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We explore the successes and failures of the local-density approximation(LDA ) in predicting the attractive
force and energetics of attraction between two jellium metals. We model the metals by two very thin slabs, and
follow the energetics at all separationsD from the van der Waals(vdW) regime at largeD through to metallic
bonding asD→0. We compare LDA results with calculations including exact exchange and microscopic
nonlocal random-phase-approximation-type correlation energy: only these latter calculations include dispersion
(van der Waals) forces correctly. We show how this error of LDA at large separations leads also to errors even
at smaller separations outside the vdW regime.
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I. INTRODUCTION

Ground-state electronic density-functional theory1 has
been a mainstay of condensed matter theory for many years.
In its local form [local-density approximation2 (LDA )] and
in various types of generalized gradient approximation
(GGA, e.g., Ref. 3), it has provided many-electron ground-
state energies of a wide range of systems, with sufficient
accuracy to permit practical prediction of structural proper-
ties. Currently, there is growing interest in the structural en-
ergetics of soft condensed matter, with applications ranging
from a clean energy economy(via hydrogen storage in
graphenes) through polymer properties to possible issues in
biological systems. In these soft systems the weak dispersion
or van der Waals(vdW) forces are often believed to be im-
portant. Here the LDA/GGA potentially run into problems
because it is known that these approximations completely
miss the dispersion interaction between distant systems
whose electronic densities do not overlap(see, e.g., Ref. 4).
The situation is less clear where electron clouds overlap. For
example, there is a school of thought that models interactions
of graphitic systems using vdW force models.5 On the other
hand, another school finds that the LDA is good for graphitic
systems near equilibrium geometry, regardless of the pos-
sible presence of vdW interactions.6 [The same is not true for
the GGA(Refs. 7 and 8), for reasons that are at least partly
understood.9] A resolution of this issue regarding use of the
LDA for soft layered systems is clearly important, if the
current development of soft-matter physics is to progress op-
timally.

In this connection, an archetypal problem is the energetics
of a pair of infinite parallel graphene planes as a function of
their separation distanceD. This problem has recently been
examined using nonlocal random-phase-approximation
(RPA)-like formalism, but in a highly approximate form.7

Unfortunately this problem appears to be too delicate for this
approximate approach, as different approximations within
the same framework7,8 gave significantly different binding
energies. It therefore seems that an unequivocal resolution of
the LDA issue will require nonlocal correlation theories to be
evaluated numerically without approximation, at least for a

few benchmark cases. This appears to be barely within reach
of current computational technology, and is presently under-
way in more than one group, for the case of graphene planes
and bulk graphite. Initial numbers appear to confirm the deli-
cacy of the problem.

The present paper contributes to this field by using a sim-
pler system that has some similarity to a pair of graphene
planes, but that is much more easily solvable numerically.
Specifically, we treat a pair of parallel nearly two-
dimensional(2D) jellium metal slabs. Such problems with
one-dimensional spatial inhomogeneity have recently be-
come amenable to analysis via microscopic nonlocal corre-
lation theories.10–13 Our thin jellium slabs share an essential
feature with a pair of graphene planes, namely an extreme
anisotropy of the electronic response parallel and perpen-
dicular to the layers. In the case of our jellium slabs, the
response is free-electron-like parallel to the planes—i.e., we
have a pair of nearly 2D metals. The isolated graphene layes
arezero-gapinsulators in the plane, again with extreme an-
isotropy, and they become highly anisotropic weak metals in
the overlapped configuration of bulk graphite. For our sim-
pler system we will show that the failure of the LDA to
obtain the vdW energy at large separationsD also has reper-
cussions for its performance near to the equilibrium separa-
tion. While this cannot simply be taken across to the gra-
phitic problem, it certainly sheds significant doubt on the
validity of LDA for layered systems such as stretched graph-
ite.

The present work also touches on another current contro-
versy, concerning the surface energy of simple metals. The
LDA provided the first reasonably realistic first-principles
predictions14 of simple-metal surface or cleavage energiess.
The initial step in these predictions was a calculation for the
jellium or electron-gas model in which the discrete ions are
replaced by a uniform positive background. The jellium sur-
face energyssrsd is a fundamental property of the electron
gas, and continues to attract considerable interest and
controversy9,15,16 because of the inhomogeneous many-
electron exchange and correlation physics that it embodies.
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of the electron gas is traditionally specified in terms of the
dimensionless Wigner-Seitz radiusrs and the Bohr radiusaB.

