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We investigate the absolute photonic band gap(PBG) formation in two-dimensional(2-D) photonic crystals
designed using symmetry reduction approach. The lattice symmetry, shape and orientation of dielectric scat-
terers affect the photonic gap parameters. We use symmetry reduction, achieved either by including additional
rods into the lattice unit cell or by reorienting noncircular scatterers to engineer the photonic band gaps in 2-D
square and triangular structures. The case of air rods drilled into silicon background is considered. We show
that for square structures symmetry reduction can be an effective way to enlarge the absolute PBG, but for
triangular lattices any modification of the crystal structure considerably reduces the absolute PBG width. We
also discuss the practical technological feasibility of the proposed structures.
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I. INTRODUCTION

Photonic crystals(PCs) are periodic structures in one or
more spatial directions. They have received much interest
because they offer a way to control and manipulate light.
Many unusual optical properties of these photonic crystals
have been predicted and some of them have been confirmed
experimentally, e.g., the existence of a photonic band gap
(PBG), i.e., a frequency range for which light propagation is
forbidden inside the structure,1 the suppression of spontane-
ous emission2,3 and the possibility of creating localized de-
fect modes in the photonic band gap.4,5 However, the fabri-
cation of useful three-dimensional(3-D) photonic crystals in
the visible and near IR spectra is a difficult task because of
technological limitations at submicrometer length scales. The
search for photonic crystals that exhibit larger band gaps and
are suitable for the fabrication is still an important issue.

Two-dimensional photonic crystals are easier to fabricate
than 3-D ones, especially for the technologically important
near IR spectrum. For a 2-D photonic crystal, the electro-
magnetic wave can be decomposed in two polarization
modes: TE modes when the magnetic field is polarized along
the rods and TM modes when the electric field is polarized
along the rods. An absolute PBG emerges from the overlap
between the band gaps for both polarization modes. Several
methods have been suggested for optimizing this overlap and
thus obtaining the largest possible absolute PBG. As sug-
gested in Ref. 6, for example, introducing anisotropy into
one of the dielectric media in a photonic crystal can produce
larger absolute photonic band gaps in 2-D square and trian-
gular lattices. However, this method is limited by the avail-
ability of the material. Other methods are based on symmetry
reduction. Symmetry plays an important role in opening the
absolute PBGs.7 Often, restrictions to the absolute PBG for-
mation are due to the symmetry-induced degeneracies of
photonic bands at high symmetry points in the Brillouin
zone. The approach therefore involves reducing the structural
symmetry to lift these band degeneracies and so enlarge the
photonic band gap. Anderson and Giapis8,9 have shown that

inserting small circular rods into the square, honeycomb and
group 4mmphotonic structures reduces the symmetry of the
original lattice, thus leading to a larger absolute PBG. These
authors have considered only photonic crystals of circular
rods. Symmetry reduction can also be achieved by using
noncircular scatterers. To introduce asymmetry, Villeneuve
and Piche10 used oval rods instead of circular ones in a tri-
angular lattice but failed to create larger absolute PBG. How-
ever, in a rectangular lattice of oval rods, symmetry reduc-
tion has been successfully explored to increase the
overlapping PBG.11 Padjenet al.12 studied the triangular lat-
tice of rods with square, rectangular and triangular profiles.
They concluded that the circular rod profile leads to the larg-
est absolute PBG but they did not consider the symmetry
reduction, achieved by including new elements in the re-
ported structures. Wanget al.13 and more recently Marsalet
al.14 have shown that rotating square rods in a square lattice
can significantly change the position and size of band gaps
for both polarization modes and even increase the overlap
between these two gaps. They found that the largest PBG
appears when the rotation of square rods is combined with
the inclusion of an additional rod in the lattice unit cell.

