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We consider spin-half quantum antiferromagnets in two spatial dimensions in the quantum limit, where the
spins are in a valence bond solid(VBS) phase. The transition between two such VBS phases is studied. In
some cases, an interesting second-order transition controlled by a fixed line with varying critical exponents is
found. A specific example is provided by an antiferromagnetically coupled bilayer system on the honeycomb
lattice where a continuous quantum phase transition can generically exist between two VBS phases. Further-
more, these critical points are deconfined, in the sense that gapped spin-1/2 spinon excitations emerge right at
the transition. The low-energy physics of this critical point(up to marginally irrelevant interactions) contains
just a free quadratically dispersing “photon.” The phase structure on one side of this continuous transition is
very intricate, consisting of a series of infinitely closely spaced further transitions in a “devil’s staircase” form.
Analogies with previous examples of deconfined quantum criticality are emphasized. Closely related transi-
tions in single layer systems are explored. These are second order only at some multicritical points. The
solvable Rokshar-Kivelson point of quantum dimer models of single layer systems is found to correspond to a
nongeneric multicritical point.
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I. INTRODUCTION

Although the theoretical study of quantum phase
transitions1 has received much attention over the last several
decades, it remains a source of rich and unexpected physics
to this day. For example, recent work2,3 on the quantum criti-
cality of certain quantum magnets(spin-12 quantum antifer-
romagnets on the square lattice) has shown that a direct and
generically continuous transition between the Neel state and
a valence bond solid state is possible. Such a transition vio-
lates “Landau’s rules” of classical phase transitions which
prohibit a direct continuous transition between phases that
possess such different symmetries. Perhaps more interest-
ingly the critical theory is unusual and naturally expressed in
terms of new emergent, “deconfined” degrees of freedom
that carry fractional spin, along with an emergent Us1d gauge
field. This is despite the absence(i e., confinement) of such
fractional spin excitations or the associated gauge field in
either phase. Such critical points were dubbed “deconfined”
quantum critical points(QCP’s). In this paper we shall ex-
amine another example of a “deconfined” quantum critical
point which occurs in a different context, i.e., between two
VBS phases.

The existence of such deconfined QCP’s may be surpris-
ing since the gauge theories arising in condensed-matter sys-
tems (apart from physical electromagnetism) are generally
compact, i.e., are defined in terms of a periodic gauge con-
nection eia rather than a single valued noncompact vector
potentiala. In D=2+1, such gauge theories are well known
to be “always”(but see below) confining. In particular, the
simplest and apparently generic compact Us1d gauge theory
Hamiltonian is

H = o
r
H 1

8pe
uEu2 +

K

2
uD 3 Eu2 − g cosD 3 aJ , s1d

with integer valued “electric field”E and 2p-periodic vector
potentiala (canonically conjugate to one another) defined on

the links of a two-dimensional lattice. HereD is the lattice
gradient, andD3 is the lattice curl, defined as the gauge flux
through a plaquette. In the natural cases arising in condensed
matter contexts, one imposes the Gauss law constraintD ·E
=0 (the “even” gauge theory) or D ·Er =er on bipartite lat-
tices, with er = ±1 taking opposite signs on the two sublat-
tices (the “odd” gauge theory). In both cases, regardless of
the values ofg or the “dielectric constant” 0,e,`, the
gauge theory is always confining. The value of the nominally
“irrelevant” (in the renormalization-group sense) couplingK
is then immaterial.

Remarkably, Ref. 2 concluded that a deconfined phase is
possible if a gauge theory similar to above is coupled to
gapless matter fields, which arise naturally in quantum anti-
ferromagnets at particular QCP’s. In this paper we study a
different class of transitions which provide other instances of
“deconfined” quantum criticality in quantum magnets. Al-
though, in contrast to Ref. 2, they, are not examples of Lan-
dau forbidden transitions, they, nevertheless, display several
interesting similarities to those prior ones. We consider tran-
sitions between two valence bond solid(VBS) states: quan-
tum paramagnets with a gap to spin excitations. In either
phase these spin-carrying excitations are conventional
(though gapped) spin-1 magnons or their composites. We
study direct second-order transitions between two such
phases where “deconfinement” obtains right at the critical
point. We show that the critical mode can be viewed as a
gapless deconfined Us1d gauge field with a quadratic disper-
sion. Moreover, the magnon excitations, which are sharply
defined gapped excitations on either side of the transition,
break up into two weakly interacting(gapped) spin-12
spinons. These spinons are minimally coupled to the critical
deconfined Us1d gauge field. This results in a weak interac-
tion between the spinons so that they are essentially free.

In contrast to the examples of deconfined quantum criti-
cality of Ref. 2 which are strongly interacting,4 the critical
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fixed points discussed here have a simple free field descrip-
tion. In particular, they may be considered as a limit of the
compact gauge theory in Eq.(1) where the dielectric con-
stant e→`. At this point, the energy cost of an emergent
electric flux to quadratic order inE is proportional touD
3Eu2 rather thanuEu2 as usual. Despite the absence of gap-
less matter fields, this can provide a realization of a decon-
fined QCP, provided the system has sufficient(physically
achievable) symmetries, as shown below. We emphasize that
the appropriate physical symmetries occur naturally, for in-
stance, in an antiferromagnetically coupled spin-1

2 honey-
comb bilayer. Moreover, the QCP in this case is “generic,”
i.e., only one physical parameter needs to be tuned(corre-
sponding to tuning 1/e through zero) to reach it. While par-
ticular “quantum dimer” models(see below) have provided
some concrete realizations of compact Us1d gauge theories,
many other microscopic mechanisms leading to Eq.(1) exist,
and it is fruitful to regard the gauge theory as the most gen-
eral progenitor of such deconfined QCP’s.

Closely related phenomena have been mentioned previ-
ously in the literature5,6 in the context of work on the quan-
tum dimer model.7 The dimer model provides a caricature of
spin-gapped quantum paramagnetic phases and admits on
certain lattices a solvable point known as the Rokhsar-
Kivelson (RK) point. On a square or honeycomb lattice the
RK point is known to be critical and to separate two phases
with very different VBS order. An important development
was the field-theoretic description of this RK point, which
was conjectured by Henley,5 and further elaborated in Ref. 6.
In this paper we will analyze the generic behavior expected
in such a transition between VBS phases, and show that it
differs in important ways from the physics of the RK point.
In particular, for single layer quantum spin systems on the
square lattice we argue that generically there is no second-
order transition between two VBS phases. It has been argued
in Ref. 8 that a similar situation also obtains for the single-
layer honeycomb lattice, namely, there is generically no
second-order transition. In contrast, as we show below, such
a second-order transition with “deconfined” criticality ob-
tains on the bilayer honeycomb lattice with antiferromag-
netic interlayer coupling. In fact, a line of fixed points with
continuously varying exponents is obtained. The universal
long distance physics at one of these critical points corre-
sponds to the long distance physics at the RK point(up to
logarithmic corrections arising from a marginally irrelevant
operator). Thus, although, in general, there are significant
differences from the generic transition, the RK point in some
cases can still provide useful information about the universal
critical properties of these generic transitions. A unique fea-
ture of the RK point is that it occupies a very special place in
the phase diagram of the generic spin model, a point that will
be further discussed below.

