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We explore the successes and failures of the local-density approxingaay) in predicting the attractive
force and energetics of attraction between two jellium metals. We model the metals by two very thin slabs, and
follow the energetics at all separatiobsfrom the van der WaalgsdW) regime at largdd through to metallic
bonding asD —0. We compare LDA results with calculations including exact exchange and microscopic
nonlocal random-phase-approximation-type correlation energy: only these latter calculations include dispersion
(van der Waalgforces correctly. We show how this error of LDA at large separations leads also to errors even
at smaller separations outside the vdW regime.
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I. INTRODUCTION few benchmark cases. This appears to be barely within reach
of current computational technology, and is presently under-

b Ground-_state e]ltectrodnic ddensity—funﬁtiona:t théotyas way in more than one group, for the case of graphene planes
een a mainstay of condensed matter theory for many yearg,q p, graphite. Initial numbers appear to confirm the deli-
In its local form [local-density approximatidn(LDA)] and cacy of the problem

in various types of generalized gradient approximation . - . .
(GGA. e.g ézf 3 it hgas provided r%any—electfopn ground- The present paper contributes to this field by using a sim-
Lo i pler system that has some similarity to a pair of graphene

state energies of a wide range of systems, with sufficien | but that i h i vabl icall
accuracy to permit practical prediction of structural proper-2/an€s, but that is much more easily solvable numerically.
Specifically, we treat a pair of parallel nearly two-

ties. Currently, there is growing interest in the structural en-> - oS '
ergetics of soft condensed matter, with applications rangingimensional(2D) jellium metal slabs. Such problems with

from a clean energy economgia hydrogen storage in one-dimensional spatial inhomogeneity have recently be-
graphenesthrough polymer properties to possible issues income amenable to analysis via microscopic nonlocal corre-
biological systems. In these soft systems the weak dispersidation theories?>-*3Our thin jellium slabs share an essential
or van der WaalgvdW) forces are often believed to be im- feature with a pair of graphene planes, namely an extreme
portant. Here the LDA/GGA potentially run into problems anisotropy of the electronic response parallel and perpen-
because it is known that these approximations completelglicular to the layers. In the case of our jellium slabs, the
miss the dispersion interaction between distant systemesponse is free-electron-like parallel to the planes—i.e., we
whose electronic densities do not overi@ge, e.g., Ref.)4  have a pair of nearly 2D metals. The isolated graphene layes
The situation is less clear where electron clouds overlap. Fadre zero-gapinsulators in the plane, again with extreme an-
example, there is a school of thought that models intel’actionﬁotropy, and they become highly anisotropic weak metals in
of graphitic systems using vdW force modelen the other  the overlapped configuration of bulk graphite. For our sim-
hand, another school finds that the LDA is good for graphiticp|er system we will show that the failure of the LDA to
systems near equilibrium geometry, regardless of the pogsptain the vdw energy at large separati@halso has reper-
sible presence of vdW interactioh§The same is not true for - ¢ssjons for its performance near to the equilibrium separa-
the GGA(Refs. 7 and § for reasons that are at least partly jo \while this cannot simply be taken across to the gra-
understood] A resolution of this issue regarding use of the phitic problem, it certainly sheds significant doubt on the

LDA for soft layered systems is clearl_y important, if the validity of LDA for layered systems such as stretched graph-
current development of soft-matter physics is to progress OBie

timally. The present work also touches on another current contro-
In this connection, an archetypal problem is the energetics P

of a pair of infinite parallel graphene planes as a function o/ €'SY: concerning the surface energy of simple metals. The
their separation distand®. This problem has recently been LDA_prowded the first reasonably realistic flrst-prlnc!ples
examined using nonlocal random-phase-approximatiorﬁ’red'Ct'oné4 of simple-metal surface or cleavage energies

(RPA)-like formalism, but in a highly approximate forfn. Thg initial step in these predic_tions was a ca_lculatio_n for the
Unfortunately this problem appears to be too delicate for thigéllium or electron-gas model in which the discrete ions are
approximate approach, as different approximations withirfeéplaced by a uniform positive background. The jellium sur-
the same framewoft gave significantly different binding face energys(ry is a fundamental property of the electron
energies. It therefore seems that an unequivocal resolution gfas, and continues to attract considerable interest and
the LDA issue will require nonlocal correlation theories to becontroversy'>1® because of the inhomogeneous many-
evaluated numerically without approximation, at least for aelectron exchange and correlation physics that it embodies.
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The number density In fact, given that the LDA misses the distant vdW force,
it must necessarily overestimate the force at intermediate dis-
tance, in order to achieve the good energy that it sometimes

i does do, near to the equilibrium separatiof That is, LDA
n= (A—lwr3a3> (1) cannot obtain both a good equilibrium enelgglated to the
378 surface energyand a good binding force curve. We will
quantify this general argument below, finding that these con-