In short, several studies have already reported the symme-
try reduction approach. However, it is difficult to compare
the results of these studies because the dielectric contrasts
and accuracies used in the calculations were different. More-
over, most of the reported structures are difficult to fabricate
because absolute PBG improves when the dielectric walls are
extremely thin. As our group works on the fabrication of 2-D
photonic crystals based on air/silicon structures, we think
that a more detailed examination of such structures that also
takes into account the difficulty of fabrication is needed. Our
aim in the present study is therefore to analyze the absolute
PBG formation for some recently reported structures using
silicon with dielectric constant«=12.096 as a background
material(at wavelengthl=1.55mm15). We present numeri-
cal simulations of photonic bands for 2-D square and trian-
gular lattices of square and circular air rods drilled in silicon.
We also explore their modified structures designed using the
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symmetry reduction approach, namely by including addi-
tional rods in the basic lattice and by rotating noncircular
rods. In our work we focuss on the maximization of the
absolute PBG width as a function of crystal parameters and
on the technological feasibility of these optimized structures.

II. Lattice description and numerical method

The patterns of 2-D structures under consideration are de-
picted in Fig. 1, as follows:(a) and (b) basic square lattices
of circular and square air rods, respectively;(c) and(d) basic
triangular lattices of circular and square air rods;(e), (f) and
(g) modified square lattices formed by inclusion of an addi-
tional circular or square-shaped rod at the center of the unit
cell; (h) and (i) modified triangular lattices formed by the
inclusion of two additional circular rods at the middle of
each triangle. For brevity, the structures of Figs. 1(a)–1(d)
will be referred to asbasic lattices, while their modified
structures[Figs. 1(e)–1(i)] will be referred to asinterstitial
lattices. For all structures the parametersa, d and r denote
the lattice constant, the size of basic square rods and the
radius of basic circular rods, respectively. The angle of rota-
tion a of square rods is defined as the angle between axes of
the square cross section and the lattice axes. The parameters
d8 and r8 denote the size and the radius of the included
square and circular rods. For simplicity, the size of the in-
cluded elements can be related to the size of the basic rods
by introducing a new parameterb, which is defined asb
=r8 / r for the interstitial structures in Fig. 1(e) and 1(h); b
=d8 /d for the structure in Fig. 1(f) and b=2r8 /d for the
interstitial structures in Figs. 1(g) and 1(i). For the case of
interstitial lattices, additional degrees of freedom are there-
fore introduced into the calculations.

The photonic bands of 2-D photonic crystals were calcu-
lated using the finite difference time domain(FDTD)
method, also known as theOrdernsNd method.16 We as-
sumed that all rods were made of the same material(air with
relative dielectric constant«=1) and embedded in a back-
ground dielectric(silicon with «=12.096 atl=1.55mm).
The bands for both polarization modes were calculated: TE
modes (H polarization) and TM modes(E polarization).
When the square lattices were considered, theG, M and X
points in the Brillouin zone were included in the calculation
[Fig. 1(j)] and the photonic bands were traced along the M-
G-X-M path. For the triangular lattices of circular rods, the
calculations were performed along the J-X-G-J path [Fig.
1(k)]. In the case of triangular lattices of square rods, the C3
rotational symmetry is lifted.17 However, the rotation of
square rods lifts all rotational and mirror symmetries of the
lattice. For this reason, the photonic bands were traced along
the X3–G-J1-X1-J2-X2-J3-X3 path of the Brillouin zone, as
shown in Fig. 1(l). The calculation error was estimated to be
less than 2% for frequencies below 1(in 2pc/a units).

III. RESULTS AND DISCUSSION

A. Square lattices

We begin our discussion with the basic square structures
shown in Figs. 1(a) and 1(b). For the given dielectric con-
trast, the square structure of circular air rods presents an
absolute photonic band gap resulting from the overlap be-
tween the TE2-3(i.e., the gap between the second and the
third photonic bands) and the TM3-4 polarization gaps
across all symmetry points. This absolute PBG has a maxi-
mum normalized width of aboutDv /vg=3.4% for r
=0.492a. Here, the parametersDv and vg denote the fre-