ssrsd can be obtained in principle from the work 2ssrsd
=−Ecrosssrs,D=0d done per unit area, in separating two infi-
nitely thick jellium slabs from contact atD=0 (metallic
binding) through to infinite separation,D→`. In fact the
whole binding curveEcrosssrs,Dd is of interest, giving the
variation of the total electronic energy per unit area of two
slabs, as a function of the separationD between the near
edges of the positive jellium backgrounds. Naturally this
curve reflects information about the metallic binding phe-
nomena occuring for the regionD, a few Angstroms, where
the electronic densities overlap. Equally, however, it exhibits
van der Waals forces occuring at larger distances for which
there is little or no overlap. The former regionD→0 might
be considered a natural case for the LDA because of a rela-
tively slow spatial variation of the densitynszd. In the oppo-
site limit, D→`, the vdW force is dominant: the LDA and
related GGA’s fail to describe this at all. There are relatively
simple analyses that can deal adequately with this distant
region, however, either via random phase approximation or
via a hydrodynamic approximation to the RPA response
functions. These approaches agree in predicting an interac-
tion energy proportional toD−5/2 for thin slabs and toD−2 for
thick ones, in the region where overlap is negligible but elec-
tromagnetic retardation is not significant.4,11,17The interme-
diate region is therefore of most interest, and indeed we have
recently argued11 that a reliable analysis of this region re-
quires a very nonlocal electron correlation model of the in-
homogeneous RPA class, or beyond. Using this approach we
showed,11 for the casers=2.07 and for very thin jellium
slabs, that the correlation energy is very poorly given by the
LDA at all separations.

The present paper extends this type of analysis to thetotal
electronic binding-energy curves and force curves of two
very thin jellium slabs at a range of metallic electron number
densities. For the RPA and RPA-like calculations, we in-
cluded exact exchange. For the LDA calculation, local ex-
change is added to the very poor local correlation energy. As
frequently occurs in LDA calculations, we find a near can-
cellation between the errors in local exchange and local cor-
relation. This yields a relatively good performance for the
total energy near the equilibrium separation. We show in the
present paper that this holds for a range ofrs values. As is
well known, the LDA surface energy is surprisingly good,
despite the failure of LDA to obtain any vdW force at large
separations. Our results show, however, that the binding
force FsDd is often overestimated by LDA at intermediate
separationsD, then underestimated at largeD, resulting in a
relatively good contact or surface energy from the integral
eFsDddD.

In fact, given that the LDA misses the distant vdW force,
it must necessarily overestimate the force at intermediate dis-
tance, in order to achieve the good energy that it sometimes
does do, near to the equilibrium separationD0. That is, LDA
cannot obtain both a good equilibrium energy(related to the
surface energy) and a good binding force curve. We will
quantify this general argument below, finding that these con-
cerns are indeed significant for thin jellium slabs in the
higher range of metallic densities.

II. METHODS

We solve the two-layer jellium problem within a highly
nonlocal RPA-like correlation energy theory that treats vdW
and other forces seamlessly on an equal footing. Of course
the absolute correlation energies for our slab system from the
RPA are not particularly good, since in general the RPA
treats short-ranged correlations crudely, and typically overes-
timates correlation energies as a result. This behavior is well
known from the uniform electron gas, for example. However,
it is now also well known thatdifferencesin the RPA corre-
lation energy for different inhomogeneous configurations
(with the numberN of electrons fixed) are typically much
better(see, e.g., Ref. 18). One such energy difference is the
cross energy(or slab-slab interaction) to be discussed below.
In fact for the parallel slab problem at hand, one can show
analytically, from a form of thef-sum rule,19 that the fre-
quencies of the long-wavelength coupled plasmon modes
that give rise to the distant vdW interaction are unaffected
when one supplements the RPA screening equation with any
spatially short-rangedxc kernel fxc. Thus RPA gives the cor-
rect plasmon zero point energy for well separated slabs, in
accord with thef-sum rule, and this is what creates the vdW
energy. In earlier work12 we added a local energy-optimized
xc kernel in the RPA-like screening equation of time-
dependent density-functional theory. We verified that this
made no difference to the distant vdW interaction between
jellium slabs within the adiabatic-connection-fluctuation-
dissipation approach, as must be so from the argument just
sketched. More importantly, we found that the addedxc ker-
nel had essentially no effect on the jellium slab interaction
even down to the bonded regime with metallic contact. Thus
there is good evidence that the RPAxc energy is essentially
perfect for the energy versus separation curves of these thin
jellium slabs. Any violation of this conclusion(at large sepa-
rations at least) would require a long-ranged part of the
exchange-correlation kernelf-xc relating to motion parallel
to the planes. Again, such contributions are known for inho-
mogeneous systems20–22 but seem unlikely here because of
the homogeneity parallel to the layers. Thus, except where
noted, in what follows we will treat the RPA correlation en-
ergy differences as the benchmark for testing more approxi-
mate theories.