. . e cerns are indeed significant for thin jellium slabs in the
of the electron gas is traditionally specified in terms of thehigher range of metallic densities.

dimensionless Wigner-Seitz radiusand the Bohr radiugg.
o(rg) can be obtained in principle from the worlo@)

=-E®°{r,,D=0) done per unit area, in separating two infi-

nitely thick jellium slabs from contact ab=0 (metallic

binding) through to infinite separatiorl) —oe. In fact the - . .
whole binding curveES™®syr,,D) is of interest, giving the We solve the two-layer jellium problem within a highly

variation of the total electronic energy per unit area of twononlocal RPA-like correlation energy theory thqt treats vdwW
slabs, as a function of the separatibnbetween the near and other forces segmlessly on an equal footing. Of course
edges of the positive jellium backgrounds. Naturally thisthe absolute corre!atlon energies fqr our slab system from the
curve reflects information about the metallic binding phe-RPA are not particularly good, since in general the RPA
nomena occuring for the regidh~ a few Angstroms, where treats short-ranged correlations crudely, and typically overes-
the electronic densities overlap. Equally, however, it exhibitdimates correlation energies as a result. This behavior is well
van der Waals forces occuring at larger distances for whictknown from the uniform electron gas, for example. However,
there is little or no overlap. The former regi@— 0 might it is now also well known thatlifferencesn the RPA corre-
be considered a natural case for the LDA because of a reldation energy for different inhomogeneous configurations
tively slow spatial variation of the density(z). In the oppo-  (with the numberN of electrons fixeyl are typically much
site limit, D —, the vdW force is dominant: the LDA and better(see, e.g., Ref. 80ne such energy difference is the
related GGAs fail to describe this at all. There are relativelycross energyor slab-slab interactigrto be discussed below.
simple analyses that can deal adequately with this distanih fact for the parallel slab problem at hand, one can show
region, however, either via random phase approximation oanalytically, from a form of thef-sum rule!® that the fre-
via a hydrodynamic approximation to the RPA responsejuencies of the long-wavelength coupled plasmon modes
functions. These approaches agree in predicting an intera¢hat give rise to the distant vdW interaction are unaffected
tion energy proportional t&~>2for thin slabs and t®2for  when one supplements the RPA screening equation with any
thick ones, in the region where overlap is negligible but elecspatially short-rangesic kernelf,.. Thus RPA gives the cor-
tromagnetic retardation is not signific#rit-'’ The interme-  rect plasmon zero point energy for well separated slabs, in
diate region is therefore of most interest, and indeed we havaccord with thef-sum rule, and this is what creates the vdwW
recently arguett that a reliable analysis of this region re- energy. In earlier wo we added a local energy-optimized
quires a very nonlocal electron correlation model of the in-xc kernel in the RPA-like screening equation of time-
homogeneous RPA class, or beyond. Using this approach wgependent density-functional theory. We verified that this
showed!! for the caser,=2.07 and for very thin jellium made no difference to the distant vdW interaction between
slabs, that the correlation energy is very poorly given by thgellium slabs within the adiabatic-connection-fluctuation-
LDA at all separations. dissipation approach, as must be so from the argument just
The present paper extends this type of analysis tédtad  sketched. More importantly, we found that the addedker-
electronic binding-energy curves and force curves of twonel had essentially no effect on the jellium slab interaction
very thin jellium slabs at a range of metallic electron numbereven down to the bonded regime with metallic contact. Thus
densities. For the RPA and RPA-like calculations, we in-there is good evidence that the RRAenergy is essentially
cluded exact exchange. For the LDA calculation, local ex-perfect for the energy versus separation curves of these thin
change is added to the very poor local correlation energy. Agllium slabs. Any violation of this conclusiogat large sepa-
frequently occurs in LDA calculations, we find a near can-rations at leagtwould require a long-ranged part of the
cellation between the errors in local exchange and local corexchange-correlation kernéixc relating to motion parallel
relation. This yields a relatively good performance for theto the planes. Again, such contributions are known for inho-
total energy near the equilibrium separation. We show in thenogeneous syster¥s?? but seem unlikely here because of
present paper that this holds for a rangergtalues. As is  the homogeneity parallel to the layers. Thus, except where
well known, the LDA surface energy is surprisingly good, noted, in what follows we will treat the RPA correlation en-
despite the failure of LDA to obtain any vdW force at large ergy differences as the benchmark for testing more approxi-
separations. Our results show, however, that the bindingnate theories.
force F(D) is often overestimated by LDA at intermediate  Our primary aim was to calculate the groundstate energy
separation®, then underestimated at lar@e resulting in a  of two juxtaposed thin jellium slabs as a function of slab
relatively good contact or surface energy from the integrakeparatiorD, using the nonlocal RPA and related methods.
JE(D)dD. The positive jellium background charge density is of form

