
terms of the non-Abelian Yang monopole field strength, de-
fined in the five-dimensional space of thed vectors. This
result also establishes the deep connection between the spin
current in the Luttinger model and the 4DQHE model of
Zhang and Hu,23 which also uses the Yang monopole as the
non-Abelian background gauge field. In the former case, the
Yang monopole is defined in momentum space over the
space of the five-dimensionald vectors, while in the latter
case, the Yang monopole is defined in the real space. Mag-
netic monopole structure in the five-dimensional momentum
space has also been discussed by Volovik.33

Our fully quantum mechanical results are compared with
previous semiclassical one(52), and a quantum correction
due to the entanglement of spin and velocity is identified.
The quantum correction can be traced to the noncommuta-
tivity and entanglement between the spin and the current
operator. In physical systems where this entanglement is de-
stroyed by some decoherence mechanisms, the semiclassical
result might be realized. In Ref. 32, Culceret al.developed a
wave packet formalism, and discussed the difference be-
tween our semiclassical result2 and the Kubo-formula result
(30) using the conventional definition of the spin current.
They incorporated the nonzero correlation between spin and
velocity into a “spin dipole” and “torque moment” terms in
their wave-packet formalism, and reproduced the Kubo-
formula result Eq.(30) after also including a first-order field
correction to the wave-packet spin.

In the calculations of the spin current presented in this
paper, we assumed an absence of impurities. On the other
hand, we have also done a calculation including a scattering
by randomly distributed impurities. By assuming that the
scattering potential is isotropic and accompanies no spin flip,
we calculated the spin current within the Born approximation
and the ladder approximation for the vertex correction. The
self-energy obtains a finite imaginary part" /2t as usual,
where t is a lifetime. The vertex correction, on the other
hand, vanishes due to the parity, namely, because the Hamil-
tonian is an even function ofk. Thus as far as the broadening
of the energy" /t is much smaller than the energy difference
between two bandsEL−EH, the spin current calculated in Eq.
(38) remains unchanged. The details of the calculation are
involved and will be presented elsewhere.

The dissipationless spin current discovered in recent the-
oretical works has many profound consequences both in fun-
damental science and in technological applications. How-
ever, in models investigated so far, there is still a finite
longitudinal charge conductivity and dissipation associated
with charge transport. A key objective along the current line
of research is to identify spin-orbit coupled system with a
gap in the electronic excitation spectrum, which might lead
to quantized spin Hall effect, similar to the familiar quan-
tized Hall effect. This exciting possibility is suggested by the
fact thatsi j

l is represented as the integral of the gauge cur-
vature over the occupied states, and does not require the
Fermi surface across which the particle-hole excitation oc-
curs.
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APPENDIX A: G MATRICES AND RELATED IDENTITIES

With the expressions for theS matrices

Sz =1
3

2

1

2

−
1

2

−
3

2

2 ,

Sx =1
Î3

2

Î3

2
1

1
Î3

2

Î3

2

2 , sA1d

Sy =1
−

Î3

2
i

Î3

2
i − i

i −
Î3

2
i

Î3

2
i

2 ,

we get

Sx2 =
Î3

2
sx

^ 1 −
1

2
sz

^ sz +
5

4
, sA2d

Sy2 = −
Î3

2
sx

^ 1 −
1

2
sz

^ sz +
5

4
, sA3d

Sz2 = sz
^ sz +

5

4
, sA4d

SxSy + SySx = Î3sy
^ 1, sA5d

SySz + SzSy = Î3sz
^ sy, sA6d

SzSx + SxSz = Î3sz
^ sx, sA7d

wheresi si =1,2,3d are the Pauli matrices. Let us define the
G matrices as

G1 = sz
^ sy =

1
Î3

sSySz + SzSyd, sA8d

G2 = sz
^ sx =

1
Î3

sSzSx + SxSzd, sA9d

G3 = sy
^ 1 =

1
Î3

sSxSy + SySxd, sA10d

G4 = sx
^ 1 =

1
Î3

sSx2 − Sy2d, sA11d

G5 = sz
^ sz = Sz2 − 5

4 . sA12d

SinceGaGb+GbGa=2dab, These five matrices generate the
SOs5d Clifford algebra.34 We shall define the traceless sym-
metric tensorja

ij by Eq. (11), i.e.,

Ga = ja
ijhSi,Sjj, ja

ij = ja
ji , ja

ii = 0. sA13d

Explicitly they are written as

j1
yz=

1

2Î3
, j2

zx=
1

2Î3
, j3

xy =
1

2Î3
,

j4
xx = − j4

yy =
1

2Î3
,

j5
xx = j5

yy = − 1
6, j5

zz= 1
3 ,

and those obtained byja
ij =ja

ji . They form the vector repre-
sentation of the SOs5d algebra, and are expressed as 434
Hermitian matrices. When we define a representation in this
space of 434 Hermitian matrices asGabuAl= ufGab,Agl, A†

