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We introduce a density-functional perturbational scheme based on ultrasoft pseudopotentials for calculating
dielectric tensors of periodic systems. We obtain a variational functional for the second-order derivative of the
energy with respect to an electric field. Our scheme makes use of the correspondence between all-electron and
pseudo-wave-functions introduced in the projector augmented wave method. While we here specifically focus
on ultrasoft pseudopotentials, our scheme also covers the case of norm-conserving ones. In the latter case, our
formulation coincides with earlier ones but highlights the implied approximations. By construction, our scheme
also applies to the all-electron projector augmented wave method. We first assess the validity of our scheme by
calculating polarizability tensors and Raman intensities of small moleculg®,(8BH,, NH;). We find good
agreement with both experimental data and previous all-electron results. We then illustrate the potential of our
scheme for treating systems of relatively large size through an application to a disordered model structure of
vitreous silica.
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. INTRODUCTION splittings°~** dynamical charge¥, magnetic suscept-
ibilities,*>*® and nuclear magnetic resonance sHift¥

Electronic structure calculations within density-functional  Density-functional perturbational approaches have ad-
theory based on plane-wave basis sets and pseudopotentidiessed a large variety of physical observablds. particu-
have grown into a widespread tool for investigating the propdar, the perturbation due to an infinitesimal electric field
erties of extended materials. The use of plane waves offersould be treated and dielectric tensors obtaitféd. These
important advantages, such as a uniform sampling of spacapproaches are mostly based on plane-wave basis sets and
atom-independent basis functions, and theoreticahorm-conserving pseudopotentials. The extension to ultrasoft
simplicity.! However, the computational effort to describe pseudopotentials has been achieved for the study of lattice
systems with localized states, such as first-row elements afynamics’®2
transition metals, has often been prohibitive due to the large In a recent work, we successfully treated the linear re-
amount of required basis functions. sponse to an electric field within the ultrasoft pseudopoten-

In the early 1990s, the development of ultrasofttial framework, thereby making possible the calculation of
pseudopotentiafs and their implementation in standard the Raman spectra for a disordered model structure of vitre-
density-functional calculatiohshave opened the way to the ous silica?? In the present paper, we complement our previ-
treatment of almost any element of the periodic table at amus work by providing a comprehensive account of the varia-
affordable computational cost. In the ultrasoft pseudopotentional density-functional perturbational theory which we
tial scheme, the electronic charge density is augmented in thdeveloped. Our perturbational approach only accounts for
core regions, thereby allowing for smoother electronic wavevariations of valence wave functions and is derived from the
functions. This benefit is achieved at the cost of introducinggall-electron formulation via the correspondence introduced in
generalized orthonormality constraints which depend on théhe projector augmented wave method. The perturbation due
ionic positions. The continued success of the ultrasofto the electric field is expressed in terms of a derivative with
pseudopotential scheme is further demonstrated by the availespect to thek vector in the Brillouin zoné? Dielectric
ability of this scheme in a large set of current computationaktensors are then obtained via a two-step procedure. In the
packages:*~’ first step, the first-order derivative of the wave functions with

The ultrasoft pseudopotential scheme shows importantespect tck is obtained by minimizing an auxiliary non-self-
similarities with the projector augmented wave metfidd-  consistent functional. The result of this minimization is used
deed, the relationship between all-electron and pseudo-wavés set up a variational functional expressing the second-order
functions introduced in the latter method also applies to thelerivative of the energy with respect to the field. In the sec-
ultrasoft pseudopotential schefhin particular, this relation- ond step, this functional is minimized in a self-consistent
ship allows one to express expectation values of observablegay and the dielectric tensor is obtained. When applied to
for all-electron wave functions in terms of the correspond-norm-conserving pseudopotentials, the present formulation is
ing pseudo-wave-functions, overcoming difficulties associfound to coincide with earlier onESbut gives insight in the
ated to nonlocal operators. Using this correspondenceynderlying approximations. While we here focus on the ul-
it has been possible to address witliuitrasof) pseudopo- trasoft pseudopotential scheme, the present formulation also
tential schemes a variety of observables, including hyperfinapplies to the projector augmented wave method. To validate
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our scheme, we calculate polarizability tensors and Ramag@hereA is defined ag TAT. When the operatoh is quasilo-
intensities of small molecules, such as® CH,, and NH,  cal((i.e., it depends locally on the wave functions and locally

and find good agreement with both experimental data an@n the space derivatives of the wave functioribe respec-
previous all-electron results. Taking advantage of the ultraﬁve pseudo operatdk is given by

soft pseudopotential scheme, our method is particularly

suited to treat systems of relatively large size. In a previous - -

application, we illustrated this potential by calculating the A=A+ [B)(Di|A[D) —(Di|AlD)(B|,  (5)