Il. METHODS
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This represents two parallel slabs of positively charged jel- | —PWs2KS Potential (au)
lium background, each having thickndssneasured in the # WianerkamtsEL e 0.1
direction, with their near edges separated by distdhcEhe
slabs are of infinite extent in the andy directions. Our . : 8 ‘
system is thus a crudgellium) model of a pair of very thin 30 -20 #10 0 10 20 30

juxtaposed metal slabs. A neutralizing amount of fully inter- Z(@u)

acting electron gas is added to this jellium background. We g1 1. (color onling Ground-state electron number density
are attempting here to understand the limitations of the LDAy(z) and Kohn-Sham potentiaics(2) for two neutral jellium slabs
not to model the detailed energetics of real metals. In reabach of thicknesk =5 a.u. with the near edges of the jellium back-
metals the energetics of slab separation will depend on deyround separated Hy=10 a.u. Solid lines: Wignexc used as input
tails of lattice distortions, and could vary widely betweento the LDA. Small crosses: PW9& used as input to the LD&or
metals of similar electron number density, because of differthe potential only: in the case of the density plot, the Wigner and
ent lattice structures and pseudopotentials. In our jelliunPW92 results are not distinguishable on the scale of the diggram
model there is no lattice distortion physics, and the energies

are smooth functions of electron density across the metalligansit
range. A sampling at;=2.07,4.0, and 6.0 therefore suffices. ¢

The steps in our procedure were as follows: frequenciesw=is. This is the dynamic density-density re-

(i) For each slab charge density parametrized by the ~ g,,n56 of independent electrons moving in the potential
:/r\]/_'gl?er'si'tz_rra‘gug;s ['Eq.t(r})]' we uzedtzism?letﬂxeddslapt Vis(2). It was obtained as a sum over occupied eigenfunc-

icknessL. To describe the ground-state electron density;: A - . - 26
n(z), we solved the Kohn-ShafKS) LDA equations self- tions ¢;(2) and eigenvalues; of the KS potentialis(2):
consistently for each slab separation For the uniform-gas
correlation energy.(n) we used the PW9gRef. 23 param-

y response functiogks(w=is,q),z,2') was calculated
or a range of surface-parallel wave vectgfsind imaginary

XKS(w = iS!q”vZ! Z,)

etrization, in the slabs with;=4.0 andr;=6.0. (These were -2m ) K Y

new calculations for the present workn the slabs withrg = WE (2 ¢i(z )j_ _ dkkj - k;

=2.07 we took all data from previous ruffsin the latter ) oce 4

case we had used the Wigner parametrizatios(f). The Het ) ehze)
ground-state electron-density profilgz) and Kohn-Sham X W(e") tler—elr. @

potential Vxg(2) are given in Fig. 1 forrg=2.07 a.u.,L

=5.0 a.u.,D=10.0 a.u. The KS potentials from the Wigner Herekazzm(lu—gj)lhz, while z. (z.) is the greateflessey
and PW92 parametrizations are virtually identical, and thesf z andz’. The complex energies in E() are

densities are not distinguishable at all on the scale of the

figure. This suggests that the effect of using different param- 52

etrizations of localxc is not significant compared with the g = this+eg+ 2—(2kxq|| - qﬁ).
effects of nonlocal exchange and correlation to be discussed m

below.

