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Density-functional perturbational theory for dielectric tensors in the ultrasoft
pseudopotential scheme
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We introduce a density-functional perturbational scheme based on ultrasoft pseudopotentials for calculating
dielectric tensors of periodic systems. We obtain a variational functional for the second-order derivative of the
energy with respect to an electric field. Our scheme makes use of the correspondence between all-electron and
pseudo-wave-functions introduced in the projector augmented wave method. While we here specifically focus
on ultrasoft pseudopotentials, our scheme also covers the case of norm-conserving ones. In the latter case, our
formulation coincides with earlier ones but highlights the implied approximations. By construction, our scheme
also applies to the all-electron projector augmented wave method. We first assess the validity of our scheme by
calculating polarizability tensors and Raman intensities of small molecules (H2O, CH4 , NH3). We find good
agreement with both experimental data and previous all-electron results. We then illustrate the potential of our
scheme for treating systems of relatively large size through an application to a disordered model structure of
vitreous silica.
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I. INTRODUCTION

Electronic structure calculations within density-function
theory based on plane-wave basis sets and pseudopote
have grown into a widespread tool for investigating the pr
erties of extended materials. The use of plane waves o
important advantages, such as a uniform sampling of sp
atom-independent basis functions, and theoret
simplicity.1 However, the computational effort to describ
systems with localized states, such as first-row element
transition metals, has often been prohibitive due to the la
amount of required basis functions.

In the early 1990s, the development of ultras
pseudopotentials2 and their implementation in standar
density-functional calculations1 have opened the way to th
treatment of almost any element of the periodic table at
affordable computational cost. In the ultrasoft pseudopot
tial scheme, the electronic charge density is augmented in
core regions, thereby allowing for smoother electronic wa
functions. This benefit is achieved at the cost of introduc
generalized orthonormality constraints which depend on
ionic positions. The continued success of the ultras
pseudopotential scheme is further demonstrated by the a
ability of this scheme in a large set of current computatio
packages.1,3–7

The ultrasoft pseudopotential scheme shows impor
similarities with the projector augmented wave method.8 In-
deed, the relationship between all-electron and pseudo-w
functions introduced in the latter method also applies to
ultrasoft pseudopotential scheme.9 In particular, this relation-
ship allows one to express expectation values of observa
for all-electron wave functions in terms of the correspon
ing pseudo-wave-functions, overcoming difficulties asso
ated to nonlocal operators. Using this corresponden
it has been possible to address within~ultrasoft! pseudopo-
tential schemes a variety of observables, including hyper
0163-1829/2004/69~23!/235102~11!/$22.50 69 2351
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splittings,10–13 dynamical charges,14 magnetic suscept
ibilities,15,16 and nuclear magnetic resonance shifts.15,16

Density-functional perturbational approaches have
dressed a large variety of physical observables.17 In particu-
lar, the perturbation due to an infinitesimal electric fie
could be treated and dielectric tensors obtained.18,19 These
approaches are mostly based on plane-wave basis sets
norm-conserving pseudopotentials. The extension to ultra
pseudopotentials has been achieved for the study of la
dynamics.20,21

In a recent work, we successfully treated the linear
sponse to an electric field within the ultrasoft pseudopot
tial framework, thereby making possible the calculation
the Raman spectra for a disordered model structure of v
ous silica.22 In the present paper, we complement our pre
ous work by providing a comprehensive account of the va
tional density-functional perturbational theory which w
developed. Our perturbational approach only accounts
variations of valence wave functions and is derived from
all-electron formulation via the correspondence introduced
the projector augmented wave method. The perturbation
to the electric field is expressed in terms of a derivative w
respect to thek vector in the Brillouin zone.19 Dielectric
tensors are then obtained via a two-step procedure. In
first step, the first-order derivative of the wave functions w
respect tok is obtained by minimizing an auxiliary non-sel
consistent functional. The result of this minimization is us
to set up a variational functional expressing the second-o
derivative of the energy with respect to the field. In the s
ond step, this functional is minimized in a self-consiste
way and the dielectric tensor is obtained. When applied
norm-conserving pseudopotentials, the present formulatio
found to coincide with earlier ones19 but gives insight in the
underlying approximations. While we here focus on the
trasoft pseudopotential scheme, the present formulation
applies to the projector augmented wave method. To valid
©2004 The American Physical Society02-1
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our scheme, we calculate polarizability tensors and Ram
intensities of small molecules, such as H2O, CH4, and NH3,
and find good agreement with both experimental data
previous all-electron results. Taking advantage of the ul
soft pseudopotential scheme, our method is particula
suited to treat systems of relatively large size. In a previ
application, we illustrated this potential by calculating t
Raman spectra of model structures of vitreous silica.22 We
here complement this study by addressing the dielectric
sor of the same model structures.

The paper is organized as follows. In Sec. II, we outli
how the correspondence between all-electron and pse
wave-functions, introduced in the projector augmented w
method, applies within the ultrasoft pseudopotential sche
In Sec. III, we develop our perturbational theory for calc
lating dielectric tensors within the ultrasoft pseudopoten
scheme. In Sec. IV, we calculate polarizabilities and Ram
intensities for small molecules. We also calculate the st
dielectric constants for disordered model structures of vi
ous silica. The conclusions are drawn in Sec. V. In the A
pendix, we describe the technical procedure adopted
this work for minimizing the variational functionals give
in Sec. III.