We now summarize our results for the continuous quan-
tum phase transition between two VBS phases of spin-1/2
quantum antiferromagnets on thebilayer honeycomblattice.
The precise nature of the neighboring phases themselves will
be described shortly. There is a simple Gaussian description
of the critical theory which is parametrized by a “stiffness”K
and has a dynamical scaling exponentz=2. In addition, there
is a marginally irrelevant operator that will lead to logarith-

mic corrections. Apart from the usual “thermal” operator
needed to tune to the critical point, the theory is found to
have no other relevant perturbations for a range of stiff-
nesses, leading to a fixed line with continuously varying ex-
ponents depending uponK. Indeed, this is an interesting ex-
ample of a fixed line inD=2+1 dimensions, and is closely
related to three-dimensional statistical physics models of the
Lifshitz point in certain liquid crystal systems.9

Our results rely crucially on a “dual” description of the
quantum paramagnetic phases of antiferromagnets(with col-
linear spin correlations) in terms of a sine-Gordon(or
“height”) field x.10,11 It is constructed(see Sec. II) by defin-
ing Ei =ei jD jx, so that all physical properties are invariant
under the global shiftx→x+1. This formulation may be
obtained in a number of different ways which are briefly
discussed in Sec. II below. In the continuum limit appropri-
ate near critical points between various paramagnetic phases
the Euclidean action of this model reads(for the honeycomb
lattice bilayer system)

S= S0 + S1 + Sinst, s2d

S0 =
1

2
E d2xdths]txd2 + rs=xd2 + Ks¹2xd2j, s3d

S1 =E d2xdt
u

4
uDxu4 + ¯ , s4d

Sinst = −E d2xdt l coss2pxd. s5d

This continuum action is invariant under global integer shifts
of the x field, as well asx→−xsE→−Ed which arises from
symmetry under bilayer exchange. The ellipses represent
other terms(higher derivatives and higher powers) that could
be added which are consistent with the symmetries above. As
discussed below, the fieldx may be interpreted as the dual of
a Us1d gauge field. In this interpretation thel term describes
instanton events. The transition of interest occurs whenr
changes sign withr=0 at the critical point. Instantons are
relevant in either phase but will turn out to be irrelevant at
the critical point for some range ofK. In addition, the quartic

termus¹W xd4 will be shown to be marginally irrelevant. Thus,
the actionS0 in Eq. (2) (which was recently studied along
with several interesting generalizations in Ref. 12) will de-
scribe, up to marginally irrelevant terms, the fixed point ac-
tion of a generic quantum critical point between two VBS
phases of thebilayer honeycomb lattice antiferromagnet.
Whenr.0 the sine-Gordon field(also known as the height
field) x has zero “tilt” in the ground state. It describes a
featureless paramagnetic state of the original quantum mag-
net, which may be caricatured as being made of singlets
formed on the interlayer rungs. However, whenr,0 one
expects a finite “tilt,” i.e.,xr ,Q ·r . Thus the transition may
be expected to occur between a VBS phase with zero tilt of
the height field and a VBS phase with a nonzero tilt of the
height field — the tilt increasing “continuously” from zero
on moving away from the “deconfined” critical point. In-
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deed, while this general expectation is more or less correct,
the detailed picture is somewhat more complicated owing to
the relevance of the instanton operators away from the tran-
sition. In fact, as described in Sec. III C, an interesting struc-
ture obtains on the “tilted” side of the transition. The back-
ground electric field(tilt ) changes from its value of zero at
the critical point to a nonzero value some distance away,
through a fractal sequence of interleaving regions of constant
tilt (confined phases) and nonconstant incommensurate re-
gions(deconfined phases) of zero width but finite total mea-
sure. The resulting structure is known as an “incomplete dev-
il’s staircase.”8

In contrast to the above picture, the RK point sits between
a VBS phase with zero tilt of the height field, and the stag-
gered phase which has the maximum tilt to the height field,
i.e., with 2pQ above one of the six reciprocal lattice vectors
of minimum length. These phases are illustrated in Fig. 1.
One can then ask whether the RK point occupies a special
place in the phase diagram of the generic model. In fact, the
well-known property of the RK point that the ground states
in each tilt (winding number) sector are all degenerate indi-
cates that indeed it occupies a special place in the phase
diagram. We have already noted that the RK point exhibits
the same universal critical properties as the generic model
after tuning a few relevant and marginal operators. However,
to reach the special position occupied by the RK point in the
phase diagram, finetuning of several dangerously irrelevant
operators is required. These operators do not affect critical
properties but determine the phase structure in the vicinity of
the critical point. The precise position of the RK point in the
phase diagram is discussed below. Note, the generic phase
structure can be recovered if we add to the RK point an
operator that(for example) corresponds to the quartic term
S1 in Eq. (2). Moreover, this particular operator will also
generate logarithmic corrections to the RK point correlation
functions, which will then precisely match the one of the
generic critical points for the bilayer honeycomb system.
Thus, generic behavior, both in terms of critical properties as
well as phase structure neighboring the critical point, can be
obtained by adding this one operator to the RK point Hamil-
tonian.

In the usual quantum dimer model, this finetuning of the
Hamiltonian to access the RK point is achieved by keeping
only terms that involve a single plaquette. However, if we
regard the dimer model as an approximate description of
some underlying quantum spin model, then, in general, we
need to include dimer kinetic and potential terms on arbi-
trarily large-sized loops(but with coefficients that decrease
with increasing loop size). The exact degeneracy mentioned
above then obtains only if the dimer kinetic energy on every
such loop is set equal to the corresponding potential energy.
Thus, for an underlying quantum spin model, this exact de-
generacy presumably requires “infinite” finetuning.

A different way to draw a sharp distinction between the
RK point and a generic(two parameter tuned) multicritical
point that allows for a direct zero tilt to staggered(maximum
tilt ) state transition, is to ask—what phases can be accessed
from these points by a small change in bare parameters?
From the generic multicritical point[shown in Fig. 2(b)]
three states — the staggered, zero tilt, and an infinitesimally
tilted state — can be accessed. From the RK point, however,
in addition to the above three states, states with arbitrary
values of the tilt can be accessed[Fig. 2(c)]. This is a con-
sequence of the exact degeneracy of states with different tilts
at the RK point which gives rise to the special phase struc-
ture in its vicinity.

The layout of this paper is as follows. In Sec. II, we
discuss the sine-Gordon representation of this problem from
different points of view, the nonlinears model approach of
Haldane, the easy plane deformation of the spin half magnet
of Lannertet al.,13 and the familiar height representation of
the quantum dimer model. In Sec. III we analyze the spin-
half quantum antiferromagnet on the bilayer honeycomb lat-
tice using this representation, and find a stable fixed line
controlling the transitions. Various properties of these critical
points are discussed, and the devil’s staircase phase structure
is obtained. In Sec. V, the single layer square and honeycomb
lattice spin-half antiferromagnet are discussed, where the ge-
neric transition between VBS phases is first order. In Sec. VI,
we discuss the well-known RK points, and how they fit into
the general structure described in this paper.

II. SINE-GORDON REPRESENTATION
FOR PARAMAGNETIC PHASES OF COLLINEAR

QUANTUM ANTIFERROMAGNETS

Our analysis relies crucially on a formulation10,11 of the
physics of quantum paramagnetic phases in terms of a sine-
Gordon field theory on the dual lattice. In this section, we
describe this sine-Gordon description and discuss its origin
and interpretation from several different perspectives which
together provide considerable insight. We will first discuss
the single layer case and then move onto the double layer.
The lattice Euclidean action for the sine-Gordon model ap-
propriate to a single layer has the following structure:

S= S1 + S2 + ¯ , s6d

S1 =
1

2
E

t
o

r

s]txrd2 + rsDxd2 + KsD2xd2, s7d

FIG. 1. Caricature of VBS phases on the bilayer honeycomb
lattice.(a) The zero tilt state, with singlet bonds(thick lines) on the
interlayer rungs. Note that this state does not break any lattice sym-
metry. (b) One of six possible maximally tilted(staggered) phases.
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S2 = −E dto
r

o
n=0

`

ln cosf2pnsxr − ardg. s8d

Here r runs over the sites of the dual lattice. The symbolD
refers to a lattice derivative. The ellipses represent other
terms that are consistent with all the symmetries(both inter-
nal and lattice) that could be added. In the second termn is
an integer that runs from 0 tò. The ar are independent of
time but vary in a definite manner on spatial lattice sites. On
the square lattice,ar =0,1/4,1/2,3/4 onfour sublattices.
Thus exps2ipard oscillates rapidly on four sublattices. For a
spin model on the honeycomb lattice, the corresponding
sine-Gordon theory is defined on the dual triangular lattice.
In this casear =0,1/3,2/3 on thethree sublattices of the

triangular lattice so that exps2ipard oscillates rapidly on
three sublattices.

Near the phase transitions of interest in this paper, the
universal physics is adequately described by a continuum
limit of this action. The oscillating phase factors due to the
ar means that in the continuum the only terms that survive
from S2 are those withn=0smod 4d for the square and
n=0smod 3d for the honeycomb lattices, respectively.