The right and left solutiongR, ¢+ arise from construction of

e one-dimensional one-particle Green function. They obey
the Schrodinger equation with potentigks at complex
energy e=¢*, with boundary conditionsyRY—0 as
7 oo(—0), Their Wronskian

The electron clouds overlap at sméll values, giving a
metallic bond. The overlap decreases exponentially at larg
separations. At very large separatigis>r,D>L) there is
negligible overlap and we are in the pure vdW attraction
regime. Here electron hydrodynamics gives accurate answe
for the vdW energy via the zero point energy of coupled
two-dimensional plasmons, and agrees with microscopic W(e) = lﬁ% _ w@

RPA calculations(See Refs. 4 and 26Thus a detailed mi- dz dz

croscopic RPA calculation would not be needed if merely

this asymptotic regime were under study. We wished to looks independent of, as can be verified from the fact thaf

at intermediate and small separations as well, however, so wand ¢~ are Schrodinger solutions at the same energy
needed to perform microscopic response calculations as de- (iii) The RPA or RPA-like interacting response was cal-
scribed below. culated by solving the Dyson-like screening integral

(i) Next, the Kohn-Shanindependent-electromensity-  equatioR’
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= xkst xks* (AU + 00 * x, (€ o

07X T Aks @ JolapN) =] elgpsN)ds, 9
where the star represents convolution in the space variable 0
In the present geometr§8) becomes a one-dimensional in-
tegral equation which can be solved for the interacting rewith
SpoNsey) s

f e(z.2 x (02", 2, w=i8)dZ" = xo(q),2.2 0 =1s). japsn) = 4712e2f_ dzdZ exp(— qlz— Z'|)[xn(q).z.Z',is)
(4) - xo(Q,2,Z',is)]. (10
Here In practical calculations of the correlation energy, it is not
necessary to solve explicitly foy,. Equation(10) can alter-
e=1=(Veout fxd * Xoss (5) natively be written as

ie.,

S(Z,Z”) = E)\(qH,Z,Z”,w) jc(QH,Sy)\) = 4772e2f_x dzqu[éh)\(zvz) - ého(zrz)]- (11)

2me?\ H
=5(z—z’)—f{ T;H exp(- q)lz-z]) ere
_ , .. exp-qyz' -2z)
+fa(z.20) | x0(0), 21,2, 0 = i8)dZ,. (6) M(2,2) = | dZx\(21,Z ,q”,|s)2—q”

(iv) The resulting interacting respongg was substituted
into the exact adiabatic connection—fluctuation-dissipation
(ACF/FDT) formula for the exchange-correlation energy of :f e{l(qH,zl,z",w))(o(z”,z’,q”,is)
an inhomogeneous electron ¢f&s*°

a1 o e? dez/dz (12)
Ec:__J dxf dsf drd’r') DR F 0 =is) 20
2w 0 0 |r - r,|
~ o 0=i8)]t. 7 is the density perturbation at positiap induced by a sinu-
ot soidally modulated sheet of external charge placed at posi-

tion z,. In practice we solved this by discretizing the space
This result follows by combining the adiabatic connectionintegrations on the same even spatial grid used previously to
formula (ACF) with the zero-temperature fluctuation- tapulatey,. We inverted the discretizee| once for each set
dissipation theoreniFDT). In Eq. (7), x,(F,", w=is) is the  of values(qy,s,\) by LU decomposition.
imaginary-frequency Kubo density-density response function The correlation energy approach described here involves
of the whole system, with an additional external pOtentia|signiﬁcant numerical Computation, and according|y we ap-
V,\(r) added so as to maintain the tr@e=1) ground-state pjied it to thin jellium slabs rather than thick or semi-infinite
densityn(r) in the presence of a modified electron-electronones, in order to minimize the computational cost.
interaction\V,,, = \€?/|F—1"'|. The =0 response is thus For most of the calculations reported here, the exchange-
the Kohn-Sham density-density response: i.e., it is the reeorrelation kernef,. in Eg. (3) was taken as zero, yielding
sponse of independent Fermions moving in the groundstatée pure RPA response. Fae=4.00, however, we also report
Kohn-Sham potentia¥k<(r), the latter being the one-particle the response using the “energy optimized lokalkernel”
potential required to produce the true interacting groundstaté&"°* described in Ref. 12. This is local and frequency inde-
density when acting on independent Fermions. In practicpendent but has the following desirable property: when ap-
the constant-density constraint is easily implemented: welied to the uniform electron gas it yields a response that
simply use the same KS response from itéih above, for gives the exact correlation energy when put into the

all values of\ in Eq. (3) (see also Ref. 24 adiabatic-connection-fluctuation-dissipation form(fa. Al-
In the present geometry, Fourier transformation in the though the inclusion of$r°" significantly affected the abso-
andy direction converts the ACF/FDT Eg7) into lute correlation energy, it had essentially no effect on the

“cross” or “interaction” energy between the slabs. See Eq.

