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A study is made of the exact solutions of a system of nonlinear difference equations that model the
propagation of electromagnetic radiation in photonic crystal waveguides and networks of interconnecting
photonic crystal waveguides(photonic crystal circuits) containing Kerr nonlinear dielectric media. The trans-
mission properties of a waveguide formed of linear dielectric material and containing a barrier of Kerr non-
linear material are determined and shown to exhibit anomalies similar to those due to gap solitons in layered
Kerr nonlinear optical media. Similar discussions for a nonlinear segment bisected by a waveguide composed
of linear dielectric media are given. The transmission properties of a junction formed from Kerr nonlinear
media connecting three semi-infinite waveguides formed from linear dielectric materials are also determined.
The transmission of electromagnetic energy through the junction is found to exhibit anomalies similar to those
due to gap solitons in layered Kerr nonlinear media. The transmission anomalies in the systems we study are
shown to arise from intrinsic localized modes that are found in the Kerr nonlinear media of the system.
Intrinsic localized modes are solitonlike modes that can only exist in nonlinear systems. Previous transmission
studies presented by us have concentrated on systems formed of linear media, and no previous transmission
studies have been presented by us on systems supporting intrinsic localized modes. The central focus of this
paper and new results presented are the study of resonant transmission anomalies in photonic crystal circuits
containing Kerr media and the identification of some of these resonances with intrinsic localized modes that
exist is the Kerr media.
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I. INTRODUCTION

Recently there has been much interest in photonic crystal
waveguides and circuits in two-dimensional photonic
crystals.1–14 The photonic crystal is a periodic array of cyl-
inders of linear dielectric media with axes that are arranged
on a two-dimensional lattice[see Fig. 1(a)]. Waveguides and
networks of interconnecting waveguides are introduced into
the photonic crystal by replacing some of its cylinders by
cylinders containing impurity dielectric materials. The impu-
rity cylinders are spaced at equal intervals along a row of the
photonic crystal, forming waveguide channels which in turn
can be interconnected to make circuits. The theory of these
structures, for channels composed of linear dielectric media
has been worked out in detail,5–7 and more recently some
discussions of the existence of intrinsic localized modes
(ILM ) in channels formed from Kerr nonlinear media have
been put forth.8–14 The ILM are solitonlike modes that can
only exist in nonlinear media. The present paper is concerned
with these more recent discussions on ILM in Kerr nonlinear
systems, presenting a theoretical discussion on how ILM
could be observed experimentally using the transmission
properties of photonic crystal circuits composed of linear di-
electric media and containing arrays of nonlinear sites
formed from Kerr nonlinear dielectric media.(These systems
differ from previously studied Kerr systems which were
composed entirely of Kerr nonlinear media.) In this Introduc-
tion we briefly review the method of difference equations
used by us to treat the electromagnetic field distributions and
transmission properties of photonic crystal waveguides and

circuits. This is followed by some remarks as to where cur-
rent work on photonic crystal waveguide and circuit systems
that support ILM stands. Finally, an outline of the theory to
be presented in this paper is given(including a summary of
ideas of resonant spectroscopy) as an overview of the calcu-
lations found in the text. The central focus of this paper and
new results presented are the study of resonant transmission
anomalies in photonic crystal circuits containing Kerr media
and the identification of some of these resonances with ILM
that exist in the Kerr media.

It has been shown that under certain circumstances the
electromagnetic modes in photonic crystal waveguides and
circuits are obtained as the solutions of a set of difference
equations.5–14 These equations relate the electromagnetic
fields within each of the impurity cylinders forming the
channels to one another. The solutions of the difference
equations give the channel fields for a wide variety of propa-
gating and localized modes bound to the waveguide and cir-
cuit channels. Knowing the channel fields, the fields through-
out all space are obtained by evaluating an integral
equation5–11 and the transmission properties of propagating
wave solutions are determined.

The difference equation approach describes the physics of
waveguides and circuits in terms of the solutions to a system
of equations that are easy to solve and that are similar to
those arising in the study of other physical phenomena.15–25

For linear dielectric waveguides the difference equations are
isomorphic to those describing excitations in phonon and
magnon systems. The solutions are propagating waves and
exponential states.5–11 For Kerr nonlinear dielectric
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waveguides the difference equations are isomorphic to those
encountered in the study of intrinsic localized modes(ILM )
in the vibrational properties of chains of atoms with nonlin-
ear interatomic interactions.8–10,15–25This means that, under
the proper conditions, ILM exist in photonic crystal
waveguides and circuits made from Kerr nonlinear media.
Due to the isomorphism that exists in the difference equation
method between photonic crystal systems and nonlinear vi-

brational systems, the difference equation theory offers a
natural approach to the study of ILM in photonic crystal
circuits containing Kerr nonlinear media.

Recently, as indicated above, a number of theoretical
treatments have been presented discussing the conditions
needed for ILM to exist in photonic crystal waveguides and
circuits made entirely from Kerr materials.8–14 (See Ref. 25
for a detailed review of this work.) The focus of the theory

FIG. 1. (a) Schematic drawing of square lattice photonic crystal. The cylinders are of dielectric constante0 and are embedded in vacuum.
The axes of the cylinders are parallel to thez-direction (perpendicular to the page) and are ordered in thex–y plane(page) on a square
lattice.(b) Schematic drawing of a waveguide channel with a barrier. Only the photonic crystal cylinders forming the channel are shown. The
cylinders of linear material are open and the cylinders of nonlinear material have filled centers.(c) Schematic drawing of an infinite
waveguide of linear media that perpendicularly bisects a Kerr segment. Only the photonic crystal cylinders forming the waveguides are
shown. The cylinders of linear material are open and the cylinders of nonlinear material have filled centers.(d) Schematic drawing of a finite
waveguide junction connecting linear waveguide channels. Only the photonic crystal cylinders forming the waveguide and junction channels
are shown. The cylinders of linear material are open and the cylinders of nonlinear material have filled centers.
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presented in this paper is to advance these discussions to
consider how ILM could be observed experimentally in lin-
ear dielectric photonic crystal waveguides and photonic crys-
tal circuits that contain barriers, segments, and junctions of
Kerr nonlinear media. It is suggested that ILM could be ob-
served in anomalies found in the transmission of electromag-
netic energy through these types of systems.(This introduces
a new aspect to our treatment of the transmission character-
istics of photonic crystal waveguides and circuits as our pre-
vious work focused on the transmission properties of sys-
tems formed from linear dielectric media. The transmission
properties of systems containing Kerr nonlinear media that
supported ILM were not addressed by us in our previous
work.) A number of transmission anomalies are found in the
nonlinear systems treated in this paper, and these anomalies
are shown to be directly related to ILM that only exist in the
Kerr nonlinearity of the materials forming the barrier or
junction scattering sites. The anomalies observed are similar
to (but not the same as) those associated with gap solitons in
layered nonlinear optical media.26–28 The ILM are a general
property of the nonlinear difference equations of the
waveguides, and the results given here can be generalized to
systems described by similar sets of nonlinear difference
equations, i.e., phonon, magnon, and other systems treated
by tight-binding Hamiltonian formulations. An interesting
aspect of the photonic crystal circuits is that they exhibit
ILM transmission anomalies in systems of higher topological
dimension than that of layered optical media.25–28

