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Quantum dimer models on bipartite lattices exhibit Rokhsar—Kivelson points with exactly known critical
ground states and deconfined spinons. We examine generic, weak perturbations around these geits. In
+1 we find a first-order transition between a “plaquette” valence bond crystal and a region with a devil's
staircase of commensurate and incommensurate valence bond crystals. In the part of the phase diagram where
the staircase is incomplete, the incommensurate states exhibit a gapless photon and deconfined spinons on a set
of finite measure, almost but not quite a deconfined phase in a corbjpactgauge theory id=2+1! In
d=3+1, we find acontinuous transition between th&1) resonating valence bond phase and a deconfined
staggered valence bond crystal. In an appendix, we comment on analogous phenomena in quantum vertex
models, most notably the existence of a continuous transition on the triangular lattlee 1.
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I. INTRODUCTION erators. Ind=3+1, thecubic lattice RKFP describes a criti-
cal point with just one relevant symmetric operator. Second,
Quantum dimer modelfQDMs) were introduced by we show that the purely “staggered” phase that borders the
Rokhsar and Kivelsdnto capture the low-energy dynamics RK points in the simplest QDMs can be pushed a finite dis-
of valence-bond-dominated phases of quantum Heisenbetgnce away in the perturbed models and thatdfeR +1, the
antiferromagnetd Work on these models has established thaintermediate region is filled in by a devil's staircase of com-
their behavior on bipartite and nonbipartite lattices is funda-mensurate and incommensurate VBCs that exhibit staggered
mentally different. On non-bipartite lattices, they admit reso-order but also additional Bragg peaks. The commensurate
nating valence bon@RVB) phases with liquid dimer corre- crystals are gapped and confining. The incommensurate crys-
lations and deconfinedes) spinon$~®that have topological tals exhibit a gapless photaiphason and are deconfining,
order of theZ,/BF variety® By contrast, on bipartite lattices for sufficiently weak perturbations. Further, although they
they admit only crystalline phasks??[valence bond crys- occur at(boundary points, they form a generalized Cantor
tals (VBCs)] in d=2, while supporting RVB phases of the set of finite measure in the same limit. We refer to this phe-
U(1) or Coulomb variety ind>213-15 nomenon, which comes remarkably close to a deconfined
One of the elegant features of the class of QDMs introphase in a compadi(1) gauge theory il=2+1, asCantor
duced in Ref. 1 is the existence of special points, christenedeconfinement. In fact, near the RK point, this region is prac-
Rokhsar—KivelsonRK) points, at which the exact ground tically a deconfined phase, as the commensurate confined
state wave functions are trivially determined and take thephases occupy an asymptotically small fraction of the phase
form of equal amplitude superpositions over sets of statediagram in this limit. In addition, the gap in the confined
connected by the dynamics: the classic RVB form. Addition-phases is extremely small. The possibility of such phases was
ally, test monomers have a vanishing interaction at thespointed out previously by Levitd¥ based on a mapping to
points, which translates into the deconfinement of gappethe roughening problem.
spinons in RVB languagéThe appropriate phase diagram  This paper is organized as follows. In Sec. Il, we discuss
for the square lattice case is sketched in Fig. 1. the height action for a 2+1-dimensior(generalizefiQDMs
In this paper, we study QDMs “near” the RK points on on the square and honeycomb lattices. In Sec. I, we discuss
bipartite lattices; that is, QDMs that consist of the RK pointin detail the case of the honeycomb lattice and the mecha-
Hamiltonians plus small, but generic, perturbations. The renism that drives the quantum phase transition first order in
striction to bipartite lattices brings an important simplifica- that case. In Sec. IV, we discuss the development of the tilted
tion. In a sense that we will make precise below, bipartite RKphase, and in Sec. V, we show that due to the strong coupling
points are described by gapless Gaussian field theories, amature of these generalized dimer models, their tilted incom-
this will greatly simplify the task of analyzing perturbations. mensurate phases generically exhibit a fully developed dev-
Our basic new results are twofold. First, we establish thel’'s staircase analogous to the one discussed in two-
degree of criticality of the RK points—maore precisely of the dimensional(2D) classical systems. In Sec. VI, we discuss
associated Gaussian field theories that are fixed points of thbe phase diagram for the case of the square lattice, and in
obvious renormalization group and to which we shall referSec. VIII, we discuss the violation of the Landau rules in
for clarity as the RK fixed point$RKFP9. In d=2+1, we these quantum phase transitions, and the deconfining nature
show that on the honeycomb and square lattices, the RKFRs these quantum critical points, including the relationship of
describe multicritical points with two relevant symmetric op- RK points to the “deconfined critical points” discussed re-
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FIG. 1. Phase diagram of the square lattice QDM. In the top part of the figure, the mean tilt of the height surface is plotted as a function
of v/t (see Sec. )l The corresponding dimer phases are sketched on the bottom part. The flaofigkenar and plagquette soliderminate
in the RK critical point(v/t=1), which has no dimer long-range order. Here, for the RK QRidshed ling the tilt jumps discontinuously,
corresponding to a first-order transition into the staggered solid. Upon inclusion of longer-ranged interactions, however, the tilt will ascend
a devil's staircase from the flat region, through a succession of incommensurate and commensurate phases. This pliandntiesmon
resulting structure factprare discussed in detail in the text.