The physical basis of the sine-Gordon description may be
understood in many ways. We will mainly discuss the square
lattice—the honeycomb lattice is very similar.

Gauge theoeretic/quantum dimer description. First con-
sider a description of VBS phases in terms of quantum dimer
models. A dimer is to be considered a caricature of a single
valence bond and is taken to live on the bonds of the original
lattice. For spin-12 systems, it is natural to constrain the dimer
Hilbert space by requiring that there is exactly one dimer
emanating out of each lattice site. It has long been appreci-
ated that such quantum dimer models on bipartite lattices can
be fruitfully viewed as compact Us1d gauge theories. This is
understood as follows: First divide the bipartite lattice under
consideration intoA and B sublattices. To each dimer we
may associate an integer-valued vector “electric field”E that
starts from anA sublattice point and ends at aB sublattice
point. In terms of these electric fields, the dimer constraint
simply becomes the Gauss law

D ·E = ± 1, s9d

where the + sign is for theA sublattice and the − sign for the
B sublattice. Thus we see that the dimer Hilbert space is
identical to that of a particular compact Us1d gauge theory
with fixed background “charges” ±1 on the two sublattices.
Such theories were christened “odd gauge theories” in
Ref. 6.

Alternately, such a gauge theoretic description of the dis-
ordered phases of the antiferromagnet can be directly ob-
tained by starting with a slave particle(e. g., Schwinger bo-
son or fermion) description. Consider, for instance, a
Schwinger boson representation. This has a Us1d gauge re-
dundancy associated with arbitrary phase rotations of the
bosons at each site. In a spin gapped paramagnetic phase the
Schwinger bosons can be integrated out and the physics is
described by a compact Us1d gauge theory. In this route too
an odd gauge theory is obtained.

There is a well-known duality mapping between compact
Us1d gauge theories and sine-Gordon field theories — see,
for instance, Ref. 14. The interpretation of the sine-Gordon
field is as follows. In the absence of the compactness in the
gauge theory, the total magnetic flux is exactly conserved.
There is a corresponding(topological) global Us1d symme-
try. In the sine-Gordon representation this becomes an ordi-
nary global Us1d symmetry that corresponds to an arbitrary
global shift of the sine-Gordon field. This symmetry is
present in the sine-Gordon model if the coefficientln of all
the cosine terms is set to zero. Including compactness in the
original gauge theory allows for “instanton” events which
destroy flux conservation. Indeed, the flux can change in
multiples of 2p. These are precisely captured by including

FIG. 2. Schematic depiction of the phase diagram of VBS’s, the
vertical axis in the plots is roughly the parameterr and the stag-
gered state has the maximum tilt. The generic phase diagrams ex-
pected for thebilayer honeycomb lattice are shown in(a) and (b)
(and also of the single layer honeycomb lattice after tuning one
parameter, the cubic term, to zero). (a) The continuous transition
(shown with the dashed line) is from a zero tilt phase to a region
where the tiltsQd exhibits a a devil’s staircase structure, contours of
equal tilt (thin solid lines) are shown. The critical line ends in a
multicritical point M8 beyond which the transition is first order
(solid line). The horizontal axis here may be thought of as the
coefficient of the quartic term.(b) An alternate scenario; there is
again a continuous transition to a region with the devil’s staircase
structure for the tilt. Here, however, there is a multicritical pointM
that is adjacent to the staggered state which could control a zero tilt
to staggered state transition. The horizontal axis here may be
thought of as the energy cost of the maximally tilted(staggered)
state. (c) The RK point for the single layer square/honeycomb
lattice—an infinite number of parameters need to be tuned to access
this plane. Exact degeneracy of the different winding number sector
ground states implies that states with arbitrary tilt lie infinitesimally
close to the RK point as shown.
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terms like cos 2pnsxr −ard in the sine-Gordon description.
Thus e2pix corresponds to an instanton event at which 2p
units of gauge flux are created. The shiftar is due to the
“oddness” of the gauge theory. Specifically, the presence of
background charges in the gauge theory leads to Aharanov-
Bohm phases for the gauge flux which are encapsulated in
the shiftsar—for details see Ref. 15.

Semiclassical description. Much further insight is ob-
tained by a semiclassical perspective that is particularly ap-
propriate if there is considerable short-ranged Neel order.
Deep in the Neel phase the long distance low-energy fluctua-
tions of the Neel vector are described by the familiar quan-
tum Os3d nonlinears model field theory. To correctly de-
scribe quantum paramagnetic phases it has been recognized
for some time now that this continuum field theory must be
augmented by appropriate Berry phase terms that are sensi-
tive to the microscopic spin at each lattice site and to the
details of the lattice structure. The Berry phase terms vanish
for all smooth configurations of the Neel field. In two spatial
dimensions note that such smooth configurations allow for
topologically nontrivial configurations known as skyrmions.
However, as shown by Haldane, the Berry phases are non-
zero in the presence of singular configurations—known as
hedgehogs or monopoles—in space-time. At the location of
the monopole the skyrmion number associated with the Neel
field configuration changes. That such skyrmion tunneling
events are allowed is a consequence of the presence of a
lattice in the microscopic spin model. The calculation of Ref.
16 shows that the Berry phases associated with a single
monopole(defined on the plaquettes of the original lattice)
oscillates from one plaquette to another with amplitude
exp 2ipar wherear is as defined above on the dual lattice
sites (or equivalently on the plaquettes of the original lat-
tice).

The quantum paramagnetic state is associated with a pro-
liferation of such monopole events. The Berry phases asso-
ciated with a single monopole event leads to it transforming
nontrivially under lattice symmetry operations. Thus prolif-
eration of single-strength monopoles leads to broken lattice
symmetry in the paramagnetic state.

To describe the different possible paramagnetic phases, it
is convenient to imagine integrating out all gapped spin-
carrying excitations and focus on the physics of the skyrmion
fields and the associated monopole events. First consider a
limit in which the monopoles are ignored(i e., imagine tun-
ing the monopole fugacity to zero). In this limit the skyrmion
number is exactly conserved. This corresponds to a hidden
(topological) global Us1d symmetry in the absence of mono-
poles. The paramagnetic phase may then be thought of as a
condensate of these skyrmions so that this global Us1d sym-
metry is spontaneously broken. The low-energy excitations
are fluctuations of the phase of the skyrmion field and will be
gapless. Indeed the corresponding action may be identified
with S1 above withx /2p being the phase of the skyrmion
field. Including monopole events leads to explicit breaking of
this global Us1d symmetry. Clearly, in this picture theS2

term corresponds precisely to skyrmion creation events
(which are the monopoles) with the appropriate Haldane os-
cillating phases encapsulated in the shift fieldsar.

Easy plane limit. Finally we briefly mention a derivation
of the action above in the easy plane limit of the original spin
model. As argued in Refs. 13 and 17(see Ref. 2 for a physi-
cal discussion), a very useful continuum description of easy
plane spin-12 magnets is provided by focusing on vortex
fields (known as “merons”) in the (XY-like) order parameter.
The dual action takes the form

L = Lc + Lv + LA + Linst, s10d

Lc = o
a=1,2

us]m − iAmdcau2 + r ucu2 + usucu2d2, s11d

Lv = vuc1u2uc2u2, s12d

LA = ksemnk]nAkd2, s13d

Linst = − l4fsc1
*c2d4 + c.c.g. s14d

Herec1,2 represent the two meron fields that are minimally

coupled(as is usual) to a noncompact Us1d gauge fieldAW ,
and ucu2;uc1u2+ uc2u2. As described in Ref. 2 for the square
lattice, the last term physically describes the monopole or
instanton events discussed above for the isotropic models.
This continuum model has a globalZ4 symmetry associated
with ±sp /4+mp /2d shifts of the phase ofc1 andc2, respec-
tively sm=0,1,2,3d. In this description valence bond solid
phases correspond tokc1l=kc2lÞ0. In such a condensate,

the gauge fieldAW acquires a mass by the usual Anderson-
Higgs mechanism and may be ignored at low energies. Fur-
thermore, the globalZ4 symmetry is also broken—thus a
low-energy description is provided by focusing on the rela-
tive phaseu betweenc1 andc2. Clearly, the theory has the
same structure as the continuum limit of Eq.(6) and we
identify x=2pu. This discussion readily generalizes to the
honeycomb lattice—the main difference is that the monopole
events are tripled(leading toZ3 symmetry).