FIG. 1. Patterns of the struc-
tures under consideration:(a)
square-circles(lattice-scatterers);
(b) square-squares;(c) triangular-
circles; (d) triangular-squares;(e)
square-circles with a circular in-
cluded rod; (f) square-squares
with a square included rod;(g)
square-squares with a circular in-
cluded rod; (h) triangular-circles
with two circular included rods;
(i) triangular-squares with two cir-
cular included rods;(j) first Bril-
louin zone for the square struc-
tures; (k) and (l) first Brillouin
zone for the triangular structures
of circular and square rods, re-
spectively. The lattice unit cell is
indicated by a dashed line.
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quency width of the gap and the frequency at the middle of
the gap, respectively. In case of square structure with square
rod profile, no absolute PBG exists for refractive indexes
below 3.51.18 In particular, this is valid only when the square
rods are not rotated. We will demonstrate that the rotation of
square rods leads to a larger absolute PBG that extends over
a wide range of rod dimensions and rotation angles. The
width of the absolute PBG for both basic square structures
can be further improved by including additional rod in the
lattice unit cell.

In Fig. 2 the dimensionless frequencies of gap boundaries
are drawn as functions ofr /a for (a) the square lattice of
circular rods and(b) its modified lattice with a circular rod

included at the center of the unit cell. Here, only TE2-3 and
TM3-4 polarization gaps, which form the absolute PBG, are
shown. The gap map of the square structure of circular rods
[Fig. 2(a)] shows that the maximum width of the absolute
PBG appears for rods of radiusr =0.492a. We can estimate
the difficulty of fabrication by centering the gap at wave-
lengthl=1.55mm. In this case, the dielectric walls between
air rods should be 10 nm thick. Although this is realistic, it is
obviously difficult to fabricate this structure. As can be seen,
the TE2-3 polarization gap reduces sharply and closes the
absolute PBG as the rod radius nears the close-packed con-
dition rcp=0.5a (i.e., when the rods begin to touch). Band
structure analysis shows that second and third TE bands are

FIG. 3. Dependence of the normalized absolute PBG width
sDv /vgd on the parameterb=r8 / r for the modified square structure
shown in Fig. 1(e) for four different radiir of the basic rods. The
maximum absolute PBG appears forr =0.497a andb=0.15.

FIG. 4. Dependence of the absolute PBG widthsDv /vgd on the
rotation anglea for the square structure of square air rods for dif-
ferent values of square sized. The maximum absolute PBG appears
for d=0.806a anda=32°s58°d.

FIG. 2. Photonic gap map for
(a) the basic square structure of
circular air rods and(b) a modi-
fied square structure formed by in-
cluding an additional circular rod
at the center of the unit cell. The
figure insets depict the structure
under consideration. The positions
of maximum absolute PBG width
are indicated by arrows.
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degenerate at pointM of the Brillouin zone. For the modified
structure[Fig. 1(e)], this band degeneracy is lifted. The crys-
tal symmetry for this structure is reduced by placing a small
rod at the center of each square unit cell. We performed
extensive band calculations for different radii of the included
rod. Figure 3 shows the normalized width of the absolute
band gap as a function of the parameterb=r8 / r, which is the
ratio between the radii of the includedr8 and the basicr rods.
The overall tendency is clearly seen: for small values ofb
the absolute PBG width is greater than in the case without
inclusion sb=0d. In addition, the absolute band gap, closed

at r =0.51a in the case without inclusion, opens up for values
of b between 0.10 and 0.27. Improvement in the absolute
PBG width is maximum forb=0.15 andr =0.497a with a
magnitude ofDv /vg=10%. This result is slightly different
from the one in Ref. 8 because the dielectric contrast and
computational method are different. The gap map for the
optimum value ofb=0.15 is shown in Fig. 2(b). As a result
of the lifted degeneracy, the overlap between the two polar-
ization gaps is extended. The absolute PBG is nearly three
times larger than the best one for the basic square lattice.
Although including an additional rod improves the absolute

FIG. 5. Positions of TE2-3 and TM3-4 polarization gaps as functions of square lengthd/a for (a) the square structure of square rods
rotated at anglea=32°; (b) a modified square structure with a square rod added at the center of the lattice unit cell fora=27° andb
=0.15; (c) a modified structure with a circular rod added at the center of the unit cell fora=28° andb=0.15. The picture insets show the
structures under consideration. The positions of maximum absolute PBG width are indicated by arrows.
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PBG size, the fabrication of this structure becomes more
difficult. The rod radius for the optimum absolute PBG nears
the close-packed condition. Thus, for a gap centered at wave-
length l=1.55mm the dielectric walls between adjacent
holes should be 5 nm thick.