II. RELATION BETWEEN ALL-ELECTRON AND
PSEUDO-WAVE-FUNCTIONS

In the projector augmented wave method,8 a linear opera-
tor T is introduced to connect an all electron wave functi
Cn to its corresponding pseudo-wave-functionC̃n :

uCn&5TuC̃n&. ~1!

This transformation allows one to treat valence sta
through soft pseudo-wave-functions, overcoming the di
culty of treating the strong oscillations of the all-electr
wave functions in the core region. For simplicity, we co
sider here an electronic system describing the interac
with a single ionic core. The operatorT reads8

T511(
i

~ uF i&2uF̃ i&)^b i u, ~2!

whereF i and F̃ i are all-electron and pseudoatomic wave
functions, which coincide outside of the core region. T
operator ensures that the pseudo-wave-functionC̃n matches
the all-electron wave functionCn outside of the core region
Inside the core region, the projectorsb i satisfy the following
completeness relation:

(
i

uF̃ i&^b i u51. ~3!

Through the relation in Eq.~1!, any operatorA acting on
all-electron wave functions corresponds to a pseudo-oper
Ã acting on pseudo-wave-functions:

^CnuAuCm&5^C̃nuT†ATuC̃m&5^C̃nuÃuC̃m&, ~4!
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whereÃ is defined asT†AT. When the operatorA is quasilo-
cal ~i.e., it depends locally on the wave functions and loca
on the space derivatives of the wave functions!, the respec-
tive pseudo operatorÃ is given by8

Ã5A1(
i , j

ub i&~^F i uAuF j&2^F̃ i uAuF̃ j&!^b j u, ~5!

which is obtained making explicit use of the completene
relation in Eq.~3!. In practical implementations, only a finit
set of projectorsb i is considered.1,2,8

We now apply this scheme to the all-electron Kohn-Sh
Hamiltonian operatorH0:

H052
\2

2m
¹21VH~r !1Vxc~r !1Vloc~r !, ~6!

where 2\2¹2/(2m) is the kinetic energy,VH the Hartree
potential,Vxc the exchange-correlation potential, andVloc a
local potential external to the electron system. The potent
VH andVxc depend self-consistently on the electron dens
The pseudo-HamiltonianH̃05T†H0T acting on the pseudo
wave-functions reads

H̃05H01(
i j

ub i&Di j ^b j u, ~7!

where, in the same notation of Ref. 1,

Di j 5Di j
0 1E

R
Qi j ~r !@VH~r !1Vxc~r !1Vloc~r !#dr , ~8!

Di j
0 52

\2

2mE
R
@F i* ~r !¹2F j~r !1F̃ i* ~r !¹2F̃ j~r !#dr .

~9!

In the latter equations,R denotes that the integral is limite
to the core region of radiusR and the augmentation function
Qi j are defined as:

Qi j ~r !5F i* ~r !F j~r !2F̃ i* ~r !F̃ j~r !. ~10!

The pseudo-wave-functions satisfy the generalized ort
normality constraints

^C̃nuSuC̃m&5dnm , ~11!

where S is the pseudoidentity operatorT†T. Similarly, a
pseudodensity operatorK(r ) is derived from the all-electron
density operatorur &^r u:

K~r !5ur &^r u1(
i , j

ub i&Qi j ~r !^b j u. ~12!

The pseudo-Kohn-Sham Hamiltonian obtained through re
tion ~1!, introduced in the projector augmented wa
method, corresponds to that found in the ultrasoft pseudo
tential scheme.1 However, as opposed to the projector au
mented wave method which is an all-electron scheme,
ultrasoft pseudopotential scheme treats explicitly only
valence wave functions. In pseudopotential approaches, t
2-2
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is a redefinition of the local part of the potential to accou
for the core electrons. The screening of the nuclei due to
core electrons, which contributes to the Hartree potentialVH
in an all-electron Hamiltonian, is transferred to the local p
tential Vloc of the pseudo Hamiltonian.

The scheme outlined above can also be related to
norm-conserving pseudopotential scheme.23 In the latter
scheme, the following norm-conserving condition is im
posed:

E
R
F i* ~r !F j~r !dr5E

R
F̃ i* ~r !F̃ j~r !dr , ~13!

which ensures that the total pseudocharge in the core re
equals the corresponding all-electron charge, as can be
duced from Eqs.~12! and ~10!. Hence, the operatorS
5T†T becomes the identity operator. Upon transformat
~5!, the kinetic energy operator gives rise to the nonlo
potentialVNL appearing in the pseudo-Hamiltonian~7!:

VNL5(
i j

ub i&Di j
0 ^b j u. ~14!

The norm-conserving pseudopotential scheme also adop
additional approximation, which is generally not specified.
fact, one assumes not only that the integral ofQi j (r ) van-
ishes as imposed by Eq.~13!, but also thatQi j (r ) vanishes
everywhere:

Qi j ~r !50. ~15!

The pseudodensity operatorK(r ) then coincides with the
all-electron one. In this way, the pseudo-Hamiltonian f
mally differs from the all-electron one only by the nonloc
potentialVNL .

