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We consider spin-half quantum antiferromagnets in two spatial dimensions in the quantum limit, where the
spins are in a valence bond solldBS) phase. The transition between two such VBS phases is studied. In
some cases, an interesting second-order transition controlled by a fixed line with varying critical exponents is
found. A specific example is provided by an antiferromagnetically coupled bilayer system on the honeycomb
lattice where a continuous quantum phase transition can generically exist between two VBS phases. Further-
more, these critical points are deconfined, in the sense that gapped spin-1/2 spinon excitations emerge right at
the transition. The low-energy physics of this critical paiap to marginally irrelevant interactiopsontains
just a free quadratically dispersing “photon.” The phase structure on one side of this continuous transition is
very intricate, consisting of a series of infinitely closely spaced further transitions in a “devil’s staircase” form.
Analogies with previous examples of deconfined quantum criticality are emphasized. Closely related transi-
tions in single layer systems are explored. These are second order only at some multicritical points. The
solvable Rokshar-Kivelson point of quantum dimer models of single layer systems is found to correspond to a
nongeneric multicritical point.
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[. INTRODUCTION the links of a two-dimensional lattice. Here is the lattice

Although the theoretical study of quantum phasegradient, and\ X is the lattice curl, defined as .the.gauge flux
transitions has received much attention over the last severaihrough a plaquette. In the natural cases arising in condensed
decades, it remains a source of rich and unexpected physifatter contexts, one imposes the Gauss law constiaift
to this day. For example, recent wéfkon the quantum criti- =0 (the “even” gauge theojyor A-E,=¢; on bipartite lat-
cality of certain quantum magnetspin4 quantum antifer- tices, with e =+1 taking opposite signs on the two sublat-
romagnets on the square lattideas shown that a direct and tices (the “odd” gauge theopy In both cases, regardless of
generically continuous transition between the Neel state anthe values ofy or the “dielectric constant” & e<, the
a valence bond solid state is possible. Such a transition vicgauge theory is always confining. The value of the nominally
lates “Landau’s rules” of classical phase transitions whichirrelevant” (in the renormalization-group senssuplingK
prohibit a direct continuous transition between phases thas then immaterial.
possess such different symmetries. Perhaps more interest- Remarkably, Ref. 2 concluded that a deconfined phase is
ingly the critical theory is unusual and naturally expressed irpossible if a gauge theory similar to above is coupled to
terms of new emergent, “deconfined” degrees of freedongapless matter fields, which arise naturally in quantum anti-
that carry fractional spin, along with an emergeriflJJgauge  ferromagnets at particular QCP’s. In this paper we study a
field. This is despite the absengee., confinementof such different class of transitions which provide other instances of
fractional spin excitations or the associated gauge field ingeconfined” quantum criticality in quantum magnets. Al-
either phasgz Such .critical points were dubbed “deconfined’fhough, in contrast to Ref. 2, they, are not examples of Lan-
quantum critical point§QCP'S. In this paper we shall ex- g, forbidden transitions, they, nevertheless, display several
amine another example of a “deconfined” quantum criticalyaresting similarities to those prior ones. We consider tran-
point which occurs in a different context, i.e., between tWogiiions between two valence bond solMBS) states: quan-

VBS phases. _ , _tum paramagnets with a gap to spin excitations. In either
The existence of such deconfined QCP’s may be surprigshage these spin-carrying excitations are conventional

ing since the gauge theories arising in condensed-matter SY&hough gappedspin-1 magnons or their composites. We
tems (apart from physical electromagnetisrare generally g4y direct second-order transitions between two such
compact i.e., are defined in terms of a periodic gauge ConNpades where “deconfinement” obtains right at the critical
nection € rather than a single valued noncompact vector,qin: ‘e show that the critical mode can be viewed as a
potentiala. In D=2+1,such gauge theories are well known ganjess deconfined () gauge field with a quadratic disper-
tc_) be “always”(but see beIoWgonfmmg. In particular, the sion. Moreover, the magnon excitations, which are sharply
S|mp!est .and. apparently generic compa¢iJgauge theory defined gapped excitations on either side of the transition,
Hamiltonian is break up into two weakly interactinggapped spin-%
_ 1 , K 2 spinons. These spinons are minimally coupled to the critical
H=2 8_7re|E| + E|A X E[*-ycosAxar, (1) geconfined WL) gauge field. This results in a weak interac-
' tion between the spinons so that they are essentially free.
with integer valued “electric fieldE and 2r-periodic vector In contrast to the examples of deconfined quantum criti-
potentiala (canonically conjugate to one anotheefined on  cality of Ref. 2 which are strongly interactirigthe critical
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fixed points discussed here have a simple free field descripnic corrections. Apart from the usual “thermal” operator
tion. In particular, they may be considered as a limit of theneeded to tune to the critical point, the theory is found to
compact gauge theory in Egl) where the dielectric con- have no other relevant perturbations for a range of stiff-
stante— . At this point, the energy cost of an emergent nesses, leading to a fixed line with continuously varying ex-
electric flux to quadratic order il is proportional to|A  ponents depending updt Indeed, this is an interesting ex-
X E|? rather thanE|* as usual. Despite the absence of gap-ample of a fixed line iD=2+1 dimensions, and is closely
less matter fields, this can provide a realization of a deconre|ated to three-dimensional statistical physics models of the
fined QCP, provided the system has sufficiephysically | ishitz point in certain liquid crystal systers.
achievablg symmetries, as shown below. We emphasize that - o results rely crucially on a “dual” description of the
the apprpprlate physmal symmetrles oceur natur ally, for In'quantum paramagnetic phases of antiferromagiéth col-
stance, in an antlferromagnetlcall)_/ cogpled séurh"r‘oney-. Jinear spin correlationsin terms of a sine-Gordor(or
comb tillayer. Mhore_ovler, the QCP in tz's caze IS rm%ﬁnerlc, “height”) field x.1%111t is constructedsee Sec. ) by defin-
l.e., only one physical parameter needs to be tuwedre- ;.\ ¢ — . Ay "so that all physical properties are invariant
sponding to tuning 14 through zerp to reach it. While par- nd rthj ]I bal shif +1. This formulation mav b
ticular “quantum dimer” modelgsee below have provided under the giobal s b(_’X. ' s formufatio ay be
some concrete realizations of compadtllgauge theories, o_btalned ina number of different ways Wh'qh are bnefly
discussed in Sec. Il below. In the continuum limit appropri-

many other microscopic mechanisms leading to(Epexist, . ) . X
and it is fruitful to regard the gauge theory as the most genf"te near critical points between various paramagnetic phases

eral progenitor of such deconfined QCP's. the Euclidean action of this model readsr the honeycomb
Closely related phenomena have been mentioned previattice bilayer system
; ! 6 < )
ously in the literature® in the context of work on the quan S=S+S, + S )

tum dimer model. The dimer model provides a caricature of
spin-gapped quantum paramagnetic phases and admits on

certain lattices a solvable point known as the Rokhsar- S)ZE J d2xdr{(d.x)2+ p(V x)2 + K(VZ)2, (3)
Kivelson (RK) point. On a square or honeycomb lattice the 2

RK point is known to be critical and to separate two phases

with very different VBS order. An important development , . u 4

was the field-theoretic description of this RK point, which Sl:fd XdTZ|AX| +oee (4)
was conjectured by Henlé&yand further elaborated in Ref. 6.

In this paper we will analyze the generic behavior expected

in such a transition between VBS phages, and show that it Snei= _f d?xdr \ cog2my). (5)
differs in important ways from the physics of the RK point.