Next, a square structure of square rods and its correspond-
ing modified structures designed by the inclusion of either
square[Fig. 1(f)] or circular [Fig. 1(g)] air rods are consid-

ered. As mentioned before, the basic square structure of
square rods does not exhibit an absolute PBG for any value
of square lengthd. Band structure analysis indicates that the
second and the third TE bands overlap, which prevents the
TE2-3 gap from opening up. In addition, the third and fourth
TM bands are degenerated at theG point of the Brillouin
zone and no TM3-4 gap exists for values ofd,0.77a. This
band degeneracy can be lifted by rotating the square rods

FIG. 6. Dependence of the ab-
solute PBG widthsDv /vgd on (a)
the rotation anglea for fixed val-
ues ofb and d/a; (b) the param-
eterb=d8 /d for fixed values ofa
and d/a for the modified square
structure with included square
rods[Fig. 1(f)]. The solid lines de-
note the width of the absolute
PBG formed by the overlapping
TE2-3 and TM3-4 polarization
gaps. The dotted lines denote the
width of the absolute PBG from
the overlap by TE2-3 and TM4-5
polarization gaps.

FIG. 7. Positions of TE2-3 and
TM4-5 polarization gaps as func-
tions of square lengthd/a for (a) a
square structure with a square rod
added at the center of the unit cell
for b=0.56 anda=26° and(b) a
square structure with a circular
rod added at the center of the unit
cell for b=0.71 anda=31°. The
picture insets show the structure
under consideration. The positions
of maximum absolute PBG width
are indicated by arrows.
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with respect to the lattice axes. This, in turn, gives rise to an
absolute PBG which results from the overlap between the
TE2-3 and TM3-4 polarization gaps. To explain this, one can
rely on the general rule of thumb.1 The square lattice of
square air rods is mainly a connected structure made up of

high-index veins. The TE gaps are favored in connected
structures, while the TM gaps are favored in structures of
isolated high-index regions(spots). Rotating the square rods
leads to a structure of isolated high-index spots that are
linked by narrow veins. Suitable dielectric configurations for

FIG. 8. Positions of TE2-3 and
TM4-5 polarization gaps as func-
tions of rotation anglea for (a) a
square structure with a square rod
added at the center of the unit cell
for b=0.56 andd=0.73a and(b) a
square structure with a circular
rod added at the center of the unit
cell for b=0.71 andd=0.72a. The
picture insets show the structure
under consideration. The positions
of maximum absolute PBG width
are indicated by arrows.

FIG. 9. Positions of TE1-2 and
TM2-3 polarization gaps as func-
tions of r /a for (a) basic triangu-
lar lattice of circular rods and(b)
its modified structure with a circu-
lar rod added at the center of each
triangle of the lattice unit cell for
b=0.1. The positions of the maxi-
mum absolute PBG width are in-
dicated by arrows.
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opening an absolute PBG can therefore be formed.
Figure 4 shows the dependence of the absolute PBG

width on the rotation anglea for different values of the
square sized. The band gaps exhibit a symmetry with respect
to rotation anglea=45° due to the inverse symmetry of the
crystal. The absolute PBG reaches a maximum width of
Dv /vg=13.8% for a=32° and d=0.806a. This absolute
PBG is roughly four times larger than the one for the basic
square structure of circular air rods. In Fig. 5(a) the positions
of the TE2-3 and TM3-4 polarization gaps are drawn as
functions of the square lengthd. The closed-packed condi-
tion for rotation anglea=32° isdcp=0.848a, so the smallest
width of the narrow veins will be 0.050a. For a gap centered
at wavelengthl=1.55mm, the veins should be approxi-
mately 33 nm thick. This result is a more encouraging than
the previous ones for the fabrication of photonic crystals.