We now extend the above formalism to the case of
infinite periodic system. According to the Bloch theorem, t
all-electron wave functions can be written as

Ckn~r !5~2p!3/2~V!21/2eik•rukn~r !, ~16!

where V is the volume of the primitive cell,k is a wave
vector belonging to the Brillouin zone, andukn are periodic
all-electron wave functions. The valence charge density
periodic and is expressed by~in units of electrons per cell!:

n~r !5
V

~2p!3EBZ
(

v
ukv* ~r !ukv~r !dk, ~17!

where the integral is taken over the Brillouin zone, and
index v runs over the occupied valence states. For any
eratorA acting on the all-electron wave functionsCkn , we
can define a corresponding operatorAk,k8 acting on the Hil-
bert space of periodic functionsukn(r ):

Ak,k8~r ,r 8!5e2 ik•rA~r ,r 8!eik8•r8. ~18!

In particular, the Kohn-Sham Hamiltonian operator is pe
odic and therefore diagonal when expressed on Bloch sta

For a periodic system, the operatorT reads
23510
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T511 (
R,I ,i

~ uF i ,R,I&2uF̃ i ,R,I&)^b i ,R,I u, ~19!

where the vectorR describes the Bravais lattice and the i
dex I runs over the ionic cores in the cell. The functio
FR,I ,i and F̃R,I ,i are centered on the ionic cores and sh
the following translational property:

F i ,R,I@r2~R1t I !#5F i ,I~r !,

F̃ i ,R,I@r2~R1tI !#5F̃ i ,I~r !, ~20!

b i ,R,I@r2~R1tI !#5b i ,I~r !,

whereR1t I is the position of the ionI in the cell labeled by
the vectorR. The operatorT has the periodicity of the lattice
and becomes diagonal when expressed on a basis set o
riodic functions ukn(r ) as in Eq. ~18!. Hence, periodic
pseudo-wave-functionsũkn are defined in a straightforwar
way:

uukn&5Tk,kuũkn&, ~21!

and can be used to express the pseudo-wave-functionC̃kn :

C̃kn~r !5~2p!3/2~V!21/2eik•rũkn~r !. ~22!

To simplify the notation, we indicate in the following with
Ak the diagonal termAk,k of a generic operatorA.

We now generalize Eq.~5! to the case of operators actin
on periodic wave functions. We define the following fun
tions:

uF i ,R,I ,k&5e2 ik(rÀR)uF i ,R,I&,

uF̃ i ,R,I ,k&5e2 ik(rÀR)uF̃ i ,R,I&, ~23!

ub i ,R,I ,k&5e2 ik(rÀR)ub i ,R,I&.

The operatorTk can then be expressed as:

Tk511 (
i ,R,I

~ uF i ,R,I ,k&2uF̃ i ,R,I ,k&)^b i ,R,I ,ku. ~24!

Using the completeness relation~3!, we obtain for every vec-
tor k:

(
i

uF̃ i ,R,I ,k&^b i ,R,I ,ku51. ~25!

This relation can then be used to obtain an expression of
pseudo-operatorÃk5Tk

†AkTk , corresponding to the quasilo
cal operatorA, in an analogous way as for Eq.~5!:
2-3
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Ãk5Ak1 (
i , j ,R,I

~ ub i ,R,I ,k&~^F i ,R,I ,kuAkuF j ,R,I ,k&

2^F̃ i ,R,I ,kuAkuF̃ j ,R,I ,k&!^b j ,R,I ,ku!. ~26!

III. VARIATIONAL FUNCTIONAL FOR e` IN THE
ULTRASOFT PSEUDOPOTENTIAL SCHEME

In this section, we develop a perturbational densi
functional theory for obtaining dielectric tensors within th
ultrasoft pseudopotential scheme, which also applies to
projector augmented wave method. Our formulation sta
from the variational functional expressing the dielectric te
sor as the second-order derivative of the energy with res
to the electric field purturbation within an all-electro
formalism.19 Then, using the correspondence between
electron and pseudo-wave-functions outlined in the previ
section,8 we transform the all-electron functional to a pseu
one.

The dielectric tensore` is determined by the second ord
derivative of the energy with respect to the electric field:19

e`ab
5dab2

4p

V

]2Etot

]Ea]Eb
, ~27!

where the indicesa and b correspond to the Cartesian d
rections of the electric fieldE.

Adopting an all-electron scheme, the diagonal terms
the dielectric tensor can be obtained by minimizing the f
lowing selfconsistent variational functional with respect
the first order all-electron periodic wave function
]ukv

0 /]Ea :19

1

2

]2Etot

]E a
2

5
V

~2p!3EBZ
(

v S K ]

]E a
ukv

0 UHk
02ekv

0 U ]

]E a
ukv

0 L
1K ]

]E a
ukv

0 U i ]

]ka
ukv

0 L
1 K i

]

]ka
ukv

0 U ]

]E a
ukv

0 L Ddk

1
1

2E n1~r !n1~r 8!

ur2r 8u
drdr 8

1
1

2E dVxc

dn U
n0

@n1~r !#2dr , ~28!

where the indexv runs over the occupied valence states,ukv
0

are the unperturbed periodic ground state wave function
energyekv

0 , Vxc is the exchange-correlation potential, whic
for simplicity, is taken as in the local-density approximatio
n0 is the unperturbed charge density, andn1 is the first-order
derivative of the charge density defined as
23510
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n1~r !5
V

~2p!3EBZ
S (

v
ukv

0* ~r !
]

]E a
ukv

0 ~r !

