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Quantum dimer models on bipartite lattices exhibit Rokhsar–Kivelson points with exactly known critical
ground states and deconfined spinons. We examine generic, weak perturbations around these points. Ind=2
+1 we find a first-order transition between a “plaquette” valence bond crystal and a region with a devil’s
staircase of commensurate and incommensurate valence bond crystals. In the part of the phase diagram where
the staircase is incomplete, the incommensurate states exhibit a gapless photon and deconfined spinons on a set
of finite measure, almost but not quite a deconfined phase in a compactUs1d gauge theory ind=2+1! In
d=3+1, we find acontinuous transition between theUs1d resonating valence bond phase and a deconfined
staggered valence bond crystal. In an appendix, we comment on analogous phenomena in quantum vertex
models, most notably the existence of a continuous transition on the triangular lattice ind=2+1.
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I. INTRODUCTION

Quantum dimer models(QDMs) were introduced by
Rokhsar and Kivelson1 to capture the low-energy dynamics
of valence-bond-dominated phases of quantum Heisenberg
antiferromagnets.2 Work on these models has established that
their behavior on bipartite and nonbipartite lattices is funda-
mentally different. On non-bipartite lattices, they admit reso-
nating valence bond(RVB) phases with liquid dimer corre-
lations and deconfined(test) spinons3–5 that have topological
order of theZ2/BF variety.6 By contrast, on bipartite lattices
they admit only crystalline phases1,7–12 [valence bond crys-
tals (VBCs)] in d=2, while supporting RVB phases of the
Us1d or Coulomb variety ind.2.13–15

One of the elegant features of the class of QDMs intro-
duced in Ref. 1 is the existence of special points, christened
Rokhsar–Kivelson(RK) points, at which the exact ground
state wave functions are trivially determined and take the
form of equal amplitude superpositions over sets of states
connected by the dynamics: the classic RVB form. Addition-
ally, test monomers have a vanishing interaction at these
points, which translates into the deconfinement of gapped
spinons in RVB language.3 The appropriate phase diagram
for the square lattice case is sketched in Fig. 1.

In this paper, we study QDMs “near” the RK points on
bipartite lattices; that is, QDMs that consist of the RK point
Hamiltonians plus small, but generic, perturbations. The re-
striction to bipartite lattices brings an important simplifica-
tion. In a sense that we will make precise below, bipartite RK
points are described by gapless Gaussian field theories, and
this will greatly simplify the task of analyzing perturbations.

Our basic new results are twofold. First, we establish the
degree of criticality of the RK points—more precisely of the
associated Gaussian field theories that are fixed points of the
obvious renormalization group and to which we shall refer
for clarity as the RK fixed points(RKFPs). In d=2+1, we
show that on the honeycomb and square lattices, the RKFPs
describe multicritical points with two relevant symmetric op-

erators. Ind=3+1, thecubic lattice RKFP describes a criti-
cal point with just one relevant symmetric operator. Second,
we show that the purely “staggered” phase that borders the
RK points in the simplest QDMs can be pushed a finite dis-
tance away in the perturbed models and that, ford=2+1, the
intermediate region is filled in by a devil’s staircase of com-
mensurate and incommensurate VBCs that exhibit staggered
order but also additional Bragg peaks. The commensurate
crystals are gapped and confining. The incommensurate crys-
tals exhibit a gapless photon(phason) and are deconfining,
for sufficiently weak perturbations. Further, although they
occur at(boundary) points, they form a generalized Cantor
set of finite measure in the same limit. We refer to this phe-
nomenon, which comes remarkably close to a deconfined
phase in a compactUs1d gauge theory ind=2+1, asCantor
deconfinement. In fact, near the RK point, this region is prac-
tically a deconfined phase, as the commensurate confined
phases occupy an asymptotically small fraction of the phase
diagram in this limit. In addition, the gap in the confined
phases is extremely small. The possibility of such phases was
pointed out previously by Levitov10 based on a mapping to
the roughening problem.

This paper is organized as follows. In Sec. II, we discuss
the height action for a 2+1-dimensional(generalized) QDMs
on the square and honeycomb lattices. In Sec. III, we discuss
in detail the case of the honeycomb lattice and the mecha-
nism that drives the quantum phase transition first order in
that case. In Sec. IV, we discuss the development of the tilted
phase, and in Sec. V, we show that due to the strong coupling
nature of these generalized dimer models, their tilted incom-
mensurate phases generically exhibit a fully developed dev-
il’s staircase analogous to the one discussed in two-
dimensional(2D) classical systems. In Sec. VI, we discuss
the phase diagram for the case of the square lattice, and in
Sec. VIII, we discuss the violation of the Landau rules in
these quantum phase transitions, and the deconfining nature
of these quantum critical points, including the relationship of
RK points to the “deconfined critical points” discussed re-
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cently by Senthil and collaborators.16 We summarize our
conclusions in Sec. IX. In the Appendix, we provide a brief
discussion of analogous phenomena in quantum vertex mod-
els. Here, we find that the RKFP ind=2+1 that controls the
transition between a crystalline state and a Cantor deconfined
region is critical(rather than multicritical).