Having discussed the square structure of rotated square
rods, we now turn to the effects on photonic band gaps after
an additional rod is included at the center of the lattice unit
cell. For the modified square structure in Fig. 1(f) a square
rod is added at the center of the unit cell, and for the modi-
fied lattice in Fig. 1(g) a circular rod is added. Besides the
rotation anglea of the squares, a new degree of freedom is
introduced into our calculations: a parameterb defined as the

ratio between the lengths of the addedd8 and the basic rods
d sb=d8 /dd for the modified structure in Fig. 1(f), and the
ratio between the diameter 2r8 of the added rod and the
lengthd of the basic rodssb=2r8 /dd for the modified struc-
ture in Fig. 1(g). The size of the included rod is therefore
related to the size of the basic rods in dimensionless units.
First, we consider the modified structure with a square rod
[Fig. 1(f)]. Numerical calculations fora=0° and different
values of the parameterb have shown that there is no abso-
lute PBG if the square rods are not rotated. Therefore, in-
cluding an additional rod is not sufficient to open the abso-
lute PBG for the given dielectric contrast. Figure 6(a) shows
the dependence of the absolute PBG width on the rotation
anglea for fixed values of the parameterb and the square
lengthd and Fig. 6(b) shows the dependence of the absolute
PBG width on the parameterb for fixed values ofa andd.
There is no easy way to find the optimum parametric envi-
ronmentsd,b ,ad that maximizes the absolute PBG width.
For instance, one can fix the rotation anglea and find the
values ofb andd which lead to the maximum width of the
absolute PBG. The next step, logically, is to perform the
calculations by fixing these values and varyinga to find the
optimum angle. However, this does not always lead to the
optimum absolute PBG for the structure because, for the new
optimum angle, there will be a new set ofb andd. So, hard
calculations are needed taking into account all possible val-
ues ofa, b andd. From Fig. 6 we can see that absolute PBG
width sDv /vg=15.2%d is maximum whena=27°, b=0.15
andd=0.85a. The positions of the TE2-3 and TM3-4 polar-
ization gaps as functions of the square sized/a are drawn in
Fig. 5(b). Including an additional rod does improve the ab-
solute PBG width, but we also need to estimate the relative
difficulty of fabrication for this improvement. For a rotation
anglea=27°, the close-packed condition isdcp=0.891a. The
size of the included rod isd8=0.128a for b=0.15 andd
=0.85a. The dielectric walls between adjacent basic rods will
then have the smallest relative width of 0.046a. For a gap
centered atl=1.55mm, the absolute width of the dielectric
walls should be approximately 34 nm. Therefore, the fabri-
cation of this structure is no more complicated than in the
case without inclusion.

Our numerical calculations show that a new absolute PBG
appears when the size of the included rod is increased. This
is the result of overlapping between the TE2-3 and TM4-5
polarization gaps rather than the overlapping between the
TE2-3 and TM3-4 gaps. Figure 6 shows the width of this
absolute PBG as a function of rotation anglea and parameter
b, respectively. We can see that the width of this absolute
PBG is smaller than that of the absolute PBG formed by the
overlapping of the TE2-3 and TM3-4 gaps. The main advan-
tage, however, is that it extends over a wide range of square
lengthsd/a far away from the close-packed condition. This
is a big advantage for the fabrication. For example, the maxi-
mum width of the absolute PBG formed by the overlapping
of the TE2-3 and TM4-5 polarization gaps isDv /vg
=12.8% whena=26°, b=0.56 andd=0.73a. The close-
packed condition for this angle isdcp=0.899a. The included
rod has a relative width ofd8=0.409a. The relative width of
the dielectric walls between adjacent basic rods is 0.188a,
but the thinnest elements, with a width of 0.099a, are the