__ ' - (14) and also the open circles in Fig(d. Consequently we
EJ/A=- 27rf0 d)\fo dge(a M), (8) judged that locakc kernels of this kind would not make a
significant difference to the quantities of interest here, and
whereA— « is the surface area and we used only the pure RPA for the rest of our working.
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FIG. 2. (Color onling (a) Cross energ¥“*sS[Eq. (14)] versus
separatiorD for slabs of thicknest=5 a.u. and with jellium back-

ground at the density of Ats=2.07). Solid line: nonlocal exchange
energy, nonlocal RPA correlation energy. Thick dashed line: LDA
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it e *
EX:——I d)\JdSrd3r’ p— <f Xo(r,r,w=is)ds
27l Ir=r"[\Jo

= n(F)&*(F - F'))} ,

(13

wheren(r) is the ground-state electronic density. We found
this useful as a test of the method, but for production runs we
evaluatecE, directly from overlap integrals using the occu-
pied KS orbitals. The total energy is

E=Ts+Eext Ennt Bx+ e,

where T, Eq and Eyy are, respectively, the Kohn-Sham
kinetic energy, the interaction between electrons and the
positive background, and the “classical” or naive Hartree
electron-electron energy.

We define the cross-energinteraction energy, attraction
energy E°5{D) between the two slabs as the energy per
unit area required to bring the slabs from infinite separation
to finite separatiorD:

1
E*YD) = ALE(D) ~E(D — )] (14
If the slabs were infinitely thickL — o) then the magnitude
of E®S{D=0) would simply be twice the surface energy,

EC°SYD =0) =- 20 for L — o,

Because our slabs are actually very thin, our quantity
E°{D=0) does not exactly give the surface energy. Also
note that, by its definitionE®"°*{D) — 0 asD —cc. It can be
showrf1125 that in the nonretarded RPA, the coupling of
two-dimensional plasmons on slabs of finite thickness im-
plies that this decay of the cross energy occurs via a nonin-
teger power law

EC°S{D) « — (cons}D™>? as D— . (15)

It is also known that adding any short-ranged exchange-
correlation kernelf,(f,r") into the RPA screeningself-
consistency equation does not alter the behavior given in
Eq. (15). This is essentially because the asymptotic force is
determined by the dispersion of the quasi-two-dimensional
plasmons at small wave number, and this in turn is pre-
scribed by a form of thé-sum rule*°

Ill. NUMERICAL CONSIDERATIONS

using the pure RPA correlation energy of the uniform gas as input.

Thin dashed line: LDA using the Wigner correlation energy of the

uniform electron gas as inputh) As for (a), but forrg=4.0 andL

=5.0 a.u. and with PW92 instead of Wigner uniform-gas correlation

employed. Open circles: nonlocal correlation from E@) with
energy-optimized exchange-correlation kerfig]°P'2 included in
the RPA-like TDDFT screening E@3). (c) As for (a), but withrg
=6.0 andL=8.0 a.u.

Similar conclusions had already been reached fe2.07 in
our earlier work:?

The exchange energy of the KS orbitals can be obtainewas sufficient for this. The KS eigenvaluegfor motion

as

The convergence parameters affecting our numerical re-
sults are as follows:

(i) Groundstate calculationin generating the ground-
state densityi(z) and KS potential/cs(z) via standard theory
(see, e.g., Ref. )9we solved a one-dimensional Kohn-
Sham-Schrodinger equation using a collocation method in
position space. The spatial step stzzin the direction per-
pendicular to the layers was chosen to ensure convergence of
n to 10°° of the bulk density, and 0¥k to 107 of the bulk
Fermi energyeg. At r=2.07 it was found thatiz=0.15 a.u.

perpendicular to the layersvere obtained by shooting and
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were converged to I0e.. The charge-self-consistency itera- 18
tions were carried out till convergence was obtainedni@) 16 ™
and V<(z) better than that with respect tdz described
above. In order to obtain the least error in comparing total
energies at different slab separations, we used separd@ions
and a stepz such that the four edges of the jellium back-
grounds were sampling points at every separation.