cently by Senthil and collaboratofs.We summarize our toons of these three phases—columnar, plaquette and

conclusions in Sec. IX. In the Appendix, we provide a briefstaggered—for the square and honeycomb lattices can be

discussion of analogous phenomena in quantum vertex modeund in Figs. 1 of Refs. 11 and 12, respectively. The square

els. Here, we find that the RKFP dw2+1that controls the case is reproduced in Fig. 1.

transition between a crystalline state and a Cantor deconfined On bipartite lattices, the hardcore dimer constraint can be

region is critical(rather than multicritical converted into a Gauss laW, E=0. This is accomplished by
endowing the links of the lattice with an orientation, so that
they point from one sublattice to the other. Identifying an

Il. HEIGHT ACTION IN  d=2+1 DIMENSIONS empty link with an electric flux —1, and a link occupied by a
The Hamiltonian of the simplest quantum dimer modeldimer with a fluxz—1 (wherez is the coordination of the
introduced in Ref. 1 has the form lattice), one obtains a lattice electric field with the desired

property. Ind=2+1, this can be solved by writindge=V
X h in terms of a scalar height fielil?°-?* Here, the violation

H=-t (]Z)(l | + h.c.) +v (|:)(:] +{1hd l[), of the hardcore dimer covering constraint, through the pres-
— e o ence of a monomer or overlapping dimers, shows up as a
H=~t(|9%O+he) +o (OUW+1OXB]). (2D yortex in the height field.

In terms ofh, the properties of the above QDMs in the

for the square and honeycomb lattices, respectively. Here, @cinity of their RK points are reproduced by the imaginary
sum over all plaquettes of the lattice is implicit. On the hon-time [ agrangian

eycomb latticéd?1” and with less confidence on the square
lattice "1t is known that the model exhibits three phases. L£=3(0,h)2+ 3p,(Vh)2 + 2p,(V?h)? + \ cog2h),

Forv <t, itis in a “columnar” crystal phase which gives (2.2)
way by a first-order transition to a “plaquette” phase &sis
increased. The plaquette phase is characterized by an ordeith —p,(v/t)—1 changing sign precisely at the RK points.
parameter that vanishes continuouslyatt, the RK point.  The last term keeps track of the discreteness of the micro-
At the RK point, there are multiple ground states; the exacscopic heights, as is usual in height representations of prob-
ground state wave functions are the equal-amplitude supefems ind=2, and we will have more to say on that later. The
positions of states in each sector of dimer configurations corsquare and honeycomb lattice problems differ in the relevant
nected by theoff-diagona) resonance term in E@2.1). Itis  values ofp,, which are(7/32)? (square latticeand (7/18)?
generally assumed that these sectors are defined by twhoneycomip
winding numbergsee Ref. 18 for detaijsalthough a proof To determine the operator content of these theories, one
of ergodicity within sectors exists only for the zero winding also needs to specify the compactification radius of the
sectort® For v>t, the system enters a staggered phase imeight variables. This is determined by the minimal uniform
which the ground states contain no flippable plaquettes. Cashift of the heights that leads to an identical dimer configu-