Our primary aim was to calculate the groundstate energy
of two juxtaposed thin jellium slabs as a function of slab
separationD, using the nonlocal RPA and related methods.
The positive jellium background charge density is of form
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This represents two parallel slabs of positively charged jel-
lium background, each having thicknessL measured in thez
direction, with their near edges separated by distanceD. The
slabs are of infinite extent in thex and y directions. Our
system is thus a crude(jellium) model of a pair of very thin
juxtaposed metal slabs. A neutralizing amount of fully inter-
acting electron gas is added to this jellium background. We
are attempting here to understand the limitations of the LDA,
not to model the detailed energetics of real metals. In real
metals the energetics of slab separation will depend on de-
tails of lattice distortions, and could vary widely between
metals of similar electron number density, because of differ-
ent lattice structures and pseudopotentials. In our jellium
model there is no lattice distortion physics, and the energies
are smooth functions of electron density across the metallic
range. A sampling atrs=2.07,4.0, and 6.0 therefore suffices.

The steps in our procedure were as follows:
(i) For each slab charge densityn0 parametrized by the

Wigner-Seitz radiusrs [Eq. (1)], we used a single fixed slab
thicknessL. To describe the ground-state electron density
nszd, we solved the Kohn-Sham(KS) LDA equations self-
consistently for each slab separationD. For the uniform-gas
correlation energy«csnd we used the PW92(Ref. 23) param-
etrization, in the slabs withrs=4.0 andrs=6.0. (These were
new calculations for the present work.) In the slabs withrs
=2.07 we took all data from previous runs.24 In the latter
case we had used the Wigner parametrization of«csnd. The
ground-state electron-density profilenszd and Kohn-Sham
potential VKSszd are given in Fig. 1 forrs=2.07 a.u.,L
=5.0 a.u.,D=10.0 a.u. The KS potentials from the Wigner
and PW92 parametrizations are virtually identical, and the
densities are not distinguishable at all on the scale of the
figure. This suggests that the effect of using different param-
etrizations of localxc is not significant compared with the
effects of nonlocal exchange and correlation to be discussed
below.

The electron clouds overlap at smallD values, giving a
metallic bond. The overlap decreases exponentially at large
separations. At very large separationssD@ rs,D@Ld there is
negligible overlap and we are in the pure vdW attraction
regime. Here electron hydrodynamics gives accurate answers
for the vdW energy via the zero point energy of coupled
two-dimensional plasmons, and agrees with microscopic
RPA calculations.(See Refs. 4 and 25.) Thus a detailed mi-
croscopic RPA calculation would not be needed if merely
this asymptotic regime were under study. We wished to look
at intermediate and small separations as well, however, so we
needed to perform microscopic response calculations as de-
scribed below.

(ii ) Next, the Kohn-Sham(independent-electron) density-

density response functionxKSsv= is,qi ,z,z8d was calculated
for a range of surface-parallel wave vectorsqi and imaginary
frequenciesv= is. This is the dynamic density-density re-
sponse of independent electrons moving in the potential
VKSszd. It was obtained as a sum over occupied eigenfunc-
tions f jszd and eigenvalues« j of the KS potentialVKSszd:26

xKSsv = is,qi,z,z8d

=
− 2m

p2"2 o
j occ

fiszdfisz8dE
−kj

kj

dkx
Îkj

2 − kz
2

3HcRs«+,z.dcLs«+,z,d
Ws«+d

+ f«+ → «−gJ . s2d

Herekj
2=2msm−« jd /"2, while z. sz,d is the greaterslesserd

of z andz8. The complex energies in Eq.s2d are

«± = ± "is + « j +
"2

2m
s2kxqi − qi

2d.