From any one of these perspectives it is clear that
(anti)vortices in thex field correspond to spin-1

2 spinon con-
figurations in the original spin model. Specifically we define
a (anti)vortex as a point in space around which

E dl · = x = ± 1. s15d

For instance, in the dimer model these correspond precisely
to points where the dimer constraint is violated(i e., to
monomers). Equivalently, we note that skyrmions and
spinons see each other18 as sources of 2p flux—so that a
spinon configuration corresponds to a vortex in the skyrmion
phase.

Bilayer systems. The discussion above is readily adapted
to bilayer systems. Specifically consider a bilayer spin-1

2
quantum antiferromagnet on a square or honeycomb lattice.
The symmetries of the microscopic Hamiltonian now include
the Ising-like layer exchange symmetry in addition to SUs2d
spin rotation, time reversal, and all the lattice symmetries.
This layer exchange symmetry will play an important role in
our analysis. Consider first the limit in which the interlayer
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antiferromagnetic exchange on each rung is the largest cou-
pling. In this limit it is appropriate to first diagonalize the
“rung” Hamiltonian. For each rung, the ground state is a
singlet and the first excited state is a triplet. A useful model
of such a bilayer is to replace each rung by an Os3d quantum
rotor with the Hamiltonian

H =
g

2o
i

LW i
2 − Jo

ki j l
n̂i · n̂j + ¯ . s16d

Here n̂i is a unit three component vector defined on each

rung (labeled byi) andLW i is the corresponding angular mo-
mentum. The ellipses represent other short-ranged terms con-
sistent with the symmetries. The rotor vectorn̂i and the an-

gular momentumLW i have the same symmetry properties as
the difference and sum of the two microscopic spins on the
rung ati, respectively. Under layer exchange we then have

n̂i → − n̂i , s17d

LW i → LW i . s18d

Thus layer exchange symmetry implies that the rotor Hamil-
tonian be invariant under the full group Os3d of rotations
(which includes improper rotations). In addition, time rever-
sal is a separate symmetry that is implemented by an anti-

unitary operator that changes the sign of bothn̂ and LW . We
remark that this must be contrasted with single layer Heisen-
berg spin magnets. These can also be modeled as quantum
rotors but with appropriate monopoles placed at the origin of
the n̂ sphere at each site. Now the presence of the monopoles
implies that the improper rotations of the rotor vector are no
longer symmetries. Thus these must be regarded as SOs3d
rotors. This distinction will also be important for us below.

Consider now paramagnetic phases of the bilayer model.
We will specifically be interested in phases that obtain close
to the strong interlayer exchange limit where the Os3d rotor
description becomes appropriate. As with the single layer
systems discussed above, it will be convenient to obtain a
gauge theoretic description of these paramagnetic phases.
This may be obtained by passing to aCP1 description of the
rotors in terms of spinon variablesz. The z fields are mini-
mally coupled to a compact Us1d gauge fieldaW, but unlike
the single layer case the mean spinon number is zero per site.
In a mean-field description of paramagnetic phases the
spinon fields will be gapped. Beyond mean field, integrating
out the gapped spinons leads to a compact Us1d gauge
theory. The ultimate fate of the spinons is determined by
whether or not this gauge theory is confined. Again, in con-
trast to the single layer case, the Gauss law constraint of this
gauge theory is simply

D ·E = 0 s19d

with no background charges. HereEij is the “electric” field
defined on the links of the honeycomb or square lattice. As
usual, this is conjugate to the gauge fieldaij ,

faij ,Eijg = i . s20d

What are the symmetries of this gauge theory? Clearly all the
symmetries of the square or honeycomb lattice that forms
each layer are also symmetries of the gauge theory. In addi-
tion, the symmetry of the rotors under improper rotations
(the layer exchange symmetry) implies that the gauge theory
must be invariant under the discrete symmetry

Eij → − Eij , s21d

aij → − aij . s22d

This may be seen in several ways. For instance, we note that
the magnetic field corresponding to the gauge fielda is pre-
cisely the skyrmion density associated with the configuration
of the n̂ fields. The latter is odd under improper rotations of
n̂ (for instance, there is a well-known expression for the
skyrmion density as a trilinear inn̂). Similarly the electric
fields correspond to the skyrmion currents which are like-
wise odd under improper rotations. Parenthetically, we note
that under(the antiunitary) time reversal the electric field is
even while the gauge field is odd.

This compact Us1d gauge theory is readily dualized to
obtain a dual sine-Gordon description in terms of thex field.
The dual action takes the form

S= S1 + S2 + ¯ , s23d

S1 =
1

2
E

t
o

r

s]txrd2 + rsDxd2 + KsD2xd2, s24d

S2 = −E dto
r

o
n=1

`

ln coss2pnxrd. s25d

There are two important differences with the single layer
case. First the absence of background charges in the gauge
theory implies that there are no offsetsar for the height fields
xr. Second, the discrete layer exchange symmetry implies
that the action must be invariant underxr →−xr.

It is interesting to contrast the bilayer with a spin-3
2 anti-

ferromagnet in a single honeycomb layer. In the latter the
gauge theory appropriate to the paramagnetic phase may be
viewed as an “even” gauge theory, i e., one where there are
no background charges in the Gauss law constraint. But, nev-
ertheless, as the microscopic model is not invariant under
improper rotations of the spin(or equivalently the rotor vec-
tor in a rotor description) the gauge theory does not have the
discrete symmetry of Eq.(21) associated with changing the
signs of bothE anda.

III. THE BILAYER HONEYCOMB LATTICE

In this section, we specialize to thebilayer honeycomb
lattice, assuming the presence of strong interlayer antiferro-
magnetic coupling. We will consider the lattice valence bond
solid phases and phase transitions of this spin-half quantum
antiferromagnet using the sine-Gordon description Eq.(23).
It will be convenient to explicitly write out the lowest order
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nonlinear terms that are allowed by the symmetries. These
take the form

Sint =E dt
u

4
uDxu4 +

v
6

RefsDx + iDydxg6 s26d

so that the full action is

S= S1 + S2 + Sint s27d

with S1,2 given in Eq.(6). We have included inSint thev term
which gives the lowest order effect of the sixfold broken
rotational symmetry of the hexagonal lattice. Note that it
appears only atsixth order in Dx, and hence is nominally
irrelevant at the critical point. It is, nevertheless, important
for r,0 (see below). Note that the symmetries of the bilayer
system includexr →−xr at each siter which corresponds to
layer exchange. This symmetry forbids the appearance of
terms that are odd inx. Such terms are allowed in single
layer systems that do not have this symmetry—indeed Ref. 8
identifies a cubic term that drives the transition first order.

Let us, for a moment, consider how the various VBS
phases arise from the action(27). For r.0, the system
would like to have zero tiltDx on the average. Moreover, we
can ask what the effect of the monopole tunneling term is,
the first such term is the one that inserts a single monopole
sn=1d of Eq. (25), and it is easily seen that this operator has
long-ranged correlations ifrÞ0, and is hence a relevant per-
turbation. The resulting phase will be one where the height
field is pinned at a uniform value, and this state may be
caricatured as one where the spins form singlets with their
partners in the other layer as shown in Fig. 1(a).

For negative values ofr, a state with a finite tilt is ex-
pected, i.e.,

k = k2pDxl Þ 0. s28d

Ignoring the monopole operators for the moment, the system
will choose a tiltk0 whose magnitude for small negativer is
obtained at the mean-field level by minimizing together ther
andu terms, i.e.,

uk0u = 2pÎ− r

u
, s29d

with corrections of Ofv /us−r /ud3/2g from v and other
higher-order terms. Fluctuation effects due to the marginality
of u will slightly enhanceuk0u by a logarithmic factor of little
importance. The direction of the vectork0 is, however, de-
termined by the sign ofv. In particular, the six discrete di-
rections with k0x+ ik0y= uk0uei2pm/6 or k0x+ ik0y
= uk0uei2psm+1/2d/6, with m=0. . .5 are preferred for v,0,
v.0, respectively. The added effects of monopoles, which
will modify the true tilt vector tok Þk0, however, will have
to be carefully considered in the last part of this section.