224415-2



BIPARTITE ROKHSAR—-KIVELSON POINTS AND.. PHYSICAL REVIEW B 69, 224415(2004)

ration. For the cases of the honeycomb and square lattices, 1

the compactification radii equal 3 and 4, respectively. (h(x,)h(0,7)) = - PPy In(m(x|/a), (2.9
Finally, the details of the lattice structure enter in the re- NP4

lationship between lattice quantities and operators in the ﬁelgnd are precisely those of the classical dimer problem. This

theory. Specifically, long-wavelength correlations of thein turn allows us to fix the values gf, quoted earlier as t'he

dimer densitiemi_ (wherei labels the dimer directigron the classical dimer problem is exactly s4olvab1§his also clari-

hongycomb Iatt|c_e can be. reconstructed by means of thﬁes that these values are really the fixed point vajues.

leading operator identifications, given by On both lattices, the actiofEq. (2.2)] accounts for the

plaguette crystals far <t as flat states of the height variable

11 1 . .
n-3= é&xh + E[exp(2w|h/3)exp(47r|x/3) +h.cl, with different local fluctuations: whep,>0, \ is relevant;
that is, it is dangerously irrelevant at the RKFPs. The selec-
- tion of plaguette states indicates that 0 for v/t<1 on
1 1/ 1 V3 1 . : both lattices. Forv>t, p,<0 the height tilts, and in the
M2 3" 3( 2‘9x+ 2 (?y)h * 2[exp(21-r|h/3)exp(47r|x/3 absence of any restoring term in EQ.2), it attains its maxi-
y h mum tilt consistent with the microscopic constraints. This
+4mi/3) +h.cl, tited phase translates into staggered dimer correlations
_ which break translational symmetry on the square lattice and
1 1/ 1 V3 1 . . only rotational symmetry on the honeycomb.
M= 3= 5(_ P ?%)h + Slexp2min/3)exp(4mix/3 The transition between the plaquette and staggered phases

] is somewhat unusual. As, goes smoothly through zero at
- 47il3) + h.c). (2.3)  the RK point, the plaquette order vanishesntinuously

In these expressions, andy denote Cartesian coordinates, there- .Further, a?’l/?t_’ there are. “":)0 divergent 5Iength
the x axis being perpendicular to one dimer direction. TheScales:x~[v/t=1"* and yo~(1/\N)x’, with #=6, 3 on
unit of length is given by the separation of two neighboringth€ square and honeycomb lattices, respectively. The latter

parallel dimers. The corresponding expressions on the squapéises from the dangerously irrelevant cosine and is the
lattice are length scale on which the plaquette order appears; the value

of @ follows from the dimension of the irrelevant cosine at
the fixed point. However, the staggered phase emerges at full
strength immediately and the ground state energy density has
a derivative discontinuity at the RK point, which indicates a
1 1 1 first-order transition in the thermodynamic classification.
n-—=—(- 1)*g.h + =[(- 1)Y exp(mih/2 + 7i/2) + h.c]. Let us comment briefly on the origins of the effective
4 4 2 action of Eq.(2.2). The height representation for dimers was
(2.9 used or this problem by several workers; the recognition that
. . . it can be extended to capture the physics of the RK point is
. The effeg:twe Lagrangian of E¢2.2 was also qon5|d§req due to Henley® and a more complete account of the prop-
in Ref. 22 in the context of the theory of classical Lifshitz ¢ e of the RK point and the transition about it was given in
(multi) critical points in three dimensions and, for this reaftRef. 2. Henley’s basic observation was that the Hamiltonian
Sﬁ.n’ thlsdeflfgctlveftheory r?as ?feer_] dubbed th? qua”ﬁ.“bm Li Eg.(2.1) also governs the master equation for the probability
shitz model in Ref. 23. This effective Lagrangian exhibits ;g tion of the classical dimer problems endowed with
th_r('ae—dllmensm_)na(BD) analog of the phys[cs of 2'.:) classical the simplest plaquette flip dynami€sIn height variables,
critical isotropic systems. Thus, the action defined by Edthe classical dimer problems are in the rough phase, so that it