(i) Calculation of xks [see EQq.(2)]. Here there was no 06
summation over intermediate states, as the 1D Green funcs o4
tion was evaluated by a direct collocation solution of the *
complex-energy Schrodinger equation. The same range o
spatial step sizes was used as for the groundstate Schroding 0 . .
solution. Thek, integration in Eq(2) was converted to a sum  (a) D (a.u.)
using special discrete integration weights adapted to the
square-root end singularities of thk, integrand. The
sampledk, points corresponded to an energy spacifag 1 A7
=0.0%¢ or 0.0k 1 %

(iii) Inversion of the dielectric matrix (6)This was ac-
complished in position space by discretizing with the same
step sizedz as described above. Simpson 3/8 integration
weights were used, with an interval breakzatz’ to account
for the discontinuous derivativegy,/dz at z=z'. Lower-
upper(LU) decomposition and backsubstitution were used to
invert the resulting matrix,. The dimension of the matrix ]
was up to several hundred for the larger vaues of slab seps ‘ ‘ , ‘ ;
rationD. 2 4 6 8 10 12 1@

(iv) Integrating (12) Thez andz’ integrations were per- () D (a.u.)
formed on the same uniform spatial grid described above,
using Simpson 3/8 integration with interval breaks to deal

———Force (Nonlocal RPA)

=@ -Force (LDA w. Ec(hom) from RPA

---Force (LDA With Wigner Ec(hom))

0.8

o per unit area (10 a.u.)

0.2

o

- - - 'LDA(PW92)
—— Microscopic RPA

=& -LDA (based on Ec(hom,RPA)

Force per unit area (10”° a.u.)

s N
with the derivative discontinuities in the factors of the inte- AR
grand . 1.4 \§\ = Nonlocal RPA
(v) Imaginary frequency integratiofEg. (9)]. The inte- 12 \\}\\ — -LDA (Ec(hom) from RPA)
gration step fors at r¢=2.07 was typicallyds=0.01 a.u. for 10 N ---LDA (Ec(hom) from PW92)

0<s<0.2 a.u,, andds=0.1 a.u. fors>0.2 a.u. The maxi-
mum imaginary frequency was varied between 2 and 3 a.u.
(vi) Integration of Eqg. (8) The Simpson integration grid
for g, was dg=0.05a.u. up tog=0.6 a.u., thendg
~0.3 a.u. up to about 4.2 a.u. An endpoint correction was 02

Force per unit area (107 a.u.)

applied to the integration, based on higlasymptotics of the 0 :

uniform electron gagsee Ref. 31 9 2 4 g D(:_u_) 19 12 1 e
(vii) \ integration in Eqg. (8) This was typically done for

A=0,1/3,2/3,1. The\ integrand is very smooth. FIG. 3. (Color onling (a): Attractive force per unit area

By varying the above convergence parameters we estisecoss/ gD for r=2.07[for the same slabs as Fig]. (b): Attrac-
mate that the errors in our energy differen&€¥*are com- tive force forrg=4.0, for the same slabs as in Figh® (c): Attrac-
parable to the vertical size of the symbols in Fig&)2nd tive force forrs=6.0, for the same slabs as in Figcp
2(b).

(viii) Numerical differentiation of ED) data to give nessL;=L,=L. Units are atomic unit§ag for D and L,
F(D). This was done by splining(D) data. This is probably Hartreebé for E°°9. Figure Za) shows the case,=2.07,
the largest source of error. By using different forms of splineL=5.00. Figure &) shows the case=4.00,L=>5.00. Figure
we could, for example, modify the predicted overestimation2(c) shows the case;=6.00,L=8.00.
of the maximum cohesive force fag=2.07 between 14% Figures 3a)-3(c) give the forceF(D)=dE"**YdD vs D
and 18%. The orders of magnitude quoted here are not afer the same three systems. Units fare Hartreeds. In
tered by different splining protocols, however, and our gen-€ach case results are given us(igthe nonlocal RPA corre-
eral conclusions are therefore not in doubt. lation energy from Eq(7) and the nonlocal exchange energy
from Eq.(13) (thick solid line); (ii) local exchange, and local
correlationE-PA"RPA= [n(F)eM°™RPAn(F))dF calculated using
the pure RPA correlation energy of the uniform gas for the

Figures 2a)-2(c) plot the cross energig©*{D) vs D for quantitya*c‘om(n) (thick dashed ling (iii ) local exchange, and
pairs of slabs distar® and with jellium-background thick- local correlationE5PA= fn(F)e°(n(F))dF calculated using