II. HEIGHT ACTION IN d=2+1 DIMENSIONS

The Hamiltonian of the simplest quantum dimer model
introduced in Ref. 1 has the form

s2.1d

for the square and honeycomb lattices, respectively. Here, a
sum over all plaquettes of the lattice is implicit. On the hon-
eycomb lattice,12,17 and with less confidence on the square
lattice,1,7–11it is known that the model exhibits three phases.

For v! t, it is in a “columnar” crystal phase which gives
way by a first-order transition to a “plaquette” phase asv / t is
increased. The plaquette phase is characterized by an order
parameter that vanishes continuously atv= t, the RK point.
At the RK point, there are multiple ground states; the exact
ground state wave functions are the equal-amplitude super-
positions of states in each sector of dimer configurations con-
nected by the(off-diagonal) resonance term in Eq.(2.1). It is
generally assumed that these sectors are defined by two
winding numbers(see Ref. 18 for details), although a proof
of ergodicity within sectors exists only for the zero winding
sector.19 For v. t, the system enters a staggered phase in
which the ground states contain no flippable plaquettes. Car-

toons of these three phases—columnar, plaquette and
staggered—for the square and honeycomb lattices can be
found in Figs. 1 of Refs. 11 and 12, respectively. The square
case is reproduced in Fig. 1.

On bipartite lattices, the hardcore dimer constraint can be
converted into a Gauss law,¹ ·E=0. This is accomplished by
endowing the links of the lattice with an orientation, so that
they point from one sublattice to the other. Identifying an
empty link with an electric flux −1, and a link occupied by a
dimer with a flux z−1 (wherez is the coordination of the
lattice), one obtains a lattice electric fieldE with the desired
property. In d=2+1, this can be solved by writingE=¹
3h in terms of a scalar height fieldh.20,21Here, the violation
of the hardcore dimer covering constraint, through the pres-
ence of a monomer or overlapping dimers, shows up as a
vortex in the height field.

In terms ofh, the properties of the above QDMs in the
vicinity of their RK points are reproduced by the imaginary
time Lagrangian

L = 1
2s]thd2 + 1

2r2s¹hd2 + 1
2r4s¹2hd2 + l coss2phd,

s2.2d

with −r2~ sv / td−1 changing sign precisely at the RK points.
The last term keeps track of the discreteness of the micro-
scopic heights, as is usual in height representations of prob-
lems ind=2, and we will have more to say on that later. The
square and honeycomb lattice problems differ in the relevant
values ofr4, which aresp /32d2 (square lattice) andsp /18d2

(honeycomb).
To determine the operator content of these theories, one

also needs to specify the compactification radius of the
height variables. This is determined by the minimal uniform
shift of the heights that leads to an identical dimer configu-

FIG. 1. Phase diagram of the square lattice QDM. In the top part of the figure, the mean tilt of the height surface is plotted as a function
of v / t (see Sec. II). The corresponding dimer phases are sketched on the bottom part. The flat side(columnar and plaquette solids) terminate
in the RK critical pointsv / t=1d, which has no dimer long-range order. Here, for the RK QDM(dashed line), the tilt jumps discontinuously,
corresponding to a first-order transition into the staggered solid. Upon inclusion of longer-ranged interactions, however, the tilt will ascend
a devil’s staircase from the flat region, through a succession of incommensurate and commensurate phases. This phenomenon(and the
resulting structure factor) are discussed in detail in the text.
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ration. For the cases of the honeycomb and square lattices,
the compactification radii equal 3 and 4, respectively.