The method of study used in our discussions of ILM
transmission anomalies in Kerr nonlinear photonic crystal
circuits is similar to that used by Chen and Mills28 in the
study of gap soliton transmission anomalies in Kerr nonlin-
ear layered optical media. The systems treated by Chen and
Mills, however, are quite different than ours and the soliton
modes studied by Chen and Mills are quite different from the
ILM (solitonlike modes) studied by us. In this paper, the
transmission through and electromagnetic fields in a photo-
nic crystal circuit containing Kerr nonlinear media is solved
exactly. Transmission coefficient and field distribution plots
are generated numerically from these solutions.(The formu-
las of the exact solutions are very large and messy so they
are not listed here. A systematic way for generating the for-
mulae of the exact solution is given in the text.) Transmis-
sion anomalies are identified in the numerical data. The exact
electromagnetic field distribution in the Kerr media at the
transmission anomalies is determined from the exact solu-
tions. Approximate solutions for the ILM electromagnetic
fields in infinitely long Kerr nonlinear waveguides and pho-
tonic crystal circuits made completely of Kerr nonlinear me-
dia (from Refs. 7 and 8) are then matched with the exact field
distributions of the systems treated in this paper at the trans-
mission anomalies. In this way the transmission anomalies
are determined to be due to ILM in the barriers, segments,
and junctions.

In this approach, the resonant transmission is explained as
a type of hopping phenomenon. The fields incident from a
waveguide of linear dielectric media onto the Kerr nonlinear
barrier tunnel to the resonantly excited ILM in the barrier
and then tunnel from the ILM in the barrier to transmitted
waves in the waveguide of linear media on the other side of

the barrier. Without the assistance of the ILM intermediate
state the transition across the barrier would be much less
probable and the transmission resonance would not be
present.

An alternative rationale can be given for the transmission
method used by Chen and Mills in their study of gap solitons
and adopted here in our treatment of intrinsic localized
modes. In physics a variety of different types of resonant
scattering phenomena are observed. The resonances treated
by Chen and Mills and by us are closely related to one of
these types as described by a text that is commonly used at
many universities. In Sec. 1.4 of the text by Friedrich29 cer-
tain types of resonances that occur in atomic scattering are
discussed. In referring to these resonances Friedrich states
that “Resonances appear[when] ¯ a slight modification of
the Hamiltonian would lead to a bound state.” Because the
state is not quite bound in the system its lifetime is long(this
gives rise to the resonant cross section) but not infinite (as
per a real bound state). Our system is not an atomic physics
system, but we think that the same principle is applicable.
Consider the nonlinear layered media systems of Chen and
Mills and our nonlinear photonic crystal waveguide systems.
In the limit that these are of infinite extent, it is demonstrated
that solitons and ILM exist in these two systems. Next make
a slight modification to these infinite systems. This is done
by locating a soliton or ILM and modifying the systems in
the regions surrounding these modes. Go to a distance far
from and on either side of the the peak in the mode electro-
magnetic field distribution and cut off the ends of the non-
linear media. Finally, replace the cut off nonlinear media of
the old ends of the system by new ends formed from linear
optical media, e.g., let the Kerr nonlinearity be zero in the
two end regions. Only the portion of the nonlinear systems
containing the bulk of the highly localized field distributions
of the soliton and ILM is retained. Since the field distribution
of the modes is small in the parts of the systems that have
been changed, these changes should be small perturbations
on the modes. The excitations which were formerly bound
solitons and ILM should now be states of long but finite
lifetimes. They are resonant states that can couple to inci-
dent, transmitted, and reflected waves in the linear media
attached to the sides of the nonlinear Kerr segments. The
presence of the formerly bound soliton and ILM should show
up as resonant anomalies in the transmission coefficients of
the nonlinear segments for conditions under which the infi-
nite nonlinear systems would support solitons or ILM, re-
spectively. This is then another way of viewing the increased
transmission effects caused by the presence of the soliton or
ILM whose presence in the barrier facilitates resonant tun-
neling.

Resonant scattering occurs in a variety of phenomena ob-
served in atomic, solid state, nuclear, and high energy phys-
ics. Closely related to our barrier transmission problems are
transmission resonances in electronic tunnel junctions and
Josephson junctions. Resonances can be observed in elec-
tronic tunnel junctions when electrons tunneling through the
junctions interact with spins, atoms and molecules, or even
lattice vibrations in the non conducting junction
materials.30,31 Such resonant interactions show up as anoma-
lies in the current voltage characteristics of the junction, and
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these are essentially transmission anomalies. The Josephson
effect may be regarded as a resonant transmission anomaly.
The observation of most of these effects is through the de-
termination of the current(transmission) characteristics as a
function of potential(energy or frequency) and this is the
property generally used to fix the resonance. In the work of
Chen and Mills and here, as added proof of the resonant
scattering, the wave function within the barrier is presented
in addition to the transmission properties. This is to satisfy
the reader that not only does a resonance exist at the fre-
quency, dielectric constants, and Kerr parameters that we
would expect to see a soliton or ILM mode resonance, but
for this parametrization the barrier material supports a field
distribution that is very close to that of the soliton or ILM in
the infinite systems where these, respectively, exist as bound
states. In this paper we also show that off-tuning the system
from the ILM resonance conditions not only stops the trans-
mission resonance, but off resonance the fields in the Kerr
barrier are on longer distributed in the form of an ILM and
the maximum field intensity in the barrier is greatly reduced
from its value at resonance. It is not unreasonable to us that
these criterion are sufficient to classify the anomalies pre-
sented in Chen and Mills and in this paper as transmission
resonances arising from ILM. As a final note, we point out
that optical resonance transmission properties have recently
been applied to the study of excitonic resonances in two-
dimensional photonic crystal slabs.32 The transmission of
light is found in these studies to be affected by coupling to
excitons in the slab. These resonances are of a different type
than those treated by Chen and Mills and by us here, but the
use of resonance transmission ideas is similar.

ILM modes have only recently been observed in some
non optical experimental systems25–33 and these have been
one-dimensional. Some work on optical systems has very
recently appeared as discussed in the “note” following this
paragraph. Photonic crystal waveguides and circuits would
be good candidates for the observation of optical ILM. In
addition, due to the branchings and interconnecting nature of
photonic crystal circuits, these systems would be good for
the study of ILM in more topologically complex systems
than simple linear chains systems.

(Note: Since this paper was originally submitted for pub-
lication some experiments on ILM in parallel waveguide ar-
rays have been made and presented in Physical Review
Letters.34 The geometry and propagation characteristics of
light in these systems is quite different from those studied
here by us. In addition, many months after our original sub-
mission a feature article has appeared in Physics Today deal-
ing with the experimental observation of intrinsic localized
modes in a variety of discrete nonlinear system,35 including
some optical systems different than those considered here by
us. Our present paper focuses on proposing a method for the
observation of intrinsic localized modes in photonic crystal
circuits. These are a type of discrete nonlinear system. We
refer the reader to the Physics Today article of Ref. 35 for a
detailed review of experiments already done on other type of
discrete nonlinear systems including other optical systems.)