1
]

]E a
ukv

0* ~r !ukv
0 ~r ! D dk. ~29!

For simplicity, we do not consider spin degeneracy and
electronic charge is taken unitary. The first-order wave fu
tions ]ukv

0 /]Ea satisfy the constraints:19

K ]

]Ea
ukv

0 Uukv8
0 L 1 K ukv

0 U ]

]E a
ukv8

0 U L 50, ~30!

wherev andv8 run over the occupied valence states. At t
minimum, the first-order all-electron periodic wave functio
]ukv

0 /]Ea fulfill the generalized Sternheimer equation~Euler-
Lagrange equations associated to the minimization of
functional!:18

~Hk
02ekv

0 !Pc~k!U ]

]E a
ukv

0 L
52Pc~k!S i

]

]ka
1VH

1 1Vxc
1 D uukv

0 &, ~31!

wherePc(k) is the projector on the unoccupied subspace a
results from the application of the constraints~30!, and
where the first-order variations of the Hartree and
exchange-correlation potentials read:

VH
1 ~r !5E n1~r 8!

ur2r 8u
dr 8 ~32!

and

Vxc
1 ~r !5

dVxc

dn U
n0

~r !n1~r !. ~33!

The derivatives]ukv
0 /]ka appearing in Eqs.~28! and ~31!

can be calculated by minimizing a non-self-consistent va
tional functional.19 The off-diagonal elements of the dielec
tric tensor can then be obtained from:19

]2Etot

]Ea]Eb
5

V

~2p!3EBZ
(

v
S K ]

]E a
ukv

0 U i ]

]kb
ukv

0 L
1 K i

]

]ka
ukv

0 U ]

]E b
ukv

0 L Ddk. ~34!

With the formalism developed in Sec. II, we can expre
the scheme for the calculation of dielectric tensors in ter
of pseudo-wave-functions. The variational selfconsist
functional ~28! then reads
2-4
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1

2

]2Etot

]E a
2

5
V

~2p!3EBZ
(

v
S K ]

]Ea
ũkv

0 UTk
†~Hk

02ekv
0 !TkU ]

]Ea
ũkv

0 L 1 K ]

]Ea
ũkv

0 UTk
†i

]

]ka
TkU ũkv

0 L
1K ũkv

0 UTk
†S i

]

]ka
D †

TkU ]

]Ea
ũkv

0 L Ddk1
1

2E n1~r !n1~r 8!

ur2r 8u
drdr 81

1

2E dVxc

dn U
n0

@n1~r !#2dr , ~35!
th

o-

of

e

-

where we explicitly used that the operatorTk does not de-
pend on the electric field. This functional is minimized wi
respect to the first-order pseudo-wave-functions]ũkv

0 /]Ea

satisfying the constraints:

K ]

]Ea
ũkv

0 UTk
†Tkuũkv8

0 &1 K ũkv
0 UTk

†TkU ]

]Ea
ũkv8

0 L 50. ~36!

We write this functional in a more compact form by intr
ducing pseudo-operators

1

2

]2Etot

]E a
2

5
V

~2p!3EBZ
(

v
S K ]

]Ea
ũkv

0 UH̃k
02ekvSkU ]

]Ea
ũkv

0 L
1 K ]

]Ea
ũkv

0 UTk
†i

]

]ka
TkU ũkv

0 L
1K ũkv

0 UTk
†S i

]

]ka
D †

TkU ]

]Ea
ũkv

0 L Ddk

1
1

2E n1~r !n1~r 8!

ur2r 8u
drdr 8

1
1

2E dVxc

dn U
n0

@n1~r !#2dr . ~37!

Similarly, the constraints become:
K ]

]Ea
ũkv

0 USkU ũkv8
0 L 1 K ũkv

0 USkU ]

]Ea
ũkv8

0 L 50. ~38!

The Sternheimer equation is now expressed in terms
]ũkv

0 /]Ea :20

~H̃k
02ekvSk!Pc~k!U ]

]Ea
ũkv

0 L
52Pc

†~k!S Tk
†i

]

]ka
Tk1VH

1 1Vxc
1 D uũkv

0 &. ~39!

where Pc(k) and Pc
†(k) are generalized projectors on th

unoccupied subspace, defined as

Pc~k!512(
v

uũkv
0 &^ũkv

0 uSk , ~40!

and

Pc
†~k!512(

v
Skuũkv

0 &^ũkv
0 u. ~41!

In both definitions, the indicesv run over the occupied pseu
dostates.

We give an explicit form to the operatorTk
†i ]/]kaTk by

using Eq.~26!:
Tk
†i

]

]ka
Tk5 i

]

]ka
1 (

i , j ,R,I
F ub i ,R,I ,k&

3S K F i ,R,I ,kU i ]

]ka
UF j ,R,I ,kU2 K F̃ i ,R,I ,kU i ]

]ka
UF̃ j ,R,I ,kL D ^b j ,R,I ,ku

2Ub i ,R,I ,kL ~^F i ,R,I ,kuF j ,R,I ,k&2^F̃ i ,R,I ,kuF̃ j ,R,I ,k&!K i
]

]ka
b j ,R,I ,kU

1ub i ,R,I ,k&~^F i ,R,I ,kuF j ,R,I ,k&2^F̃ i ,R,I ,kuF̃ j ,R,I ,k&!^b j ,R,I ,ku i
]

]ka
. ~42!