Finally, the details of the lattice structure enter in the re-
lationship between lattice quantities and operators in the field
theory. Specifically, long-wavelength correlations of the
dimer densitiesni (wherei labels the dimer direction) on the
honeycomb lattice can be reconstructed by means of the
leading operator identifications, given by

n1 −
1

3
=

1

3
]xh +

1

2
fexps2pih/3dexps4pix/3d + h.c.g,

n2 −
1

3
=

1

3
S−

1

2
]x +

Î3

2
]yDh +

1

2
fexps2pih/3dexps4pix/3

+ 4pi/3d + h.c.g,

n3 −
1

3
=

1

3
S−

1

2
]x −

Î3

2
]yDh +

1

2
fexps2pih/3dexps4pix/3

− 4pi/3d + h.c.g. s2.3d

In these expressions,x and y denote Cartesian coordinates,
the x axis being perpendicular to one dimer direction. The
unit of length is given by the separation of two neighboring
parallel dimers. The corresponding expressions on the square
lattice are

nx −
1

4
=

1

4
s− 1dx+y]yh +

1

2
fs− 1dx expspih/2d + h.c.g,

ny −
1

4
=

1

4
s− 1dx+y+1]xh +

1

2
fs− 1dy expspih/2 + pi/2d + h.c.g.

s2.4d

The effective Lagrangian of Eq.(2.2) was also considered
in Ref. 22 in the context of the theory of classical Lifshitz
(multi) critical points in three dimensions and, for this rea-
son, this effective theory has been dubbed the quantum Lif-
shitz model in Ref. 23. This effective Lagrangian exhibits a
three-dimensional(3D) analog of the physics of 2D classical
critical isotropic systems. Thus, the action defined by Eq.
(2.2) exhibits a line of fixed points parametrized byr4 with
r2=0 andl=0, under the natural momentum and frequency
shell renormalization group withz=2. The RK points on
both lattices flow under this renormalization group, to
RKFPs on this line with the above values ofr4. This ac-
counts for their critical correlations and a mode spectrum
v,k2. In the Us1d gauge theoretic interpretation of the
dimer model, this mode is a photon with an anomalously soft
dispersion. The irrelevance of the cosine is the necessary
vanishing of the instanton effects that otherwise gap the
spectrum of such compact confining theories;24 this also ac-
counts for the deconfined spinons. The height action further
accounts for two other nontrivial features of the RK points;
namely, that they have degenerate ground states in all wind-
ing number sectors(the RKFP point action is insensitive to
gradients of heights) and that for the zero-winding states the
equal time height correlations are logarithmic,

khsx,tdhs0,tdl = −
1

4pÎr4

lnspuxu/ad, s2.5d

and are precisely those of the classical dimer problem. This
in turn allows us to fix the values ofr4 quoted earlier as the
classical dimer problem is exactly solvable.(This also clari-
fies that these values are really the fixed point values.)

On both lattices, the action[Eq. (2.2)] accounts for the
plaquette crystals forv, t as flat states of the height variable
with different local fluctuations: whenr2.0, l is relevant;
that is, it is dangerously irrelevant at the RKFPs. The selec-
tion of plaquette states indicates thatl,0 for v / t&1 on
both lattices. Forv. t, r2,0 the height tilts, and in the
absence of any restoring term in Eq.(2.2), it attains its maxi-
mum tilt consistent with the microscopic constraints. This
tilted phase translates into staggered dimer correlations
which break translational symmetry on the square lattice and
only rotational symmetry on the honeycomb.

The transition between the plaquette and staggered phases
is somewhat unusual. Asr2 goes smoothly through zero at
the RK point, the plaquette order vanishescontinuously
there. Further, asv→ t−, there are two divergent length
scales:x,uv / t−1u−1/2 and xc,s1/Îldxu, with u=6, 5

2 on
the square and honeycomb lattices, respectively. The latter
arises from the dangerously irrelevant cosine and is the
length scale on which the plaquette order appears; the value
of u follows from the dimension of the irrelevant cosine at
the fixed point. However, the staggered phase emerges at full
strength immediately and the ground state energy density has
a derivative discontinuity at the RK point, which indicates a
first-order transition in the thermodynamic classification.

Let us comment briefly on the origins of the effective
action of Eq.(2.2). The height representation for dimers was
used or this problem by several workers; the recognition that
it can be extended to capture the physics of the RK point is
due to Henley,25 and a more complete account of the prop-
erties of the RK point and the transition about it was given in
Ref. 2. Henley’s basic observation was that the Hamiltonian
Eq. (2.1) also governs the master equation for the probability
distribution of the classical dimer problems endowed with
the simplest plaquette flip dynamics.25 In height variables,
the classical dimer problems are in the rough phase, so that it
is reasonable that the dynamics is captured at long wave-
lengths by the Langevin equation

]thsxd = −
dSfhg
dhsxd

+ zsx,td, s2.6d

whereSfhg,ed2xs¹hd2 is the coarse-grained entropy func-
tional of the classical dimer problem. For Gaussian white-
noise distributedz, the average over trajectories is weighted
by the Lagrangian