Raman spectra of model structures of vitreous sfifceve "

here complement this study by addressing the dielectric terwhich is obtained making explicit use of the completeness

sor of the same model structures. relation in Eq.(3). In practical implementations, only a finite
The paper is organized as follows. In Sec. Il, we outlineset of projectorss; is considered:>®

how the correspondence between all-electron and pseudo- We now apply this scheme to the all-electron Kohn-Sham

wave-functions, introduced in the projector augmented wavélamiltonian operatoH©:

method, applies within the ultrasoft pseudopotential scheme. 42

In Sec. Ill, we develop our perturbational theory for calcu- 0_ 2

lating dielectric tensorps withﬁ)n the ultrasoft psea/dopotential H=- ﬁv FVHD) + Vi D)+ Viael ), ©)

scheme. In Sec. IV, we calculate polarizabilities and Raman . L

intensities for small molecules. We also calculate the Statigvhere.—ﬁZVZ/(Zm) s the kinetic e_nergy,\/H t_he Hartree

dielectric constants for disordered model structures of vitrepc’tem""‘l'V><C the exchange-correlation potential, awd; a

ous silica. The conclusions are drawn in Sec. V. In the Ap_IocaI potential external to the electron system. The potentials

pendix, we describe the technical procedure adopted iYH andV,. depend self-consistently on the electron density.

this work for minimizing the variational functionals given The pseudo-Hamiltoniaki®=TH®T acting on the pseudo-
in Sec. lll. wave-functions reads

Il. RELATION BETWEEN ALL-ELECTRON AND HO=HO+ 2 |BiYDij{Bil, (7)
PSEUDO-WAVE-FUNCTIONS 4

In the projector augmented wave metHoal Jinear opera- where, in the same notation of Ref. 1,

tor T is introduced to connect an all electron wave function 0
¥, to its corresponding pseudo-wave-functidn : Djj=Djj+ fRQii(r)[VH(r)+ch(r)+Vloc(r)]dr, (8

=TI W D? ﬁzf [DF (V2D (1) +®F (nV2D;(n)]d
0=— — *(r (r *(r (r)]dr.
This transformation allows one to treat valence states ! 2mJr : ' :
through soft pseudo-wave-functions, overcoming the diffi- 9

culty of treating the strong oscillations of the all-electron |p the latter equationsR denotes that the integral is limited

wave functions in the core region. For simplicity, we con-tg the core region of radiu and the augmentation functions
sider here an electronic system describing the mteractloQ?ij are defined as:

with a single ionic core. The operatdrread$
Qij(N=aF (Nd;(r)—dF (N d(r). (10

T:1+§i: (| = [P)){Bil, 2 The pseudo-wave-functions satisfy the generalized ortho-
normality constraints

where®; and ®; are all-electron and pseudtomic wave ~ ~
functions, which coincide outside of the core region. This (WS )= Snm, (11

operator ensures that the pseudo-wave-funcifgrmatches  where S is the pseudoidentity operatdf'T. Similarly, a
the all-electron wave functioW , outside of the core region. pseudodensity operat#(r) is derived from the all-electron
Inside the core region, the projectggssatisfy the following  density operatofr )(r|:

completeness relation:

B KD =I0dr]+ 20 18)Qi (1B (12

> | ®i)(Bil=1. € !
: The pseudo-Kohn-Sham Hamiltonian obtained through rela-
L . tion (1), introduced in the projector augmented wave
Through the relat|or_1 in Ed1), any operatoA acting on method, corresponds to that found in the ultrasoft pseudopo-
gll-electron wave functions corresponds to a pseudo-operatcggntim schemé.However, as opposed to the projector aug-
A acting on pseudo-wave-functions: mented wave method which is an all-electron scheme, the
~ 5 o ultrasoft pseudopotential scheme treats explicitly only the

(VAW )= (T | TTAT|V ) =(PJA|¥,), (4 valence wave functions. In pseudopotential approaches, there

235102-2



DENSITY-FUNCTIONAL PERTURBATIONAL THEORY . .. PHYSICAL REVIEW B69, 235102 (2004

is a redefinition of the local part of the potential to account -

for the core electrons. The screening of the nuclei due to the T=1+ 2 (|®ir)— D1 r){(Birl: (19

core electrons, which contributes to the Hartree poteiial Rl

in an all-electron Hamiltonian, is transferred to the local po- ) ) ) )

tential V,o. of the pseudo Hamiltonian. where the vectoR describes the Bravais lattice and the in-
The scheme outlined above can also be related to th@ex | runs over the ionic cores in the cell. The functions

norm-conserving pseudopotential schethdn the latter @, ; and CDR,.,, are centered on the ionic cores and show

scheme, the following norm-conserving condition is im-the following translational property:

posed:

. Y~ O glr—(R+7)]=Dj ,(r),

jR¢i (r)CIJj(r)dr=JRCI>i (r)@;(r)dr, (13

which ensures that the total pseudocharge in the core region D gLr— (Rt 7) =D (1), (20
equals the corresponding all-electron charge, as can be de-
duced from Egs.(12) and (10). Hence, the operatoB Bi ri[F—(R+7)]=B; (1),
=T'T becomes the identity operator. Upon transformation o ’
(5), the kinetic energy operator gives rise to the nonlocal

potentialVy, appearing in the pseudo-Hamiltonién: whereR+ 7, is the position of the iot in the cell labeled by

the vectorR. The operatofl has the periodicity of the lattice,
and becomes diagonal when expressed on a basis set of pe-
V=2 18)DY(B;. (14 riodic functions uy,(r) as in Ed. (18). Hence, periodic

. pseudo-wave-functions,,, are defined in a straightforward

The norm-conserving pseudopotential scheme also adopts #fRY-
additional approximation, which is generally not specified. In
fact, one assumes not only that the integrakQf(r) van-

ishes as imposed by E(L3), but also thaQ;;(r) vanishes
everywhere:

|Ukn) = T Ukn) (21)

and can be used to express the pseudo-wave-funitign

Q;j(r)=0. (15

The pseudodensity operatét(r) then coincides with the
all-electron one. In this way, the pseudo-Hamiltonian for-
mally differs from the all-electron one only by the nonlocal To simplify the notation, we indicate in the following with
potential V. . A the diagonal ternf\  of a generic operatoh.

We now extend the above formalism to the case of an We now generalize Ed5) to the case of operators acting
infinite periodic system. According to the Bloch theorem, theon periodic wave functions. We define the following func-
all-electron wave functions can be written as tions:

T ()= (2m) 34 Q) " Y2k Uy (). (22)

V()= (2m) 334 Q) " Y2k Tuy (1), (16) [P rik) =€ " RID, ),

where () is the volume of the primitive cellk is a wave

. L S D — e k(r=R)| &,
vector belonging to the Brillouin zone, ang,, are periodic |Pi i) =¢ |Pi 1), (23)
all-electron wave functions. The valence charge density is K—R)
periodic and is expressed lfin units of electrons per cell |Bi R =€ |Bir1)-

The operatofT, can then be expressed as:

- )J E us (N, (dk, 17
Te=1+ 2 (|01~ |Pir i) Birik (29
where the integral is taken over the Brillouin zone, and the LRI
index v runs over the occupied valence states. For any op,
eratorA acting on the all-electron wave functiofls,,,, w

can define a corresponding operaggs, acting on the Hil-

bert space of periodic functiong(r):

Using the completeness relati¢®), we obtain for every vec-
tor k:

_ L > i r i Birik=1. (25
Ao (rr)y=e TA(rr el . (18 !

In particular, the Kohn-Sham Hamiltonian operator is peri- This relation can then be used to obtain an expression of the

odic and therefore diagonal when expressed on Bloch stategseudo- operatoh, =T kAka, corresponding to the quasilo-
For a periodic system, the operafbreads cal operatorA, in an analogous way as for E(h):
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3 Jd
Ak:Ak_"ijEF“ (1B1,R110 (Pi R K AP RO n(r)= 3f (E up uEv(r)
JR, (2m)°JBZ\ v a
(D R K AL D RN (BRI K- (26) 3
+— e uku(r)ukv(r) dk. (29
IIl. VARIATIONAL FUNCTIONAL FOR €, IN THE For simplicity, we do not consider spin degeneracy and the
ULTRASOFET PSEUDOPOTENTIAL SCHEME electronic charge is taken unitary. The first-order wave func-

) . ) _ tions aup, /9€, satisfy the constraints}
In this section, we develop a perturbational density-
J
0 0 0
&)+

functional theory for obtaining dielectric tensors within the

ultrasoft pseudopotential scheme, which also applies to the <—u
projector augmented wave method. Our formulation starts IE, 1
from the variational functional expressing the dielectric ten-

sor as the second-order derivative of the energy with respeetherev andv’ run over the occupied valence states. At the
to the electric field purturbation within an all-electron minimum, the first-order all-electron periodic wave functions
formalism?® Then, using the correspondence between allgup 19, fulfill the generalized Sternheimer equatit&uler-
electron and pseudo-wave-functions outlined in the previousagrange equations associated to the minimization of the
section® we transform the all-electron functional to a pseudofunctiona):*®