The right and left solutionscR, cL arise from construction of
the one-dimensional one-particle Green function. They obey
the Schrodinger equation with potentialVKS at complex
energy «=«±, with boundary conditionscRsLd→0 as
z→`s−`d. Their Wronskian

Ws«d = cRdcL

dz
− cLdcR

dz

is independent ofz, as can be verified from the fact thatcR

andcL are Schrodinger solutions at the same energy«.
(iii ) The RPA or RPA-like interacting response was cal-

culated by solving the Dyson-like screening integral
equation27

FIG. 1. (Color online) Ground-state electron number density
nszd and Kohn-Sham potentialvKSszd for two neutral jellium slabs
each of thicknessL=5 a.u. with the near edges of the jellium back-
ground separated byD=10 a.u. Solid lines: Wignerxc used as input
to the LDA. Small crosses: PW92xc used as input to the LDA(for
the potential only: in the case of the density plot, the Wigner and
PW92 results are not distinguishable on the scale of the diagram).
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xl = xKS+ xKS* slU + fxcld * xl, s3d

where the star represents convolution in the space variablez.
In the present geometrys3d becomes a one-dimensional in-
tegral equation which can be solved for the interacting re-
sponsexls:

E
−`

`

«sz,z88dxlsqi,z88,z8,v = isddz88 = x0sqi,z,z8,v = isd.

s4d

Here

« = I − sVcoul + fxcd * x0s, s5d

i.e.,

«sz,z88d ; elsqi,z,z88,vd

=dsz− z8d −E F2pe2l

qi
exps− qiuz− z1ud

+ fxclsz,z1dGx0sqi,z1,z8,v = isddz1. s6d

(iv) The resulting interacting responsexl was substituted
into the exact adiabatic connection–fluctuation-dissipation
(ACF/FDT) formula for the exchange-correlation energy of
an inhomogeneous electron gas:28–30

Ec = −
"

2p
E

0

1

dlE
0

`

dsE d3rd3r8H e2

urW − rW8u
fxlsrW,rW8,v = isd

− x0srW,rW8,v = isdgJ . s7d

This result follows by combining the adiabatic connection
formula sACFd with the zero-temperature fluctuation-
dissipation theoremsFDTd. In Eq. s7d, xlsrW ,rW8 ,v= isd is the
imaginary-frequency Kubo density-density response function
of the whole system, with an additional external potential
VlsrWd added so as to maintain the truesl=1d ground-state
densitynsrWd in the presence of a modified electron-electron
interactionlVcoul;le2/ urW−rW8u. Thel=0 responsex0 is thus
the Kohn-Sham density-density response: i.e., it is the re-
sponse of independent Fermions moving in the groundstate
Kohn-Sham potentialVKSsrWd, the latter being the one-particle
potential required to produce the true interacting groundstate
density when acting on independent Fermions. In practice
the constant-density constraint is easily implemented: we
simply use the same KS response from itemsii d above, for
all values ofl in Eq. s3d ssee also Ref. 24d.

In the present geometry, Fourier transformation in thex
andy direction converts the ACF/FDT Eq.(7) into

Ec/A = −
"

2p
E

0

1

dlE
0

`

dqiJcsqi,ld, s8d

whereA→` is the surface area and

Jcsqi,ld =E
0

`

jcsqi,s,ldds, s9d

with

jcsqi,s,ld = 4p2e2E
−`

`

dzdz8 exps− qiuz− z8udfxlsqi,z,z8,isd

− x0sqi,z,z8,isdg. s10d

In practical calculations of the correlation energy, it is not
necessary to solve explicitly forxl. Equation(10) can alter-
natively be written as

jcsqi,s,ld = 4p2e2E
−`

`

dz2qifdnlsz,zd − dn0sz,zdg. s11d

Here

dnlsz1,z2d =E dz8xlsz1,z8,qi,isd
exps− qiuz8 − z2ud

2qi

=E el
−1sqi,z1,z88,vdx0sz88,z8,qi,isd

3
exps− qiuz8 − z2ud

2qi
dz88dz8 s12d

is the density perturbation at positionz1 induced by a sinu-
soidally modulated sheet of external charge placed at posi-
tion z2. In practice we solved this by discretizing the space
integrations on the same even spatial grid used previously to
tabulatex0. We inverted the discretizedel once for each set
of valuessqi ,s,ld by LU decomposition.

The correlation energy approach described here involves
significant numerical computation, and accordingly we ap-
plied it to thin jellium slabs rather than thick or semi-infinite
ones, in order to minimize the computational cost.