L = S]th +
dSfhg
dhsxd

D2

, s2.7d

which, upon dropping a total time derivative, is the action
governing the RK points.
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This construction shows that the RK point action has
higher dimension operators than one might have guessed on
symmetry grounds alone. Indeed, the action(2.2) does not
distinguish our two lattices with their different symmetries.
As advertised, we are interested in this paper in weak, but
otherwise generic perturbations of the Hamiltonians(2.1)
about their RK points. Such generic perturbations of the RK
point Hamiltonians will give rise to all operators allowed by
symmetry, so that we will include them in the analysis, with
the proviso that they enter with small couplings. A second
implication of considering perturbed models will be that the
values of the couplings in Eq.(2.2); in particular, the mar-
ginal couplingr4 will also be somewhat different from their
values quoted earlier: these differences will again be small.
In the following, we will refer to this set of modifications as
working near the RKFPs without further explanation.

A final comment is in order on an unusual aspect of the
RKFPs. These fixed points, and indeed the entire fixed line,
exhibit an enlarged symmetry in which the height field is free
to tilt with any magnitude in any direction, which is then
spontaneously broken by the ground states. While this ap-
pears to be nongeneric, such extra symmetries are a feature
of any purely Gaussian fixed point. For instance, at and
aboved=4, the Ising transition is controlled by a Gaussian
fixed point that is invariant under constant shifts of the scalar
field. Much as in that case we work near zero field(magne-
tization), in our problem, we will work near zero tilt. In both
cases, this is the correct choice for a sector of the space of
couplings—the sector in which the transition is continuous in
mean-field theory.

III. EXPANDED ACTION ON HONEYCOMB LATTICE

We turn now to the honeycomb lattice. For honeycomb
dimers, the heights live on the triangular lattice, which na-
ively indicates an action rotationally invariant to fourth order
in gradients. However, the microscopic heights have a sub-
lattice structure: they take values 0, 1 and 2modulo3 on the
three sublattices of the triangular lattice. Consequently, the
symmetries of rotation byp /3 and inversion also involve
sendingh→−h. It follows then that the allowed nonirrel-
evant operators at the RKFP include the relevant cubic term

L3 = g3s]xhdS1

2
]xh −

Î3

2
]yhDS1

2
]xh +

Î3

2
]yhD s3.1d

in addition to the marginal coupling

L4 = g4f¹h · ¹ hg2. s3.2d

The growth ofg3 in the infrared indicates that the criticality
of the RK point does not survive its inclusion; the form of
the interaction indicates that wheng3 is nonzero the system
has already entered the tilted phase, although with the tilt
now locked to the lattice. This leads us to conclude that the
transition between the flat plaquette phase and the tilted
phase goes truly first order.

If we tuneg3 to zero, we can examine the stability of the
multicritical RK point. In a renormalization group treatment,
where we keep a cutoff in space alone, the lowest nontrivial
order flows of the two interactions are

dl

dt
= − S p

2r4
1/2 − 2Dl,

dg4

dt
= −

9

4pr4
3/2g4

2, s3.3d

whence both interactions are irrelevant forg4.0.22 As g4 is
marginally irrelevant it produces logarithmic corrections and
the flows also renormalizer4 thus parking the system else-
where on the fixed line. With these observations, we see that
the multicritical behavior represented by the RK point is
stable on a surface of codimension 2, provided the long-
wavelengthr4ø sp /4d2. The latter condition holds for small
perturbations of Eq.(2.2).

IV. THE TILTED PHASE

Onceg4 is large enough, the tilt no longer jumps to its
maximum value on leaving the flat phase. Wheng3 is non-
zero, the tilt prefers to point along one of the dimer direc-
tions or in between two dimer directions depending on the
sign of this coupling. A similar role is played byg̃4 on the
square lattice(see below). Here, the restriction to small tilts
is crucial: the states forg3.0 andg3,0 arenot related by
symmetry. In particular, at large tilts there are only states
with one sign of the tilt; that is, with the dimers dominantly
oriented along the three bond directions. We also note that on
traversing the multicritical point withg3=0, the same orien-
tational selection is now affected by the fifth-order term

L5 = g5s¹hd2s]xhdS1

2
]xh −

Î3

2
]yhDS1

2
]xh +

Î3

2
]yhD ,

s4.1d

which is thus dangerously irrelevant at the multicritical fixed
point.