0 _
78 U >—o, (30)

one.
The dielectric tensoé.. is determined by the second order P
derivative of the energy with respect to the electric fi€ld: (HE_ eEU)Pc(k)‘gUEv>
47T &2Et0t J
€y Oap™ 76,96, (27) = C(k)( . —+V}, +v§c) lug,), (3D

where the indicesr and 8 correspond to the Cartesian di- whereP(k) is the projector on the unoccupied subspace and

rections of the electric field. results from the application of the constrain30), and
Adopting an all-electron scheme, the diagonal terms ofwhere the first-order variations of the Hartree and the

the dielectric tensor can be obtained by minimizing the f0|-exchange-corre|ation potentials read:

lowing selfconsistent variational functional with respect to

the first order all-electron periodic wave functions

0 .19 nl r’
g, 1€, vﬁ(r)=J ( )dr, (32
r=r]
10%Ey Q d o ol @ o
2 ge2 _(277)3J'BZ; 7€, Uk | M e 3¢, U and
(9 (9 1 _ XC 1
Vidr)=—=| (r)n=(r). (33
+<ag Ukv ak Uku> XC 5 no
d d dk The derivativesiug, /dk, appearing in Eqs(28) and (31)
ak ukv o€, ukv can be calculated by minimizing a non-self-consistent varia-
tional functional'® The off-diagonal elements of the dielec-
1J’ n*(r)n(r’) drdr’ tric tensor can then be obtained frdf:
5| —F)———drdr
20 Jr=r]
F%E ot Q (<a ol @ 0>
1106V = —Ug,|I7—u
i zf o [n'ndr, (28) 38 e |\ 78, | ks U
no
J 0 J 0
where the index runs over the occupied valence staig, Ky |0 g

are the unperturbed periodic ground state wave functions of

energyegv, V,. is the exchange-correlation potential, which,  With the formalism developed in Sec. I, we can express
for simplicity, is taken as in the local-density approximation,the scheme for the calculation of dielectric tensors in terms
n? is the unperturbed charge density, artds the first-order of pseudo-wave-functions. The variational selfconsistent
derivative of the charge density defined as functional (28) then reads
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}r?ZEtot: Q fE <au ~o
2 982 (2m3lez T \\0&, ko

- a\T | g~ 1 n*(r)nk(r") 1( 6V
0 Tt - 0 - ’ - XC
+<ukv T"('_aka> K78 ukv>)dk+2f —|r—r’| drdr +2f_6n )
n

where we explicitly used that the operafby does not de- < J ~,

THHY— €2 )T, — Ty

3~ 3~
R + R
o€, ke aga”kv ak

[n*(r)]?dr, (39

pend on the electric field. This functional is minimized with

respect to the first-order pseudo-wave-functieng, /o€,
satisfying the constraints:

Jd ~
<a£ s ukv>=0. (36)

. . . ~ d ~
We write this functional in a more compact form by intro- (HO— Ekvsk)Pc(k)’EuEv>

~0 70
Ukv,> + < Uy

The Sternheimer equation is now expressed in terms of
U 19E, %

J ~0
Skfukv, =0. (38)

Tka|Uk >+<uku TiTy

ducing pseudo-operators

1B O J ~o =0 =—PT(k)(TT|—T +Vh+Vi|[ud). (39
_ = k kv/*
2 98}, (ZW)BJBz; I,y 78, Yk i €S IEq e o
g ; J where Pq(lé) ark;d PI(k) darf(_e ggneralized projectors on the
unoccupied subspace, defined as
+<a£ —Up, | Tfi ak WU, p p
- o\ |0 Pe(k)=1- 2 [0, TR, I (40)
Ll __ 70 c kv kv
+<ukUT<|(9k)T (95aukv>)dk -
and
. 1f nl(r)nl(r’)d g
2) T 9 PIk) =12 SJUg, (TR, (41)
1 6Vye _— - .
+ —f [n(r)]%dr. (37)  In both definitions, the indices run over the occupied pseu-
2) on dostates.
We give an explicit form to the operatd'rﬂ:ia/&kaTk by
Similarly, the constraints become: using Eq.(26):
T g mi
i gt 2 |Bi Rk
X <q)|RIk T JR,I,k_<q)|RIk 7. JR|k>)<,3,R|k|

~ ~ d
_‘Bi,R,I,k> ((CDi,R,I,k|q)j,R,I,k>_<<Di,R,I,k|q)j,R,l,k>)< i W:Bj,R,I,k

- - d
+1Bi r1 ) U Pi Rkl PRI —(Pi Rkl Pj RN (Bj Rk T (42)
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By using Eqs(23), we finally find 1 5E, 9 9
_ kv 0 |40
2 a2 _<ak o| k™ S 3 ukv>
T Te=ie+ 3 |18t a(Biaid
I i ij (23 j ~ ~
k &k ka iR i,R,1Lk/Yij 1, i,RILk N Jd ~ Uk J HE—EE J s, ug
Ky Y| K, Ky v

=[Bi Rk Qij1{Bj Rk (Fa— Ry

) T it s i) @9
+1Bi R k) Qij1{Bj Rl K ﬁT} (43 HKq Ko | 0Kg
“ where constant terms have been omitted and the first-order
wave functions satisfy the constraints:
where
(e s i )+ (), |
~ ~ kv kv’ kv kv’
Qij1=(Piri kPRI (PiriklPjrIK (44 IKa Ka
+<E° isk ul >—0 (49)
=4 ~ kv kv!' [ T Y
dij 1 =(Pi Ry kT R|Pj r1 1) —(Piri kT~ RIPj R k) Kq