(2.2) exhibits a line of fixed points parametrized pywith 5 raasonable that the dynamics is captured at long wave-
p>=0 and\=0, under the natural momentum and frequencylengthS by the Langevin equation

shell renormalization group witlz=2. The RK points on

11, 1 .
Ny — 2 = 4_1(_ Yo h+ 5[(_ ¥ exp(wih/2) + h.c],

both lattices flow under this renormalization group, to sh]
RKFPs on this line with the above values p@f. This ac- dh(x)=—-——+(x,7), (2.6)
counts for their critical correlations and a mode spectrum oh(x)

w~k2. In the U(1) gauge theoretic interpretation of the

dimer model, this mode is a photon with an anomalously sofyyhereS[h]~fd2x(V_h)2 is the coarse-grained entropy func-
dispersion. The irrelevance of the cosine is the necessatjenal of the classical dimer problem. For Gaussian white-
vanishing of the instanton effects that otherwise gap thdl0ise dlstrlbute_d;’, the average over trajectories is weighted
spectrum of such compact confining theoRéshis also ac- by the Lagrangian

counts for the deconfined spinons. The height action further 5

accounts for two other nontrivial features of the RK points; r= (& h+ @) 2.7
namely, that they have degenerate ground states in all wind- Tosh(x)) ] '

ing number sectorgthe RKFP point action is insensitive to

gradients of heighjsand that for the zero-winding states the which, upon dropping a total time derivative, is the action
equal time height correlations are logarithmic, governing the RK points.
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This construction shows that the RK point action has dn ar
higher dimension operators than one might have guessed on dt = 0,12 2\,
P4
symmetry grounds alone. Indeed, the act{@m®) does not
distinguish our two lattices with their different symmetries.
As advertised, we are interested in this paper in weak, but d_g4 - _Lgi, (3.3
otherwise generic perturbations of the Hamiltonig@sl) dt 47Tpf1/2

about their RK points. Such generic perturbations of the RK

. o DU Whence both interactions are irrelevant tpr>0.22 As g, is
point Hamiltonians will give rise to all operators allowed by . . ) o .
A ; . -2 marginally irrelevant it produces logarithmic corrections and
symmetry, so that we will include them in the analysis, with

; . . he flows also renormalizg, thus parking the system else-
the proviso that they enter with small couplings. A secon . : . ;
N D ; where on the fixed line. With these observations, we see that
implication of considering perturbed models will be that the

values of the couplings in Eq2.2); in particular, the mar- the multicritical behavior represented by the RK point is

) . ) . . stable on a surface of codimension 2, provided the long-
ginal couplingp, will also be somewhat different from their 5 I
. : ) . wavelengthp, < (7/4)<. The latter condition holds for small
values quoted earlier: these differences will again be smaII.e turbations of Eq(2
In the following, we will refer to this set of modifications as pertu 1ons %2-2).
working near the RKFPs without further explanation.
A final comment is in order on an unusual aspect of the

RKFPs. These fixed points, and indeed the entire fixed line,

exhibit an enlarged symmetry in which the height field is free  Onceg, is large enough, the tilt no longer jumps to its
to tilt with any magnitude in any direction, which is then maximum value on |eaving the flat phase_ W@ns non-
spontaneously broken by the ground states. While this apzero, the tilt prefers to point along one of the dimer direc-
pears to be nongeneric, such extra symmetries are a featuigns or in between two dimer directions depending on the
of any purely Gaussian fixed point. For instance, at andijgn of this coupling. A similar role is played ¥, on the
aboved=4, the Ising transition is controlled by a Gaussiansquare latticésee below. Here, the restriction to small tilts
fixed point that is invariant under constant shifts of the scalajs crycial: the states fagys>0 andg; <0 arenot related by
field. Much as in that case we work near zero figltagne-  symmetry. In particular, at large tilts there are only states
tization), in our problem, we will work near zero tilt. In both with one sign of the tilt; that is, with the dimers dominantly
cases, this is the correct choice for a sector of the space @fiented along the three bond directions. We also note that on
couplings—the sector in which the transition is continuous intraversing the multicritical point witly;=0, the same orien-
mean-field theory. tational selection is now affected by the fifth-order term

IV. THE TILTED PHASE

IIl. EXPANDED ACTION ON HONEYCOMB LATTICE 3 \E

Lg= gs(Vh)z(axh)Gaxh - \—30yh> (Eaxh + —ayh> ,
We turn now to the honeycomb lattice. For honeycomb 2 2 2 2
dimers, the heights live on the triangular lattice, which na- (4.1
ively indicates an action rotationally invariant to fourth order , — ,
in gradients. However, the microscopic heights have a subWh_'Ch is thus dangerously irrelevant at the multicritical fixed
lattice structure: they take values 0, 1 anth@dulo3 on the ~ POINt.