=A, Gab=fGa,Gbg /2i, it is shown to be a product of two
four-dimensional spinor representations of SOs5d. This prod-
uct of two spinor representations can be classified into the
irreducible representations of SOs5d, and each irreducible
representation is expressed as a product of the elements of
the Clifford algebra. Thus434=1+5+10, where4 is the
spinor representation,1 is a trivial representation,5 is a vec-
tor representation spanned byGa, and 10 is an adjoint repre-
sentation spanned byGab. These matrices 1,Ga, and Gab,
span the space of 434 Hermitian matrices. Moreover, be-
causeG1G2G3G4G5=−1, a product of more than twoG matri-
ces can be written as a linear combination of 1,Ga, andGab.
It is thus possible to writeSi in terms of these matrices as

Sx =
Î3

2
1 ^ sx +

1

2
ssx

^ sx + sy
^ syd

=
Î3

2
G15 −

1

2
sG23 − G14d, sA14d

Sy =
Î3

2
1 ^ sy +

1

2
s− sx

^ sy + sy
^ sxd

= −
Î3

2
G25 +

1

2
sG13 + G24d, sA15d
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Sz = sz
^ 1 + 1

21 ^ sz = − G34 − 1
2G12. sA16d

These are used to calculate the correlation function in the
Kubo formula. To formulate the problem in a covariant fash-
ion, we definehab

i asSi =hab
i Gab, whereGab=fGa,Gbg /2i are

generators of the SOs5d algebra, andhab
i =−hba

i . Nonzero
components ofhab

i are

h15
x =

Î3

4
, h23

x = − 1
4, h14

x = 1
4 ,

h25
y = −

Î3

4
, h13

y = 1
4, h24

y = 1
4 ,

h34
z = − 1

2, h12
z = − 1

4 ,

and the ones obtained byhab
i =−hba

i . The tenGab matrices
contain both the three spin operatorsSi and seven cubic,
symmetric, and traceless combinations of the spin operators
of the formSiSjSk. These seven cubic operators are

sSxd3 =
7Î3

8
G15 +

7

8
G14 −

13

8
G23, sA17d

sSyd3 = −
7Î3

8
G25 +

7

8
G24 +

13

8
G13, sA18d

sSzd3 = − 13
8 G12 − 7

4G34, sA19d

hSx,sSyd2 − sSzd2j = −
Î3

2
G15 +

3

2
G14, sA20d

hSy,sSzd2 − sSxd2j = −
Î3

2
G25 −

3

2
G24, sA21d

hSz,sSxd2 − sSyd2j = Î3G35, sA22d

SxSySz + SzSySx = −
Î3

2
G45. sA23d

There are several useful formulas forGa, which are used in
the calculation in this paper:

fGab,Gcg = 2isdacG
b − dbcG

ad, sA24d

hGab,Gcj = eabcdeG
de, sA25d

fGab,Gcdg = − 2isdbcG
ad − dbdG

ac − dacG
bd + dadG

bcd,

sA26d

hGab,Gcdj = 2eabcdeG
e + 2dacdbd − 2daddbc, sA27d

trsGaGbd = 4dab, sA28d

trsGaGbGcd = 0, sA29d

trsGaGbGcGdd = 4sdabdcd + daddbc − dacdbdd, sA30d

trsGaGbGcGdGed = − 4eabcde. sA31d

By substitutingSi =hab
i Gab into the commutation relation

fSi ,Sjg= iei jkSk, one can easily derive

fhi,h jg = − 1
4ei jkhk, sA32d

where hi is a 535 matrix with componentshab
i . In other

words, the matrices −4ihi form the spin-two representation
of the SUs2d algebra. It can also be shown that

hab
i hab

j = − trshih jd = 5
8di j , sA33d

and

hihi = − 3
8 . sA34d

Let us write down the formula forda. We can easily check
that

ja
ijja

kl = 1
12sdikd jl + dild jkd − 1

18di jdkl. sA35d

Then it follows that

sja
ijkikjdGa = ja

ijja
klkikjhSk,Slj = 1

3sk ·Sd2 − 5
12k

2. sA36d

Therefore, by substituting

sk ·Sd2 = 5
4k2 + 3ja

ijkikjG
a. sA37d

into the Luttinger Hamiltonian(4) and comparing it with Eq.
(12), we get

da = − 3ja
ijkikj , sA38d

in accordance with Eq.(13). This tensorja
ij can be expressed

in terms ofhcd
k as calculated below.