At the minimum, the first-order wave functions fulfill the
corresponding Sternheimer equatfon:
The parameter®;; ; andd;; ; do not depend on the particular
cell labeled byR and can easily be calculated. ~ Jd ~p
We note that the operator given in E¢2) generalizes the (H eksk) Pc(k)‘a_kaukv>
Berry phase definition of the polarizatidghto the ultrasoft
pseudopotential schem&lndeed, for a set of periodic wave

functions{u, ,}, the polarization reads:

J ~
e‘k’a—kask) [ug,). (50

=—PL(k)| 5 -

The operatorsd/dk,)H{ and (9/9k,)S, are calculated from

> <Ukv Thi = oK. Ty

(277)3 Bz 0

G| oe. SRR=iTFO )y, 5
K,

which can be expressed explicitly through E43). The re- J -

sulting expression is the same as that obtained previously ET =i[Sr,lk. (52

through a procedure based on Wannier functfons.

The expression obtained in E@3) for ultrasoft pseudo- These relations follow directly from the definition given in

potentials extends the analogous one for norm-conservingg. (18).

pseudopotentials. In the norm-conserving pseudopotential

schemé?? the summation on the right-hand side of E43) I\V. APPLICATIONS

does not appear: ) o
In the present section, we assess the validity of our

scheme for obtaining dielectric tensors with ultrasoft pseudo-

TTiiT :ii 47) potentials by studying small molecules for which accurate
Kok, * "ok, all-electron results are available. We also apply our scheme

to a disordered model of vitreous silica with a relatively large
simulation cell to illustrate the potential of our method. Since
we are interested in treating systems of relative large size, we
here sample the Brillouin zone at the sdlepoint. We refer
to the Appendix for a technical description of the applied
minimization schemes.

In fact, the parameter®);;, vanish for norm-conserving
pseudopotentials, due to relatiohd). The first term in the
summation, on the right-hand side of E4.3), can be ne-
glected only when the additional approximati@ib) is as-
sumed.

The exposed scheme requires the determination of the

first-order derivative of the pseudo-wave-functimﬁﬁvl K,
with respect to a variation of thke vector in the Brillouin We consider three small molecules, namely, the water, the
zone. These derivatives can be determined by the applicatiomethane, and the ammonia molecule. For these molecules,
of a variational nonselfconsistent perturbational sch&me. we address both the polarizability tensors and the Raman
For eaclk point, we minimize the second-order energy func-intensities.

tional obtained by an expansion with respect to kheector. The polarizability tensors are defined as the second-order
Generalizing the expression obtained in Ref. 19 for norm-derivative of the electronic energy with respect to the electric

conserving pseudopotentials to ultrasoft ones, we obtain field:

A. Small molecules
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TABLE I. Polarizabilty tensor of the water, the methane and the  TABLE Il. Raman intensitiesl(), frequencies ) and depolar-
ammonia molecules. The Cartesian axes are chosen to correspoizdtion ratios p) of the water molecule. The Raman intensities are
with the principal axes of the polarizability tensor. The permanentgiven in A* amu ! and the frequencies in cm. The results of
dipole moment of HO and of NH; is aligned along the direction. Refs. 38 and 45 are obtained within all-electron schemes. The ex-
The H,O molecule is placed on they plane. The polarizabilities perimental values are taken from Ref. 42.
are given in A&.

Theory Expt.
Qyx Qyy Qz; Present Ref. 38 Ref. 45 Ref. 42
H,O 0] | p ® | I p ) | p
Present 1.60 1.62 1.65 1502 0.71 0.61 1547 0.67 1.0 0.59 1595 &® 0.74
Ref. 39 1.60 1.59 1.62 3725 119 0.05 3714 110 111 0.04 3657 16814 0.03
Ref. 40 1.57 1.50 155 3848 25.6 0.75 3823 249 25 0.75 3756 192.1 0.75
Expt. (Ref. 4] 1.48 1.37 1.43
Expt. (Ref. 42 1.52 1.42 1.47
CH, going photons, the Raman intensity of the nth mode re-
Present 2.70 2.70 2.70 sults from an average over spatial orientatiéhs:
Ref. 39 2.68 2.68 2.68
Ref. 40 2.59 2.59 2.59 I"=d"(45a2+7c?), (57)
Expt. (Ref. 43 2.59 2.59 2.59 ]
NHs whered" is the degeneracy of theth mode and
Present 2.22 2.22 2.66 L N N
Ref. 40 2.14 2.14 2.28 a,=3(Ry;+ R+t R3y) (58)
Expt. (Ref. 49 2.07 2.07 2.48
ci=3{(R}1— R3,)*+ (Rl;—R3y?+ (R3,— R3y)*
_ P =3 +6[(R1)+ (Riy)*+ (R3]} (59
Fur 5,08,