II. WAVEGUIDE EQUATIONS

Consider a square lattice photonic crystal formed from
linear dielectric media and its electromagnetic modes with

electric fields polarized parallel to the axes of the cylindrical
dielectric rods of the photonic crystal[see Fig. 1(a)]. The
photonic crystal lattice constant isac, the radii of the dielec-
tric cylinders isR, and the lattice sites in thex–y plane at
which the cylinder axes are located are labeled by integers
sn,md in the usual manner.5,6,8,9The axes of the cylinders are
parallel to thez-direction.

A waveguide is formed in the photonic crystal by replac-
ing a straight line array of cylinders with cylinders contain-
ing impurity dielectric media.1–14 The replacement cylinders
are equally spaced and their closest separation may be fur-
ther than nearest-neighbor along the direction of the wave-
guide channels, e.g., the closest separation between adjacent
replacement cylinders may be second or third or etc. neigh-
bor along the channel direction.5–9,25 If the electric field in-
side the impurity material of any given impurity cylinder
forming the channel can be approximated as a constant over
the impurity material of that cylinder(see Refs. 5–11 and 25
for a discussion of this point), then the modes of the wave-
guide are described by a set of difference equations.(A simi-
lar set of difference equations is generated in a treatment of
photonic crystal waveguides based on the so called coupled
resonator optical waveguide model.12,13) The general form of
the difference equations for such a straight waveguide of
slopes/ r in the x–y plane made from Kerr nonlinear media
is then8

Enr,ns= gfas0,0ds1 + luEnr,nsu2dEnr,ns+ asr,sdsEsn+1dr,sn + 1ds

+ Esn−1dr,sn−1dsd+ lasr,sdsuEsn+1dr,sn+1dsu2Esn+1dr,sn+1ds

+ uEsn−1dr,sn−1dsu2Esn−1dr,sn−1dsdg. s1d

Here d=asrî +sĵd for fixed integersr and s is the displace-
ment vector between nearest-neighboring impurity contain-
ing cylinders along the waveguide channel,n runs over the
integers, andEnr,ns is the electric field amplitude at the
snr ,nsd waveguide channel site. The coupling coefficients
as0,0d and asr ,sd are determined from the periodic geom-
etry and dielectric properties of the pure photonic crystal
without waveguide channels,g is a constant related to the
dielectric properties of the cylinders forming the waveguide
channel, andl is a parameter characterizing the Kerr nonlin-
earity of the material in the waveguide channel. In particular,
if l=0 the material forming the waveguide is linear dielec-
tric media, characterized byg. For a detailed discussion of
the relationships between thea’s the g, and the dielectric
constants of the system, impurity medium, geometry, and
electromagnetic Green’s functions of the photonic crystal,
see Refs. 5–9 and 25.

In this paper we are interested in the properties of the
ILM solutions arising from generalizations of Eq.(1) to a
number of topologically different systems. These are inde-
pendent of the nature of the physical system being described
and should be applicable to electromagnetic, phonon, and
magnon systems characterized by equations of the form of
Eq. (1) and its topological generalizations.

III. TRANSMISSION ANOMALIES IN WAVEGUIDES
CONTAINING A BARRIER OF KERR NONLINEAR SITES

Consider a waveguide along thex-axis of a square lattice
photonic crystal. The waveguide channel sites are labeled by
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sn,0d for n an integer. The propagation of energy in such a
waveguide formed of a linear dielectric and containing a
single barrier composed of a series of consecutive channel
sites containing Kerr nonlinear dielectric material is studied.
Energy in a traveling waveguide mode that is incident on the
barrier from its left-hand side is reflected and transmitted
through the barrier. During this process the incident wave
interacts with bound modes within the barrier material, lead-
ing to a tunneling process in which the bound mode is an
intermediate state assisting the transmission of energy
through the barrier. This is the photonic crystal waveguide
analogy of the reflection and transmission of light incident
on a finite periodically layered Kerr nonlinear medium con-
taining gap solitons.26–28 The gap solitons are found to give
rise to resonant anomalies in the transmission through the
layered medium.26–28 Such anomalies are also seen in trans-
mission through the waveguide barrier.

The media of the waveguide channel is linear dielectric
except for a barrier consisting of 2p+1 consecutive wave-
guide channel sites[see Fig. 1(b)]. These sites are composed
of Kerr nonlinear media and are labeledsn,0d for −pøn
øp. Outside this region, the channel sitessn,0d for n,−p or
n.p are formed of linear medium. The difference equations
for this system are obtained by generalizing from Eq.(1)
(Refs. 6,8) so that

En,0 = glfas0,0dEn,0 + as1,0dsEn−1,0+ En+1,0dg s2d

for nø−p−2 or nùp+2,

E±sp+1d,0 = glfas0,0dE±sp+1d,0 + as1,0dE±sp+2d,0g

+ gfas1,0dE±p,0 + las1,0duE±p,0u2E±p,0g, s3d

E±p,0 = gfas0,0dE±p,0 + las0,0duE±p,0u2E±p,0 + as1,0dE±sp−1d,0

+ las1,0duE±sp−1d,0u2E±sp−1d,0g + glas1,0dE±sp+1d,0, s4d

and

En,0 = gfas0,0dEn,0 + las0,0duEn,0u2En,0 + as1,0dsEn−1,0

+ En+1,0d+ las1,0dsuEn−1,0u2En−1,0+ uEn+1,0u2En+1,0dg
s5d

for −p+1ønøp−1. In Eqs.(2)–(5) g in the barrier may
differ from gl of the linear sites, and the nonlinearity of the
barrier is characterized bylÞ0.

In studying Eqs.(2)–(5) it is convenient to defineg
=gas0,0d andgl =glas0,0d. These parameters, respectively,
measure the strength of the on site coupling in the Kerr di-
electric and the linear waveguide channel. The ratiob
=as1,0d /as0,0d characterizes the relative strength of the
nearest-neighbor to the on site coupling. In this notation, for
example, Eq. (5) becomes En,0=gfEn,0+luEn,0u2En,0

+bsEn−1,0+En+1,0d+lbsuEn−1,0u2En−1,0+ uEn+1,0u2En+1,0dg.
A solution of Eqs.(2)–(5) for electromagnetic waves in-

cident on the barrier from the left is of the general form

En,0 = ueikn + ve−ikn s6d

for n,−p,

En,0 = xeikn s7d

for n.p, and

En,0 = ane
iun s8d

for −pønøp. Substituting into Eqs.(2)–(5) gives a set of
equations that are solved essentially exactly for the transmis-
sion coefficient,ux/uu2, at a fixed stop band frequencyv as a
function of g for fixed l. Within the portion of the wave-
guide channel made from linear media it is found that8

1 = glf1 + 2b coskg s9d

so thatgl is simply related tob and the wave number,k, of
the extended waveguide modes.