FIG. 10. Dependence of the absolute PBG widthsDv /vgd on
the parameterb for (a) the modified triangular structure of circular
basic rods and a circular rod placed at the midpoint of each triangle
formed of three basic rods and(b) a modified triangular structure of
square basic rods and a circular rod placed at the midpoint of each
triangle for different rotation angles.
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walls between the basic and the included rods. For the gap
centered atl=1.55mm, the absolute width should be ap-
proximately 79 nm. Figure 7(a) shows the positions of the
TE2-3 and TM4-5 polarization gaps as functions of square
length d/a. The absolute PBG exceeds 5% within
0.63,d/a,0.78, which means that the smallest width of
dielectric walls ranges between 117 and 54 nm. The angular
dependence of the TE2-3 and TM4-5 gaps is shown in Fig.
8(a) for d=0.73a and b=0.56. The absolute PBG exceeds
5% within 20°,a,37°. As a comparison, for these rota-
tion angles the smallest width of dielectric walls would range
between 57 and 67 nm. Although this is not the best absolute
PBG for this structure, it seems to be better from the fabri-
cation point of view.

Finally, we studied the modified square structure for
which a circular rod is placed at the center of the lattice unit
cell [Fig. 1(g)]. Our discussion is similar to that for the pre-
vious structure, so here we will only provide the main re-
sults. In this case, parameterb is defined as the ratio between
the diameter 2r8 of the included rod and the sized of the
basic square rods. Figure 5(c) shows the positions of the
TE2-3 and TM3-4 polarization gaps as functions ofd/a. The
optimum absolute PBG has a width ofDv /vg=15.6% for
d=0.843a, b=0.15 anda=28°. For small values ofb there
is no significant difference between the modified structure
with a circular rod included and the previously discussed
structure with a square rod included. The size of the included
rod is too small forb=0.15 so there is no significant change
in the total filling fraction if the included rod is square or
circular. This is not the case for values ofb.0.5, which
generate an absolute PBG from the overlapping between the
TE2-3 and TM4-5 polarization gaps. Figures 7(b) and 8(b)

show the positions of the TE2-3 and TM4-5 polarization
gaps as functions ofd/a for b=0.71, a=31° and as func-
tions of a for d=0.721a, b=0.71, respectively. The maxi-
mum width of the absolute PBG isDv /vg=14.8%, which is
2% greater than in the case of the interstitial lattice with a
square rod included. For these physical parameters the small-
est feature size is 57 nm. With this structure, therefore, we
gain in absolute PBG width without harming the fabrication.

B. Triangular lattices

In this section we consider the triangular lattices of circu-
lar air rods[Fig. 1(c)] and square air rods[Fig. 1(d)] and
their modified structures[Figs. 1(h) and 1(i)]. The triangular
structure of circular air rods is known to present the greatest
absolute PBG among the studied 2-D photonic crystals. The
minimum refractive index contrast required for the opening
of an absolute PBG is 2.66 for a filling fraction of the air
rods of about 66%.10 The absolute PBG is the result of the
overlapping of the TE1-2 and TM2-3 polarizations gaps. Fig-
ure 9(a) shows the photonic band map for this structure. For
the given dielectric contrast(«background=12.096 and«rod=1),
the absolute PBG reaches a maximum width ofDv /vg
=17% for r =0.478a. The closed-packed condition for this
structure isrcp=0.5a. For the gap centered atl=1.55mm,
the dielectric walls between adjacent rods must be 33 nm.
This result is similar to that for the square lattices. We tried
to apply the same approach i.e., to optimize the absolute
PBG by reducing the lattice symmetry achieved either by
inserting additional rods or by using noncircular scatterers.