For every moden, the depolarization ratip" gives the ratio

and are calculated with the scheme described in the previousetween the intensities observed when the polarizations of

sections. the incoming and outgoing photons are perpendicular and
To calculate the Raman intensities, two ingredients argarallel:

required: the derivatives of the polarizability tensor with re-

spect to the atomic displacements, and the vibrational fre- 3c2
quencies and modes. We obtain the derivatives of with p“=%. (60)
respect to the atomic positions by finite differences 45a;t4c;
da,, The depolarization ratio can vary from zero to 3/4, and van-
P;LV,I}/:W’ (54 ishes for totally symmetric modes.
Y

We describe the electronic structure of the three mol-
where the index runs over the atoms of the molecule and ecules using ultrasoft pseudopotentials for all the involved
the indexy runs over the Cartesian directions. The vibra-atoms. The valence wave functions and the electron density
tional modes and frequencies are obtained by diagonalizingre described by plane-wave basis sets defined by cutoff en-

the dynamical matrix given by ergies of 40 and 160 Ry, respectively. We checked that our
results are fully converged with this choice of cutoff ener-
1 ?Eqor gies. The exchange and correlation energy is given within the

Diaap= JM M, R, 0R5’ (59 Jocal density approximation. We use a cubic simulation cell

with a side of 25 bohrs, sufficiently large for yielding results
whereM, and M are the masses of atorhsaind J, respec-  for isolated molecule$’ The displacements used in the
tively. We calculate the dynamical matrix by taking finite finite-difference calculation of the Raman tensors and the
differences of the atomic forces. dynamical matrices are taken to be®00.05 bohr. For these
The Raman tensors are defined as the derivative of thdisplacements, the polarizabilities and the forces are in the
polarizability with respect to the vibrational modes and canlinear regime.

be expressed as The structure of the investigated molecules was obtained
by full relaxation within our theoretical schemefor the

R =S p v_{’y 56 water molecule, we find a O-H bond length of 1.85 bohrs and

v o wvly \/M_| (56) a H-O-H angle of 105.9°, close to the corresponding experi-

mental valueg1.81 bohr and 104.5°3 The methane mol-
wherev" is the normalizeahth eigenmode. When no particu- ecule is found to have a C-H bond length of 2.10 bohrs, in
lar choice is made for the polarization of the observed outgood agreement with the experimental bond length of 2.05
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TABLE Ill. Raman intensities I(), frequencies ) and depo- The vibrational frequencies calculated in the ultrasoft
larization ratios p) of the methane molecule. The Raman intensi- pseudopotential and all-electron schemes differ by at most
ties are given in Aamu™* and the frequencies in cm. The re- 39, Differences in Raman intensities amount to at most
sults of Rgfs. 38 and 45 are obtained within all-electron schemeg A4 gmu?, corresponding to a relative error of about
The experimental values are taken from Ref. 46. 10% when referred to the highest intensity. All the trends are
well reproduced with larger relative errors for the weakest
lines. We note that, for the weak modes at low frequencies,
significant differences are also observed between the intensi-

o | 0 o | | p o | p ties obtained with different all-electron schem_es. Overall, we
1226 0.11 0.75 1250 0.27 0.01 0.75 1308 0.24 0.75 therefore .cor]clude t_hat the agreement ywth a_ll-electron
1469 2.6 0.75 1480 440 7.4 075 1534 ¥M4 0.75 schemes is highly satisfactory. The comparison with experi-

2040 254 0 2957 247 252 0 2017 2802 o  'mental datais of the same quality.
3053 144 0.75 3085 141 149 0.75 3019 2B 0.75

Theory Expt.
Present Ref. 38 Ref. 45 Ref. 46

B. Vitreous silica

We apply our scheme for the dielectric tensor to a disor-
bohrs?® The relaxation of the atomic positions of the NH dered model structure of vitreous silica consisting of 72 at-
molecule yields a N-H bond length of 1.95 bohrs and aoms at the experimental density (2.20 g3 We refer to
H-N-H angle of 105.5°, to be compared with the experimen-Ref. 30 for a detailed description of the structural properties,
tal values of 1.91 bohrs and 106.7%. such as bond lengths and angles, and to Ref. 31 for a descrip-