235102-5
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By using Eqs.~23!, we finally find

Tk
†i

]

]ka
Tk5 i

]

]ka
1 (

i , j ,R,I
F ub i ,R,I ,k&di j ,I ,a^b j ,R,I ,ku

2ub i ,R,I ,k&Qi j ,I^b j ,R,I ,ku~r a2Ra!u

1ub i ,R,I ,k&Qi j ,I^b j ,R,I ,ku i
]

]ka
G , ~43!

where

Qi j ,I5^F i ,R,I ,kuF j ,R,I ,k&2^F̃ i ,R,I ,kuF̃ j ,R,I ,k& ~44!

di j ,I5^F i ,R,I ,kur2RuF j ,R,I ,k&2^F̃ i ,R,I ,kur2RuF̃ j ,R,I ,k&.
~45!

The parametersQi j ,I anddi j ,I do not depend on the particula
cell labeled byR and can easily be calculated.

We note that the operator given in Eq.~42! generalizes the
Berry phase definition of the polarizationP to the ultrasoft
pseudopotential scheme.24 Indeed, for a set of periodic wav
functions$ũk,v%, the polarization reads:

P5
V

~2p!3EBZ
(

v
K ũkvUTk

†i
]

]ka
TkUũkvL 1c.c., ~46!

which can be expressed explicitly through Eq.~43!. The re-
sulting expression is the same as that obtained previo
through a procedure based on Wannier functions.25

The expression obtained in Eq.~43! for ultrasoft pseudo-
potentials extends the analogous one for norm-conser
pseudopotentials. In the norm-conserving pseudopote
scheme,19 the summation on the right-hand side of Eq.~43!
does not appear:

Tk
†i

]

]ka
Tk5 i

]

]ka
. ~47!

In fact, the parametersQi j ,I vanish for norm-conserving
pseudopotentials, due to relation~13!. The first term in the
summation, on the right-hand side of Eq.~43!, can be ne-
glected only when the additional approximation~15! is as-
sumed.

The exposed scheme requires the determination of
first-order derivative of the pseudo-wave-functions]ũkv

0 /]ka

with respect to a variation of thek vector in the Brillouin
zone. These derivatives can be determined by the applica
of a variational nonselfconsistent perturbational schem19

For eachk point, we minimize the second-order energy fun
tional obtained by an expansion with respect to thek vector.
Generalizing the expression obtained in Ref. 19 for nor
conserving pseudopotentials to ultrasoft ones, we obtain
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]2Ekv

]ka
2

5 K ]

]ka
ũkv

0 UH̃k
02ek

0SkU ]

]ka
ũkv

0 L
1 K ]

]ka
ũkv

0 U ]

]ka
H̃k

02ek
0 ]

]ka
SkU ũkv

0 L
1 K ũkv

0 U ]

]ka
H̃k

02ek
0 ]

]ka
SkU ]

]ka
ũkv

0 L , ~48!

where constant terms have been omitted and the first-o
wave functions satisfy the constraints:

K ]

]ka
ũkv

0 USkUũkv8
0 L 1 K ũkv

0 USkU ]

]ka
ũkv8

0 L
1 K ũkv

0 U ]

]ka
SkUũkv8

0 L 50. ~49!

At the minimum, the first-order wave functions fulfill th
corresponding Sternheimer equation:20

~H̃k
02ek

0Sk!Pc~k!U ]

]ka
ũkv

0 L
52Pc

†~k!S ]

]ka
H̃k

02ek
0 ]

]ka
SkD uũkv

0 &. ~50!

The operators (]/]ka)H̃k
0 and (]/]ka)S̃k are calculated from

]

]ka
H̃k

05 i @H̃0,r a#k , ~51!

]

]ka
S̃k5 i @S̃,r a#k . ~52!

These relations follow directly from the definition given
Eq. ~18!.

IV. APPLICATIONS

In the present section, we assess the validity of
scheme for obtaining dielectric tensors with ultrasoft pseu
potentials by studying small molecules for which accur
all-electron results are available. We also apply our sche
to a disordered model of vitreous silica with a relatively lar
simulation cell to illustrate the potential of our method. Sin
we are interested in treating systems of relative large size
here sample the Brillouin zone at the soleG point. We refer
to the Appendix for a technical description of the appli
minimization schemes.

A. Small molecules

We consider three small molecules, namely, the water,
methane, and the ammonia molecule. For these molecu
we address both the polarizability tensors and the Ram
intensities.

The polarizability tensors are defined as the second-o
derivative of the electronic energy with respect to the elec
field:
2-6
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amn5
]2Etot

]Em]En
, ~53!

and are calculated with the scheme described in the prev
sections.

To calculate the Raman intensities, two ingredients
required: the derivatives of the polarizability tensor with r
spect to the atomic displacements, and the vibrational
quencies and modes. We obtain the derivatives ofamn with
respect to the atomic positions by finite differences

Pmn,Ig5
]amn

]RIg
, ~54!

where the indexI runs over the atoms of the molecule a
the indexg runs over the Cartesian directions. The vibr
tional modes and frequencies are obtained by diagonali
the dynamical matrix given by

DIa,Jb5
1

AMIMJ

]2Etot

]RIa]RJb
, ~55!

whereMI and MJ are the masses of atomsI andJ, respec-
tively. We calculate the dynamical matrix by taking fini
differences of the atomic forces.