In particular, for single layer quantum spin systems on th

square lattice we argue that generically there is no secon , - - . .

order transition between two VBS phases. It has been argued] e X field. ZS Ws.lll as— Xr(]E_) E}rhwhlcrrllarlses from

in Ref. 8 that a similar situation also obtains for the single-symme”y under bilayer exchange. The ellipses represent
other termghigher derivatives and higher powgtkat could

layer honeycomb lattice, namely, there is generically no

second-order transition. In contrast, as we show below, suc@e added which are consistent with the symmetries above. As

a second-order transition with “deconfined” criticality ob- U1 field. In this i ion the d i
tains on the bilayer honeycomb lattice with antiferromag-2 (1) gauge field. In this interpretation theterm describes

netic interlayer coupling. In fact, a line of fixed points with inStanton events. The transition of interest occurs wpen
continuously varying exponents is obtained. The universafn@nges sign wittp=0 at the critical point. Instantons are
long distance physics at one of these critical points corref€l€vant in either phase but will turn out to be irrelevant at
sponds to the long distance physics at the RK pgint to the crmgal point for some range &f. In addition, the quartic
logarithmic corrections arising from a marginally irrelevant termu(V x)* will be shown to be marginally irrelevant. Thus,
operatoy. Thus, although, in general, there are significantthe actionS, in Eq. (2) (which was recently studied along
differences from the generic transition, the RK point in somewith several interesting generalizations in Ref) Wil de-
cases can still provide useful information about the universa$cribe, up to marginally irrelevant terms, the fixed point ac-
critical properties of these generic transitions. A unique feation of a generic quantum critical point between two VBS
ture of the RK point is that it occupies a very special place inphases of thebilayer honeycomb lattice antiferromagnet.
the phase diagram of the generic spin model, a point that wilWhenp> 0 the sine-Gordon fieldalso known as the height
be further discussed below. field) y has zero “tilt” in the ground state. It describes a
We now summarize our results for the continuous quanfeatureless paramagnetic state of the original quantum mag-
tum phase transition between two VBS phases of spin-1/2et, which may be caricatured as being made of singlets
guantum antiferromagnets on th@ayer honeycomlbattice. ~ formed on the interlayer rungs. However, whertO one
The precise nature of the neighboring phases themselves wiixpects a finite “tilt,” i.e.,x;, ~Q-r. Thus the transition may
be described shortly. There is a simple Gaussian descriptidpe expected to occur between a VBS phase with zero tilt of
of the critical theory which is parametrized by a “stiffnegs” the height field and a VBS phase with a nonzero tilt of the
and has a dynamical scaling exponen®. In addition, there height field — the tilt increasing “continuously” from zero
is a marginally irrelevant operator that will lead to logarith- on moving away from the “deconfined” critical point. In-

Ef_his continuum action is invariant under global integer shifts

iscussed below, the fiejdmay be interpreted as the dual of
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In the usual quantum dimer model, this finetuning of the
Hamiltonian to access the RK point is achieved by keeping
’ only terms that involve a single plaquette. However, if we
regard the dimer model as an approximate description of
some underlying quantum spin model, then, in general, we
need to include dimer kinetic and potential terms on arbi-
trarily large-sized loopgbut with coefficients that decrease
with increasing loop size The exact degeneracy mentioned
’ above then obtains only if the dimer kinetic energy on every
such loop is set equal to the corresponding potential energy.
\ Thus, for an underlying quantum spin model, this exact de-
generacy presumably requires “infinite” finetuning.
A different way to draw a sharp distinction between the

(a) (b)
. . RK point and a generi¢two parameter tungdmulticritical
FIG. 1. Caricature of VBS phases on the bilayer honeycomb_ . ) . :
lattice. (a) The zero tilt state, with singlet bondthick lineg on the point that allows for a direct zero tilt to staggergdaximum

. . . tilt) state transition, is to ask—what phases can be accessed
interlayer rungs. Note that this state does not break any lattice syn}- h ints b Il ch in b ters?
metry. (b) One of six possible maximally tilte@staggerefiphases. rom these points by a small changé In baré parameters:
From the generic multicritical poinfshown in Fig. 2b)]
deed, while this general expectation is more or less correcthree states — the staggered, zero tilt, and an infinitesimally
the detailed picture is somewhat more complicated owing tdilted state — can be accessed. From the RK point, however,
the relevance of the instanton operators away from the trarilD @ddition to the above three states, states with arbitrary
sition. In fact, as described in Sec. Il C, an interesting strucvalues of the tilt can be accesspelg. 2(c)]. This is a con-
ture obtains on the “tilted” side of the transition. The back-Séguence of the exact degeneracy of states with different tilts
ground electric fieldtilt) changes from its value of zero at at the RK point which gives rise to the special phase struc-
the critical point to a nonzero value some distance awaytUré€ In its vicinity. _
through a fractal sequence of interleaving regions of constant 1he layout of this paper is as follows. In Sec. Il, we
tilt (confined phas@sand nonconstant incommensurate re_d!scuss the_sme-Go_rdon represe_ntatlon of this problem from
gions(deconfined phasgsf zero width but finite total mea- different points of view, the nonlinear model approach of
sure. The resulting structure is known as an “incomplete devtialdane, the easy plane deformation of the spin half magnet
il's staircase ® of Lannertet al,'® and the familiar height representation of
In contrast to the above picture, the RK point sits betweerih® quantum dimer model. In Sec. Il we analyze the spin-
a VBS phase with zero tilt of the height field, and the stag-"alf quantum antiferromagnet on the bilayer honeycomb lat-
gered phase which has the maximum tilt to the height fieldtic® using this representation, and find a stable fixed line
i.e., with 27Q above one of the six reciprocal lattice vectors controlllng the transitions. Various properties of these critical
of minimum length. These phases are illustrated in Fig. 1Points are discussed, and the devil's staircase phase structure
One can then ask whether the RK point occupies a specid¥ o_btame_d. In Sec._V, the single Iayer_square and honeycomb
place in the phase diagram of the generic model. In fact, thiattice spin-half antiferromagnet are discussed, where the ge-
well-known property of the RK point that the ground Sta»[esnerlc_transmon between VBS phas_es is first order. In S_ec_. VI,
in each tilt(winding numbey sector are all degenerate indi- We discuss the well-known RK points, and how they fit into
cates that indeed it occupies a special place in the phadBe general structure described in this paper.
diagram. We have already noted that the RK point exhibits

the same universal critical properties as the generic model Il. SINE-GORDON REPRESENTATION
after tuning a few relevant and marginal operators. However, = FOR PARAMAGNETIC PHASES OF COLLINEAR
to reach the special position occupied by the RK point in the QUANTUM ANTIFERROMAGNETS

phase diagram, finetuning of several dangerously irrelevant
operators is required. These operators do not affect critical
properties but determine the phase structure in the vicinity o . _ . ;
the critical point. The precise position of the RK point in the >0rdon field theory on the dual lattice. In this section, we

phase diagram is discussed below. Note, the generic phagjgscribe this sine-Gordon description and discuss its origin
structure can be recovered if we add to' the RK point arf’md interpretation from several different perspectives which

operator thatfor examplg corresponds to the quartic term toget_her provide considerable insight. We will first discuss
S, in Eq. (2). Moreover, this particular operator will also the single layer case and then move onto the double layer.

generate logarithmic corrections to the RK point correlationThe Igtnce Euc!ldean action for the sme.-Gordon model ap-
propriate to a single layer has the following structure:

functions, which will then precisely match the one of the
generic critical points for the bilayer honeycomb system. S=S,+S,+ -+, (6)
Thus, generic behavior, both in terms of critical properties as

well as phase structure neighboring the critical point, can be 1

obtained by adding this one operator to the RK point Hamil- S = > > (9.x0)%+ p(Ax)% +K(A%y)?, (7)
tonian. T

Our analysis relies crucially on a formulatf@ri! of the
hysics of quantum paramagnetic phases in terms of a sine-
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triangular lattice so that exRima,) oscillates rapidly on
three sublattices.

Near the phase transitions of interest in this paper, the
universal physics is adequately described by a continuum
limit of this action. The oscillating phase factors due to the

¢ a, means that in the continuum the only terms that survive
Q from S, are those withn=0(mod 4 for the square and
Staggered n=0(mod 3 for the honeycomb lattices, respectively.

The physical basis of the sine-Gordon description may be
understood in many ways. We will mainly discuss the square
lattice—the honeycomb lattice is very similar.