sk ·Sd2 = 1
2hkihab

i Gab,kjhcd
j Gcdj = 5

4k2 + kikjeabcdehab
i hcd

j Ge.

sA39d

By comparing with Eq.(A37) we get

je
ij = 1

3eabcdehab
i hcd

j . sA40d

One can also check that

ja
ijjb

ij = 1
6dab. sA41d

APPENDIX B: DETAILS OF THE KUBO FORMULA
CALCULATIONS

The electron Green’s function is written as

Gmnsk,ivnd = S 1

ivn − H + m
D

mn

=
1

fivn + m − eskdg2 − g2
2d2/m2

3Sivn + m − eskd +
g2

m
daskdGaD

mn

= fsk,ivndSgsk,ivnd +
g2

m
daskdGaD

mn

. sB1d
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In the clean limit, the Kubo formula calculation proceeds as
follows:

Qij
absinmd = −

1

V
E

0

b

kT̂Ji
absudJjleinmudu

=
1

Vb
o
k,n

tr„Ji
abGsk,i„vn + nm…dJjGsk,ivnd…

=
1

Vb
o
k,n

f„k,isvn + nmd…fsk,ivnd

3trFS ] e

] ki
Pab,cdG

cd +
1

2

g2

m

] df

] ki
Pab,cde fcdmnG

mnD
3Hgsk,isvn + nmdd +

g2

m
dgGgJS ] e

] kj
+

g2

m

] dh

] kj
GhD

3Hgsk,ivnd +
g2

m
dlG

lJG , sB2d

where we used(A25).
To evaluate the summation overvn, we use a formula

1

b
o
n

ffk,isvn + nmdgfsk,ivndfCgsk,ivnd + Dg

=
m

g2

S− inm

2
C + DDfnFseLd − nFseHdg

dskdssinmd2 − 4g2
2dskd2/m2d

, sB3d

whereC, D are constants. By noting that the term propor-
tional to gsk, ivn+ inmdgsk, ivnd becomes zero in taking the
trace of the matrix, we have,

Qij
absinmd =

1

V
o
k

m

g2

nFseLd − nFseHd
dfsinmd2 − 4g2

2d2/m2g
trFS ] e

] ki
Pab,cdG

cd

+
1

2

g2

m

] df

] ki
Pab,cde fcdmnG

mnDS inm

2
+

g2

m
dgGgD

3S ] e

] kj
+

g2

m

] dh

] kj
GhDS−

inm

2
+

g2

m
dlG

lDG . sB4d

The matrix inside the trace is a linear combination of prod-
ucts of two, three, four, and fiveG matrices. By taking the
trace, only the products of four and fiveG matrices survive.
It is worth noting that the]e /]ki and]e /]kj gives no contri-
bution; the former is because ofPab,cddd=0 and ecdghldgdl
=0, and the latter is due todgGgdlG

l =d2. After some calcu-
lation it becomes,

Qij
absinmd =

− 16nm

V
Sg2

m
D2

o
k

nFseLd − nFseHd
sinmd2 − 4g2

2d2/m2d2Gij
ab.

sB5d

In the dc limit we have,

si j
ab = lim

v→0

Qij
absvd
− iv

=
4

V
o
k

fnLskd − nHskdgGij
ab

=
2

V
o
k

ei jl kl

k6 f16sk · hd3 + k2k · hgabsnL − nHd, sB6d

where we substituted(C17). Because of the spherical sym-
metry of the problem, the summation overk can be simpli-
fied further. By using identities

o
k

Fskdkikj =
1

3
di jo

k
Fskdk2, sB7d

o
k

Fskdkikjkkkl=
1

15
sdi jdkl + dikd jl + dild jkdo

k
Fskdk4,

sB8d

whereFskd is an arbitrary function ofk= uk u, we can calcu-
late as

o
k

1

k4klsk · hdsnL − nHd =
1

3o
k

nL − nH

k2 hl sB9d

o
k

1

k6klsk · hd3snL − nHd

=
1

15ok

1

k2shihihl + hihlhi + hlhihidsnL − nHd

= −
17

240ok

nL − nH

k2 hl , sB10d

where we used Eqs.(A32) and (A34). Hence

si j
ab = −

8

5V
hab

l ei jl o
k

nL − nH

k2 = −
4

5p2hab
l ei jl skF

L − kF
Hd.