IV. RESULTS
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PW92 correlation energy of the uniform gas for the quantityneous metals. There has subsequently been controversy
sL‘Om(n) (thin dashed ling (For r¢=2.07, the Wigner about the surface energy, however. Some microscopic theo-
uniform-gas parametrization was used in place of the PW92ies (RPA and RPA+local-kernel approacfé3!9 strongly
version) support the validity of the LDA for the surface energy of
The pure RPA uniform-gas data was used uridgabove jellium metal, while others [diffusion Monte Carlé®
with the idea that this might better agree with the pure-RPADMC)*” and Fermi hypernetted chd®® (FHNC)] give
nonlocal calculations than the conventional LDA energy.surface energies different from the LDA predictions. To com-
This was borne out by the data for the energy near equilibpound the controversy, there are groufids suspect that the
rium at rg=2.07, though the force data was better in theDMC and FHNC calculations did not correctly extrapolate
conventional RPA. For highet, the regular RPA did slightly from finite to infinite slab thickness. Thus the issue of the

better for both energy and force. jellium surface energy is currently unresolved.
The present work does not consider the problem of ex-
V. DISCUSSION trapolation to infinite thickness, but can shed light on some

One aspect of the results needs some explanation befofglated questions. We have here studied the cross energy
we proceed to discuss the energetics of interest. It is wel{Pinding energy per unit arg&“**{r;D,L) [see Eq(14)] as
known?-‘2,33 that the pure Je"|um mode| is not in mechanica| a funct|0n Of Slab Sepal‘atiOB, fOI’ fixed Slab thiCkneSt.
equilibrium except atg~4. Specifically, suppose that a large We can define a “contact energy”
block of jellium metal is cleaved along a plane and the two 1
halves are allowed to separate or overlap until the total en- o(rgl) =--E“°Y{r,D=0,L),
ergy is minimized, with the positive background remaining 2
rigid within each half. The energy minimum occurs at a sepasych that the usual surface eneigys related to the contact
rationDg that is positive iffs<4 and negativei.e., the posi-  energy for infinitely thick slabs,
tive backgrounds would overlaff Dy> 4. This same behav- L
ior is evident in our results, even though we have used ver _ _ _ *rcros _
thin slabs of jellium rather than the twoginfinitely thick layers Y ootg=olrl—)= 2F TsD=0L ).
normally considered in the literature. This behavior is unrep-
resentative of real metals for which of course the energy an
two thick defect-free slabs is minimized at contact so that
perfect combined crystal is produced. More realistic model )
of metallic cohesion can be created by reintroducing the disPit€ thickness. We have usedcr'gr;ese numbers to generate the
crete positive ions into the jellium and treating their effects@ttractive forceF(rs,D,L)=dE**rs,D,L)/dD and hence
by pseudopotential perturbation thedfp*-36Alternatively ~the  force  of ~ maximum  attraction F™(r,L)
the simplicity of the jellium metal can be retained, essen=Ma%F(rs,D,L) for slab pairs of a given thickneds The
tially by adding to the electrostatic potential of the positive force of maximum attraction is important in general, as it is
background a spatially homogeneous additional average péhe force necessary to separate the two samples completely
tential representing an average of the discrete-ion effectginder theoretically ideal planar conditions. It is generally
This can be achieved within two rather similar schemes, thé@chieved at separatioiik,,y at which there is still consider-
Stabilized Jellium modé% and the Ideal Metal modép We  able overlap of electron densities, not in the traditional non-
chose instead to use the less realistic standard jellium mod@verlapping asymptotic regimp>rl/ of pure asymptotic
because most prior results have been obtained within thigan der Waals attraction.

y studying the contact energy and the binding energy curve
crosgr,,D,L) as a function oD at a fixed slab thickneds,
We have avoided controversy about the extrapolation to infi-

model. Accordingly we find that only in the casg=4 is the By investigating these quantities we have been able to
minimum total energy achieved at the contact separatioghow that the LDA has some serious problems that are inde-
Do=0. pendent of the thickness extrapolation issue. We have found

A common feature of all the figures is that 0n|y the non-that, because the LDA misses the distant van der Waals at-
local RPA-like calculation(thick solid line) gives the re- traction, it necessarily has failings at closer slab separations
quired algebraic decay of the energy and force at large sep&utside the asymptotic vdW regime. In particular, in com-
rations, Correcﬂy Corresponding to the van der Waa|§)ari50n with results obtained in nonlocal RPA and related
attraction regime[see Eq.(15)]. As expected, the local- correlation theories, the LDA cannot obtain both a good con-
density calculationgdashed lineshave the energy and force tact energyo(rs,L) and a good force of maximum attraction
vanishing exponentially as the overlap of ground-state denFmaxXr's,L) within the same calculation. This will be demon-
sities falls off, thus missing the asymptotic vdW attraction. strated in detail below. The general argument runs as follows.