The properties of the tilted phase can be analyzed by ex-
panding in small fluctuations about the weakly tilted state
(henceforth, we assumeg3,0, so that the tilt is along the x
axis, and thatug3u is small)

hsr ,td = C · r + dhsr ,td, C = Cx. s4.2d

The corresponding Goldstone action is given(to quadratic
order in fluctuations) by

dL =
1

2
s]tdhd2 +

r4

2
s¹2dhd2 +

vl
2

2
s]xdhd2 +

vt
2

2
s]ydhd2.

s4.3d

Higher order terms(in dh) are irrelevant due to nondiver-
gence of fluctuations. Providedur2u,g3

2/g4, thenvt.vl and
a single correlation length can be defined,j−1=vl /Îr4, so
that for sufficiently large momenta,q.j−1, and the spectrum
is quantum critical, while asq→0, the modes acquire a stiff-
ness, and their dispersion is linear with longitudinal and
transverse velocities given byvl and vt, respectively. The
average tilt of the height variable translates into new Bragg
peaks appearing in the structure factor for the dimer densities
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[as deduced from Eqs.(2.3) and (2.4)]. They are of two
types: first is thecommensurateBragg peak at the wave vec-
tor of the maximally staggered state located at the origin for
the honeycomb case[and atsp ,pd in the case of the square
lattice], the second type are theincommensuratepeaks dis-
placed from the characteristic wave vectors of the columnar/
plaquette pattern[e.g., s4p /3 ,0d and sp ,0d on honeycomb
and square lattices, respectively] by an amount proportional
to C. In the tilted regime, the intensity of the commensurate
peak varies asC2, while that of the incommensurate peaks as
j−p/9Îr4 (on the square lattice asj−p/16Îr4). Generally, as a
result of quantum critical fluctuations, the two peaks differ in
intensity parametrically, both intensities becomingC2 for r4
corresponding to the purely short-range Hamiltonian of Eq.
(2.1). The existence of gapless modes has important implica-
tions; one of them is that test monomers(spinons) interact
through a potential that generally grows only logarithmically
with distance, as opposed to the linearly growingconfining
potential encountered in commensurate valence bond solids.

V. INCOMMENSURATE LOCKED CRYSTAL PHASES:
THE DEVIL’S STAIRCASE

The actual state of the system involves an interplay be-
tween the propensity of the system to establish a tilt dis-
cussed thus far and the discreteness of the microscopic
heights. As we will quantify a little later, the operators en-
coding the discreteness are much more irrelevant(although
dangerously so, see below) at the RKFP than those respon-
sible for the selection of the tilt magnitude and direction.
Therefore, near the RKFP, the problem can be treated in the
order in which we have discussed it. Away from this limit,
one can worry about more complex phase diagrams.

In order to treat height discreteness properly, we need to
generalize our treatment of the discreteness of the height in
Eq. (2.2). There, we included a potential that favors discrete,
flat configurations of the height field, but in doing so, we
ignored the possibility of the height locking into tilted con-
figurations. To identify the full set of locking potentials, we
note that the height and the lattice points together define a
3D lattice with pointssh,xd. A general locking potential, in
particular the one generated from the microscopic constraints
under renormalization, can be expanded in the set of recip-
rocal lattice vectorshGj of this 3D lattice, given by

Vlocksh,xd = o
hGj

VGeisGhh+Gxxd, s5.1d

and thus eachG defines a locking potential. Nicely enough,
the height–space lattice for the honeycomb dimer problem is
the simple cubic lattice with the[111] direction measuring
height, so that working out the set of locking potentials is
particularly simple.

As discussed in the previous section, in the tilted phase
the mean-square fluctuations of the height are finite. As a
consequence of this, whenever the average tilt of the height
surface is commensurate with the lattice, the corresponding
terms in the locking potential(above) are asymptotically rel-
evant. At such points the ground state is a commensurate
valence bond crystal with a gapped spectrum. At incommen-

surate tilts the outcome depends upon the strength ofVlock
relative to the remaining quantum fluctuations. When the lat-
ter are strong, as is the case for small tilts, the ground state at
most tilts is an incommensurate VBC with a Bragg peak at
the incommensurate wave vector but with a gapless(phason)
spectrum. In the gauge theoretic interpretation of the dimer
model, this excitation is a photon and correspondingly test
monomers are deconfined, in that they experience the loga-
rithmic interaction of free 2D electrodynamics. If the locking
potential is increased and/or the quantum fluctuations de-
creased, we expect a version of Aubry’s “breaking of
analyticity”26 transition beyond which the incommensurate
ground states are pinned, their low-lying excitations are lo-
calized though still gapless, and the incommensurate ground
states occupy a set of measure zero in the phase diagram.