In Table I, we report calculated values for the polarizabil-tion in terms of ring statistics. This model has proved very
ities of the HO, CH,, and NH; molecules. For comparison, successful in a series of previous investigations concerning
the table also contains experimental data and all-electron ré¢he vibrational properties. These include the neutron vibra-
sults obtained with localized basis sets. The all-electron retional density of state¥3® the infrared absorption
sults were obtained within the same local-density approximaspectrum* the dynamical structure factdt,and vibrational
tion for the exchange-correlation energy as used in themplitudes:* In particular, we used this model structure to
present work. Compared to the all-electron results, our dataalculate Raman spectra in the same way as above for the
differ by at most 7%. This difference cannot simply be at-small molecule$? The analysis of the Raman spectra al-
tributed to the frozen core approximation. In fact, variouslowed us to give an estimation for the concentration of small
all-electron results in the literature show differences of thering structures in vitreous silicZ.
same order. Compared to the experimental data, our calcu- We describe the electronic structure within the local-
lated polarizabilities are higher by at most 7%. We note thatlensity approximation to density functional theory. We use a
our calculated polarizabilities are allways higher than the exhorm-conserving pseudopotential for &ef. 39 and an ul-
perimental values. The theoretical overestimation due to th&asoft pseudopotential for QRef. 2. The electron wave

local density approximation is well know. functions and charge density are described by plane-wave
Our results for the Raman intensities of theQ{ CH,, basis sets with cutoff energies of 24 and 200 Ry, respectively.
and NH; molecules are summarized in Tables II, Ill, and 1V, The Brillouin zone is sampled at tHé point.

respectively. Each table contains the vibrational frequencies Using the scheme outlined in the previous sections, we
and the corresponding Raman intensities and depolarizatiosbtain the following dielectric tensor for this model structure
ratios for its respective molecule. We also report in the tablesf vitreous silica:
experimental data and all-electron results obtained with lo-
calized basis sets. The all-electron results were obtained 2.12 0.03 0.0
within the same local-density approximation for the c —| 003 214 00
exchange-correlation energy as used in the present work. *
0.01 0.00 2.1

TABLE IV. Raman intensitiesl(), frequencies ) and depolar-
ization ratios p) of the ammonia molecule. The Raman intensities
are given in & amu ! and the frequencies in cm. The results of
Ref. 45 are obtained within an all-electron scheme. The experime
tal values are taken from Ref. 47.

For an isotropic material, the dielectric tensor is proportional
to the identity tensor. Because of the finite size of our model
structure, the calculated tensor shows deviations with respect
Mo the isotropic case. However, these deviations are small,
namely at most 0.03. This implies that the dielectric constant
is well described by a model structure of this size. We obtain

Theory Expt. ) h .
Present Ref. 45 Ref. 47 an average dielectric constant of 2.14, in good agreement
with the experimental result of 2.78.

® | p I p ® I Despite the good agreement between calculated and ex-
959 3.4 0.26 14 0.23 950 perimental dielectric constants, the theoretical underestima-
1571 1.48 0.75 45 0.75 1627 tion appears surprising in view of the tendency of the local-
3395 191.4 0.01 208 0.01 3337 182 density approximation for overestimatiéh.To examine
3504 80.7 0.75 104 0.75 3444 whether the underestimation relates with the presence of a

high concentration of small rings in our model structtfre,
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we also consider a second model of the same size but withfar Scientific Computing. One of the authofX.G.) ac-
concentration of small rings in closer agreement withknowledges financial support from the F.N.R(Belgium),
experiment? Applying our scheme to the second model, wethe EU-RTN Contract No. HPRN-CT-2002-00317 “First-

obtain the following dielectric tensor: principles approach to the calculation of optical properties of
solids,” and the “Pole d’attraction interuniversitaire P5/01”
219 003 00 (Federal Government of Belgium
e,=| 0.03 2.30 0.0
0.02 0.01 2.2
The corresponding average dielectric constant of 2.26 now APPENDIX: MINIMIZATION SCHEMES

overestimates the experimental val@?20), in accord with
the tendency of the local _densn_y approximation. Hence, th%on of dielectric tensors within the ultrasoft pseudopotential
calculated values of the dielectric constants further favor the

structure of the second model with respect to that of the firsf'(:heme developed n Ref. 1. Since we are interested in treat-
one?? Ing systems of relative large size, we here sample the Bril-

louin zone at the sol& point. The unperturbed wave func-
tions can therefore be taken real.
The first step requires the determination of the derivatives
We introduced a variational density-functional perturba-of the unperturbed wave functions with respect tokhesc-
tional scheme for calculating dielectric tensors within an ul-tor through the minimization of the non-self-consistent func-
trasoft pseudopotential framework. Our work makes use of &onal (48). When al'-point sampling is adopted, the first-
relation between all-electron and pseudo-wave-functionsprder wave functions can be taken purely imaginary. In the
first proposed in the projector augmented wave mefhod.present implementation, we minimize functioé8) by per-
This relation allows us to derive the coupling of the electricforming a damped Car-Parrinello molecular dynartfider
field to the pseudo-Hamiltonian from that in the all-electronthe degrees of freedom that specify the first-order wave func-
one. Our scheme covers the cases of both ultrasoft and norrtions.
conserving pseudopotentials. In the latter case, our scheme is We explored two different schemes for imposing the con-
found to coincide with previous treatmehtsut provides —straints (49) when minimizing functional(48). The first
additionally a better understanding of the underlying ap-scheme consists in using Lagrange multipliegs: (k). This
proximations. Furthermore, our scheme overcomes the diffiresults in the addition of the constraints to the second-order
culty associated to the coupling of electric fields to nonlocalenergy functional48):
potentials in pseudo-Hamiltoniai§In fact, the coupling to
the electric field is defined in our work at the level of the