In any case, a phase transition between a VBS with zero
average tilt, and one with nonzero average tilt, corresponds
to takingr from positive to negative values. The phase tran-
sition that lies between requires that we look at the theory
with r=0.

A. Stability of the fixed line controlling the transition

The critical theory for such a VBS transition is then pro-
posed to be

Sc =E dto
r

1

2
hs]txd2 + KsD2xd2j. s30d

We need to check that this simple Gaussian theory is stable
against switching on a small monopole tunneling[termS2 in
the action(23)] and quartic interactions[Sint of Eq. (26)].
Again, we consider correlators of the single monopole tun-
neling event, then=1 term. This now has the following
power-law decay in space:

kei2pxrs0de−i2px0s0dl ,
1

rp/ÎK
, s31d

which implies that the monopole insertion operator is irrel-
evant if p /2ÎK.4, or equivalently 0,K, sp /8d2. Thus,
there is a line of fixed points, with different exponents, that
are parametrized byK and are all stable against switching on
weak monopole tunneling. Indeed, this is very similar to the
line of fixed points obtained inD=1+1 in avariety of sys-
tems such as the spin-halfXXZ chain. Note, however, that
our theory has dynamical exponentz=2.

We now consider the effect of the quartic interaction term
Sint in Eq. (26), which by naive power counting is marginal
at these fixed points. Since we will be looking at values ofK
for which the monopole tunneling events are irrelevant, they
are disregarded in the discussion below. We consider a con-
tinuum model of the critical theory(30), with modes re-
stricted to wave vectors below a certain cutoffL. We per-
form a one loop renormalization group(RG), assuming that
we start with a small value of the interaction parameteru,
and study its flow on integrating out the large wave-vector
modesLs1−dld, uku,L. After the appropriate rescaling to
keep the quadratic term(30) invariant, we obtain the follow-
ing flow equation for the quartic coupling:9

du

dl
= −

9

16pK3/2u2. s32d

This implies that a quartic coupling withu.0 is marginally
irrelevant, and the coupling flows back to zero logarithmi-
cally with distance. Therefore the long distance physics in
this case will be controlled by the critical action(30), with
logarithmic corrections arising from this marginally irrel-
evant operator. Thus the critical points are stable towards
turning on a quartic interaction foru.0. (For u,0, how-
ever, the quartic coupling is relevant, and the transition is
very likely driven first order—as is indeed already the case in
mean-field theory for negativeu.)

B. Properties of the transition

The analysis above has established the presence of a fixed
line controlling the transition between VBS phases with zero
tilt and those with a nonzero tilt of the height field. In this
subsection, we discuss some properties of this fixed line. We
first note that the irrelevance of the monopole tunneling
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terms implies that the global symmetry of the continuum
theory is enlarged to Us1d. This corresponds to invariance
under arbitrary global shifts of the height fieldx. In terms of
the Us1d gauge theory(whose dual is the sine-Gordon
theory) this implies that the compactness is asymptotically
irrelevant all along this fixed line. Indeed, as shown in the
Appendix, the free Gaussian action is readily seen to de-
scribe a quadratically dispersing gapless photon in the gauge
theory representation. The gauge flux of the theory is then
conserved. This signals deconfinement. However, the mono-
poles are important to correctly describe the physics of the
phases on either side of the transition—thus they represent
dangerously irrelevant perturbations.

If we ignore the marginally irrelevant quartic term, the
fixed point theory has a free field form. Thus all aspects of
the critical behavior, while nontrivial, are eminently trac-
table. For instance, it should be possible to compute real time
dynamical correlators of, say, the operatorei2pxrstd at nonzero
temperatures in the scaling limit. We will, however, not pur-
sue this here.

It is instructive to ask about the fate of the gapped spin-
carrying excitations right at this critical fixed line. As men-
tioned in Sec. II, the presence of a spin-1

2 spinon at some
spatial site leads to a vortex in the height fieldx. Away from
the critical point, in (for instance) the zero tilt VBS, the
relevance of the monople tunneling terms lead to pinning of
the height field which implies that there is a huge energy cost
that increases linearly with system size for these vortices.
More precisely, consider a pair of spinons(on opposite sub-
lattices of the original lattice). This generates a vortex-
antivortex pair inx. The energy cost for separating this pair
by a distanceR grows linearly withR away from the critical
point. Thus we have(linear) confinement of spinons and the
elementary spin-carrying excitations have spin 1. But right at
the critical fixed line the enlargement of the symmetry to
Us1d implies that vortices in thex field are cheap. Ignoring
the quartic perturbation, an elementary computation shows
that the energy cost of a vortex is finite, independent of sys-
tem size. Including the quartic term leads to a weak 1/R2

interaction(up to logarithmic corrections due to the marginal
irrelevance ofu) between a vortex-antivortex pair separated
by distanceR—this then is the interaction between two
spinons(on two opposite sublattices) separated by a distance
R. Thus, as expected, the spinons are deconfined and free to
propagate above a spin gap.

Within the approximation of ignoring the weak interaction
between the two spinons, the magnon spectral function

AskW ,vd at the gap edge is readily calculated. One finds a

sharp stepAskW ,vd,usv−Dd whereD is the spin gap. Thus
the magnon spectral function has no quasiparticle peak and is
anomalously broad.

C. Devil’s staircase

We now consider the behavior on the “tilted” side of the
Lifshitz point, in which the compact gauge theory is ex-
pected to have a nonvanishing background electric field. The
neighborhood of the Lifshitz point has been argued in Ref. 8
to realize an “incomplete Devil’s staircase.” While the essen-

tial features have already been sketched in Ref. 8, we reca-
pitulate them here for completeness and to present a few
additional points not mentioned therein. In particular, we will
describe the thermal transitions of the commensurate tilted
VBS states within the devil’s staircase, and point out two
distinct types of low-energy excitations within these phases.

Let us first think generally about the nature of phases with
some finite and nonzero background electric field, i.e., not in
the direct vicinity of the putative critical point. At this stage
we do not take any continuum limit, working with a fieldxr
defined on the discrete lattice sites(of the dual square or
hexagonal lattices). If one neglects at first the compactness of
the gauge theory, i.e., the terms breaking continuous transla-
tional symmetry ofxr, then one may writexr =k0·r /2p
+dxr, with dxr describing fluctuations around the putative
average tiltk0 determined as in Sec. III by minimizing with
respect tok0 the nonmonopole terms in the action. One
should regardk0 as the continuously varying “tilt” the sys-
tem would have were there no cosine(monopole) terms. We
will see that the true tilt, i.e.,kDxl=k, is close but not gen-
erally equal tok0. The fluctuations ofdxr will then be de-
scribed by a theory of the form

Stilt =E dto
r

1

2
hu]tdxru2 + r̃uDdxru2j

− o
n

l̃n cosf2pndxr + nk0 · r g, s33d

Note that, unlike at the critical point, the fluctuations ofdxr
at the quadratic level have a nonvanishing(renormalized)
stiffnessr̃. Hence the fluctuations ofdxr will be bounded,
and any nonoscillatory cosine term breaking the continuous
translational symmetry ofdxr will “pin” it, however weak.
This pinning corresponds to confinement in the original
gauge theory, and a VBS phase in the dimer model. We note
in passing that, actually, depending upon the value ofk0 and
anisotropies in the original action,r̃ can be replaced by a
more general tensor. Again, this complication does not
modify any of the qualitative results of this section, and so
will be ignored.