The weak locking regime exists, parametrically, at small
tilts near the RK point. For concreteness, consider approach-
ing the multicritical surface by tuningg3 with r2 set equal to
zero. The closer we get to the transition, the higher order the
commensuration that leads to locking, withuGu,1/C or
larger. This has various effects: first, the coefficients of the
corresponding locking potentials generally decrease as one
goes to largerG; second, the operators become increasingly
irrelevant at the RK fixed point; and third, the length scale
increases at the crossover from the quantum critical regime,
in which the locking potential is irrelevant to the tilted re-
gime, where it becomes relevant. These effects combine to-
gether to make the renormalized strength of the locking po-
tential, and thus the size of the gap in each commensurate
phase, as well as the width of the parameter range in the
phase diagram occupied by the phase, all vanish at small tilts
C exponentially in 1/C2; for example, the gap

D , Ca/sr4C2d. s5.2d

As the correlation lengthj~1/C, this is equivalent to an
ordering length that grows rather fantastically, as

jc , ja8j2/r4, s5.3d

where a and a8 are positive constants. Consequently, even
the commensurate phases are for all practical purposes gap-
less in this weak-tilt regime. Thus, when the tilting transition
is either continuous or very weakly first order, there is a
deconfined, weakly ordered dimer-crystal phase near the RK
point where the ordering is generically incommensurate! By
contrast, the existence of the strong locking regime will need
to be determined by actual solution of the relevant models;
the existence of the fully tilted states is not proof of strong
locking, merely of the existence of a maximum tilt as a con-
sequence of the periodicity of the height variable.

Returning to the infinite-volume and zero-temperature
phase diagram, the commensurate and incommensurate
states will be interleaved in the classic manner of the devil’s
staircase studied in a variety of commensurate–
incommensurate problems.27 At weak locking, close to the
RK point, the staircase is incomplete; that is, the deconfined
incommensurate points will form a set of finite measure as
the control parameter,r2 or g3, is varied. In fact, the fraction
of the phase diagram occupied by the incommensurate de-
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confined states approaches unity as the RK point is ap-
proached. This is the phenomenon we have termed Cantor
deconfinement. Farther away from the RK point, the stair-
case could become complete, with the incommensurate
points being a set of zero measure, before the maximally
tilted phase is reached. Needless to say, this scenario as-
sumes that no first-order transitions intervene.

Finally, a brief comment on Bragg peaks. The actual de-
tails of the ordering—periodic in the commensurate states
and quasiperiodic in the incommensurate states—will cause
the second peak to fragment into multiple and even a dense
set of higher-order Bragg peaks.

VI. EXPANDED ACTION ON THE SQUARE LATTICE

On the square lattice, the generic case requires that we(a)
allow r4 to vary, (b) include the quadratic and strictly mar-
ginal term

Lm = 1
2r̃4fs]x

2hd2 + s]y
2hd2g, s6.1d

and (c) include the interactions

Lint = g4f¹h · ¹ hg2 + g̃4fs]xhd4 + s]yhd4g2. s6.2d

The impact of(a) and(b) together is that we are interested in
flows about a 2D surface of fixed points. Unlike the honey-
comb lattice, there is no cubic invariant so that the transition
is continuous at the level of mean-field theory for the height
action. However, there are two tree-level marginal couplings
whose fate needs to be decided by fluctuations. Let us focus
for now on the flow around the fixed line withr̃4=0.

The lowest nontrivial order flows of interest are

dl

dt
= − S p

2r4
1/2 − 2Dl,

dg4

dt
= −

9

4psr4d3/2Sg4
2 + g4g̃4 +

1

4
g̃4

2D ,

dg̃4

dt
= −

9

4psr4d3/2S2

3
g4g̃4 +

1

2
g̃4

2D . s6.3d

Interestingly, the flows in thesg4,g̃4d plane are attracted to
the origin only along the positiveg4 axis; generically, the
flows run away to the region where the action is unstable at
quartic order in gradients. From this we conclude that it is
highly likely that the transition is driven first order by fluc-
tuations in the generic case. Now, the RK point behavior
requires a further fine tuning,g̃4=0, and hence it represents
the behavior of a multicritical surface of codimension two.
We find that the inclusion of a smallr̃4 does not alter the
topology of the flows and there remains only one trajectory
flowing into the fixed point at the origin.

For the runaway flows, the pattern of symmetry breaking
is indicated by the initial sign ofg̃4, and depending on that,
we find four states with the tilt either aligned or at anglep /4
to the lattice axes. All of them exhibit, necessarily, a modu-
lation of the dimer density at wave vectorsp ,pd. If g̃4=0,
the sixth-order term is now responsible for the orientational
selection.