Despite this failing at large separations, as is now welllf the contact energy; F(rs,D,L)dD is given accurately by
known, the LDA gives at least a “fairly good” description of the LDA, then since the LDA forc& is too small at large
the interaction energy at smaller separations. Here there &eparations where there is no overlap, it follows that the
significant overlap of electron densities, the total density id DA force must be too large at smaller separations. This
not too inhomogeneous, and errors in local exchange angeneral argument does not indicate the extent of the overes-
local correlation almost cancel. timation of the force, nor whether it occurs at physically

Indeed the LDA groundstate energy was once regarded asteresting separations. In fact, our numbers shown below
a very adequate predictor of the energetics of inhomogeeonfirm that the LDA sometimes significantly overestimates
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the physically interesting maximum attractive force. slabs of various densities but fixed thickness. It is well
Consider first the slabs of aluminium densftg=2.07,  known that the LDA misses the van der Waals force at large
see Figs. @) and 3a)]. It is important to note that pure separations where there is negligible overlap of electron
jellium is well-knowr?>**to have a negative surface energy cjouds. By comparing with microscopic calculations includ-
(mirrored in the negative value of the contact energy that W‘?ng nonlocal exchange and a nonlocal RPA-type correlation

found for our very thin slabs, and the fact that the minimumgo 00 *\ve found that the LDA also makes some errors at
energy is reached at a positive slab separafign We find

that the LDA-RPA (heavy dotted line, LDA using RPA closer separgtions. It tends to overesti'm.ate the force of maxi-
uniform-gas correlation energy datfits the nonlocal RPA MUM a_ttracnon at all densities studigde., for 2.07%<rq
energy data for the contact ener§§°s{D=0,L=5 a.u) al-  =6), with the strongest effect at lowg. For lowr, the LDA
most perfectly. It continues to fIES{D,L=5 a.u) quite tends to underestimate the binding energy at equilibrium,
well for D values up to the equilibrium poim, wheregcess — with “LDA-RPA” (i.e., LDA using RPA uniform-gas corre-
has its minimum. Fob > D, the LDA-RPA increasingly un- lation energy not as bad as regular LDA. For higher(4.0
derestimates the magnitude of the binding energy. On thand 6.0 the LDA calculations tend to bind too much. In a
other hand, the same LDA-RPA theory does not do particufew cases either the force or the binding energy is quite good
larly well for the force near its maximum, overestimating thein one or other version of LDA, but in these cases the other
maximum attractive force by around 14¢see Fig. 8),  quantity(energy or force respectivelys poorer. Thus in all
thick dashed ling By contrast the LDA-Wigner theorithin o565 the LDA calculations are unable give accurate predic-
dashed I|n¢g|_ves an excellent yalue for the maximum force, tions of both binding energy and maximum attractive force,
but it overestimates the magnitude of tregative contact ith the LDA performi t at hiah densi =2.07
energy by about 30% and underestimates the binding ener ith the ! pertorming worst at hig ensitys. =2.07.
at equilibrium by about 20%. he binding energy is a finite-thickness analog of the surface
Next consider the case=4 [Figs. 2b) and 3b)]. For this ~ €nergy. We have argued that, because the force and energy
specialr, value, jellium is in equilibrium and correspond- are related byE®°s{r,D,L)=f; F(rs,D,L)dD, such fail-
ingly the minimum energy is achieved with the edges of theings for overlapped configurations are inevitable in view of
jellium backgrounds in contadiDy~0). We find that the the LDASs underestimation of the van der Waals attractive
LDA-RPA (heavy dotted line, LDA using RPA uniform-gas force at larger separations. The size of these effects at over-
correlation energy dafaverestimates the nonlocal RPA en- lapped separations in thin slabs of jellium is around 5—20%
ergy data for the contact enerdf°*{D=0,L=5 a.u) by  at metallic densities, as judged by comparison with micro-
about 10%. The LDA with local PW9&c overestimates the scopic lonlocal RPA calculations. The percentage errors tend
contact energy to by about 5%. Both LDA-RPA and LDA- to be larger at larger electron densiti@snallerr,). The oc-
PW92 overestimate the maximum cohesive force by aboutyrrence of these errors is independent of the issue of finite-
12%_- ) ] thickness extrapolation that has plagued recent work on the
Finally consider the case=6 [Figs. c) and 3c)]. Here  gyrface energy, so we believe we have identified a genuine
the LDA-RPA overestimates the maximum attractive forceinadequacy of the LDA.
by about 6%, and also overestimates the contact energy by
about 7%. The LDA-PW92 theory, however, gets both the
contact energy and the maximum force about right: an over-
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