For a “generic” value ofk0 all the cosines oscillate since
k0·r will be an irrational multiple of 2p. There are, however,
an infinitedenseset of values ofk for which k ·r is a rational
multiple of 2p (for all r ). In this case, there will be some
minimal value ofn for which theln term does not oscillate
(for dxr =0). Clearly, at these special values ofk, this cosine
term is relevant and the system is in some confined VBS
phase. Furthermore, anyirrational k0 is arbitrarily close to
one of these rationalk values, so that, although the cosines in
general oscillate on the lattice, some of them oscillate ex-
tremely slowly. Since, in general, the cosines arenot infini-
tesimally weak(i.e., theln are finite and nonzero), a suffi-
ciently long wavelength oscillation of the cosine term could
potentially pin thedxr field even in such cases. To see
whether this occurs, let us suppose thenth cosine term os-
cillates weakly, i.e.,eink0·r =eindk·r for all lattice vectorsr ,
with nudk u!2p. Then, keeping only this cosine term, we
have approximately
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Stilt =E dto
r

1

2
hu]tdxru2 + r̃uDdxru2j

− l̃n cosf2pndxr + ndk · r g. s34d

Since the fluctuations ofdxr are bounded, we may estimate
the effects of the cosine term by ignoring these fluctuations
and minimizing the action. The minimal action configura-
tions are clearly constant in imaginary time,]tdxr =0.
Roughly, then, the fielddxr can either be constant, minimiz-
ing the stiffness term but gaining no(lowering of the) energy
from the cosine, or it can choose to tilt slightly to take ad-
vantage of the cosine term, costing some energy from the

stiffness. Dimensionally, the latter will be favorable ifl̃n
*r̃udk u2. Now udk u can be made arbitrarily small by increas-
ing n (typically decreasing as 1/n), so this inequality will be

satisfied if thel̃n do not decrease too rapidly(i.e., faster than

1/n2) with n. However, it is perfectly conceivable that thel̃n
terms do decrease faster than 1/n2, and in this circumstance,
there will be incommensurate values ofk0 for which thex
field remains unpinned, andall monopole terms remain irrel-
evant. This has been argued to be the case in the immediate
neighborhood of RK points in Ref. 8. Note that even so,
there are commensurate pinned statesarbitrarily close to this
incommensurate state. The self-similar succession of various
commensurate and incommensurate states is the incomplete
devil’s staircase mentioned above. The term “incomplete”
indicates that the incommensurate unpinned regions exist
(and have finite measure, as can also be argued).

The same arguments apply to the neighborhood of the
VBS transitions discussed here, and we will sketch the rea-
soning in order to make a few more observations. Note that
in these cases(e.g., for the honeycomb bilayer), the Lifshitz
point itself is generic, i.e., can be potentially observed in a
physical system by varying only one parameter.

First, we comment on a minor subtlety. A naive analysis
of the continuum field theory, Eq.(2), would suggest that on
the tilted side of the Lifshitz point, the tilt increasessmoothly
from zero. This appears to be the case since at the Lifshitz
point, all cosine(monopole) operators are irrelevant. On the
tilted side of the transition, in fact, the tilt does not increase
smoothly, but in the staircase fashion. This occurs because
irrelevant cosine operators at the Lifshitz point become rel-
evant on the tilted side of the “transition,” i.e., these opera-
tors aredangerously irrelevantin renormalization-group par-
lance. In fact, the naive smooth increase in slope
(background electric field of the gauge theory) occurring on
this side of the transition is replaced by a slope which con-
tains piecewise constant and incommensurate regions. These
regions become more and more closely spaced as the Lifshitz
point is approached, forming an infinite sequence that ap-
proximates the naive continuous curve(of, e.g.,uk u versusr)
arbitrary well if one looks arbitrarily close to the Lifshitz
point.

A full description of the devil’s staircase is beyond the
scope of this paper. It is instructive and indicative of the
general structure to consider some simple “families” of pla-
teaus in the tiltk that obtain near the critical point. In gen-

eral, the condition for a plateau is that cossnk ·r d does not
oscillate on the dual hexagonal lattice. This condition is
equivalent to requiring thatnk is a reciprocal lattice vector of
the hexagonal lattice. An arbitrary reciprocal lattice vector
can be written asn1b1+n2b2, with b1=s2p ,2p /Î3d, b2

=s0,−4p /Î3d. Hence, the condition onk is

kW = Sn1

n
Db1 + Sn2

n
Db2, s35d

wheren, n1, n2 are integers, and the pairsn1,n andn2,n can
be taken to be relatively prime. The “strongest” such com-
mensurate tilts are those with minimaln, since these corre-
spond ton-monopole events, which become less relevant as
n increases.

In understanding the behavior for smallk0, we need to
investigate those commensurate tilts for whichk is small but
nonzero. Clearly, for Eq.(35) this will occur for largen.
Since the two vectorsb1, b2 are linearly independent, the
coefficients of both must be small fork to be small. Since the
two numerators in these coefficients are integers, for a given
small magnitudeuku!1, one clearly then needs at leastn
* uku−1@1. Larger values ofn can also yield the sameuku, by
increasing the numerators accordingly. However, the largest
plateaus in tilt(coming from the most relevant cosines with
minimal n for a given uku) will be those corresponding ton
,uku−1.

Systems withk0 sufficiently near each of these values will
be pinned and form a “plateau” ink. How wide is this pla-
teau? Let us suppose theputativetilt k0<k. By scaling, the
correlation lengthj,1/uk0u,n@1. In this situation, we
must account for the renormalization of the relevant cosine
term by the fluctuations on scales less thanj. From standard
renormalization-group methods, one expects the renormal-
ized coefficient

l̃n , lnj−n2D, s36d

where D=p / s2ÎKd is the scaling dimension of the one-

monopole term. Note that, from this reasoning, thel̃n de-
crease extremely rapidly withn, hence from the above argu-
ment, incommensurate phases are possible.

In addition, for largej, the renormalized stiffness is small,
r̃,r /j2. On scales longer thanj, the x field is essentially
nonfluctuating, so further renormalization can be neglected.

The criterion for the system to be pinned atk is then l̃n
*r̃udku2. Hence the width of the plateau is

udku &Îln

r
j1−n2D/2. s37d

Clearly, these commensurate plateaus are very narrow near
the Lifshitz point. Similar estimates were obtained in Ref. 8.

Each of the commensurate VBS phases breaks the dis-
crete translational symmetry of the lattice, and thus must
undergo a symmetry-restoring transition as temperature is
increased. At nonzero temperatureT, these states will be
truncated to those commensurate VBS phases whoseTc8

s are
larger thanT. In particular, consider a commensurately tilted
VBS state driven by then-monopole fugacity in the “center”
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of its plateau, i.e., fork =k0. In this case, we may takedk
=0 in Eq. (34), and the system is described simply by a
commensurate sine-Gordon model. AtT.0, we may neglect
all but the zero Matsubara frequency mode and set]tx=0,
encompassing the quantum effects by using the renormalized

parametersr̃ ,l̃n above. The symmetry-restoring transition is
simply the roughening transition of this classical two-
dimensional sine-Gordon model, which has

kBTc =
2r̃

pn2 ,
1

n2j2 . s38d

For the strongest plateaus, recallj,1/uku and n,1/uku,
hence one has for these plateauskBTc,uku4. The other pla-
teaus have even smaller critical temperatures. Since all the
critical temperatures vanish rapidly asuku→0, the infinite set
of plateaus in the devil’s staircase is replaced by a finite
subset at any nonzero temperature.

One may also estimate the excitation gap in the associated
commensurate VBS phase, simply by expanding the sine-
Gordon term to produce asdxd2 “mass” term. This gives a

gapEg
VBS,nÎl̃n,nÎlnj−n2D/2. It may be somewhat surpris-

ing that a state with an exponentially small gap can have
such a relativelyhigh critical temperature[power law in 1/n
from Eq.(38)]. The physics of this is that the excitation with
an exponentially small gap consists of only small fluctua-
tions ofdx (and hence the gauge electric field) which do not
perturb the long-range order of the VBS state. Indeed, since
the VBS phases are states ofdiscretebroken symmetry, the
excitations which do disturb this order by connecting the
different symmetry-related ground states are “droplet”-like.
In the sine-Gordon language, such a droplet may be thought
of as a domain wall indx, which is wrapped around to form
a compact “island” inside whichdx is shifted by ±2p /n. In
particular, the proliferation of such thermally excited drop-
lets ultimately will “depin” thedx field and destroy the VBS
order above some temperature. The minimal radius of such
an island is the domain wall width itself(since this is larger
than the other natural cutoff, the correlation length). The en-
ergy for such a droplet is therefore given by integrating the
exponentially small sine-Gordon term over an exponentially
large area of the size of the domain width(in reality, there is
also a comparable contribution from ther̃ term). These two
factors compensate to give the relatively large energy deter-
mining Tc. The upshot of this argument is that the states with
exponentially small excitation gap near the zero tilt QCP are
not associated with the typical classical droplet excitations of
a VBS state, but rather are evidence of the gapless photon
mode obtained precisely at the QCP.