For most of the calculations reported here, the exchange-
correlation kernelfxc in Eq. (3) was taken as zero, yielding
the pure RPA response. Forrs=4.00, however, we also report
the response using the “energy optimized localxc kernel”
fxc
enopt described in Ref. 12. This is local and frequency inde-

pendent but has the following desirable property: when ap-
plied to the uniform electron gas it yields a response that
gives the exact correlation energy when put into the
adiabatic-connection-fluctuation-dissipation formula(7). Al-
though the inclusion offxc

enopt significantly affected the abso-
lute correlation energy, it had essentially no effect on the
“cross” or “interaction” energy between the slabs. See Eq.
(14) and also the open circles in Fig. 2(b). Consequently we
judged that localxc kernels of this kind would not make a
significant difference to the quantities of interest here, and
we used only the pure RPA for the rest of our working.
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Similar conclusions had already been reached forrs=2.07 in
our earlier work.12

The exchange energy of the KS orbitals can be obtained
as

Ex = −
"

2p
E

0

1

dlE d3rd3r8F e2

urW − rW8uSE0

`

x0srW,rW8,v = isdds

− nsrWdd3srW − rW8dDG , s13d

wherensrWd is the ground-state electronic density. We found
this useful as a test of the method, but for production runs we
evaluatedEx directly from overlap integrals using the occu-
pied KS orbitals. The total energy is

E = Ts + Eext+ ENH + Ex + Ec,

where Ts, Eext, and ENH are, respectively, the Kohn-Sham
kinetic energy, the interaction between electrons and the
positive background, and the “classical” or naive Hartree
electron-electron energy.

We define the cross-energy(interaction energy, attraction
energy) EcrosssDd between the two slabs as the energy per
unit area required to bring the slabs from infinite separation
to finite separationD:

EcrosssDd =
1

A
fEsDd − EsD → `dg. s14d

If the slabs were infinitely thicksL→`d then the magnitude
of EcrosssD=0d would simply be twice the surface energy,

EcrosssD = 0d = − 2s for L → `.

Because our slabs are actually very thin, our quantity
EcrosssD=0d does not exactly give the surface energy. Also
note that, by its definition,EcrosssDd→0 asD→`. It can be
shown4,11,25 that in the nonretarded RPA, the coupling of
two-dimensional plasmons on slabs of finite thickness im-
plies that this decay of the cross energy occurs via a nonin-
teger power law

EcrosssDd ~ − sconstdD−5/2 as D→ `. s15d

It is also known that adding any short-ranged exchange-
correlation kernelfxcsrW ,rW8d into the RPA screening(self-
consistency) equation does not alter the behavior given in
Eq. (15). This is essentially because the asymptotic force is
determined by the dispersion of the quasi-two-dimensional
plasmons at small wave number, and this in turn is pre-
scribed by a form of thef-sum rule.4,19

III. NUMERICAL CONSIDERATIONS

The convergence parameters affecting our numerical re-
sults are as follows:

(i) Groundstate calculation.In generating the ground-
state densitynszd and KS potentialVKSszd via standard theory
(see, e.g., Ref. 19) we solved a one-dimensional Kohn-
Sham-Schrodinger equation using a collocation method in
position space. The spatial step sizedz in the direction per-
pendicular to the layers was chosen to ensure convergence of
n to 10−6 of the bulk density, and ofVKS to 10−6 of the bulk
Fermi energy«F. At rs=2.07 it was found thatdz=0.15 a.u.
was sufficient for this. The KS eigenvalues«i(for motion
perpendicular to the layers) were obtained by shooting and

FIG. 2. (Color online) (a) Cross energyEcross [Eq. (14)] versus
separationD for slabs of thicknessL=5 a.u. and with jellium back-
ground at the density of A1srs=2.07d. Solid line: nonlocal exchange
energy, nonlocal RPA correlation energy. Thick dashed line: LDA
using the pure RPA correlation energy of the uniform gas as input.
Thin dashed line: LDA using the Wigner correlation energy of the
uniform electron gas as input.(b) As for (a), but for rs=4.0 andL
=5.0 a.u. and with PW92 instead of Wigner uniform-gas correlation
employed. Open circles: nonlocal correlation from Eq.(7) with
energy-optimized exchange-correlation kernelfxc

enopt12 included in
the RPA-like TDDFT screening Eq.(3). (c) As for (a), but with rs

=6.0 andL=8.0 a.u.
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were converged to 10−7«F. The charge-self-consistency itera-
tions were carried out till convergence was obtained fornszd
and VKSszd better than that with respect todz described
above. In order to obtain the least error in comparing total
energies at different slab separations, we used separationsD
and a stepdz such that the four edges of the jellium back-
grounds were sampling points at every separation.