Gauge theoeretic/quantum dimer descriptidfirst con-
Tilt=0 sider a description of VBS phases in terms of quantum dimer

crP models. A dimer is to be considered a caricature of a single
valence bond and is taken to live on the bonds of the original
lattice. For spin% systems, it is natural to constrain the dimer
Hilbert space by requiring that there is exactly one dimer
emanating out of each lattice site. It has long been appreci-
ated that such quantum dimer models on bipartite lattices can
be fruitfully viewed as compact (1) gauge theories. This is
understood as follows: First divide the bipartite lattice under
() consideration intcA and B sublattices. To each dimer we

FIG. 2. Schematic depiction of the phase diagram of VBS's, themay associate an integer-valued vector “electric fifldhat
vertical axis in the plots is roughly the parameteand the stag- starts from anA sublattice point and ends atBasublattice
gered state has the maximum tilt. The generic phase diagrams epoint. In terms of these electric fields, the dimer constraint
pected for thebilayer honeycomb lattice are shown {@) and (b) simply becomes the Gauss law
(and also of the single layer honeycomb lattice after tuning one
parameter, the cubic term, to zg¢rda) The continuous transition A-E==+1, (9
(shown with the dashed lings from a zero tilt phase to a region
where the tilt(Q) exhibits a a devil’s staircase structure, contours of where the + sign is for thA sublattice and the - sign for the
equal tilt (thin solid lineg are shown. The critical line ends in a B sublattice. Thus we see that the dimer Hilbert space is
multicritical point M’ beyond which the transition is first order identical to that of a particular compact(l) gauge theory
(solid line). The horizontal axis here may be thought of as thewith fixed background “charges” +1 on the two sublattices.
coefficient of the quartic term(b) An alternate scenario; there is Sych theories were christened “odd gauge theories” in
again a continuous transition to a region with the devil's staircaseref, 6.
structure for the tilt. Here, however, there is a multicritical pdiht Alternately, such a gauge theoretic description of the dis-
that is adjacent to the staggered state which could control a zero tiBrdered phases of the antiferromagnet can be directly ob-
to staggered state transition. The horizontal axis here may b?ained by starting with a slave partiole. g., Schwinger bo-
thought of as the energy cost of the maximally titedaggerell o, o “fermion description. Consider, for instance, a

state. (c) The RK point for the single layer square/honeycomb . . . )
lattice—an infinite number of parameters need to be tuned to accesEsCI’“Mnger boson representation. This has(a)Wauge re

this plane. Exact degeneracy of the different winding number secto undancy associated with arbitrary phase rotations of the

ground states implies that states with arbitrary tilt lie infinitesimally Osons at each site. In a sp_in gapped paramagnetic phgse t,he
close to the RK point as shown. Schwinger bosons can be integrated out and the physics is

described by a compact(l) gauge theory. In this route too
" an odd gauge theory is obtained.

_ There is a well-known duality mapping between compact
52 = _f A7 2, Ay cog2mn(x; — a)]. (8) U(1) gauge theories and sine-Gordon field theories — see,
for instance, Ref. 14. The interpretation of the sine-Gordon
Herer runs over the sites of the dual lattice. The symiol field is as follows. In the absence of the compactness in the
refers to a lattice derivative. The ellipses represent othegauge theory, the total magnetic flux is exactly conserved.
terms that are consistent with all the symmet(iasth inter-  There is a correspondingopologica) global U1) symme-
nal and latticg that could be added. In the second temris  try. In the sine-Gordon representation this becomes an ordi-
an integer that runs from 0 ®. The «, are independent of nary global Ul) symmetry that corresponds to an arbitrary
time but vary in a definite manner on spatial lattice sites. Orglobal shift of the sine-Gordon field. This symmetry is
the square latticeq,=0,1/4,1/2,3/4 orfour sublattices. present in the sine-Gordon model if the coefficiaptof all
Thus ex|2ima;,) oscillates rapidly on four sublattices. For a the cosine terms is set to zero. Including compactness in the
spin model on the honeycomb lattice, the correspondin@riginal gauge theory allows for “instanton” events which
sine-Gordon theory is defined on the dual triangular latticedestroy flux conservation. Indeed, the flux can change in
In this casea,=0,1/3,2/3 on thehree sublattices of the multiples of 27. These are precisely captured by including

Tilt=0
Staggered

(a) (b)

Staggered

r n=0

224416-4



QUANTUM CRITICALITY AND DECONFINEMENT IN.... PHYSICAL REVIEW B 69, 224416(2004)

terms like cos Zn(y,—«,) in the sine-Gordon description. Easy plane limit Finally we briefly mention a derivation
Thus €#™X corresponds to an instanton event at whieh 2 of the action above in the easy plane limit of the original spin
units of gauge flux are created. The shift is due to the model. As argued in Refs. 13 and (sée Ref. 2 for a physi-
“oddness” of the gauge theory. Specifically, the presence ofal discussiop a very useful continuum description of easy
background charges in the gauge theory leads to Aharanoyplane spin% magnets is provided by focusing on vortex
Bohm phases for the gauge flux which are encapsulated ifields (known as “merong’in the (XY-like) order parameter.
the shiftsaq,—for details see Ref. 15. The dual action takes the form

Semiclassical descriptionMuch further insight is ob- _
tained by a semiclassical perspective that is particularly ap- L=Ly+ Ly + Lo+ Linsy (10
propriate if there is considerable short-ranged Neel order.
Deep in the Neel phase the long distance low-energy fluctua- L,= 2 (0, = iA gl +r|g2+u(yP? (1D
tions of the Neel vector are described by the familiar quan- a=1,2
tum O(3) nonlinears model field theory. To correctly de-

scribe quantum paramagnetic phases it has been recognized L, = vl ¢l (12)
for some time now that this continuum field theory must be
augmented by appropriate Berry phase terms that are sensi- La= K(eMVKa,,AK)Z, (13
tive to the microscopic spin at each lattice site and to the
details of the lattice structure. The Berry phase terms vanish Linst=~ N[ (¥4)* + c.C]. (14)

for all smooth configurations of the Neel field. In two spatial

dimensions note that such smooth configurations allow foHere ¢, , represent the two meron fields that are minimally
topologically nontrivial configurations known as skyrmions. coupled(as is usualto a noncompact (1) gauge fieldA,
However, as shown by Haldane, the Berry phases are noRmd |y?= |y, |*+|4s|?. As described in Ref. 2 for the square
zero in the presence of singular configurations—known asattice, the last term physically describes the monopole or
hedgehogs or monopoles—in space-time. At the location ofnstanton events discussed above for the isotropic models.
the monopole the skyrmion number associated with the Neefhjs continuum model has a glob&} symmetry associated
field configuration changes. That such skyrmion tunnelingyith +(7/4+m/2) shifts of the phase af;, and s, respec-
events are allowed is a consequence of the presence oftigely (m=0,1,2,3. In this description valence bond solid

lattice in the microscopic spin model. The calculation of Ref.yhases correspond t@y)=(i,) #0. In such a condensate,
16 shows that the Berry phases associated with a singlt% fioldA . by th | And
monopole(defined on the plaquettes of the original latjice € gauge TIeith acquires a mass by Ihe usual Anderson-

oscillates from one plaquette to another with amplitude'}'}Iggs mec?hanlsrbzréd may betlgn_oredl at It())wkenergtlhes. Fur-
exp dma, where e, is as defined above on the dual lattice ("€rmore, the globak, symmetry is also broken—thus a

. . - low-energy description is provided by focusing on the rela-
f th | lat- .
;gg)s (or equivalently on the plaquettes of the original la tive phasef betweeny, and i,. Clearly, the theory has the

The quantum paramagnetic state is associated with a pr(%amte_ stru_cztur;a _?_f].thg. continuum I'g.]l't of H@) l_and ':Neth
liferation of such monopole events. The Berry phases ass¢d€ntify x=2m0. This discussion readily generalizes to the

ciated with a single monopole event leads to it transforming'On€ycomb lattice—the main difference is that the monopole

nontrivially under lattice symmetry operations. Thus prolif- events are tripledieading toZ; symmetry.