First we studied the interstitial triangular structure[Fig.
1(h)] in which two additional rods are introduced into the

FIG. 11. Positions of TE1-2
and TM2-3 polarization gaps as
functions of square sized/a for a
triangular structure of square rods
rotated at (a) a=0° and (b) a
=30° with respect to the lattice
axes. The positions of maximum
absolute PBG are indicated by
arrows.
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lattice unit cell. The included rods are located at the midpoint
between three basic rods of the triangular lattice. For this
structure the parameterb=r8 / r is defined as the ratio be-
tween the radii of includedr8 and basicr rods. The depen-
dence of the absolute PBG width on the parameterb for
some fixed values of the radius of basic rodsr is shown in
Fig. 10(a). For the case without inclusionsb=0d, the struc-
ture switches to the basic triangular lattice of circular rods.
Although the included rods are very small, their presence
leads to a decrease in the absolute PBG width and, for values
of b greater than 0.15, to complete closure of the gap. Figure
9(b) shows the positions of the TE1-2 and TM2-3 polariza-
tion gaps as functions ofr /a for b=0.1. The maximum ab-
solute PBG width isDv /vg=8.6% forr =0.48a. We can see
that the TM2-3 polarization gap is strongly reduced. The
inclusion of the interstitial air rods at the midpoint of each
triangle disrupts the useful arrangement of the dielectric in
isolated and linked regions. Isolated islands of high-index
material do not yet exist. Therefore, TM gaps tend to disap-
pear in such structures.

To continue our study on symmetry reduction we also
examined the triangular lattice of square air rods[Fig. 1(d)].
Since the symmetry of the lattice is reduced, we must now
consider all the directions of the new irreducible Brillouin
zone, as shown in Fig. 1(l). For this structure there is an
absolute PBG gap, which is result from the overlapping
TE1-2 and TM2-3 polarization gaps, as in the case of the
triangular structure of circular air rods. Their positions as
functions of square sized/a are plotted in Fig. 11(a). The
absolute PBG has a maximum width ofDv /vg=9.5% for
d=0.854a. The dielectric walls will have a relative width of
0.012a and should be about 9 nm thin for the gap centered at

l=1.55mm. This structure therefore requires very stringent
technological capabilities.

In the case of square structures, the rotation of square rods
was an effective way to enlarge the absolute PBG. In the
case of triangular lattices we go one step further and apply
the same approach. Figure 12 plots the positions of the
TE1-2 and TM2-3 polarization gaps as functions of the rota-
tion angle a for a square sized=0.856a. Because of the
mirror symmetries of the lattice, the gaps are symmetrical
with respect to rotation anglesa of 30° and 60°. Therefore,
the only nonredundant rotations are those between 0° and
30°. The optimum rotation anglea, which provided the best
improvement in the absolute PBG, wasa=30°. The posi-
tions of the TE1-2 and TM2-3 polarization gaps as functions
of square sized/a are plotted in Fig. 11(b) for this optimum
angle. The absolute PBG has a maximum width ofDv /vg
=11% for d=0.856a. If we bear in mind that the close-
packed condition fora=30° is dcp=0.866a, the relative
width of the dielectric walls should be 0.010a. For the gap
centered atl=1.55mm, this results in an absolute width of
approximately 8 nm. Rotating square rods in a triangular
structure therefore does not, as it did in the case of square
structures, significantly improve the absolute PBG.

By considering the modified triangular structure, which is
formed by adding two circular rods in the unit cell[see Fig.
1(i)], we have studied the effects of symmetry reduction
achieved both by rotating noncircular scatterers and includ-
ing additional elements. As with the modified triangular lat-
tice of circular rods, including additional rods considerably
shrinks the absolute PBG. We found no improvement in the
absolute PBG width for any rotation anglea of the square
basic rods or for different values ofb. Parameterb in this

FIG. 12. Positions of TE1-2
and TM2-3 polarization gaps as
functions of rotation anglea for
(a) the basic triangular structure of
square rods ford=0.856a and (b)
a modified triangular structure
where two circular rods are intro-
duced into the unit cell ford
=0.856a and b=0.1. The picture
insets depict the structure under
consideration. The positions of
maximum absolute PBG width are
indicated by arrows.
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case is defined asb=2r8 /d and relates the size of the in-
cluded rods to the size of the basic rods. Moreover, again for
values ofb greater than 0.15 the absolute PBG completely
disappears[Fig. 10(b)]. For triangular structures, therefore,
symmetry reduction based on the inclusion of additional rods
does not lead to a larger absolute PBG. The inclusion favor-
ably increases the “air” filling fraction but disrupts the useful
arrangement of high-index media in isolated and linked re-
gions. From Fig. 12(b) we can see that, due to the inclusion,
the TM2-3 polarization gap shrinks considerably, which de-
creases the absolute PBG width.