(ii ) Calculation ofxKS [see Eq.(2)]. Here there was no
summation over intermediate states, as the 1D Green func-
tion was evaluated by a direct collocation solution of the
complex-energy Schrodinger equation. The same range of
spatial step sizes was used as for the groundstate Schrodinger
solution. Thekx integration in Eq.(2) was converted to a sum
using special discrete integration weights adapted to the
square-root end singularities of thekx integrand. The
sampledkx points corresponded to an energy spacingd«x
=0.03«F or 0.01«F

(iii ) Inversion of the dielectric matrix (6). This was ac-
complished in position space by discretizing with the same
step sizedz as described above. Simpson 3/8 integration
weights were used, with an interval break atz=z8 to account
for the discontinuous derivatives]xl /]z at z=z8. Lower-
upper(LU) decomposition and backsubstitution were used to
invert the resulting matrix«l. The dimension of the matrix
was up to several hundred for the larger vaues of slab sepa-
ration D.

(iv) Integrating (12). Thez andz8 integrations were per-
formed on the same uniform spatial grid described above,
using Simpson 3/8 integration with interval breaks to deal
with the derivative discontinuities in the factors of the inte-
grand.

(v) Imaginary frequency integration[Eq. (9)]. The inte-
gration step fors at rs=2.07 was typicallyds=0.01 a.u. for
0,s,0.2 a.u., andds=0.1 a.u. fors.0.2 a.u. The maxi-
mum imaginary frequency was varied between 2 and 3 a.u.

(vi) Integration of Eq. (8). The Simpson integration grid
for qi was dqi<0.05 a.u. up toqi<0.6 a.u., thendqi
<0.3 a.u. up to about 4.2 a.u. An endpoint correction was
applied to the integration, based on high-q asymptotics of the
uniform electron gas(see Ref. 31).

(vii ) l integration in Eq. (8). This was typically done for
l=0,1/3,2/3,1. Thel integrand is very smooth.

By varying the above convergence parameters we esti-
mate that the errors in our energy differencesEcrossare com-
parable to the vertical size of the symbols in Figs. 2(a) and
2(b).

(viii ) Numerical differentiation of EsDd data to give
FsDd. This was done by spliningEsDd data. This is probably
the largest source of error. By using different forms of spline
we could, for example, modify the predicted overestimation
of the maximum cohesive force forrs=2.07 between 14%
and 18%. The orders of magnitude quoted here are not al-
tered by different splining protocols, however, and our gen-
eral conclusions are therefore not in doubt.

IV. RESULTS

Figures 2(a)–2(c) plot the cross energyEcrosssDd vs D for
pairs of slabs distantD and with jellium-background thick-

nessL1=L2=L. Units are atomic units(aB for D and L,
Hartree/aB

2 for Ecross). Figure 2(a) shows the casers=2.07,
L=5.00. Figure 2(b) shows the casers=4.00,L=5.00. Figure
2(c) shows the casers=6.00,L=8.00.

Figures 3(a)–3(c) give the forceFsDd=dEcross/dD vs D
for the same three systems. Units ofF are Hartree/aB

3. In
each case results are given using(i) the nonlocal RPA corre-
lation energy from Eq.(7) and the nonlocal exchange energy
from Eq.(13) (thick solid line); (ii ) local exchange, and local
correlationEc

LDA−RPA=ensrWd«c
hom,RPAsnsrWdddrW calculated using

the pure RPA correlation energy of the uniform gas for the
quantity«c

homsnd (thick dashed line); (iii ) local exchange, and
local correlationEc

LDA=ensrWd«c
homsnsrWdddrW calculated using

FIG. 3. (Color online) (a): Attractive force per unit area
]Ecross/]D for rs=2.07[for the same slabs as Fig. 2(a)]. (b): Attrac-
tive force forrs=4.0, for the same slabs as in Fig. 2(b). (c): Attrac-
tive force for rs=6.0, for the same slabs as in Fig. 2(c).
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PW92 correlation energy of the uniform gas for the quantity
«c

homsnd (thin dashed line). (For rs=2.07, the Wigner
uniform-gas parametrization was used in place of the PW92
version.)

The pure RPA uniform-gas data was used under(ii ) above
with the idea that this might better agree with the pure-RPA
nonlocal calculations than the conventional LDA energy.
This was borne out by the data for the energy near equilib-
rium at rs=2.07, though the force data was better in the
conventional RPA. For higherrs the regular RPA did slightly
better for both energy and force.