A comment on the above discussion is in order. Within the
sine-Gordon treatment, at any temperature above the “rough-
ening” temperature,dx behaves as a free scalar field, and
vertex operators exp 2pindx exhibit power-law correlations.
Ultimately, this can be tracked down as an artifact of the pure
gauge theory. In particular, any matter fields included in the
model, even gapped ones, correspond as discussed earlier, to
vortices in thex (or dx) field. At sufficiently high tempera-
tures, these vortices will certainly unbind. However, for
n.4, it is known that such sine-Gordon theories exhibit a

“floating” phase in which power-law correlations persist,
above the roughening temperatureTc and below the
Kosterlitz-Thouless temperatureTKT above which vortices
unbind. HerekBTKT= r̃ / s8pd. Note that one has then

TKT

Tc
= Sn

4
D2

for n . 4. s39d

Hence the VBS phases very close to the Lifshitz point will
have long-range VBS order only at very low temperatures
T,Tc,uku4 but quasi-long-range VBS order up to much
higher temperaturesT,TKT,uku2. Moreover, in the region
with quasi-long-range order, there are no plateaus in the tilt.

In gauge theory language the roughening transition atTc
may be associated with the thermally driven deconfinement
transition of pure gauge theories. Indeed, electric-field corr-
elators in this rough phase(gradients of the height field) fall
off as the inverse square of the distance—so this phase may
be thought of as a “thermal Coulomb phase.” The gauge
charged spinons are logarithmically interacting in this phase
and are bound into gauge neutral pairs until they ionize at
TKT leading to a plasma of gauge charge that destroys the
long-range electric-field correlations of the thermal Coulomb
(or rough) phase. This transition is also studied in detail in
Ref. 4, in theories with a noncompact gauge field and SU(2)
symmetric spion fields. While the thermal deconfinement
transition of gauge theories is generally expected only in the
absence of matter with unit gauge charge(spinons), in two
spatial dimensions the logarithmic form of the Coulomb in-
teractions is strong enough to bind the spinons into gauge
neutral pairs and hence the transition survives the inclusion
of spinons.

IV. THE SINGLE LAYER HONEYCOMB LATTICE

In contrast to the situation analyzed above for the bilayer
honeycomb antiferromagnet, in a single layer the appropriate
lattice sine-Gordon model has nonzero offsetsar for the x
fields on the three sublattices of the dual triangular lattice.
Thus, as explained in Ref. 8, thexr →−xr transformation
becomes a symmetry only when combined with inversion or
a p /3 rotation. This then leads to the possibility of a cubic
invariant in the sine-Gordon action which drives the transi-
tion first order.

It is interesting to ask about the situation with spin-3
2 an-

tiferromagnets on a single layer honeycomb lattice. In this
case there are no offsets for thexr in the sine-Gordon de-
scription of the paramagnetic phase. Nevertheless,xr →−xr
symmetry(without inversion orp /3 rotation) is not expected
as an exact symmetry of the action. This is not required by
any of the microscopic symmetries of the underlying lattice
spin model. Hence we expect that a cubic term will still be
allowed in the field theory and a first-order transition will
result.

V. THE SQUARE LATTICE

We now perform the same analysis for the transition in
the case of the spin-1

2 quantum antiferromagnet on the square
lattice. In contrast to the situation on the honeycomb lattice,
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we will find no generic continuous transition between VBS
states(in both single and bilayer cases).

As before, we consider a generic continuum theory that is
consistent with all the lattice and internal symmetries. For
the square lattice this takes the form

S= Sc + Sint + Smon, s40d

Sc =
1

2
E s]txd2 + Kfu¹2xu2 + 4ss]x

2xds]y
2xdg, s41d

Sint =E u

4
fs]xxd4 + s]yxd4g +

v
2

s]xxd2s]yxd2 s42d

with s.−1. The isotropic point corresponds tos=0 andu
=v. The last termsSmond represents quadrupled monopole
events. Note, in particular, the presence of the couplingss ,v
which are allowed by the square lattice symmetry. Consider
the critical theory given by the quadratic piece of the action
Sc and determine its stability against the inclusion to small
monopole tunneling. In this case we need to consider qua-
drupled monopoles, as discussed in Sec. II, and once again it
is possible to find a range ofK, s for which monopole tun-
neling is irrelevant.

Next, one must consider the stability of the Gaussian fixed
point described bySc to turning on the quartic interaction
(42). Again, we perform a one loop renormalization-group
analysis to determine the fate of these couplings. The result
of integrating the high wave-vector modesLs1
−dld, uku,L and rescaling, are the following RG equations:

dU

dl
= − 3f9aU2 + 2UV + aV2g, s43d

dV

dl
= − 9fU2 + 2aUV + V2g, s44d

where we have used the scaled variablesU=uA−1, V
=vA−1, and the scale factorA=s1+s+Î1+sd32pK3/2. At
the isotropic point, these equations are identical to Eq.(32),
and preserveu=v. The anisotropy of the quadratic part of the
action is present in the parametera, which is unity at the
isotropic point but otherwise is given by

a =
1

3F2s + 1 −Î1 + s

Î1 + s − 1
G s45d

thusaP f1/3,`d.
We now analyze the RG equations(43) and (44), and

show that they imply that the critical Gaussian theorySc is
generally unstable in the presence of the two quartic opera-
tors. If these were stable critical points, then there should be
a region in theu,v plane where the flows end up at the
origin. However, we will show that there is only a single line
in the entireu,v plane, where the couplings flow into the
origin. This implies that stability is only attained on a set of
measure zero points. For a general choice of the quartic cou-
pling, the flows run away to large negative values ofu, sug-
gesting a first-order transition. In order to show this property
of the RG equations(43) and (44), we construct a function

EsU ,Vd that is invariant along any RG trajectory, i.e.,
dE/dl=0. Contour lines of this function then represent the
RG flows, and we will see that there is only a single contour
connected to the origin. This function is most conveniently
represented in terms of the rotated coordinates,U+=aU+V,
U−=U−aV. Then,

E =
U−

3

sa2 + 3dU−
2 + 4aU+U− + s3a2 + 1dU+

2 , s46d

which can be checked to be invariant under the RG flows. It
may be seen that the origin must correspond toE=0, by
approaching it in any direction. The only other points for
which the invariant function vanishes is the lineU−=0,
which corresponds tou=av. These are the only points that
could flow to the origin. Apart from this set of measure zero,
none of the other points in theu,v plane ever reach the
origin under the RG flows but rather flow to regions with
large negative values ofu. Thus, for the case with square
symmetry, the Gaussian critical theory is generically
unstable—the flows suggest a first-order transition in the ab-
sence of special finetuning.19

VI. RK POINTS

The quantum dimer model Hamiltonians studied in Ref. 7
were shown to have a special point—the RK point—at which
the wave function is an equal superposition of all dimer con-
figurations. Equal time correlation functions can then be
evaluated from theclassical dimer model, which has been
extensively studied.20 In this section we address how those
results fit into the framework discussed here—for the case of
the single layer bipartite lattices. For example, we may ask in
the case of the honeycomb lattice where a transition through
a multicritical point can be obtained by tuning two param-
eters, whether the RK wave function corresponds to the the
ground-state wave function of any of these fixed points. In
fact, we will conclude that while the RK points in both the
square and the honeycomb lattice cases can reproduce criti-
cal properties of some point on the line of fixed points ob-
tained after tuning a few parameters in the generic models,
they represent very special multicritical points in terms of
their position in the phase diagram of these generic models.
Thus accessing these points requires finetuning an infinite
number of independent operators, which do not affect the
critical properties but change the phase structure in the im-
mediate vicinity of the point(dangerously irrelevant opera-
tors). This finetuned nature of the RK point can immediately
be seen by noting that at the RK point, the ground-state wave
function in each winding number(tilt ) sector has exactly the
same energy. Reproducing this democratic treatment of all
winding number sectors within a height model representation
of the RK point will require tuning an infinite number of
parameters to zero in the bare Hamiltonian—even though
they may be associated with operators that are(dangerously)
irrelevant at the critical point.