sB11d

APPENDIX C: MAGNETIC MONOPOLES
IN d=3 AND d=5

From Eq.(12) we see that the microscopic Hamiltonian
depends onk only through the 5D vectordskd; therefore, it
is natural to define the most general 5D gauge connection in
thed space, and then project the gauge connection to the 3D
k space. LetPL andPH the projections onto the LH and HH
bands. These projections have the following properties;

PL = 1
2s1 + d̂ · Gd, PH = 1

2s1 − d̂ · Gd = 1 − PL,

sPLd2 = PL, sPHd2 = PH, PHPL = 0 = PLPH.

We can define the covariant gauge-field strength, i.e., curva-
ture Fab in terms of these projection operators as

Fab = − iF ] PL

] da
,
] PL

] db
G = − iF ] PH

] da
,
] PH

] db
G . sC1d

This gauge field is defined over the 5Dd space, with spatial
indices a,b=1,2,3,4,5. It is a 434 matrix, being a linear
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combination of the SOs5d Lie algebra matricesGab. It can be
explicitly evaluated as

Fab =
− i

4
F ] d̂c

] da
Gc,

] d̂d

] db
GdG =

1

2d2sGab + d̂cd̂bGca − d̂cd̂aGcbd.

sC2d

It can also be written as

Fab =
1

2d2Pab,cdG
cd =

1

2d2 fabeffefcdG
cd, sC3d

where fabgh is given in Eq.(20).
The gauge potential corresponding to the gauge-field

strength Fab is given by Aa=−1/2d2dbGab. This can be
shown by explicit calculations, using the standard definition

Fab =
] Ab

] da
−

] Aa

] db
+ ifAa,Abg. sC4d

From Fab we can define the dual field strengthGab by

Gab = 1
2hFab,d̂cG

cj =
1

2d2 fabcdG
cd, sC5d

where we used Eqs.(A25) and (C2).
We now define the gauge field strength for each band as

Fab
L = − iPLF ] PL

] da
,
] PL

] db
G sC6d

Fab
H = − iPHF ] PH

] da
,
] PH

] db
G sC7d

It is easy to see that

Fab = Fab
L + Fab

H , Gab = Fab
L − Fab

H . sC8d

Since Fab and Gab are related to each other by a duality
transformation

fabcdGcd = Fab, fabcdFcd = Gab, sC9d

Fab
L andFab

H are self-dual and antiself-dual, in the sense that

fabcdFcd
L = Fab

L ; fabcdFcd
H = − Fab

H . sC10d

We can explicitly see thatFab
L andFab

H describes a gauge-field
strength with Yang monopole atd=0. Let us define the two-
form FL andFH as

FL = 1
2Fab

L dda ∧ ddb, FH = 1
2Fab

H dda ∧ ddb. sC11d

One can calculate that

trsFL ∧ FLd = − trsFH ∧ FHd

=
1

8d5eabcdedaddb ∧ ddc ∧ ddd ∧ dde.

sC12d

When this is integrated on a four-dimensional hypersurface
surroundingd=0, it gives the second Chern number multi-
plied by 8p2. ThereforeFL and FH describe a gauge field
with the Yang monopole at the origin, with its strength(i.e.,

the second Chern number) given by +1 and −1,
respectively.22

Because of the projection operatorsPL and PH, Fab
L and

Fab
H can be expressed as SUs2d matrices operating within the

LH and the HH bands, respectively. In fact, we can see that
they agree exactly with the conventional definitions of the
non-Abelian holonomy or the SUs2d Berry connection. In the
conventional definition, the SUs2d gauge field in the LH
band assAa

Ldab=−ikaLk us] /]dad ubLkl and its field strength
is Fab

L =]aAb
L−]bAa

L+ ifAa
L ,Ab

Lg, wherea ,b=1,2 characterize
two eigenvectors forming the basis of the LH subspace.Aa

H

and Fab
H can be defined in a similar way. The proof of the

equivalence between the conventional definition and the
definition (C6) can be seen in the following way, which is
essentially the same as in Ref. 29;