The analysis of the tilted phase now requires identifying
the reciprocal lattice vectors of the diamond lattice, with its
[100] direction measuring the height. The qualitative features
of the devil’s staircase are exactly as in the honeycomb case.
Bragg peaks now appear atsp ,pd and nearsp ,0d ands0,pd.

VII. THE CUBIC LATTICE

We turn finally to the case of thed=3 cubic lattice. Now,
the constraint is solved by introducing a gauge fieldA, in
terms of which the action is of the form14

L = 1
2s]tAd2 + 1

2r2s¹ 3 Ad2 + 1
2r4s¹ 3 ¹ 3 Ad2,

s7.1d

with r2=0 again signaling the RK point. In gauge-invariant
notation, the quadratic terms become the squares of the elec-
tric and the corresponding magnetic field ind=3+1.

The discreteness of the microscopic fields is irrelevant in
a finite interval around the RK point and hence can be ig-
nored in its proximity. The only nonirrelevant term consis-
tent with cubic symmetry missing from Eq.(7.1) is

r̃4o
i

f]is¹ 3 Adig2, s7.2d

which is strictly marginal. Hence the critical behavior repre-
sented by the RK point is(marginally) stable. The additional
coupling leads to rotationally noninvariant critical points.

For r2,0, we need to include the(dangerously) irrel-
evant terms that control the magnitude of the “magnetic
field,” B=¹3A. These areB4 and Bx

4+By
4+Bz

4 and lead to
staggered crystals[now with a modulation of the dimer den-
sity at sp ,p ,pd] aligned parallel or intermediate to the lat-
tice axes. The connected correlations of the dimer density
exhibit distorted dipolar correlations. This spectrum exhibits
a gapless photon with fluctuations of the fields about their
ground state values, and deconfined spinons. Altogether, one
obtains critical points separating a liquid of dimers from a
crystal. At larger tilts, confinement and further symmetry
breaking can be expected to set in, but that is outside the
validity of our analysis.

We also note that other related problems, such as the two-
dimer model on the bipartite diamond lattice studied by Her-
meleet al.15 in its incarnation as a pyrochlore Ising antifer-
romagnet with Ising dynamics, willmutatis mutandisexhibit
the same phase diagram.

VIII. LANDAU RULES AND ORDER PARAMETER
THEORIES

In Ref. 2, three of us commented that the RK point in the
simplest bipartite QDMs ind=2+1 sat at thetransition be-
tween two symmetry incompatible VBCs and attributed the
divergence of the correlation length at it to the deconfine-
ment of the gauge/height field at the RK point. Recently,
Senthil et al.16 have considered a similar scenario for the
transition between a Néel state and a VBC although now
with dynamical spinons, and christened the intervening criti-
cal point a deconfined critical point.
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At issue in these discussions are two distinct but closely
related possibilities. First, the violation of the Landau rule
that a phase transition between two symmetry incompatible
phases must generically be first order, except at multicritical
points. Second, the formulation of the theory of the phase
transition in terms of fields other than the order parameters
of the proximate phases. At a technical level, this happens
when the ordering is driven by dangerously irrelevant opera-
tors.

As we have discussed in this paper, the situation near the
RK points is more complicated than was assumed in Ref. 2.
Instead of a single tilting transition between the plaquette
phase and the staggered phase, there is a devil’s staircase of
commensurate–incommensurate transitions. Nevertheless,
sufficiently close to the RK point, any commensurate order-
ing is extremely weak, and for practical purposes one can
think of the RKFPs controlling a continuous transition be-
tween a flat phase with plaquette order and a tilted phase
with staggered order as well as incommensurate order with a
continuously varying wave vector. The weakly tilted phase,
however, is (logarithmically) deconfined, unlike the fully
tilted staggered phase.

In the quantum dimer models analyzed in this paper, the
RKFPs control multicritical surfaces, in contradiction with
the claim in Ref. 2. However, this is not inevitable in this
class of problems. A quantum vertex model discussed in the
Appendix exhibits a critical surface controlled by RKFPs. In
either case, the underlying height action[Eq. (2.2)] is not
derived from the order parameters of the proximate phases.
In this sense, they lie outside the Landau paradigm when
applied to quantum phase transitions.