V. DISCUSSION

One aspect of the results needs some explanation before
we proceed to discuss the energetics of interest. It is well
known32,33 that the pure jellium model is not in mechanical
equilibrium except atrs<4. Specifically, suppose that a large
block of jellium metal is cleaved along a plane and the two
halves are allowed to separate or overlap until the total en-
ergy is minimized, with the positive background remaining
rigid within each half. The energy minimum occurs at a sepa-
rationD0 that is positive ifrs,4 and negative(i.e., the posi-
tive backgrounds would overlap) if D0.4. This same behav-
ior is evident in our results, even though we have used very
thin slabs of jellium rather than the two infinitely thick layers
normally considered in the literature. This behavior is unrep-
resentative of real metals for which of course the energy of
two thick defect-free slabs is minimized at contact so that a
perfect combined crystal is produced. More realistic models
of metallic cohesion can be created by reintroducing the dis-
crete positive ions into the jellium and treating their effects
by pseudopotential perturbation theory.14,34–36Alternatively
the simplicity of the jellium metal can be retained, essen-
tially by adding to the electrostatic potential of the positive
background a spatially homogeneous additional average po-
tential representing an average of the discrete-ion effects.
This can be achieved within two rather similar schemes, the
Stabilized Jellium model32 and the Ideal Metal model.33 We
chose instead to use the less realistic standard jellium model
because most prior results have been obtained within this
model. Accordingly we find that only in the casers=4 is the
minimum total energy achieved at the contact separation
D0=0.

A common feature of all the figures is that only the non-
local RPA-like calculation(thick solid line) gives the re-
quired algebraic decay of the energy and force at large sepa-
rations, correctly corresponding to the van der Waals
attraction regime[see Eq.(15)]. As expected, the local-
density calculations(dashed lines) have the energy and force
vanishing exponentially as the overlap of ground-state den-
sities falls off, thus missing the asymptotic vdW attraction.

Despite this failing at large separations, as is now well
known, the LDA gives at least a “fairly good” description of
the interaction energy at smaller separations. Here there is
significant overlap of electron densities, the total density is
not too inhomogeneous, and errors in local exchange and
local correlation almost cancel.

Indeed the LDA groundstate energy was once regarded as
a very adequate predictor of the energetics of inhomoge-

neous metals. There has subsequently been controversy
about the surface energy, however. Some microscopic theo-
ries (RPA and RPA+local-kernel approaches9,15,16) strongly
support the validity of the LDA for the surface energy of
jellium metal, while others [diffusion Monte Carlo38

(DMC)37 and Fermi hypernetted chain38,39 (FHNC)] give
surface energies different from the LDA predictions. To com-
pound the controversy, there are grounds15 to suspect that the
DMC and FHNC calculations did not correctly extrapolate
from finite to infinite slab thickness. Thus the issue of the
jellium surface energy is currently unresolved.

The present work does not consider the problem of ex-
trapolation to infinite thickness, but can shed light on some
related questions. We have here studied the cross energy
(binding energy per unit area) Ecrosssrs,D ,Ld [see Eq.(14)] as
a function of slab separationD, for fixed slab thicknessL.
We can define a “contact energy”

ssrs,Ld = −
1

2
Ecrosssrs,D = 0,Ld,

such that the usual surface energys is related to the contact
energy for infinitely thick slabs,

ssrsd = ssrs,L → `d = −
1

2
Ecrosssrs,D = 0,L → `d.

By studying the contact energy and the binding energy curve
Ecrosssrs,D ,Ld as a function ofD at a fixed slab thicknessL,
we have avoided controversy about the extrapolation to infi-
nite thickness. We have used these numbers to generate the
attractive forceFsrs,D ,Ld;]Ecrosssrs,D ,Ld /]D and hence
the force of maximum attraction Fmaxsrs,Ld
=maxDFsrs,D ,Ld for slab pairs of a given thicknessL. The
force of maximum attraction is important in general, as it is
the force necessary to separate the two samples completely
under theoretically ideal planar conditions. It is generally
achieved at separationsDmax at which there is still consider-
able overlap of electron densities, not in the traditional non-
overlapping asymptotic regimeD@ rs

1/2 of pure asymptotic
van der Waals attraction.