As an illustration, Eqs.(2)–(5) are evaluated using nu-
merical values for the difference equations coupling con-
stants for a particular model of a pure square lattice photonic
crystal that was studied in Refs. 8 and 9. The pure photonic
crystal used to generate these coefficients is based on a
square lattice photonic crystal of dielectric cylinders withR
=0.3779ac, e0=9, surrounded by vacuum. A waveguide is
introduced into the photonic crystal by replacing a complete
row of cylinders along thex-axis by cylinders containing
impurity material. The impurity material in each cylinder is
centered on its axes, is of square cross section with sides
oriented along thex- and y-axes, and has a cross-sectional
areaS=s0.02acd2. For the waveguide to support modes at the
stop gap frequencyvac/2pc=0.440(a frequency at the cen-
ter of one of the stop bands of the photonic crystal), it was
shown in Refs. 8 and 9 thatb=0.0869. The value ofb, for
fixed v, is the same for extended waves in waveguides made
from linear mediasl=0d as for ILM in waveguides made of
Kerr mediaslÞ0d. In the linear portion of the waveguide
Eq. (9) determinesgl needed to support a wave of wavenum-
ber k in the channel at fixedb. This gl sets the dielectric
constant needed to support the incident, reflected and trans-
mitted extended waveguide modes. In the Kerr nonlinear
barrier, substituting Eqs.(6)–(8) in Eqs.(2)–(5) givesu andv
in terms ofk, lx2, andg. Hereg is related to the dielectric
contrast in the Kerr portion of the waveguide channel.

To solve for the fields in the nonlinear barrier media, we
proceed as follows. First, the values ofk andb are fixed, and
gl is determined from Eq.(9). Next, the values ofl andx are
fixed. Equations(2)–(5), then determine successivelysap,upd
then sap−1,up−1d and so on down to the end of the barrier
media. The amplitudesu andv are solved for as the last of
the successive solutions, and the transmission coefficient is
computed. In the barrier media there is a region of solutions
exhibiting optical bistability. In this region we have always
chosen amongst the multiple field solutions so as to stay on
the same branch of the transmission hysteresis curve. The
solution outlined above parallels that commonly used to
compute the optical transmission through a linear layered
media.36

In Fig. 2 a plot is presented of the transmission through a
barrier of five sitessp=2d versusg for a mode of frequency
vac/2pc=0.440 (i.e., b=0.0869) and wave numberk=2.5.
In this case the barrier does not display optical bistability.
Results are shown for a number of values of the Kerr param-
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eter such thatlx2=0.0, 0.00125, 0.0025, or 0.00375 wherex
is the amplitude of the transmitted wave. The caselx2=0.0
corresponds to linear barrier media, and two resonances are
observed in its transmission data one atg=0.877 and another
at g=0.949. These are due to electromagnetic modes, bound
to the barrier, that assist the incident electromagnetic energy
in tunneling though the barrier. In thelx2=0.00125 case,
these two peaks appear to shift to lower valuesg=0.859 and
g=0.945 and a third peak appears atg=0.774. We shall see
below that the appearance of the resonance in thelx2

=0.00125 data atg=0.774 is related to an odd parity ILM.
Increasinglx2 to lx2=0.0025, the two upper peaks shift to
lower values ofg=0.832 andg=0.941 and the third(lowest)
peak is greatly decreased. Some additional peaks, not found
in the linear transmission data, are also observed off scale in
the data. These are not of interest to us here. Forlx2

=0.00375 the two upper peaks are atg=0.839 and g
=0.937, with the lower peak atg=0.839 greatly decreased in
magnitude from its value at smallerlx2. The third lowest
peak is hardly seen. Through this series of increasinglx2, it
is interesting to consider the lower of the two upper trans-
mission resonances. This occurs atg=0.877 forlx2=0.0, g
=0.859 for lx2=0.00125,g=0.832 for lx2=0.0025, andg
=0.839 forlx2=0.00375. The field intensity within the bar-
rier at the maximum of these transmission resonances is
closely related to that of the odd parity ILM in an infinite
Kerr waveguide. This is also the case with the resonance that
briefly occurs in thelx2=0.00125 system atg=0.774. In the
following we shall concentrate our discussions on these two
resonance peaks(the one arising from theg=0.877, lx2

=0.0 resonance and the one arising from theg=0.774,lx2

=0.00125 resonance) and show that they are related to odd
parity ILM.

The discussion concerning these two peaks will proceed
as follows: Both peaks are resonances in the transmission
coefficient of the system. By solving for the field intensity
distribution inside the nonlinear media in our transmission
problem a comparison is made with the field distribution of
the related ILM that would exist in an infinitely long Kerr

waveguide characterized by the same parameters of dielec-
tric constant, lattice parameter, Kerr parameter. For the two
transmission peaks we treat, it will be found that the fields in
the Kerr media at resonance transmission are almost identical
to the fields of the ILM in the infinite Kerr waveguide. Fur-
thermore, the ILM field distribution outside the Kerr media
in our transmission problem would be very small. The bulk
of the ILM field intensity is contained within the Kerr media
in our transmission problem. The upper of the two resonance
transmission peaks evolves from one of the resonance trans-
mission peaks in the linear system(at g=0.877,lx2=0.0). As
the Kerr nonlinearity becomes large enough it will be seen
that the field distribution of the upper resonance approxi-
mates that of an ILM and the Kerr part of the dielectric
develops into a field self-localizing trap, i.e., not only is the
field distribution of the ILM observed in the barrier but the
position dependent dielectric constant that self-localizes the
ILM in the infinite Kerr system is reproduced in the Kerr
barrier. In the case of the upper resonance the ILM fields are
not as tightly localized as in the case of the lower of the two
resonant peaks and the association with the ILM is less clear
cut. It is an indication, however, that ILM can evolve from
resonant modes of the linear system. The evolution of the
upper of the two peaks from the linear resonance is slow and
the fields in the Kerr barrier only begin to look ILM-like at
large nonlinearities in which the dielectric constant is
changed significantly by the field dependent Kerr contribu-
tion. For the upper peak the self-localizing effects of the Kerr
contribution to the dielectric constant are never as great as
they are for the lower of the two peaks. The lower of the two
resonant peaks(at g=0.0.774,lx2=0.00125) is better char-
acterized as an ILM resonance for two reasons:

(1) As the Kerr parameter is increased the transmission
resonance is seen to suddenly appear and then just as sud-
denly disappear. This is a different behavior from that of the
upper of the two resonant modes being discussed in this
paragraph. It indicates that the resonance arises only from the
self-localizing effects of the field distribution on the nonlin-
ear dielectric constant of the system with no other assistance.

(2) The field intensities of the fields in the Kerr media at
the lower resonance are essentially the same as the ILM in
the infinite Kerr waveguide. Seeing that both of the transmis-
sion resonances treated here occur at waveguide parameters
which sustain ILM and at resonance have the same field
intensity distributions in the Kerr barrier as ILM in the infi-
nite Kerr waveguides, we compare the maxima of the field
intensities in the Kerr media to the intensities of the incident
fields on the Kerr barrier. At resonance the fields inside the
Kerr barrier are seen to be much larger than the intensity of
the field of the waves incident on the barrier. For conditions
off resonance this will no longer be the case. In fact, the field
intensities in the Kerr media no longer are of the form of
ILM but have very small field intensities. Rather than pre-
senting numerous plots showing this, however, we prove this
point by studying the ratio of the maximum field intensity in
the barrier to the field intensity of the incident wave on the
barrier at and near resonance. This then is the line of argu-
ment that we shall now give below. We shall first present the
field intensities at resonance and then proceed in the order
listed above with the rest of our arguments.