IV. SUMMARY AND CONCLUSIONS

We have performed a detailed numerical analysis of the
photonic band structure of square and triangular lattices with
circular and square rod profiles using the FDTD method.
Specifically, we have examined how symmetry reduction,
achieved by adding small rods to the lattice unit cell or by
reorienting the square rods, affects the photonic band gap.
Our results are summarized in Table I. For square lattices,
the symmetry reduction approach has been successfully ap-
plied to maximize the absolute PBG width. For instance, in
the case of a square lattice of circular rods, the inclusion of
an additional rod leads to an absolute PBG, which is about
three times larger than the one without inclusion. The rota-
tion of the square rods is critical for opening the absolute
PBG in the square structure of square rods. The most signifi-
cant improvement in the size of the absolute PBG is pro-
vided by a combination of including an additional rod and
rotating the square rods. Moreover, a new absolute PBG is

generated that persists over a wide range of rotation angles
and filling fractions far away from the closed-packed condi-
tion, and therefore greatly favors the fabrication of photonic
crystals.

The largest absolute PBG is the one for the triangular
structure of circular air rods. Our results show that modify-
ing the crystal structure by adding interstitial rods or using
square rods is not a good way to achieving larger absolute
PBG, at least for the special case of air/silicon structures.
Adding more rods in the lattice unit cell cannot further en-
large the absolute PBG width. Moreover, the absolute PBG
shrinks dramatically because of disrupted islands of high-
index material. Using square scatterers considerably reduces
the absolute PBG width.

The dielectric walls of all these photonic crystals which
are composed of air rods in a dielectric media should be
extremely thin(Table I). To fabricate these crystals, we need
highly developed technologies such as electron-beam lithog-
raphy and dry-etching techniques. Such efforts are rewarded,
however, by the large absolute PBG.
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TABLE I. Maximum normalized absolute PBG width for the considered structures. The table shows the physical parameters at which the
optimum absolute PBG can be obtained. The relative and absolute sizes of the smallest element are also shown.

Lattice-scatterer Dv /vg Physical parameters Size of the smallest element

Relative Absolutea

1. Square structures

a. Square-circles 3.4% r =0.492a 0.016a 10 nm

b. Square-circles with an additional circular rod 10% r =0.497a;b=0.15 0.006a 5 nm

c. Square-squares No absolute PBG exists

d. Square-rotated squares 13.8% d=0.806a;a=32° 0.050a 33 nm

e. Square-rotated squares with an additional square rod 15.2%d=0.85a,a=27° ,b=0.15b 0.046a 34 nm

12.8% d=0.73a,a=26° ,b=0.56c 0.099a 79 nm

f. Square-rotated squares with an additional circular rod 15.6%d=0.843a,a=28° ,b=0.15b 0.045a 33 nm

14.8% d=0.721a,a=31° ,b=0.71c 0.070a 57 nm

2. Triangular structures

a. Triangular-circles 17% r =0.478a 0.044a 33 nm

b. Triangular-circles with two additional circular rods There is no improvement in the absolute PBG size

c. Triangular-squares 9.5% d=0.854a 0.012a 9 nm

d. Triangular-rotated squares 11% d=0.856a;a=30° 0.010a 8 nm

e. Triangular-rotated squares with two additional circular
rods

There is no improvement in the absolute PBG size

aAbsolute size for the gap centered atl=1.55mm.
bAbsolute PBG formed from the overlapping TE2-3 and TM3-4 polarization gaps.
cAbsolute PBG formed from the overlapping TE2-3 and TM4-5 polarization gaps.
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