eration of single-strength monopoles leads to broken lattice From any one Of, these perspecﬂveg it 'S clear that
symmetry in the paramagnetic state. (antivortices in they field correspond to splé—spmon con-

To describe the different possible paramagnetic phases, figurations in the original spin model. Specifically we define

is convenient to imagine integrating out all gapped spin-2 (@ntjvortex as a point in space around which

carrying excitations and focus on the physics of the skyrmion

fields and the associated monopole events. First consider a fdl -Vx==%1. (15)

limit in which the monopoles are ignorgde., imagine tun-

ing the monopole fugacity to zexdn this limit the skyrmion  For instance, in the dimer model these correspond precisely
number is exactly conserved. This corresponds to a hiddeto points where the dimer constraint is violatéde., to
(topologica) global U1) symmetry in the absence of mono- monomers Equivalently, we note that skyrmions and
poles. The paramagnetic phase may then be thought of asspinons see each otA&ras sources of 2 flux—so that a
condensate of these skyrmions so that this glokd) dym-  spinon configuration corresponds to a vortex in the skyrmion
metry is spontaneously broken. The low-energy excitationphase.

are fluctuations of the phase of the skyrmion field and will be Bilayer systemsThe discussion above is readily adapted
gapless. Indeed the corresponding action may be identifiew bilayer systems. Specifically consider a bilayer s})in-
with S; above withy/27 being the phase of the skyrmion quantum antiferromagnet on a square or honeycomb lattice.
field. Including monopole events leads to explicit breaking ofThe symmetries of the microscopic Hamiltonian now include
this global U1) symmetry. Clearly, in this picture th8, the Ising-like layer exchange symmetry in addition to(3U
term corresponds precisely to skyrmion creation eventspin rotation, time reversal, and all the lattice symmetries.
(which are the monopolgsvith the appropriate Haldane os- This layer exchange symmetry will play an important role in
cillating phases encapsulated in the shift fietgls our analysis. Consider first the limit in which the interlayer

224416-5



VISHWANATH, BALENTS, AND SENTHIL PHYSICAL REVIEW B 69, 224416(2004)

antiferromagnetic exchange on each rung is the largest cou- [a,Ej]=i. (20

pling. In this limit it is appropriate to first diagonalize the . .
“rung” Hamiltonian. For each rung, the ground state is aWhat are the symmetries of this gauge theory? Clearly all the

singlet and the first excited state is a triplet. A useful modefymmetries of the square or honeycomb lattice that forms

of such a bilayer is to replace each rung by &8)@uantum gach layer are also symmetries of the gauge theory. In laddi—
rotor with the Hamiltonian tion, the symmetry of the rotors under improper rotations

(the layer exchange symme}riynplies that the gauge theory
must be invariant under the discrete symmetry

g 2 A A
H=S> L2-0>2 A A+ - (16)
25 T Ej — - Ej, (21)
Here fy; is a unit three component vector defined on each aj; — —aj. (22)

rung (labeled byi) and I:i is the corresponding angular mo-
mentum. The ellipses represent other short-ranged terms COfha magnetic field corresponding to the gauge féeld pre-

sistent with the symmetrles. The rotor vecfgrand the an- cisely the skyrmion density associated with the configuration
gular momentuni; have the same symmetry properties asof the i fields. The latter is odd under improper rotations of
the difference and sum of the two microscopic spins on thgy (for instance, there is a well-known expression for the
rung ati, respectively. Under layer exchange we then have sikyrmion density as a trilinear if). Similarly the electric
fields correspond to the skyrmion currents which are like-
n— -1y, (17) wise odd under improper rotations. Parenthetically, we note
that under(the antiunitary time reversal the electric field is
- - even while the gauge field is odd.
Li—Li. (18) This compact 1) gauge theory is readily dualized to
obtain a dual sine-Gordon description in terms of ¢hgeld.
The dual action takes the form

This may be seen in several ways. For instance, we note that

Thus layer exchange symmetry implies that the rotor Hamil
tonian be invariant under the full group(® of rotations
(which includes improper rotationsin addition, time rever- S=§,+S,+ -, (23
sal is a separate symmetry that is implemented by an anti-

unitary operator that changes the sign of botand L. We 1 2 2 2 \2

remark that this must be contrasted with single layer Heisen- S = 5 2 (0oxe)% + p(Ax)? + K(A%)?, (24)
berg spin magnets. These can also be modeled as quantum Tl

rotors but with appropriate monopoles placed at the origin of

then sphere at each site. Now the presence of the monopoles S,= _J S A, COS2mm). (25)

implies that the improper rotations of the rotor vector are no plieet

longer symmetries. Thus these must be regarded &8)SO
rotors. This distinction will also be important for us below. There are two important differences with the single layer
Consider now paramagnetic phases of the bilayer modefase. First the absence of background charges in the gauge
We will specifically be interested in phases that obtain closéheory implies that there are no offseisfor the height fields
to the strong interlayer exchange limit where the8rotor ~ Xr- Second, the discrete layer exchange symmetry implies
description becomes appropriate. As with the single layefhat the action must be invariant undgr— —x;.
systems discussed above, it will be convenient to obtain a It is interesting to contrast the bilayer with a sgjranti-
gauge theoretic description of these paramagnetic phasdi€rromagnet in a single honeycomb layer. In the latter the
This may be obtained by passing t€C#®! description of the ~gauge theory appropriate to the paramagnetic phase may be
rotors in terms of spinon variables The z fields are mini- viewed as an “even” gauge theory, i e., one where there are
mally coupled to a compact (i) gauge fielda, but unlike ~ no background charges in the Gauss law constraint. But, nev-
the single layer case the mean spinon number is zero per sit@ftheless, as the microscopic model is not invariant under
In a mean-field description of paramagnetic phases th&nproper rotations of the spifr equivalently the rotor vec-
spinon fields will be gapped. Beyond mean field, integratingf©r in @ rotor descriptionthe gauge theory does not have the
out the gapped spinons leads to a compaél)Ugauge djscrete symmetry of Eq21) associated with changing the
theory. The ultimate fate of the spinons is determined bysigns of bothE anda.
whether or not this gauge theory is confined. Again, in con-
trast to the sm_gle _Iayer case, the Gauss law constraint of this IIl. THE BILAYER HONEYCOMB LATTICE
gauge theory is simply
In this section, we specialize to thH®layer honeycomb
A-E=0 (19 lattice, assuming the presence of strong interlayer antiferro-
magnetic coupling. We will consider the lattice valence bond
with no background charges. Helg is the “electric” field  solid phases and phase transitions of this spin-half quantum
defined on the links of the honeycomb or square lattice. Asantiferromagnet using the sine-Gordon description (28).
usual, this is conjugate to the gauge field It will be convenient to explicitly write out the lowest order
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nonlinear terms that are allowed by the symmetries. These A. Stability of the fixed line controlling the transition

take the form The critical theory for such a VBS transition is then pro-

u ; posed to be
Sm=idr;1|Axl4+ ng:(Ax'HAy)X]G (26) 1
&= i dr> 5{(0Tx)2+ K(A%x)?}. (30
so that the full action is '
We need to check that this simple Gaussian theory is stable
S=S1+ S+ St (27) against switching on a small monopole tunneljtgrmsS, in
the action(23)] and quartic interaction§S,,; of Eq. (26)].
Again, we consider correlators of the single monopole tun-
neling event, then=1 term. This now has the following
power-law decay in space:

with S, , given in Eq.(6). We have included ig, thev term
which gives the lowest order effect of the sixfold broken
rotational symmetry of the hexagonal lattice. Note that it
appears only asixth order in Ay, and hence is nominally
irrelevant at the critical point. It is, nevertheless, important , , 1
for p<0 (see below. Note that the symmetries of the bilayer (e2miOgi2meol0)
system includey, — -y, at each siteg which corresponds to
layer exchange. This symmetry forbids the appearance akhich implies that the monopole insertion operator is irrel-
terms that are odd iry. Such terms are allowed in single evant if w/2VK>4, or equivalently 8<K < (#/8)2. Thus,
layer systems that do not have this symmetry—indeed Ref. there is a line of fixed points, with different exponents, that
identifies a cubic term that drives the transition first order. are parametrized w and are all stable against Switching on
Let us, for a moment, consider how the various VBSweak monopole tunneling. Indeed, this is very similar to the
phases arise from the actia®7). For p>0, the system |ine of fixed points obtained iD=1+1 in avariety of sys-
would like to have zero tilA y on the average. Moreover, we tems such as the Spin_h@ﬁxz chain. Note, however, that
can ask what the effect of the monopole tunneling term isour theory has dynamical exponent2.
the first such term is the one that inserts a single monopole e now consider the effect of the quartic interaction term
(n=1) of Eq.(25), and it is easily seen that this operator hasg,  in Eq. (26), which by naive power counting is marginal
long-ranged correlations jf+ 0, and is hence a relevant per- at these fixed points. Since we will be looking at value&of
turbation. The resulting phase will be one where the heighfor which the monopole tunneling events are irrelevant, they
field is pinned at a uniform value, and this state may beare disregarded in the discussion below. We consider a con-
caricatured as one where the spins form singlets with theifinuum model of the critical theory30), with modes re-

r7T/\¢‘R' (31)

partners in the other layer as shown in Figa)l stricted to wave vectors below a certain cutaff We per-
For negative values of, a state with a finite tilt is ex- form a one loop renormalization groyRG), assuming that
pected, i.e., we start with a small value of the interaction parameter
and study its flow on integrating out the large wave-vector
k=(2mAx) # 0. (28 modesA(1-dl)<|k| < A. After the appropriate rescaling to

rigeep the quadratic terig30) invariant, we obtain the follow-

Ignoring the monopole operators for the moment, the syste Thg flow equation for the quartic couplirfy:

will choose a tiltky whose magnitude for small negatigas
obtained at the mean-field level by minimizing togethergdhe du 9

- — =2 32
andu terms, i.e., di 16mK32 (32
=2 -p 29 This implies that a quartic coupling withh> 0 is marginally
kol = 2 Vo (29) irrelevant, and the coupling flows back to zero logarithmi-

cally with distance. Therefore the long distance physics in
with corrections of O[v/u(-p/u)®?] from v and other this case will be controlled by the critical actig80), with
higher-order terms. Fluctuation effects due to the marginalitjogarithmic corrections arising from this marginally irrel-
of u will slightly enhancek,| by a logarithmic factor of little  evant operator. Thus the critical points are stable towards
importance. The direction of the vectkg is, however, de- turning on a quartic interaction far>0. (For u<0, how-
termined by the sign of. In particular, the six discrete di- ever, the quartic coupling is relevant, and the transition is
rections  with  Koc+iko,=|Kol€2™™8  or  Kp+iko,  Very likely driven first order—as is indeed already the case in
=|ko|g?™™12/6 with m=0...5 are preferred forv<0, mean-field theory for negative)
v >0, respectively. The added effects of monopoles, which
will modify the true tilt vector tok # ky, however, will have
to be carefully considered in the last part of this section.

In any case, a phase transition between a VBS with zero The analysis above has established the presence of a fixed
average tilt, and one with nonzero average tilt, correspondsne controlling the transition between VBS phases with zero
to takingp from positive to negative values. The phase tran-ilt and those with a nonzero tilt of the height field. In this
sition that lies between requires that we look at the theorysubsection, we discuss some properties of this fixed line. We
with p=0. first note that the irrelevance of the monopole tunneling

B. Properties of the transition
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terms implies that the global symmetry of the continuumtial features have already been sketched in Ref. 8, we reca-
theory is enlarged to (1). This corresponds to invariance pitulate them here for completeness and to present a few
under arbitrary global shifts of the height field In terms of ~ additional points not mentioned therein. In particular, we will
the U(1) gauge theory(whose dual is the sine-Gordon describe the thermal transitions of the commensurate tilted
theory) this implies that the compactness is asymptoticallyVBS states within the devil's staircase, and point out two
irrelevant all along this fixed line. Indeed, as shown in thedistinct types of low-energy excitations within these phases.
Appendix, the free Gaussian action is readily seen to de- Letus first think generally about the nature of phases with
scribe a quadratically dispersing gapless photon in the gaugg®me finite and nonzero background electric field, i.e., not in
theory representation. The gauge flux of the theory is thetthe direct vicinity of the putative critical point. At this stage
conserved. This signals deconfinement. However, the mongve do not take any continuum limit, working with a fiejd
poles are important to correctly describe the physics of thelefined on the discrete lattice sitesf the dual square or
phases on either side of the transition—thus they represefiexagonal lattices|f one neglects at first the compactness of
dangerously irrelevant perturbations. the gauge theory, i.e., the terms breaking continuous transla-

If we ignore the marginally irrelevant quartic term, the tional symmetry ofy,, then one may writey,=Kq-r/2m
fixed point theory has a free field form. Thus all aspects oft dx;, with dx, describing fluctuations around the putative
the critical behavior, while nontrivial, are eminently trac- average tiltk, determined as in Sec. Il by minimizing with
table. For instance, it should be possible to compute real timeespect tok, the nonmonopole terms in the action. One
dynamical correlators of, say, the operaddfx¥ at nonzero should regark, as the continuously varying “tilt” the sys-
temperatures in the scaling limit. We will, however, not pur-tem would have were there no cosifreonopolg terms. We
sue this here. will see that the true tilt, i.e{Ax)=k, is close but not gen-

It is instructive to ask about the fate of the gapped spin-erally equal tok,. The fluctuations oSy, will then be de-
carrying excitations right at this critical fixed line. As men- scribed by a theory of the form
tioned in Sec. Il, the presence of a séirspinon at some

spatial site leads to a vortex in the height figldAway from _ 1 2~ >

the critical point, in(for instance the zero tilt VBS, the Sin = | drX §{|‘975Xr| +plAdx %

relevance of the monople tunneling terms lead to pinning of '

the height field which implies that there is a huge energy cost - >\, co§2mndy, + nkg -], (33
that increases linearly with system size for these vortices. n

More precisely, consider a pair of spinofm opposite sub-

lattices of the original lattice This generates a vortex- Note that, unlike at the critical point, the fluctuations &xf.

antivortex pair iny. The energy cost for separating this pair at the quadratic level have a nonvanishifrgnormalized

by a distanceR grows linearly withR away from the critical  stiffnessp. Hence the fluctuations oy, will be bounded,

point. Thus we havelinean confinement of spinons and the and any nonoscillatory cosine term breaking the continuous

elementary spin-carrying excitations have spin 1. But right atranslational symmetry oby, will “pin” it, however weak.

the critical fixed line the enlargement of the symmetry toThis pinning corresponds to confinement in the original

U(1) implies that vortices in the field are cheap. Ignoring gauge theory, and a VBS phase in the dimer model. We note

the quartic perturbation, an elementary computation showi passing that, actually, depending upon the valukjaind

that the energy cost of a vortex is finite, independent of sysanisotropies in the original actioi, can be replaced by a

tem size. Including the quartic term leads to a weaR?/ more general tensor. Again, this complication does not

interaction(up to logarithmic corrections due to the marginal modify any of the qualitative results of this section, and so

irrelevance ofu) between a vortex-antivortex pair separatedwill be ignored.

by distanceR—this then is the interaction between two  For a “generic” value ok, all the cosines oscillate since

spinons(on two opposite sublatticeseparated by a distance kq-r will be an irrational multiple of zr. There are, however,

R. Thus, as expected, the spinons are deconfined and free &m infinitedenseset of values ok for whichk -r is a rational

propagate above a spin gap. multiple of 27 (for all r). In this case, there will be some
Within the approximation of ignoring the weak interaction minimal value ofn for which the\, term does not oscillate

between the two spinons, the magnon spectral functiorifor Sy, =0). Clearly, at these special valueskafthis cosine