FIG. 2. Transmission coefficient for a barrier of 5 sites versusg
(related to the dielectric contrast in the Kerr barrier) for an incident
wave with vac/2pc=0.440 andk=2.5. Curves are shown forlx2

=0.0, 0.00125, 0.0025, and 0.00375 labeled i, ii, iii, and iv,
respectively.
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In Fig. 3(a) a plot is given ofluEn,0u2 versusn for the
fields in the barrier of Kerr nonlinear medium at theg
=0.832,lx2=0.0025 transmission maximum. The maximum
field intensity in the Kerr medium is in the centersn=0d rod
of the barrier and corresponds toluE0,0u2=0.083. Compari-
son of this field distribution is made with that of the odd
parity ILM for luE0,0u2=0.083 in an infinite Kerr
waveguide.8 A reasonable agreement is found between the
fields from the barrier transmission data and the ILM results.
This indicates that the odd parity ILM is involved in the
resonant transmission process. The theory in Ref. 8, how-
ever, givesg=0.822 as the value ofg needed for an odd
parity ILM with a maximum peak intensityluEmaximumu2
=0.083 to exist in the infinite Kerr waveguide. This differs
from the valueg=0.832 at the transmission maximum in the
barrier transmission data. The discrepancy in the field distri-
butions and g values between the barrier transmission
anomaly and the ILM results from Ref. 8 accounts for the
resonance transmission coefficient being less than one. The
incident and transmitted field boundary conditions at the
edges of the barrier do not allow for the generation of a field
distribution in the nonlinear barrier that better simulates that

of the ILM in an infinite Kerr waveguide. This is also ob-
served in the asymmetry of the field intensity with respect to
the center of the barrier. In nonlinear media the fields and
dielectric constants determine each other self-consistently so
that boundary conditions can be especially important in de-
termining the fields in the nonlinear media. From the plot of
luEn,0u2 it is seen that the nonlinearity from the Kerr term is
large enough in this case to create a self-localizing contribu-
tion to the field dependent dielectric function, and the dielec-
tric function in the barrier is essentially the same as that in
the infinite Kerr waveguide supporting an ILM.

A stronger case for ILM resonant tunneling can be made
for the transmission intensity maximum atg=0.774 in the
lx2=0.00125 data. This does not appear to be related to ei-
ther of the two resonances in thelx2=0.0 plot. In Fig. 3(b)
the barrier field(exhibiting a field maximumluEmaximumu2
=0.207) is presented at this resonance and compared to odd
parity ILM results with luEmaximumu2=0.207 for the infinite
Kerr waveguide.8 In this case, the value ofg for the ILM to
exist in the infinite waveguide, from the theory of Ref. 8, is
g=0.772. This is close tog=0.774 of the transmission data.
In general the field profiles andg values of the transmission
data and infinite waveguide results in Fig 3(b) are in much
closer agreement than are those in Fig. 3(a). This indicates
that an ILM is involved in the resonant scattering process in
Fig. 3(b). In addition, from the plot ofluEn,0u2 it is seen that
the self-localization from the field dependent dielectric con-
tribution is more evident than for the case in Fig. 3(a). That
is why the resonance in Fig. 3(b) is a better example of
resonant scattering from an ILM than is the one in Fig. 3(a).
Again the dielectric function in the barrier essentially agrees
with that found in an infinite Kerr waveguide supporting an
ILM.

It is interesting to note that the barrier field intensities of
Figs. 3 at the transmission resonances are very large com-
pared to the intensities in the linear channels.(The fields in
the Kerr nonlinear channel sites that are adjacent to channel
sites formed from linear dielectric media are of the same
order of magnitude as the fields in the linear media of the
waveguide channels.) This can be seen from the peak inten-
sities at the center of the barrier which fall off rapidly to the
barrier edges. These intense field distributions at resonance
are a general property associated with the resonant excita-
tions of nonlinear modes in the barriers and junctions dis-
cussed in this paper.(The finite segment discussed in Sec. IV,
due to its geometry, is an exception to this.) Another inter-
esting property of the solutions of the difference equations is
that changingb.0 for fixed lx2 tends to shift the transmis-
sion peaks presented in Figs. 2 as functions ofg along the
g-axis but does not change their ordering along theg-axis or
the general ILM nature of the barrier field intensity distribu-
tion. This has been checked forb that are roughly double
those used in this paper. This is nice as the parameter in our
theory which is most sensitive to the geometry of the wave-
guide channel isb.

As a further proof of the resonant nature of the transmis-
sion anomalies we have made a study of the ratio of the
maximum field intensity in the Kerr barrier to the field in-
tensity of the incident wave in the linear media of the inci-
dent channel. This is denoteduEmaxu2/ uuu2, whereEmax is the

FIG. 3. Plot ofluEn,0u2 versusn in the Kerr barrier of Fig. 2 for:
(a) g=0.832,lx2=0.0025,(b) g=0.774,lx2=0.00125. The fields
from the transmission data are indicated by diamonds and the fields
from the infinite waveguide results in Ref. 8 are indicated by
crosses. The fields in(b) cannot be distinguished on the scale of the
plot.
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maximum field intensity in the barrier andu is defined in Eq.
(6). We have computed this ratio at resonance and then off
tuned the parameters of the system from the resonance and
observed the decrease in this ratio. Results of this study are
presented in Table I. The two resonances occur atg=0.832,
lx2=0.0025 andg=0.774,lx2=0.00125. In the table we first
fix g and varylx2 about the resonance. This would corre-
spond to varying the Kerr parameter or the field intensity of
the time-dependent fields traveling in the waveguide. The
decrease inuEmaxu2/ uuu2 is most pronounced for theg
=0.0774, lx2=0.00125 (lower resonance). Similarly, in a
second set of variationslx2 is fixed andg is varied about the
resonance.(This could be accomplished experimentally by
applying a time-independent uniform field to the Kerr mate-
rial in the barrier region. This would give a uniform shift to
g arising from the Kerr term in the dielectric.) The decrease
in uEmaxu2/ uuu2 is most pronounced for theg=0.774, lx2

=0.00125 resonance. These results are in agreement with our
view that theg=0.774,lx2=0.00125 resonance is the better
example of an ILM transmission resonance. Similarly, off
tuning effects are present in the upper resonance and for the
other data in this paper. For brevity we shall limit the pre-
sentation of data on the off-tuning of the resonance to the
waveguide barrier and the junction barrier treated in Sec. V.
The other systems studied in this paper have similar reso-
nance properties.

The results in Figs. 2 and 3 are for a system withl.0. In
this region ofl the system does not exhibit optical bistabil-
ity. By changing the sign ofl in the parametrization of Figs.
2 and 3, a region of optical bistability is obtained. Figures 4
present results corresponding to those in Figs. 2 and 3 but for
l of opposite sign. Plots are shown for solutions lying on the
upper branch of the bistable transmission coefficient curve.
In Fig. 4(a) the transmission versusg for lx2

=−0.0025 is presented and a transmission anomaly is ob-
served atg=0.8983. Theg=0.8983 peak corresponds to a
resonant transmission assisted by an odd parity ILM with
luEmaximumu2=−0.030. To see this in Fig. 4(b) −luEsn,0du2 ver-
sus n in the Kerr barrier is plotted forg=0.8983, lx2

=−0.0025, and a comparison is made with results from Ref.