If the RK point requires finetuning infinitely many param-
eters, one may ask how it is accessed so readily in the quan-
tum dimer model. The reason is that the dimer model usually
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contains only single plaquette terms, where the RK point is
accessed by tuning just one parameter. However, including
processes that involve several plaquettes will require tuning
increasingly larger number of parameters to obtain the equal
dimer superposition of the RK point. Generically the dimer
representation of spin systems will include processes that
involve arbitrarily large number of plaquettes. Although
these decay with increasing size, they are generally nonvan-
ishing, and infinite finetuning will be then be required to
reach the RK point.

For the square lattice, the field theory that reproduces
asymptotic properties of the RK point was studied by
Henley.5 It was found there that a quadratic action(40) with
K=p2/4, s=0 gives the long distance dimer correlations at
the RK point(amusingly this is the parameter value at which
the two monopole insertion operator is marginal). The fact
that the ground states in all winding number sectors are de-
generate at the RK point implies that it is possible to access
states with arbitrary values of the tilt by moving infinitesi-
mally away from the RK point. As a result, the topology of
the phase diagram near the RK point is as shown in Fig. 2(c).
An infinite number of parameters have been set to zero to
access this plane of the phase diagram. While the continuous
transition from the zero tilt state leads to the devil’s staircase
of tilted states, a direct transition from a zero tilt state to the
staggered state can be made by crossing the RK point. Thus
the RK point terminates the critical line, and sits on a line of
first-order transitions. The special nature of the RK point,
even as a multicritical point, can be seen by comparing it to
the generic multicritical points of the bilayer honeycomb lat-
tice (which require tuning of two parameters to reach) de-
noted M8, M in Figs. 2(a) and 2(b). (These can also be
thought of as higher-order multicritical points in the single
layer honeycomb model, which will require finetuning of an
additional parameter to reach the plane depicted in the dia-
grams.) In the first scenario depicted in Fig. 2(a), the multi-
critical pointM8 terminates both the first-order transition line
and the critical line, but it does not allow for a direct transi-
tion from the zero tilt state to the staggered state. In the other
scenario, Fig. 2(b), the generic multicritical pointM does
allow for a direct transition from a zero tilt state to the stag-
gered state. However, it is fundamentally distinct from the
RK point, as can be seen from the difference in topology of
the phase structure around theM and RK points, which may
be characterized as follows. We ask what phases may be
accessed from these points by a small change of bare param-
eters. For the generic multicritical pointM, the staggered
state, the zero tilt state, and a state with infinitesimal tilt can
be accessed. For the RK point, however, besides the stag-
gered and zero tilt state, states with arbitrary values of the tilt
can also be accessed in this manner, as shown in the figure.
This follows from the exact degeneracy of ground states in
different winding number sectors at the RK point.

VII. CONCLUSIONS

In this paper we have shown that at least in certain in-
stances there are direct second-order transitions between dis-
tinct valence bond solid phases. Deconfinement obtains at

the critical point, though both phases are conventional and
confined. More precisely, the critical theory may be viewed
as a gapless Us1d gauge theory withirrelevant instantons.
The spin carrying excitations in either phase are gapped
spin-1 magnons or their composites. Right at the critical
point, however, the spin gap does not close but the magnons
decay into(gapped) spin-12 spinons.

All of this structure is very similar to the other examples
of “deconfined” quantum criticality studied in Ref. 2. How-
ever, there are some interesting differences in the details.
First the critical points discussed in the present paper are
controlled by a critical fixed line with continuously varying
exponents. Second(upto a marginally irrelevant nonlinear
operator), all points on this fixed line have a simple free field
description. The emergence of a(topological) global Us1d
symmetry that seems generic to deconfined quantum critical-
ity obtains for the transitions in this paper as well. However,
the free field description implies an enormous number of
further emergent symmetries which are specific to these tran-
sitions. Third, the dynamic scaling exponentz is 2 in the
present example(compared toz=1 at the Neel-VBS transi-
tion). Finally, as detailed in Sec. III C, there is rich and in-
teresting structure with an infinite number of transitions on
one side of the deconfined critical point.

One offshoot of these results is a clarification of the place
of the solvable RK point of quantum dimer models in a more
general context of phase transitions in quantum magnets. We
find that the RK point corresponds to a special multicritical
point.

We also showed that these interesting phase transitions
are best realized in bilayer spin-1

2 honeycomb lattice quan-
tum antiferromagnets. It would be interesting for numerical
work to explore specific spin models on such bilayers where
these transitions can be accessed.

Several extensions of our results are possible. It should be
possible to examine the role of various perturbing fields at
the critical point as well as the effects of finite temperature. It
should also be readily possible to examine transitions be-
tween different VBS phases in higher-spin quantum magnets.
We leave these for future work.

Since the original submission of an electronic preprint of
this work, Ref. 8 appeared which considered some of the
same questions, especially those regarding the single layered
systems discussed here. They correctly pointed out the first-
order nature of the transition on the single layer honeycomb
lattice, and the “incompleteness” of the devil’s staircase—
which were the points of disagreement with the earlier ver-
sion of this work. These points have been corrected and
briefly mentioned in the present work. However, in contrast
to Ref. 8 we have focused here on the case of the bilayer
honeycomb quantum magnet where a generically continuous
transition between VBS statesis realized, and have studied
some of the interesting properties of this generic quantum
critical point.
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APPENDIX: CRITICAL GAUGE THEORY

In this appendix we will explicitly display the form of the
continuum action of the noncompact Us1d gauge theory that
corresponds to the critical sine-Gordon theory. A general
continuum Hamiltonian for a noncompact Us1d gauge theory
in D=2+1 dimensions takes the form

H =E d2x ruEu2 + Ku= 3 Eu2 + B2 + ¯ sA1d

together with the Gauss law constraint

= ·E = 0. sA2d

Here E refers to the electric field whileB= ẑ·= 3A
=ei j]iAj is the magnetic field. We work in the Coulomb
gauge= ·A =0. As usual, the components of the electric field
Eisi =x,yd and the(transverse) componentsai of the vector
potential are canonically conjugate,

fEisxd,Ajsx8dg = − iPijsx − x8d, sA3d

where Pij has Fourier componentsdi j −kikj /k
2 and projects

out the transverse component.

The Gauss law constraint may be solved by writing

Ei = ei j] jx, sA4d

wherex is a scalar field. Assume that the commutator ofx
andAj takes the form

fxsxd,Ajsx8dg = i f jsx − x8d. sA5d

The correct commutator betweenE and A is reproduced if
we impose

eik]kf jsx − x8d = − Pijsx − x8d. sA6d

This then implies the commutator

fxsxd,Bsx8dg = idsx − x8d, sA7d

so that the magnetic fieldB is conjugate tox. The Hamil-
tonian may now be rewritten

H =E d2x ru=xu2 + Ks¹2xd2 + B2. sA8d

As B and x are canonically conjugate, we reproduce the
continuum free field action of the sine-Gordon theory. Re-
membering that the critical theory hasr=0 we can immedi-
ately read off from Eq.(A1) the continuum gauge theory
Hamiltonian that describes the critical point. This is readily
diagonalized explicitly to find a quadratic dispersing photon.

Amusingly, atr=0, the Hamiltonian(A8) exhibits a kind
of self “duality,” obtained by exchanging the roles ofB and
¹2x. That is, if we introduce the fieldf such that B
=¹2f /ÎK, and its conjugate fieldPf=−ÎK¹2x, then one
obtains the same critical Hamiltonian(A8) with r=0] but
with K→1/K and sB,xd→ sPf ,fd.
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