A(|2,w) at the gap edge is readily calculated. One finds d€rm is relevant and the system is in some confined VBS

sharp stepA(Iz )~ B(w—A) whereA is the spin gap. Thus phase. Furthermore, arigrational kg is arbitrarily close to

the maanon spectral function has no quasivarticle peak and 2'€ of these ration& values, so that, although the cosines in
g P q P P bseneral oscillate on the lattice, some of them oscillate ex-
anomalously broad.

tremely slowly. Since, in general, the cosines aog¢infini-
tesimally weak(i.e., the\, are finite and nonzejpa suffi-
ciently long wavelength oscillation of the cosine term could

We now consider the behavior on the “tilted” side of the potentially pin the Sy, field even in such cases. To see
Lifshitz point, in which the compact gauge theory is ex- whether this occurs, let us suppose tite cosine term os-
pected to have a nonvanishing background electric field. Theillates weakly, i.e.,g™ 0" =" for all lattice vectorsr,
neighborhood of the Lifshitz point has been argued in Ref. 8vith n|sk|<27. Then, keeping only this cosine term, we
to realize an “incomplete Devil’s staircase.” While the essenhave approximately

C. Devil's staircase
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1 . , eral, the condition for a plateau is that ¢as-r) does not

S = | dr §{|5T5Xr| +plAdsx % oscillate on the dual hexagonal lattice. This condition is
' equivalent to requiring thatk is a reciprocal lattice vector of

_Xn cog2mndy, +nék -r]. (34) the hexagonal lattice. An arbitrary reciprocal lattice vector

can be written asn;b;+n,b,, with b,=(27,27/43), b,

Since the fluctuations oy, are bounded, we may estimate =(0,~4m/\3). Hence, the condition ok is

the effects of the cosine term by ignoring these fluctuations .y n,

and minimizing the action. The minimal action configura- k= <—)b1+<_>b2, (35
tions are clearly constant in imaginary timé,dy,=0. n n

Roughly, then, the fieldy, can either be constant, minimiz- wheren, n;, n, are integers, and the paing,n andn,,n can

ing the stiffness term but gaining rilwwering of thg energy  be taken to be relatively prime. The “strongest” such com-
from the cosine, or it can choose to tilt slightly to take ad-mensurate tilts are those with minimaJ since these corre-
vantage of the cosine term, costing some energy frgm thepond ton-monopole events, which become less relevant as

stiffness. Dimensionally, the latter will be favorable Nf, n increases. _ _
=p| k|2 Now |5k| can be made arbitrarily small by increas-  In understanding the behavior for sméal, we need to
ing n (typically decreasing as hJ, so this inequality will be  investigate those commensurate tilts for whicts small but

satisfied if thex,, do not decrease too rapidiie., faster than Nonzero. Clearly, for Eq(35) this will occur for largen.
oy " . ~ Since the two vector®,, b, are linearly independent, the
1/n°) with n. However, it is perfectly conceivable that thg

do d ¢ hama /and in this ci coefficients of both must be small flarto be small. Since the
terms do decrease faster thamd,/and in this circumstance, ,, nymerators in these coefficients are integers, for a given
there will be incommensurate values lof for which the y

; ) : S5 small magnitudgk| <1, one clearly then needs at least
field remains unpinned, aradl monopole terms remain irrel-

This has b dto be th in the i i = |k|"t>1. Larger values oh can also yield the sanik|, by
e"‘?‘”gb hls dasf een argued to eft € case mht e iImmedigigreasing the numerators accordingly. However, the largest
neighborhood of RK points in Ref. 8 Npte that even So’plateaus in tilt((coming from the most relevant cosines with
there are commensurate pinned statdstrarily close to this minimal n for a given|k|) will be those corresponding to

incommensurate state. The self-similar succession of various K[~
commensurate and incommensurate states is the incomplete Systems wittk, sufficiently near each of these values wil

devil's staircase mentioned above. The term “incomplete’,, pinned and form a “plateau” i How wide is this pla-

indicates that the incommensurate unpinned regions exi%auo Let us suppose thetativetilt ko~k. By scaling, the

(andhhave finite measure, as Ican alio be ?'Egje(:] d of hcorrelation lengthé~1/|kg| ~n>1. In this situation, we

VBE € same arggmentsdaﬁpy to tde nelg” ﬁr Or? ho tNeust account for the renormalization of the relevant cosine
transitions discussed here, and we will sketch the reae 1, 1y the fluctuations on scales less tigaffrom standard

soning in order to make a few more obs_ervatlons._ No_te th normalization-group methods, one expects the renormal-
in these caseg.g., for the honeycomb bilayethe Lifshitz ized coefficient

point itself is generic, i.e., can be potentially observed in a
physical system by varying only one parameter. Xn - )\né;—nzA, (36)
First, we comment on a minor subtlety. A naive analysis _
of the continuum field theory, E@2), would suggest that on Where A=7/(2VK) is the scaling dimension of the one-
the tilted side of the Lifshitz point, the tilt increase®ioothly  monopole term. Note that, from this reasoning, ﬁ]ﬁde-
from zero. This appears to be the case since at the Lifshitgrease extremely rapidly with, hence from the above argu-
point, all cosingimonopolg operators are irrelevant. On the ment, incommensurate phases are possible.
tilted side of the transition, in fact, the tilt does not increase |n addition, for larget, the renormalized stiffness is small,
smoothly, but in the staircase fashion. This occurs becausg~ /2. On scales longer thag the y field is essentially
irrelevant Eosi_rre gp_e(;atogs r?t the Lifshitz point rllnecome relnonfluctuating, so further renormalization can be neglected.
evant on the tilted side of the “transition,” i.e., these opera P ; : N
tors aredangerously irrelevanin renormalization-group par- 1h~e| 6§|r£telﬂggc]:2ht2ivi?j);ﬁti?1ﬂ:g bleatglanun?sd latis then\,
lance. In fact, the naive smooth increase in sIopeNp ' P
(background electric field of the gauge thepogcurring on N 1-r2aso
this side of the transition is replaced by a slope which con- oK = /¢ .
tains piecewise constant and incommensurate regions. These P
regions become more and more closely spaced as the LifshitZlearly, these commensurate plateaus are very narrow near
point is approached, forming an infinite sequence that apthe Lifshitz point. Similar estimates were obtained in Ref. 8.

(37)

proximates the naive continuous cured, e.g.,|k| versusp) Each of the commensurate VBS phases breaks the dis-
arbitrary well if one looks arbitrarily close to the Lifshitz crete translational symmetry of the lattice, and thus must
point. undergo a symmetry-restoring transition as temperature is

A full description of the devil’s staircase is beyond the increased. At nonzero temperatufe these states will be
scope of this paper. It is instructive and indicative of thetruncated to those commensurate VBS phases whgsare
general structure to consider some simple “families” of pla-larger thanT. In particular, consider a commensurately tilted
teaus in the tilkk that obtain near the critical point. In gen- VBS state driven by the-monopole fugacity in the “center”
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of its plateau, i.e., fok=Kkg. In this case, we may takék “floating” phase in which power-law correlations persist,
=0 in Eg. (34), and the system is described simply by aabove the roughening temperatuf®, and below the
commensurate sine-Gordon model. Bt 0, we may neglect Kosterlitz-Thouless temperaturB; above which vortices
all but the zero Matsubara frequency mode anddsgE0O,  unbind. HerekgTxr=p/(87). Note that one has then
encompassing the quantum effects by using the renormalized

2
parameter$,\,, above. The symmetry-restoring transition is k = <D> forn> 4. (39)
simply the roughening transition of this classical two- Te

dimensional sine-Gordon model, which has Hence the VBS phases very close to the Lifshitz point will
% 1 have long-range VBS order only at very low temperatures
~ (38) T<T.,~|k* but quasi-long-range VBS order up to much
higher temperature$ < Tyr~ |k|?>. Moreover, in the region