The Raman tensors are defined as the derivative of
polarizability with respect to the vibrational modes and c
be expressed as

Rmn
n 5(

Ig
Pmn,Ig

v Ig
n

AMI

, ~56!

wherevn is the normalizednth eigenmode. When no particu
lar choice is made for the polarization of the observed o

TABLE I. Polarizabilty tensor of the water, the methane and
ammonia molecules. The Cartesian axes are chosen to corres
with the principal axes of the polarizability tensor. The perman
dipole moment of H2O and of NH3 is aligned along thez direction.
The H2O molecule is placed on thexy plane. The polarizabilities
are given in Å3.

axx ayy azz

H2O
Present 1.60 1.62 1.65
Ref. 39 1.60 1.59 1.62
Ref. 40 1.57 1.50 1.55
Expt. ~Ref. 41! 1.48 1.37 1.43
Expt. ~Ref. 42! 1.52 1.42 1.47
CH4

Present 2.70 2.70 2.70
Ref. 39 2.68 2.68 2.68
Ref. 40 2.59 2.59 2.59
Expt. ~Ref. 43! 2.59 2.59 2.59
NH3

Present 2.22 2.22 2.66
Ref. 40 2.14 2.14 2.28
Expt. ~Ref. 44! 2.07 2.07 2.48
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going photons, the Raman intensityI n of the nth mode re-
sults from an average over spatial orientations:26

I n5dn~45an
217cn

2!, ~57!

wheredn is the degeneracy of thenth mode and

an5 1
3 ~R11

n 1R22
n 1R33

n ! ~58!

cn
25 1

2 $~R11
n 2R22

n !21~R11
n 2R33

n !21~R22
n 2R33

n !2

16@~R12
n !21~R13

n !21~R23
n !2#%. ~59!

For every moden, the depolarization ratiorn gives the ratio
between the intensities observed when the polarization
the incoming and outgoing photons are perpendicular
parallel:

rn5
3cn

2

45an
214cn

2
. ~60!

The depolarization ratio can vary from zero to 3/4, and va
ishes for totally symmetric modes.

We describe the electronic structure of the three m
ecules using ultrasoft pseudopotentials for all the involv
atoms. The valence wave functions and the electron den
are described by plane-wave basis sets defined by cutoff
ergies of 40 and 160 Ry, respectively. We checked that
results are fully converged with this choice of cutoff ene
gies. The exchange and correlation energy is given within
local density approximation. We use a cubic simulation c
with a side of 25 bohrs, sufficiently large for yielding resu
for isolated molecules.27 The displacements used in th
finite-difference calculation of the Raman tensors and
dynamical matrices are taken to be of60.05 bohr. For these
displacements, the polarizabilities and the forces are in
linear regime.

The structure of the investigated molecules was obtai
by full relaxation within our theoretical scheme.1 For the
water molecule, we find a O-H bond length of 1.85 bohrs a
a H-O-H angle of 105.9°, close to the corresponding exp
mental values~1.81 bohr and 104.5°).28 The methane mol-
ecule is found to have a C-H bond length of 2.10 bohrs,
good agreement with the experimental bond length of 2

e
ond
t

TABLE II. Raman intensities (I ), frequencies (v) and depolar-
ization ratios (r) of the water molecule. The Raman intensities a
given in Å4 amu21 and the frequencies in cm21. The results of
Refs. 38 and 45 are obtained within all-electron schemes. The
perimental values are taken from Ref. 42.

Theory Expt.
Present Ref. 38 Ref. 45 Ref. 42

v I r v I I r v I r
1502 0.71 0.61 1547 0.67 1.0 0.59 1595 0.96 2 0.74
3725 119 0.05 3714 110 111 0.04 3657 1086 14 0.03
3848 25.6 0.75 3823 24.9 25 0.75 3756 19.26 2.1 0.75
2-7
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bohrs.28 The relaxation of the atomic positions of the NH3
molecule yields a N-H bond length of 1.95 bohrs and
H-N-H angle of 105.5°, to be compared with the experime
tal values of 1.91 bohrs and 106.7°.28

In Table I, we report calculated values for the polarizab
ities of the H2O, CH4, and NH3 molecules. For comparison
the table also contains experimental data and all-electron
sults obtained with localized basis sets. The all-electron
sults were obtained within the same local-density approxim
tion for the exchange-correlation energy as used in
present work. Compared to the all-electron results, our d
differ by at most 7%. This difference cannot simply be
tributed to the frozen core approximation. In fact, vario
all-electron results in the literature show differences of
same order. Compared to the experimental data, our ca
lated polarizabilities are higher by at most 7%. We note t
our calculated polarizabilities are allways higher than the
perimental values. The theoretical overestimation due to
local density approximation is well known.29

Our results for the Raman intensities of the H2O, CH4,
and NH3 molecules are summarized in Tables II, III, and I
respectively. Each table contains the vibrational frequen
and the corresponding Raman intensities and depolariza
ratios for its respective molecule. We also report in the tab
experimental data and all-electron results obtained with
calized basis sets. The all-electron results were obta
within the same local-density approximation for th
exchange-correlation energy as used in the present work

TABLE III. Raman intensities (I ), frequencies (v) and depo-
larization ratios (r) of the methane molecule. The Raman inten
ties are given in Å4 amu21 and the frequencies in cm21. The re-
sults of Refs. 38 and 45 are obtained within all-electron schem
The experimental values are taken from Ref. 46.