8 for odd parity ILM with luEmaximumu2=−0.030 in the infi-
nite Kerr waveguide. The Ref. 8 data for an infinite Kerr
waveguide are in good agreement with data from the trans-
mission study for the field intensity in the Kerr barrier. As
with the discussion of the Fig. 3(a) data, theg needed to
support the ILM in the infinite nonlinear waveguide differs
from that found for the barrier transmission data. The theory
in Ref. 8 requiresg=0.843 for the ILM to exist in the infinite
Kerr waveguide and the barrier resonance data gives a value
g=0.8983. The discrepancy may be due to the finite size of
the barrier. Again, off tuning the resonance greatly decrease
the uEmaxu2/ uuu2 ratio in the Kerr barrier and demonstrates that
this is a true resonant scattering effect.

In Figs. 5 and 6 plots are presented, respectively, for the
transmission coefficient and the barrier fields for a Kerr bar-
rier of seven sitessp=3d. These results are for a region in
which there is no optical bistability. Figure 5(a) shows trans-
mission coefficient results plotted versusg for lx2=0.0 and
0.00025. A fourth peak, not present in the linear data, is
observed in the nonlinear data nearg=0.7914. This peak is
of significant amplitude only within the range
0.000125,lx2,0.000375, and is associated with the pres-

TABLE I. Barrier resonance and off-tuning study of
uEmaxu2/ uuu2.

Resonance g lx2 uEmaxu2/ uuu2 On or off resonance

0.832 0.00125 6.5 off

Upper 0.832 0.00250 16.9 on

0.832 0.00375 2.7 off

0.815 0.00250 6.7 off

Upper 0.832 0.00250 16.9 on

0.850 0.00250 6.1 off

0.774 0.00000 1.7 off

Lower 0.774 0.00125 155.6 on

0.774 0.00250 2.6 off

0.764 0.00125 1.4 off

Lower 0.774 0.00125 155.6 on

0.784 0.00125 10.3 off

FIG. 4. (a) As in Fig. 2 but forvac/2pc=0.440 andk=2.5 with
lx2=0.0 (labeled i) and lx2=−0.0025 (labeled ii). (b) Plot of
−luEn,0u2 versusn in the Kerr barrier of Fig. 4(a) for g=0.8983 and
lx2=−0.0025. The fields from the transmission data are indicated
by diamonds and fields from the infinite waveguide results in Ref. 8
are indicated by crosses.
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ence of an odd parity ILM in the Kerr barrier. In Fig. 5(b)
transmission data plotted versusg is shown forlx2=0.0 and
0.0015. A fourth transmission peak atg=0.7601 is observed
in the nonlinear data. It does not appear to be related to the
two transmission peaks in the linear transmission, but from
consideration of its field distribution in the barrier it is asso-
ciated with a pair of odd parity ILM in the Kerr barrier.
Figures 6 presentluEn,0u2 versusn for the fields in the barrier
at the fourth(lowest) resonance peaks in Figs. 5. A compari-
son of these field distributions is made with that of odd parity
ILM field data of Ref. 8 for an infinite Kerr waveguide. In
Fig. 6(a) the field distribution of the resonance atlx2

=0.00025 andg=0.7914 is plotted and compared with the
ILM data from Ref. 8 computed forluEmaximumu2=0.160.
(Note, the ILM exists in the infinite Kerr waveguide with this
amplitude providedg=0.7919.) A reasonable agreement be-
tween the two sets of results is found, and this indicates that
the ILM is involved in a resonant transmission process at this
anomaly. In Fig. 6(b) the field distribution of the resonance at
lx2=0.0015 andg=0.7601 is plotted. A comparison is made
of the right peak in the field distribution data with ILM data
from Ref. 8 computed forluEmaximumu2=0.273.(For an ILM
of this amplitude to exist in an infinite Kerr waveguide the

theory of Ref. 8 requiresg=0.7435.) It is seen that the ILM
data from Ref. 8 would give a reasonable fit to each of the
two peaks in the field distribution from the transmission data.
As the two peaks both have fields that are distributed parallel
in space, it appears the the tunneling in this case is due to a
pair of odd parity ILM.

IV. TRANSMISSION ANOMALIES IN WAVEGUIDE
PERPENDICULARLY BISECTING A KERR NONLINEAR

SEGMENT

As an example of another system in which ILM can be
resonantly excited, consider a infinite waveguide of linear
media along thex-axis that perpendicularly bisects a finite
segment of Kerr nonlinear waveguide channel oriented along
the y-axis [see Fig. 1(c)]. Guided wave modes in the linear
waveguide channel are reflected and transmitted in the linear
waveguide channel as they interact with the Kerr segment.
We will consider the calculation of the transmission and re-
flection coefficients of this scattering.

In this case the waveguide equations are given by

FIG. 5. Plots of the transmission coefficient for a barrier of
seven Kerr sites versusg at vac/2pc=0.440 andk=2.5. In (a)
results are shown forlx2=0.0 (labeled i) and 0.00025(labeled ii).
In (b) results are shown forlx2=0.0 (labeled i) and 0.0015(labeled
ii ).

FIG. 6. Plots ofluE0,nu2 versusn for the nonlinear barriers of
seven sites sites considered in Fig. 5. Results are presented for:(a)
lx2=0.00025 andg=0.7914(diamonds) with a comparison made to
odd parity ILM results from Ref. 8(crosses), and (b) lx2=0.0015
and g=0.7601(diamonds) with a comparison made to odd parity
ILM results from Ref. 8(crosses).
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En,0 = glfas0,0dEn,0 + as1,0dsEn−1,0+ En+1,0dg s10d

for unu.1,

E0,n = gfas0,0dE0,n + las0,0duE0,nu2E0,n

+ as1,0dsE0,n−1 + E0,n+1d+ las1,0dsuE0,n−1u2E0,n−1

+ uE0,n+1u2E0,n+1dg s11d

for p−1. unu.0,

E±1,0 = glfas0,0dE±1,0 + as1,0dE±2,0g

+ gas1,0dfE0,0+ luE0,0u2E0,0g, s12d

E0,0= gfas0,0dE0,0+ las0,0duE0,0u2E0,0

+ as1,0dsE0,1+ E0,−1dg + glas1,0dsE−1,0+ E1,0d

+ glas1,0dfuE0,1u2E0,1+ uE0,−1u2E0,−1g, s13d

E0,±p = gfas0,0dE0,±p + las0,0duE0,±pu2E0,±p+ as1,0dE0,±p71

+ las1,0duE0,±p71u2E0,±p71g. s14d

A solution of this system is obtained by substituting

En,0 = ueikn + ve−ikn s15d

for n,0,

En,0 = xeikn s16d

for n.0, andE0,n=an for pù unu. Here Eq.(15) represents
incident and reflected waves to the left of the Kerr segment,
and Eq.(16) represents transmitted waves to the right of the
Kerr segment.(Note, in the following calculations we im-
pose the symmetryan=a−n on the segment modes. Other
solutions withan=−a−n will not be considered.) This gives a
system of nonlinear equations that are solved for the field
amplitudes hu,v ,anj in terms of g=gas0,0d, b
=as1,0d /as0,0d, andlx2.