We implemented the present formulation for the calcula-

V. CONCLUSIONS

all-electron Hamiltonian which is intrinsically local, and is 1 &ZE{W | 9 ~gl=0 o d ~,
only subsequently transferred to the pseudo-Hamiltonian viap 5.2 — (9_ka”ku Hi— &Sk ﬂ_kaukv
the correspondence between all-electron and pseudo-wave- “
functions. In addition, our formulation applies by construc-
tion to the all-electron projector augmented wave method. den| d~og o9 _l~p
Nt : —Uy,| =—H,— e,=—S|u
We assessed the validity of our scheme by comparing dk, vl ok, * “kok, kv

calculated polarizabilities and Raman intensities for small

molecules to corresponding data obtained with all-electron (e iﬁo_ 09 «| 9~p
schemes. Our results are close to both all-electron and ex- kol ok, X Ekakask akauk”
perimental data, supporting the validity of our perturbational

scheme. The satisfactory agreement between experimental _2 N /(k)(<iﬁo Skmo )
Raman intensities and those calculated within our scheme o ik, v ko'

supports the notion that pseudopotential calculations of Ra-

man intensities generally perform well, at variance with re- ~0 Jd ~o ~0 9 ~0

sults of previous studie¥. +<uk”|sk&_kaukv’ +<uk”|(9_kask|ukv’> » (AD
The use of ultrasoft pseudopotentials in our scheme pro-

vides a computationally effective tool for calculating dielec- h hek indi hE point i imol

tric tensors and Raman intensities for systems of relatively’ ergt ) victor_ln. |pat<a_st pogﬂ N ohur Il_mp ementa- |

large size. Indeed, the methodology described in this wor ion. During the minimization, we obtain the Lagrange mul-

was already successfully applied to the study of Raman indPli€rs by imposing the constraint¢49) at each Car-
tensities of vitreous silicZ Parrinello step. This results in a procedure analogous to that

described in Ref. 1 for the Car-Parrinello evolution of unper-
turbed wave functions.
In the second scheme, the constraid® are imposed by
projecting the first-order wave functions on the unoccupied
We acknowledge support from the Swiss National Sciencsubspace. At the minimum of functiong1), the following
Foundation(Grant No. 620-57850.9%nd the Swiss Center explicit expression for the Lagrange multipliers holds:
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xw,(k)=<ﬂkv kvsk‘ﬁk ——Up. >
d

—HRY- € isk 50 (A2)
dk, K Tkvgk, ok, ke[

+<agu

Substituting this expression into the functioitall), we ob-
tain the following condition at its minimum:

B) PEg, k) ) PE |
sl Lo |\ ke sl o |\ ke
K, < K, <

(A3)
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At each Car-Parrinello step, we then project the evolved
wave functions on the unoccupied subspace by applying the
operatorP.(k) to ensure that the constraini49) are satis-
fied. We verified that the two minimization schemes pro-
posed here yield equivalent first-order wave functions at the
minimum.

The second step requires the minimization of the self-
consistent variational functional37) with the constraints
(38). Due to thel'-point sampling, the first-order derivative
of the Bloch wave functions with respect to the electric field
can be taken real. As for the functiondg), we perform the
minimization of functional (37) using a damped Car-
Parrinello dynamics. The constraint38) do not depend on
the perturbation and can be implemented using either of the
two schemes proposed above. During the minimization of
functional (37), the first-order variation of the electronic
charge is calculated at each step and the selfconsistent poten-

where the functional derivative of the second-order exprestial is updated. Minimization of functiondB7) gives direct
sion (A1) is related, through some algebra, to that of func-access to the diagonal elements of the dielectric te(@0r
tional (48). The off-diagonal elements of the dielectric tensor are ob-

Inspired by the conditions at the minimum, we proceed asained from Eq.(34), expressed in terms of pseudo-wave-
follows in the second minimization scheme. We start from afynctions:

trial set of first-order wave functions satisfying the con-
straints(49). The functional(48) subject to the constraints

A ; . > PE Q d ~,
(49) is minimized by evolving the wave functions according _—_ %t

to the gradient:

) %Ey
PI(k) ( )
c 5< Jd ~0 5ki

(A4)

(9T
ak"

ukv> dk+c.c.,
(A5)

0E0Es (277)3f Y <a5 7| T

where c.c. stands for complex conjugate and the operator
Tli(ﬂ/akﬁ)Tk given explicitly in Eq.(42) is used.
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