For the strongest plateaus, recat-1/|k| and n~1/|K], with quasi-long-range order, there are no _plateaus.il_’l the tilt.
hence one has for these plateaud.~ |k|*. The other pla- In gauge theory language the roughening transitiom.at

teaus have even smaller critical temperatures. Since all tH92Y be associated with the thermally driven deconfinement
critical temperatures vanish rapidly s 0, the infinite set transition of pure gauge theories. Indeed, electric-field corr-

of plateaus in the devil's staircase is replaced by a finite®l2tors in this rough phasgradients of the height fiejdall
subset at any nonzero temperature. off as the inverse square of the distance—so this phase may

One may also estimate the excitation gap in the associate?f thought of as a “thermal Coulomb phase.” The gauge
commensurate VBS phase, simply by expanding the sinecharged spinons are logarithmically mj[eractlrjg in th.|s phase
Gordon term to produce &5y)? “mass” term. This gives a and are bound into gauge neutral pairs until they ionize at

Tkt leading to a plasma of gauge charge that destroys the

VBS N NV i A .
gapE; ">~ VA, ~nVAE" V4 It may be somewhat surpris- - ong-range electric-field correlations of the thermal Coulomb
ing that a state with an exponentially small gap can havgqr yough phase. This transition is also studied in detail in
such a relativehhigh crmpal temperature@power Ia_vv in 1h _ Ref. 4, in theories with a noncompact gauge field and23U
from Eq.(38)]. The physics of this is that the excitation with gymmetric spion fields. While the thermal deconfinement
an exponentially small gap consists of only small fluctua-yansition of gauge theories is generally expected only in the
tions of 6y (and hence the gauge electric fipldhich do not  apsence of matter with unit gauge chatgginons, in two
perturb the long-range order of the VBS state. Indeed, sinCgpatial dimensions the logarithmic form of the Coulomb in-
the VBS phases are statesdicretebroken symmetry, the  teraciions is strong enough to bind the spinons into gauge

excitations which do disturb this order by connecting thenetral pairs and hence the transition survives the inclusion
different symmetry-related ground states are “droplet™like.y¢ spinons.

In the sine-Gordon language, such a droplet may be thought
of as a domain wall irSy, which is wrapped around to form
a compact “island” inside whicldy is shifted by +27/n. In
particular, the proliferation of such thermally excited drop- In contrast to the situation analyzed above for the bilayer
lets ultimately will “depin” thedy field and destroy the VBS honeycomb antiferromagnet, in a single layer the appropriate
order above some temperature. The minimal radius of suclattice sine-Gordon model has nonzero offsetsfor the y
an island is the domain wall width itsel$ince this is larger fields on the three sublattices of the dual triangular lattice.
than the other natural cutoff, the correlation lengifhe en-  Thus, as explained in Ref. 8, thg — -y, transformation
ergy for such a droplet is therefore given by integrating thebecomes a symmetry only when combined with inversion or
exponentially small sine-Gordon term over an exponentiallya /3 rotation. This then leads to the possibility of a cubic
large area of the size of the domain width reality, there is  invariant in the sine-Gordon action which drives the transi-
also a comparable contribution from theterm). These two  tion first order.
factors compensate to give the relatively large energy deter- |t is interesting to ask about the situation with sgiran-
mining T... The upshot of this argument is that the states withtiferromagnets on a single layer honeycomb lattice. In this
exponentially small excitation gap near the zero tilt QCP argase there are no offsets for the in the sine-Gordon de-
notassociated with the typical classical droplet excitations ofcription of the paramagnetic phase. Neverthelgss; —x,
a VBS state, but rather are evidence of the gapless photagymmetry(without inversion orr/3 rotatior) is not expected
mode obtained precisely at the QCP. as an exact symmetry of the action. This is not required by
A comment on the above discussion is in order. Within theany of the microscopic symmetries of the underlying lattice
sine-Gordon treatment, at any temperature above the “rouglpin model. Hence we expect that a cubic term will still be

ening” temperaturegy behaves as a free scalar field, andallowed in the field theory and a first-order transition will
vertex operators exp7andy exhibit power-law correlations. result.

Ultimately, this can be tracked down as an artifact of the pure

keTe= 2~ 22"

IV. THE SINGLE LAYER HONEYCOMB LATTICE

gauge theory. In particular, any matter fields included in the V. THE SQUARE LATTICE
model, even gapped ones, correspond as discussed earlier, to
vortices in they (or dy) field. At sufficiently high tempera- We now perform the same analysis for the transition in

tures, these vortices will certainly unbind. However, forthe case of the spi%-quantum antiferromagnet on the square
n>4, it is known that such sine-Gordon theories exhibit alattice. In contrast to the situation on the honeycomb lattice,
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we will find no generic continuous transition between VBSE(U,V) that is invariant along any RG ftrajectory, i.e.,

states(in both single and bilayer cages dE/dI=0. Contour lines of this function then represent the
As before, we consider a generic continuum theory that iRG flows, and we will see that there is only a single contour

consistent with all the lattice and internal symmetries. Forconnected to the origin. This function is most conveniently

the square lattice this takes the form represented in terms of the rotated coordinatkss aU+V,
_=U-aV. Th
S= S+ Snc+ Snon (4g) ~Y-TUTaV Then,
u?
1 2 2,)2 B 2+ 39U+ 4aU,U_+ B2+ U2’ (49
$=5 | @ +KIVA2+40(n) (0], (A1) "+ U+ 4l U+ (3" + UL

which can be checked to be invariant under the RG flows. It
u , . , , may be seen that the Qrigin must corresponcEtoO,_ by
Snt:f Z[(ax)() +(dyx)"] + E(axx) (dyx) (42) approachlng it in any dwepﬂon. The on!y other' points for
which the invariant function vanishes is the liné =0,
with o> -1. The isotropic point corresponds #o=0 andu  Which corresponds ta=av. These are the only points that
=v. The last term(S,,,) represents quadrupled monopole could flow to the origin. Apart from this set of measure zero,
events. Note, in particular, the presence of the couplings ~ "one of the other points in the,v plane ever reach the
which are allowed by the square lattice symmetry. ConsidePrigin under the RG flows but rather flow to regions with
the critical theory given by the quadratic piece of the actionla'9e negative values af. Thus, for the case with square
S. and determine its stability against the inclusion to smallSymmetry, the Gaussian critical theory is generically
monopole tunneling. In this case we need to consider qud,mstable—the.flovys suggest a first-order transition in the ab-
drupled monopoles, as discussed in Sec. II, and once again§gnce of special finetunintd.
is possible to find a range &, o for which monopole tun-
neling is irrelevant.
Next, one must consider the stability of the Gaussian fixed VI. RK POINTS

point described by&; to turning on the quartic interaction  The quantum dimer model Hamiltonians studied in Ref. 7
(42). Again, we perform a one loop renormalization-group were shown to have a special point—the RK point—at which
analysis to determine the fate of these couplings. The resulhe \ave function is an equal superposition of all dimer con-
of integrating the high wave-vector modes\(1  figrations. Equal time correlation functions can then be
—dl) <[k <A and rescaling, are the following RG equations: gya|uated from thelassical dimer model, which has been
du extensively studied® In this section we address how those
FiaE 39al? + 22UV + aV?], (43)  results fit into the framework discussed here—for the case of
the single layer bipartite lattices. For example, we may ask in
the case of the honeycomb lattice where a transition through
av__gu2 2 lticritical point can be obtained by tuning two param-
= - g[U?+ 2aUV + V2], (44) @ multicritical point can be obtained by tuning two para
dl eters, whether the RK wave function corresponds to the the
ground-state wave function of any of these fixed points. In
fact, we will conclude that while the RK points in both the
square and the honeycomb lattice cases can reproduce criti-
cal properties of some point on the line of fixed points ob-
tained after tuning a few parameters in the generic models,
they represent very special multicritical points in terms of
- their position in the phase diagram of these generic models.
1| 20+1-V1+0o Thus accessing these points requires finetuning an infinite
3 ﬁ (45) number of independent operators, which do not affect the
critical properties but change the phase structure in the im-
thusa e[1/3,). mediate vicinity of the poin{dangerously irrelevant opera-
We now analyze the RG equatioii43) and (44), and  tors). This finetuned nature of the RK point can immediately
show that they imply that the critical Gaussian the&yis  be seen by noting that at the RK point, the ground-state wave
generally unstable in the presence of the two quartic operdunction in each winding numbetilt) sector has exactly the
tors. If these were stable critical points, then there should beame energy. Reproducing this democratic treatment of all
a region in theu,v plane where the flows end up at the winding number sectors within a height model representation
origin. However, we will show that there is only a single line of the RK point will require tuning an infinite number of
in the entireu,v plane, where the couplings flow into the parameters to zero in the bare Hamiltonian—even though
origin. This implies that stability is only attained on a set of they may be associated with operators that(desmgerously
measure zero points. For a general choice of the quartic courelevant at the critical point.
pling, the flows run away to large negative valuesipsug- If the RK point requires finetuning infinitely many param-
gesting a first-order transition. In order to show this propertyeters, one may ask how it is accessed so readily in the quan-
of the RG equationg43) and (44), we construct a function tum dimer model. The reason is that the dimer model usually