In Fig. 7 results are shown, respectively, for the transmis-
sion coefficient versust=lx2 and the fields in the segment
versus position in the Kerr segment. In these plotsp=3,
vac/2pc=0.440, b=0.0869, k=2.5, and g=0.772. Figure
7(a) presents results for the transmission coefficient of the
guided waves. The cusp in the transmission coefficient att
=0.1584 is associated with an odd parity ILM in the finite
Kerr segment withluEmaximumu2=0.235. To see this, in Fig.
7(b) a plot is given of the field intensity in the Kerr segment
as a function of site label,n, for the t=0.1584 transmission
data. A comparison is made with the fields, obtained from the
theory of Ref. 8, of an odd parity ILM in an infinite Kerr
waveguide withluEmaximumu2=0.235. Theg needed to sustain
the ILM in the infinite waveguide isg=0.760 and this com-
pares favorably with theg=0.772 of the resonant transmis-
sion data. The difference must come from the finite length of
the Kerr segment of the transmission data.

The cusp in the transmission data att=0.1584 corre-
sponds to a maximum of the ratiouE0,±1/E0,0u of the fields in
the Kerr segment taken as a function oft=lx2. It appears
that, at thet=0.1584 resonant excitation of the ILM, the
fields in the Kerr segment broaden their spatial distribution.
Off resonance(i.e., tÞ0.1584) the spatial distributions of the

fields, centered about the(0, 0) site, in the segment are nar-
rower. Equation(13) couples the waveguide modes to the
E0,±1 fields so that their broadening in the segment at the
resonance shows up as a cusp in the transmission coefficient.

The observation of a cusp rather than a peak in the trans-
mission is not unprecedented. In electron tunnel junction
spectroscopy such resonant cusps are often found in the cur-
rent versus voltage characteristics of the system.30,31 They
are observed in electronic tunnel junctions as anomalies in
the higher derivatives of the current with respect to the volt-
age. The resonant transmission in our case follows from the
observation of a transmission anomaly associated with the
resonant excitation of an ILM mode in the target material.
These are also the conditions that are counted in the obser-
vation of resonant transmissions in electron tunnel junction
spectroscopy.30,31

V. TRANSMISSION ANOMALIES IN KERR NONLINEAR
MEDIA JUNCTIONS

An infinite and a semi-infinite waveguide meet at a junc-
tion that forms a “T”.7 The infinite waveguide is along the

FIG. 7. Plot of (a) the transmission coefficient of the perpen-
dicularly bisected nonlinear segment versust=lx2 and(b) the field
in the nonlinear segment versusn for the cusp att=0.1584. In(b)
the fields from the transmission data are given by diamonds and
field from the ILM infinite Kerr waveguide results are given by
crosses.
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y-axis and the semi-infinite waveguide is along the positive
x-axis [see Fig. 1(d)]. The media of the waveguide channels
is linear dielectric except in the neighborhood of the junction
vertex where the channels are Kerr nonlinear media. The
nonlinear sites consist of the site at the center of the junction
vertex and thep (wherep is a positive integer) consecutive
sites of each waveguide channel out from the vertex site.

The waveguides and their junction are characterized by a
set of difference equations that are generalizations of Eqs.
(1). For the semi-infinite channel along thex-axis,7

Enr,0 = gnas0,0df1 + lnuEnr,0u2gEnr,0

+ gn−1asr,0df1 + ln−1uEsn−1dr,0u2gEsn−1dr,0

+ gn+1asr,0df1 + ln+1uEsn+1dr,0u2gEsn+1dr,0, s17d

wheren=1,2,3 ,̄ . Here the Kerr parameters andgn char-
acterizing the dielectric constants of the waveguide channel
sites are defined byln=l andgn=g if unuøp but ln=0 and
gn=gl if unu.p. (Here we use the same notation forg andgl
of the Kerr and linear media sites as used in Sec. III and IV.)
For the channel along they- axis,

E0,nr = gnas0,0df1 + lnuE0,nru2gE0,nr

+ gn−1asr,0df1 + ln−1uE0,sn−1dru2gE0,sn−1dr

+ gn+1asr,0df1 + ln+1uE0,sn+1dru2gE0,sn+1dr , s18d

where n= ±1, ±2, ±3 ,̄ , and at the junction of the two
channels

E0,0= g0as0,0df1 + l0uE0,0u2gE0,0

+ g1asr,0dfE0,r + E0,−r + Er,0g + g1l1asr,0dfuE0,ru2E0,r

+ uE0,−ru2E0,−r + uEr,0u2Er,0g. s19d

A solution to Eqs.(17)–(19) for a wave incident on the
junction from the semi-infinite channel along the negative
y-axis has the form

En,0 = E0,n = xeikn s20d

for n.p,

E0,n = ueikn + ve−ikn s21d

for n,−p,

En,0 = bne
ifn s22d

for 0,nøp, and

E0,n = ane
iun s23d

for −pønøp. In the case studied here, the transmitted
waves in the positivex andy channels are chosen to be of the
same form. Substituting into Eqs.(17)–(19) gives the trans-
mission coefficients at fixed stop band frequencyv (i.e.,
fixed b=as1,0d /as0,0d) as a function ofg for fixed l.

The transmission coefficient, 2ux/uu2, is computed using
similar methods to those used to study the barrier problem.
Values ofb andk are fixed andgl =glas0,0d is obtained from
Eq. (9). Specifying a value forlx2, Eqs.(20)–(23) are sub-
stituted into Eqs.(17)–(19) and the resulting equations
solved foru andv in terms ofg=gas0,0d, lx2, andb. The

solution proceeds by starting at the outgoing ends of the
junction and working back along the difference equations
through the junction to the end of the single incoming Kerr
channel.

In Fig. 8 the transmission coefficient for a junction with
p=2 is plotted vsg for b=0.0869(i.e., vac/2pc=0.440), k
=2.7 for variouslx2=0.0, 0.00075, and 0.00125. Thelx2

=0.00075 data exhibits a third peak atg=0.766 that is not
related to the peaks found in thelx2=0.0 and 0.00125 data.
In Fig. 9 a plot is presented of the fields in the Kerr media of
the junction as a function of the site indices for thelx2

=0.00075 data at theg=0.766 resonance.(Note that the field
amplitudes are the same in each of the outgoing junction
channels.) A comparison plot is made of the ILM fields in an
infinite waveguide made entirely of Kerr media.7 The ILM
solutions are from Ref. 7 for the case in whichluE0,0u2

FIG. 8. Plots of the transmission coefficient for a junction with
p=2 as a function ofg for vac/2pc=0.440 andk=2.7. In this case
there are one incident channel and two outgoing channels. Results
are show forlx2=0.0, 0.00075, and 0.00125 which are labeled,
respectively, i, ii, iii. A large third resonance peak is observed in the
g=0.00075 data atg=0.766.