By investigating these quantities we have been able to
show that the LDA has some serious problems that are inde-
pendent of the thickness extrapolation issue. We have found
that, because the LDA misses the distant van der Waals at-
traction, it necessarily has failings at closer slab separations
outside the asymptotic vdW regime. In particular, in com-
parison with results obtained in nonlocal RPA and related
correlation theories, the LDA cannot obtain both a good con-
tact energyssrs,Ld and a good force of maximum attraction
Fmaxsrs,Ld within the same calculation. This will be demon-
strated in detail below. The general argument runs as follows.
If the contact energye0

` Fsrs,D ,LddD is given accurately by
the LDA, then since the LDA forceF is too small at large
separations where there is no overlap, it follows that the
LDA force must be too large at smaller separations. This
general argument does not indicate the extent of the overes-
timation of the force, nor whether it occurs at physically
interesting separations. In fact, our numbers shown below
confirm that the LDA sometimes significantly overestimates
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the physically interesting maximum attractive force.
Consider first the slabs of aluminium density[rs=2.07,

see Figs. 2(a) and 3(a)]. It is important to note that pure
jellium is well-known32,33 to have a negative surface energy
(mirrored in the negative value of the contact energy that we
found for our very thin slabs, and the fact that the minimum
energy is reached at a positive slab separationD0). We find
that the LDA-RPA (heavy dotted line, LDA using RPA
uniform-gas correlation energy data) fits the nonlocal RPA
energy data for the contact energyEcrosssD=0,L=5 a.u.d al-
most perfectly. It continues to fitEcrosssD ,L=5 a.u.d quite
well for D values up to the equilibrium pointD0 whereEcross

has its minimum. ForD.D0 the LDA-RPA increasingly un-
derestimates the magnitude of the binding energy. On the
other hand, the same LDA-RPA theory does not do particu-
larly well for the force near its maximum, overestimating the
maximum attractive force by around 14%[see Fig. 3(a),
thick dashed line]. By contrast the LDA-Wigner theory(thin
dashed line) gives an excellent value for the maximum force,
but it overestimates the magnitude of the(negative) contact
energy by about 30% and underestimates the binding energy
at equilibrium by about 20%.

Next consider the casers=4 [Figs. 2(b) and 3(b)]. For this
special rs value, jellium is in equilibrium and correspond-
ingly the minimum energy is achieved with the edges of the
jellium backgrounds in contactsD0<0d. We find that the
LDA-RPA (heavy dotted line, LDA using RPA uniform-gas
correlation energy data) overestimates the nonlocal RPA en-
ergy data for the contact energyEcrosssD=0,L=5 a.u.d by
about 10%. The LDA with local PW92xc overestimates the
contact energy to by about 5%. Both LDA-RPA and LDA-
PW92 overestimate the maximum cohesive force by about
12%.

Finally consider the casers=6 [Figs. 2(c) and 3(c)]. Here
the LDA-RPA overestimates the maximum attractive force
by about 6%, and also overestimates the contact energy by
about 7%. The LDA-PW92 theory, however, gets both the
contact energy and the maximum force about right: an over-
estimation of the attractive force, by up to about 20%, does
however occur at separationsD larger than the separation
Dmax where the maximum force occurs.

VI. SUMMARY

We have considered the interaction energy and attractive
force as functions of separationD, for pairs of jellium-metal

slabs of various densities but fixed thickness. It is well
known that the LDA misses the van der Waals force at large
separations where there is negligible overlap of electron
clouds. By comparing with microscopic calculations includ-
ing nonlocal exchange and a nonlocal RPA-type correlation
energy, we found that the LDA also makes some errors at
closer separations. It tends to overestimate the force of maxi-
mum attraction at all densities studied(i.e., for 2.07ø rs

ø6), with the strongest effect at lowrs. For low rs the LDA
tends to underestimate the binding energy at equilibrium,
with “LDA-RPA” (i.e., LDA using RPA uniform-gas corre-
lation energy) not as bad as regular LDA. For higherrs (4.0
and 6.0) the LDA calculations tend to bind too much. In a
few cases either the force or the binding energy is quite good
in one or other version of LDA, but in these cases the other
quantity (energy or force respectively) is poorer. Thus in all
cases the LDA calculations are unable give accurate predic-
tions of both binding energy and maximum attractive force,
with the LDA performing worst at high densitysrs. =2.07d.
The binding energy is a finite-thickness analog of the surface
energy. We have argued that, because the force and energy
are related byEcrosssrs,D ,Ld=e0

` Fsrs,D ,LddD, such fail-
ings for overlapped configurations are inevitable in view of
the LDA’s underestimation of the van der Waals attractive
force at larger separations. The size of these effects at over-
lapped separations in thin slabs of jellium is around 5–20%
at metallic densities, as judged by comparison with micro-
scopic lonlocal RPA calculations. The percentage errors tend
to be larger at larger electron densities(smallerrs). The oc-
currence of these errors is independent of the issue of finite-
thickness extrapolation that has plagued recent work on the
surface energy, so we believe we have identified a genuine
inadequacy of the LDA.
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