where we have used the scaled variablésuAd™, V
=vA7L, and the scale factarl=(1+o+y1+0)327K32 At
the isotropic point, these equations are identical to(B2),
and preserve=v. The anisotropy of the quadratic part of the
action is present in the parameter which is unity at the
isotropic point but otherwise is given by
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contains only single plaquette terms, where the RK point ighe critical point, though both phases are conventional and
accessed by tuning just one parameter. However, includingonfined. More precisely, the critical theory may be viewed
processes that involve several plaquettes will require tunings a gapless (1) gauge theory withrrelevant instantons.
increasingly larger number of parameters to obtain the equalhe spin carrying excitations in either phase are gapped
dimer superposition of the RK point. Generically the dimerspin-1 magnons or their composites. Right at the critical
representation of spin systems will include processes thagioint, however, the spin gap does not close but the magnons
involve arbitrarily large number of plaquettes. Although decay into(gapped spin-% spinons.
these decay with increasing size, they are generally nonvan- Al of this structure is very similar to the other examples
ishing, and infinite finetuning will be then be required to of “deconfined” quantum criticality studied in Ref. 2. How-
reach the RK point. ever, there are some interesting differences in the details.
For the square lattice, the field theory that reproducesirst the critical points discussed in the present paper are
asymptotic properties of the RK point was studied bycontrolled by a critical fixed line with continuously varying
Henley? It was found there that a quadratic acti@®) with  exponents. Secon¢lpto a marginally irrelevant nonlinear
K=m?/4, 0=0 gives the long distance dimer correlations atoperatoy, all points on this fixed line have a simple free field
the RK point(amusingly this is the parameter value at which description. The emergence of(apologica) global U(1)
the two monopole insertion operator is margjndlhe fact  symmetry that seems generic to deconfined quantum critical-
that the ground states in all winding number sectors are dety obtains for the transitions in this paper as well. However,
generate at the RK point implies that it is possible to accesghe free field description implies an enormous number of
states with arbitrary values of the tilt by moving infinitesi- further emergent symmetries which are specific to these tran-
mally away from the RK point. As a result, the topology of sjtions. Third, the dynamic scaling exponenis 2 in the
the phase diagram near the RK point is as shown in K. 2 present examplécompared taz=1 at the Neel-VBS transi-
An infinite number of parameters have been set to zero tgon). Finally, as detailed in Sec. Il C, there is rich and in-

access this plane of the phase diagram. While the continuoygresting structure with an infinite number of transitions on
transition from the zero tilt state leads to the devil’s staircasene side of the deconfined critical point.
of tilted states, a direct transition from a zero tilt state to the  One offshoot of these results is a clarification of the place
staggered state can be made by crossing the RK point. Thigg the solvable RK point of quantum dimer models in a more
the RK point terminates the critical line, and sits on a line Ofgeneral context of phase transitions in quantum magnets. We
first-order transitions. The special nature of the RK pointfind that the RK point corresponds to a special multicritical
even as a multicritical point, can be seen by comparing it tgyoint.
the generic multicritical points of the bilayer honeycomb lat-  we also showed that these interesting phase transitions
tice (which require tuning of two parameters to repde-  are best realized in bilayer spinhoneycomb lattice quan-
noted M’, M in Figs. 2a and 2b). (These can also be tym antiferromagnets. It would be interesting for numerical
thought of as higher-order multicritical points in the single ork to explore specific spin models on such bilayers where
layer honeycomb model, which will require finetuning of an these transitions can be accessed.
additional parameter to reach the plane depicted in the dia- geveral extensions of our results are possible. It should be
grams) In the first scenario depicted in Fig(a, the multi-  possible to examine the role of various perturbing fields at
critical pointM" terminates both the first-order transition line the critical point as well as the effects of finite temperature. It
and the critical line, but it does not allow for a direct transi- should also be readily possible to examine transitions be-
tion from the zero tilt state to the staggered state. In the othegyeen different VBS phases in higher-spin quantum magnets.
scenario, Fig. @), the generic multicritical poinM does  \\e |eave these for future work.
allow for a direct transition from a zero tilt state to the stag-  gjince the original submission of an electronic preprint of
gered state. However, it is fundamentally distinct from theynis work, Ref. 8 appeared which considered some of the
RK point, as can be seen from the difference in topology Olsame questions, especially those regarding the single layered
the phase structure around theand RK points, which may  systems discussed here. They correctly pointed out the first-
be characterized as follows. We ask what phases may h§der nature of the transition on the single layer honeycomb
accessed from these points by a small change of bare paramttice, and the “incompleteness” of the devil's staircase—
eters. For the generic multicritical poiM, the staggered \yhich were the points of disagreement with the earlier ver-
state, the zero tilt state, and a state with infinitesimal tilt carsjon of this work. These points have been corrected and
be accessed. For the RK point, however, besides the stagriefly mentioned in the present work. However, in contrast
gered and zero tilt state, states with arbitrary values of the til{y Ref. 8 we have focused here on the case of the bilayer
can also be accessed in this manner, as shown in the figuroneycomb quantum magnet where a generically continuous
This follows from the exact degeneracy of ground states ifransition between VBS statés realized, and have studied
different winding number sectors at the RK point. some of the interesting properties of this generic quantum
critical point.

VII. CONCLUSIONS
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APPENDIX: CRITICAL GAUGE THEORY This then implies the commutator

In this appendix we will explicitly display the form of the
continuum action of the noncompact1) gauge theory that [x(x),B(x")]=id(x = x"), (AT)
corresponds to the critical sine-Gordon theory. A general o ) )
continuum Hamiltonian for a noncompact1) gauge theory SO that the magnetic field is conjugate toy. The Hamil-
in D=2+1 dimensions takes the form tonian may now be rewritten

H:fdzx plE?+ K|V X E[2+B2+--- (A1) Hzfdzx p|V x|? + K(V?x)? + B2 (A8)

together with the Gauss law constraint As B and y are canonically conjugate, we reproduce the

V.-E=0. (A2)  continuum free field action of the sine-Gordon theory. Re-
o ) R membering that the critical theory has0 we can immedi-
Here E refers to the electric field whileB=2-V XA ately read off from Eq(Al) the continuum gauge theory
=€jdA; is the magnetic field. We work in the Coulomb Hamiltonian that describes the critical point. This is readily
gaugeV-A=0. As usual, the components of the electric field giagonalized explicitly to find a quadratic dispersing photon.
Ei(i=x,y) and the(transversg componentsy; of the vector Amusingly, atp=0, the Hamiltoniar(A8) exhibits a kind
potential are canonically conjugate, of2 self “duality,” obtained by exchanging the roles Bfand
NT— o V<x. That is, if we introduce the fieldp such thatB
[Ei(x),Aj(x")]==iPj;(x=x"), (A3) =V2¢/\K, and its conjugate field1¢:—\?lsz2X, then one
where P;; has Fourier componenlzsj—kikj/k2 and projects obtains the same critical Hamiltonig8) with p=0] but

out the transverse component. with K—1/K and (B, x) — (Il 5, ¢).
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