Theory Expt.
Present Ref. 38 Ref. 45 Ref. 46

v I r v I I r v I r
1226 0.11 0.75 1250 0.27 0.01 0.75 1306< 0.24 0.75
1469 2.6 0.75 1480 4.40 7.4 0.75 1534 7.060.4 0.75
2940 254 0 2957 247 252 0 2917 230612 0
3053 144 0.75 3085 141 149 0.75 3019 12867 0.75

TABLE IV. Raman intensities (I ), frequencies (v) and depolar-
ization ratios (r) of the ammonia molecule. The Raman intensit
are given in Å4 amu21 and the frequencies in cm21. The results of
Ref. 45 are obtained within an all-electron scheme. The experim
tal values are taken from Ref. 47.

Theory Expt.
Present Ref. 45 Ref. 47

v I r I r v I
959 3.4 0.26 1.4 0.23 950
1571 1.48 0.75 4.5 0.75 1627
3395 191.4 0.01 208 0.01 3337 18262
3504 80.7 0.75 104 0.75 3444
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The vibrational frequencies calculated in the ultras
pseudopotential and all-electron schemes differ by at m
3%. Differences in Raman intensities amount to at m
20 Å4 amu21, corresponding to a relative error of abo
10% when referred to the highest intensity. All the trends
well reproduced with larger relative errors for the weak
lines. We note that, for the weak modes at low frequenc
significant differences are also observed between the inte
ties obtained with different all-electron schemes. Overall,
therefore conclude that the agreement with all-elect
schemes is highly satisfactory. The comparison with exp
mental data is of the same quality.

B. Vitreous silica

We apply our scheme for the dielectric tensor to a dis
dered model structure of vitreous silica consisting of 72
oms at the experimental density (2.20 g/cm3).30 We refer to
Ref. 30 for a detailed description of the structural properti
such as bond lengths and angles, and to Ref. 31 for a des
tion in terms of ring statistics. This model has proved ve
successful in a series of previous investigations concern
the vibrational properties. These include the neutron vib
tional density of states,32,33 the infrared absorption
spectrum,14 the dynamical structure factor,33 and vibrational
amplitudes.34 In particular, we used this model structure
calculate Raman spectra in the same way as above for
small molecules.22 The analysis of the Raman spectra a
lowed us to give an estimation for the concentration of sm
ring structures in vitreous silica.22

We describe the electronic structure within the loc
density approximation to density functional theory. We us
norm-conserving pseudopotential for Si~Ref. 35! and an ul-
trasoft pseudopotential for O~Ref. 2!. The electron wave
functions and charge density are described by plane-w
basis sets with cutoff energies of 24 and 200 Ry, respectiv
The Brillouin zone is sampled at theG point.

Using the scheme outlined in the previous sections,
obtain the following dielectric tensor for this model structu
of vitreous silica:

e`5S 2.12 0.03 0.01

0.03 2.14 0.00

0.01 0.00 2.15
D .

For an isotropic material, the dielectric tensor is proportio
to the identity tensor. Because of the finite size of our mo
structure, the calculated tensor shows deviations with res
to the isotropic case. However, these deviations are sm
namely at most 0.03. This implies that the dielectric const
is well described by a model structure of this size. We obt
an average dielectric constant of 2.14, in good agreem
with the experimental result of 2.20.36

Despite the good agreement between calculated and
perimental dielectric constants, the theoretical underesti
tion appears surprising in view of the tendency of the loc
density approximation for overestimation.29 To examine
whether the underestimation relates with the presence
high concentration of small rings in our model structure31

-

s.

n-
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we also consider a second model of the same size but w
concentration of small rings in closer agreement w
experiment.22 Applying our scheme to the second model, w
obtain the following dielectric tensor:

e`5S 2.19 0.03 0.02

0.03 2.30 0.01

0.02 0.01 2.28
D .

The corresponding average dielectric constant of 2.26 n
overestimates the experimental value~2.20!, in accord with
the tendency of the local density approximation. Hence,
calculated values of the dielectric constants further favor
structure of the second model with respect to that of the
one.22

V. CONCLUSIONS

We introduced a variational density-functional perturb
tional scheme for calculating dielectric tensors within an
trasoft pseudopotential framework. Our work makes use
relation between all-electron and pseudo-wave-functio
first proposed in the projector augmented wave metho8

This relation allows us to derive the coupling of the elect
field to the pseudo-Hamiltonian from that in the all-electr
one. Our scheme covers the cases of both ultrasoft and n
conserving pseudopotentials. In the latter case, our schem
found to coincide with previous treatments19 but provides
additionally a better understanding of the underlying a
proximations. Furthermore, our scheme overcomes the d
culty associated to the coupling of electric fields to nonlo
potentials in pseudo-Hamiltonians.37 In fact, the coupling to
the electric field is defined in our work at the level of th
all-electron Hamiltonian which is intrinsically local, and
only subsequently transferred to the pseudo-Hamiltonian
the correspondence between all-electron and pseudo-w
functions. In addition, our formulation applies by constru
tion to the all-electron projector augmented wave method8