FIG. 9. Plots ofluE0,nu2 (diamonds) for the junction transmis-
sion versusn at theg=0.766 resonance of thelx2=0.00075 data.
For comparison, ILM results from Ref. 7(crosses) for the junction
of three semi-infinite Kerr nonlinear waveguides with
luEmaximumu2=0.194 are also shown.
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=0.194. The value ofg needed to support the ILM in the
infinite waveguide is from Ref. 7 given byg=0.778. This
compares favorably withg=0.766 of the resonance in Fig. 8
and indicates that the transmission resonance is related to the
excitation of an ILM in the nonlinear media of the junction.

A feeling for the distribution of the field intensities in the
Kerr barrier at and off resonance can be obtained by com-
puting the ratio of the maximum field intensity in the Kerr
barrier to the field intensity of the incident wave on the bar-
rier in the linear dielectric waveguide. In Table II these re-
sults are presented for the resonance atsg=0.766,lx2

=0.00075d and for a sequence of off tuned systems. The off
tuning is done first by fixingg=0.766 and varyinglx2 about
the resonance and then by fixinglx2=0.00075 and varyingg
about the resonance. It is found that:(1) The fields in the
Kerr barrier at resonance can be much larger than the inci-
dent field intensity, and(2) small changes inlx2 for fixed g
or small changes ing for fixed lx2 can quickly off tune the
system from resonance.(Changes inlx2 andg can be made
as per our discussion of the Kerr barrier in Sec. III.) These
effects are large at small changes in the system parameter for
the junction resonance and give strong proof of the correct-
ness of our association of theg=0.766,lx2=0.00075 reso-
nance with the excitation of an ILM.

VI. CONCLUSIONS

The transmission properties of a number of different Kerr
nonlinear targets within a system of linear dielectric photonic
crystal waveguides have been studied. These include barri-
ers, bisected barriers, and junctions. For these calculations,
the frequency of the guided waves in the linear channels are
fixed and the transmission through the targets are computed
as a function of the dielectric constant of the target materials
(g), the transmitted wave amplitudex, and the Kerr param-
eter sld. Resonances are observed in the transmission data
due to bound states in the barrier media. These occur in both
linear and Kerr target materials. The Kerr targets in general
exhibit more resonances than the linear media. Some of these
are identified with ILM structures in infinite Kerr
waveguides and junctions formed from three semi-infinite
Kerr waveguide. The best correspondences with ILM solu-
tions are made for systems with largeluEmaximumu2. This re-
sults in large changes of the target dielectric properties due to
the Kerr nonlinearity. In such cases, the shape of the pulse is
determined by the nonlinearity to a great extent, and the

pulse is self localized by the dielectric profile it induces in
the Kerr media.

Five interesting aspects of these transmission processes
are: (1) Photonic crystal circuits offer a more topologically
diverse set of targets exhibiting soliton related transmission
resonances than do layered media.(2) The ILM-like solu-
tions can be used to develop large field concentrations in the
Kerr target materials.(Note: The field in the Kerr nonlinear
channel sites that are adjacent to channel sites formed from
linear dielectric media is of the same order of magnitude as
the field in the linear media of the waveguide channels.) This
may be of interest for applications.(3) The resonances ob-
served in the transmission data of the nonlinear barriers and
junctions can evolve, as the Kerr parameter increases from
zero, from bound state resonances in the linear counterparts
of these systems. Additional resonances are also found that
do not originate from bound states in linear counterparts of
the Kerr nonlinear barrier and junction systems.(4) The gen-
eral features of the plot of the transmission coefficient versus
g are determined to a great extent bylx2. For fixedlx2, the
parameterb just scales the resonance peaks along theg-axis.
(5) The transmission data offers an experimental method of
observing ILM modes in a new type of optical system. The
resonances arising from the ILM can be off tuned by varying
the field intensities of the propagating waves in the wave-
guide channels or by the application of a uniform time-
independent electric field to the Kerr media.

It is hoped that the results presented here will stimulate
interest in nonlinear waveguides and circuits of waveguides
in photonic crystals. The treatment involves a simple theory
which can be quickly and easily solved for many circuit ge-
ometries. It provides initial ideas of what properties may
exist in such systems. Recently, some experiments have mea-
sured intrinsic localized modes in nonoptical system,25,33and
most recently in an array of optical waveguides.34,35Photonic
crystal circuits offer a system in which to observed ILM
optically. Just as optical gap solitons were predicted in opti-
cal layered media before they were originally observed ex-
perimentally(see Ref. 25 for a review of this work). It is
hoped that the current work will lead to observation of ILM
in photonic crystal circuits.

To conclude, we emphasize a few points upon which our
presentation has been based. The resonances studied here are
identified with ILM as:(1) They occur when the Kerr media
barrier (finite junctions) satisfies conditions approximating
those under which a system of infinite Kerr waveguides
would support ILM excitations.(2) Off tuning the resonant
conditions of the Kerr media of the barrier(finite junctions)
so that the infinite Kerr systems would no longer support
ILM turns off the transmission enhancement and changes the
fields in the Kerr media of the barrier(finite junctions) so
that they no longer resemble those of ILM.(3) At resonance
the Kerr contributions to the dielectric constants in the Kerr
barrier (junction) is a large self-localizing contribution ap-
proximating that found in infinite Kerr systems containing
ILM. (4) At resonance the field intensities outside the Kerr
barrier (junction) are small(i.e., replacing the linear dielec-
tric media outside the barrier or junction with Kerr dielectric
would be a small perturbation changing the resonant state to
a bound state.). The results presented in this paper are for

TABLE II. Junction resonanceuEmaxu / uuu2 on and off resonance
tuning.

g lx2 uEmaxu2/ uuu2 On or off resonance

0.766 0.00050 0.70 off

0.766 0.00075 101.40 on

0.766 0.00100 0.32 off

0.760 0.00075 2.28 off

0.766 0.00075 101.40 on

0.770 0.00075 8.52 off
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small Kerr systems(small number of Kerr sites) and for
small Kerr parameters,l. We have chosen small systems in
order to make the calculations easier. Nonlinear systems tend
to be difficult to treat due to the great variety of complex
behaviors they can exhibit.(This can be true for systems
described by seemingly simple sets of nonlinear equations,
e.g., remember the study of chaos. Remember, also, that even
simple sets of nonlinear equations can display multiple solu-
tions.) Beginning our search on a system with a small num-
ber of sites and for small nonlinearities allows us to more
easily get a handle on classifying the behaviors exhibited.
This, however, has limited us to the treatment of small pulse
like excitations of the odd parity ILM type as these fit into
the small Kerr barriers we have used. Nevertheless, it is
known from our earlier would on ILM that odd parity ILM
can occur as very narrow pulses so that we have had a high
probability of observing these. Even parity ILM generally

extend over a greater number of sites than do odd parity ILM
are less probable to be found in small systems, and have not
been observed in the treatment given here. As found in the
work of Chen and Mills, large barriers can exhibit a complex
behavior involving a variety of multiple pulses. In addition,
the variety of multiple solutions can be a complication. We
have chosen to limit the size of our system as we thought it
useful in an initial presentation regarding single ILM pulses
in a discrete nonlinear system.
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