PL] PL

] da

] PL

] db
= − sPLd2] PH

] da

] PL

] db
= PL] PL

] da
PH] PL

] db

= PL] PL

] da
sPHd2] PL

] db
= − PL] PL

] da
PH] PH

] db
PL

= PL] PL

] da
PH] PL

] db
PL

= o
a,b

uaLlK ] saLd
] da

UPHU ] sbLd
] db

LkbLu, sC13d

whereuaLl= uaLkl and so forth. Then it follows that

PLS ] PL

] da

] PL

] db
− sa ↔ bdD

= o
a,b

uaLlK ] saLd
] da

UPHU ] sbLd
] db

LkbLu − sa ↔ bd

= o
a,b

uaLlKU ] saLd
] da

U ] sbLd
] db

LkbLu − o
a,b,g

uaLl

3KU ] saLd
] da

UgLLKgLU ] sbLd
] db

LkbLu − sa ↔ bd

= io
a,b

uaLlsFab
L dabkbLu, sC14d

which establishes the equivalence between Eq.(C6) and the
conventional definition of the gauge fields, for example,
those used in Refs. 22 and 23. The equivalence between Eq.
(C7) and the conventional definitions can be shown in a
similar way.

From these 5D monopole gauge fields, one can easily
obtain the 3D monopole gauge fields by the pull-back map-
ping. For example,

Gij =
] da

] ki

] db

] kj
Gab ; Gij

cdGcd. sC15d

Substituting the definition ofGab as given in Eq.(C5) we see
easily thatGij

cd is given by Eq.(34).
Calculation ofGij

ab and Fij
ab is straightforward but some-

what cumbersome. By usingMATHEMATICA , we obtain
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Fij
ab =

1

k6ei jl klf16sk · hd3 + 4k2k · hgab, sC16d

Gij
ab =

1

2k6ei jl klf16sk · hd3 + k2k · hgab, sC17d

whereh=shx,hy,hyd andhi is regarded as a 535 spin-two
representation of the SUs2d Lie algebra, satisfying the com-
mutation relation(A32). In these formulas,Fab andGab are
written in terms ofG matrices. Alternatively, we can write
them in terms of the spin matricesSi:

Fij = lS2l2 −
7

2
Dei jl

kl

k3 , sC18d

Gij = lSl2 −
13

4
Dei jl

kl

k3 , sC19d

where l= k̂·S is the helicity matrix.2 Equation (C18) has
been obtained in Ref. 7; one can show Eq.(C19) in the
similar way. Equivalence between Eqs.(C18), (C19), (C16),
and(C17) can be shown by substitutingSi =hab

i Gab and using
Eq. (A27). From Eqs.(C18) and (C19), we get

Fij
H = lSl2

2
−

1

8
Dei jl

kl

k3, Fij
L = lS3l2

2
−

27

8
Dei jl

kl

k3 .

sC20d

As is expected,Fij
H=0 for the LH bandsl= ±1/2d, andFij

L

=0 for the HH bandsl= ±3/2d, This is the field strength of
the Us1d (Dirac) monopole with monopole strength ±3 for
l= ±3/2 (HH band) and73 for l= ±1/2 (LH band).

Finally we would like to establish the exact equivalence
between the gauge fields introduced above and the Yang-
Mills instanton in Euclidean four-space35 or the Yang mono-
pole gauge fields over the four sphere.36 The proof essen-
tially follows that of Jackiw and Rebbi.37 The two-form
SOs5d gauge field onR5 can be converted to SOs4d two-form

gauge field onR5 by gauge transformationU such that

U†d̂aGaU = G5. sC21d

For example, we can take

U =

1 + d̂5 + io
a=1

4

Ga5d̂a

Î2s1 + d̂5d
. sC22d

By this gauge transformation, the gauge fieldAa and the field
strengthFab are transformed to

U†AaU − iU† ] U

] da
= Ãa, sC23d

U†FabU = F̃ab. sC24d

These quantitiesÃa and F̃ab are linear combinations of
Gmn sm,n=1,2,3,4d, belonging to the SOs4d algebra. Ex-
plicitly they are written as

Ãa = −
1

2ds1 + d̂5d
o
b=1

4

d̂bGab sa = 1,2,3,4d, Ã5 = 0,

F̃a5 = −
1

2d2o
b=1

4

d̂bGab sa = 1,2,3,4d,

F̃ab =
1

2d2SGab −
1

1 + d̂5

o
c=1

4

d̂csd̂bGac − d̂aGbcdD
sa,b = 1,2,3,4d,

which are exactly the SOs4d=SUs2d3SUs2d gauge fields
used in the context of 4DQHE.23
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