Finally, we note that in thed=3+1cubic QDM, the tilting
transition remains continuous for weakly perturbed QDMs,
and that the tilted phase exhibits only staggered correlations.
This is now a continuous transition inside a deconfined re-
gion where Landau theory predicts a continuous transition.
That said, the critical theory is still not what one would na-
ively deduce from an order parameter analysis of the ordered
(staggered) phase: the correlations of the order parameter at
criticality have a dipolar form. The complication is the need
to properly treat the local constraint¹ ·E=0, which is ac-
counted for in the action Eq.(7.1) by the introduction of the
vector potentialA. It is also the case that the ordered phase
breaks rotational symmetry due to a dangerously irrelevant
operator. Altogether, while the 3D problem is not quite as
unusual as the 2D one, it also furnishes an instance in which
the critical theory requires a departure from the standard
cookbook.

IX. SUMMARY

We have analyzed the phase diagram in the vicinity of the
RK points in the bipartite QDMs. Ind=2, we find a first-
order transition separating confining plaquette phases from a
devil’s staircase of commensurate/incommensurate and
confining/deconfining VBCs on both the honeycomb and
square lattices with the RK points sitting on a multicritical
surface of codimension 2. Ind=3, the RKFP controls a con-
tinuous transition between an RVB phase and a deconfined

staggered VBC. QDMs that exhibit these phenomena can be
constructed by adding multidimer potential energies to the
RK point Hamiltonians. Whether the phenomena here can be
identified in a spin model or in other physical systems, is an
interesting topic for future work. Finally, we note that as we
were writing up this work, there appeared Ref. 28, which has
considerable overlap with our work, but which differs from
our conclusions on some points.
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APPENDIX: QUANTUM VERTEX MODELS

Quantum vertex models are close cousins of QDMs. Here,
we begin with a Hilbert space labeled by configurations of a
classical vertex model, that is, each bond hosts an Ising vari-
able that we picture as an arrow marked on it. We then in-
troduce a local quantum dynamics which consists of revers-
ing local closed loops of arrows. In cartoon form, the
resonance move analogous to the one captured in Eq.(2.1) is
given by

As the bond variables here are oriented, their physical
origins will neccessarily be distinct from those of dimers.
For example, a quantum six-vertex model was introduced in
Ref. 29 as a model for quantum effects in 2D ice as well as
via a mapping from a planar pyrchlore Ising magnet placed
in a transverse magnetic field. Subsequently, it has also been
argued to arise as an effective theory of the quantum fluctua-
tions in thed-density wave state where the microscopic vari-
ables are oriented currents.30

An exhaustive analysis of the RK point manifold in the
quantum eight-vertex model is contained in Ref. 23. When
critical, the model is equivalent to the six-vertex model. In
this case, the conservation law at the vertices leads straight-
forwardly to a height representation in which the two sublat-
tices of the square lattice host even and odd values of a
height field with circumference 2. A nice feature of the quan-
tum six-vertex problem is that one can find a family of RK
points at which the value ofr4 can be tuned continuously;
the ground state wave functions in these cases are no longer
equal-amplitude superpositions, but still exhibit isotropic
critical correlations. The analysis of perturbations of these
RK points now closely parallels our discussion of the square
lattice QDM and we conclude that they govern a multicritical
surface, likely between a plaquette phase31 and a devil’s
staircase region. The significant differences from the dimer
case involve(a) the degeneracies of the phases and(b) the
varying dimension of the vertex operator piece of the dimer
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operator. The latter causes the relative strengths of the stag-
gered order and incommensurate order to vary in the tilted
phase. For example, near the equal-amplitude RK point, the
staggered order is quadratic in the tilt as against cubic for the
incommensurate piece.

Of the 32 possible vertices on a triangular lattice, 20 con-
serve the number of arrows and hence permit a height rep-
resentation. The heights live on the dual honeycomb lattice
and are even and odd on its two sublattices with circumfer-
ence 2. The symmetries now force the height action to be
even inh and isotropic to fourth order in gradients. Conse-
quently, the line of RK fixed points is now stable with a
dangerously irrelevant sixth-order term picking one of six
lattice directions to orient the tilted phase. Thesh,xd lattice
is an hcp structure with in-plane bonds deleted and its recip-

rocal lattice vectors govern the commensurate states in the
devil’s staircase region.

The values ofr4 stemming from particular microscopic
models in this family are under investigation and will be
reported more fully elsewhere;32 here, we content ourselves
with noting that at the equal-amplitude RK point, the height
is rough32 and hence in its neighborhood we now have an
example of critical behavior governed by RK fixed points
and a Cantor deconfined region which can be accessed with-
out dialing the extra parameter needed in the dimer models
discussed previously in this paper. Based on experience with
this class of models, it seems likely that the flat phase is
again a plaquette phase which is symmetry incompatible
with the Cantor region.
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