We assessed the validity of our scheme by compa
calculated polarizabilities and Raman intensities for sm
molecules to corresponding data obtained with all-elect
schemes. Our results are close to both all-electron and
perimental data, supporting the validity of our perturbatio
scheme. The satisfactory agreement between experim
Raman intensities and those calculated within our sche
supports the notion that pseudopotential calculations of
man intensities generally perform well, at variance with
sults of previous studies.38

The use of ultrasoft pseudopotentials in our scheme p
vides a computationally effective tool for calculating diele
tric tensors and Raman intensities for systems of relativ
large size. Indeed, the methodology described in this w
was already successfully applied to the study of Raman
tensities of vitreous silica.22
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APPENDIX: MINIMIZATION SCHEMES

We implemented the present formulation for the calcu
tion of dielectric tensors within the ultrasoft pseudopoten
scheme developed in Ref. 1. Since we are interested in tr
ing systems of relative large size, we here sample the B
louin zone at the soleG point. The unperturbed wave func
tions can therefore be taken real.

The first step requires the determination of the derivati
of the unperturbed wave functions with respect to thek vec-
tor through the minimization of the non-self-consistent fun
tional ~48!. When aG-point sampling is adopted, the firs
order wave functions can be taken purely imaginary. In
present implementation, we minimize functional~48! by per-
forming a damped Car-Parrinello molecular dynamics48 for
the degrees of freedom that specify the first-order wave fu
tions.

We explored two different schemes for imposing the co
straints ~49! when minimizing functional~48!. The first
scheme consists in using Lagrange multiplierslvv8(k). This
results in the addition of the constraints to the second-or
energy functional~48!:

1

2

]2Ekv8

]ka
2

5 K ]

]ka
ũkv

0 UH̃k
02ek

0SkU ]

]ka
ũkv

0 L
1 K ]

]ka
ũkv

0 U ]

]ka
H̃k

02ek
0 ]

]ka
SkUũkv

0 L
1 K ũkv

0 U ]

]ka
H̃k

02ek
0 ]

]ka
SkU ]

]ka
ũkv

0 L
2(

v8
lvv8~k!S K ]

]ka
ũkv

0 USkuũkv8
0 &

1^ũkv
0 uSkU ]

]ka
ũkv8

0 L 1^ũkv
0 u

]

]ka
Skuũkv8

0 & D , ~A1!

where thek vector indicates theG point in our implementa-
tion. During the minimization, we obtain the Lagrange mu
tipliers by imposing the constraints~49! at each Car-
Parrinello step. This results in a procedure analogous to
described in Ref. 1 for the Car-Parrinello evolution of unp
turbed wave functions.

In the second scheme, the constraints~49! are imposed by
projecting the first-order wave functions on the unoccup
subspace. At the minimum of functional~A1!, the following
explicit expression for the Lagrange multipliers holds:
2-9
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lvv8~k!5 K ũkv
0 UH̃k

02ekv
0 SkU ]

]ka
ũkv8

0 L
1 K ũkv

0 U ]

]ka
H̃k

02ekv
0 ]

]ka
SkU ]

]ka
ũkv8

0 L . ~A2!

Substituting this expression into the functional~A1!, we ob-
tain the following condition at its minimum:

d

d K ]

]ka
ũkv

0 U S
]2Ekv8

]ka
2 D 5Pc

†~k!
d

d K ]

]ka
ũkv

0 U S
]2Ekv

]ka
2 D 50,

~A3!

where the functional derivative of the second-order expr
sion ~A1! is related, through some algebra, to that of fun
tional ~48!.

Inspired by the conditions at the minimum, we proceed
follows in the second minimization scheme. We start from
trial set of first-order wave functions satisfying the co
straints~49!. The functional~48! subject to the constraint
~49! is minimized by evolving the wave functions accordin
to the gradient:

Pc
†~k!

d

d K ]
ũkv

0 U S
]2Ekv

]ka
2 D . ~A4!
]ka

bi
,

-
w

k/

r

m

e

ev
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At each Car-Parrinello step, we then project the evolv
wave functions on the unoccupied subspace by applying
operatorPc(k) to ensure that the constraints~49! are satis-
fied. We verified that the two minimization schemes pr
posed here yield equivalent first-order wave functions at
minimum.

The second step requires the minimization of the s
consistent variational functional~37! with the constraints
~38!. Due to theG-point sampling, the first-order derivativ
of the Bloch wave functions with respect to the electric fie
can be taken real. As for the functional~48!, we perform the
minimization of functional ~37! using a damped Car
Parrinello dynamics. The constraints~38! do not depend on
the perturbation and can be implemented using either of
two schemes proposed above. During the minimization
functional ~37!, the first-order variation of the electroni
charge is calculated at each step and the selfconsistent p
tial is updated. Minimization of functional~37! gives direct
access to the diagonal elements of the dielectric tensor~27!.
The off-diagonal elements of the dielectric tensor are
tained from Eq.~34!, expressed in terms of pseudo-wav
functions:

]2Etot

]Ea]Eb
5

V

~2p!3EBZ
(

v
K ]

]Ea
ũkv

0 UTk
†i

]

]kb
TkUũkv

0 L dk1c.c.,

~A5!

where c.c. stands for complex conjugate and the oper
Tk

†i (]/]kb)Tk given explicitly in Eq.~42! is used.
ev.
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