three sublattices of the triangular lattice. Consequently, the 1h€ properties of the tilted phase can be analyzed by ex-
symmetries of rotation byr/3 and inversion also involve panding in small fluctuations about the weakly tilted state

sendingh— —h. It follows then that the allowed nonirrel- (nenceforth, we assung <0, so that the tilt is along the x
evant operators at the RKFP include the relevant cubic terr@Xis, and thatgs| is smal)

\@ h(r,7)=C .r + 6h(r,7), C=Cx. (4.2

1 1 v
£3—g3(&xh)(§axh— ?ayh)<§(?xh+ ?ayh) GD pe corresponding Goldstone action is givéa quadratic

order in fluctuationsby

in addition to the marginal coupling ,

1 2
L4=gVh- Vh] (3.2 8L= (3,007 + p—24(V25h)2 + %'(&Xéh)z + %(ayéh)z.

The growth ofg; in the infrared indicates that the criticality (4.3
of the RK point does not survive its inclusion; the form of

the interaction indicates that wheg is nonzero the system Higher order termgin ¢h) are irrelevant due to nondiver-
has already entered the tilted phase, although with the tilgence of fluctuations. Provideg,| < g3/g,, thenv,=v, and
now locked to the lattice. This leads us to conclude that the single correlation length can be defingdi=v,/\p,, S0
transition between the flat plaquette phase and the tiltethat for sufficiently large momenta,> &%, and the spectrum
phase goes truly first order. is quantum critical, while ag— 0, the modes acquire a stiff-

If we tunegs to zero, we can examine the stability of the ness, and their dispersion is linear with longitudinal and
multicritical RK point. In a renormalization group treatment, transverse velocities given by, and v, respectively. The
where we keep a cutoff in space alone, the lowest nontriviahiverage tilt of the height variable translates into new Bragg
order flows of the two interactions are peaks appearing in the structure factor for the dimer densities
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[as deduced from Eqg2.3) and (2.4)]. They are of two surate tilts the outcome depends upon the strengtidgf
types: first is theeommensurat8ragg peak at the wave vec- relative to the remaining quantum fluctuations. When the lat-
tor of the maximally staggered state located at the origin foter are strong, as is the case for small tilts, the ground state at
the honeycomb cadend at(s, ) in the case of the square most tilts is an incommensurate VBC with a Bragg peak at
lattice], the second type are thecommensurat@eaks dis- the incommensurate wave vector but with a gapipsason
placed from the characteristic wave vectors of the columnargpectrum. In the gauge theoretic interpretation of the dimer
plaquette patteriie.g., (47/3,0) and (7r,0) on honeycomb model, this excitation is a photon and correspondingly test
and square lattices, respectively an amount proportional monomers are deconfined, in that they experience the loga-
to C. In the tilted regime, the intensity of the commensuraterithmic interaction of free 2D electrodynamics. If the locking
peak varies a€?, while that of the incommensurate peaks aspotential is increased and/or the quantum fluctuations de-
&b (on the square lattice @w/lem)_ Generally, as a creased, we expect a version of Aubry’s “breaking of
result of quantum critical fluctuations, the two peaks differ inanalyticity”® transition beyond which the incommensurate
intensity parametrically, both intensities becomi@gfor p, ~ ground states are pinned, their low-lying excitations are lo-
corresponding to the purely short-range Hamiltonian of Eqcalized though still gapless, and the incommensurate ground
(2.1). The existence of gapless modes has important implicastates occupy a set of measure zero in the phase diagram.
tions; one of them is that test monoméspinons interact The weak locking regime exists, parametrically, at small
through a potential that generally grows only logarithmically tilts near the RK point. For concreteness, consider approach-
with distance, as opposed to the linearly growaanfining  ing the multicritical surface by tunings with p, set equal to
potential encountered in commensurate valence bond solidgero. The closer we get to the transition, the higher order the
commensuration that leads to locking, wilG|~1/C or
V. INCOMMENSURATE LOCKED CRYSTAL PHASES: larger. This_ has various effec_ts: first, the coefficients of the
THE DEVIL'S STAIRCASE corresponding locking potentials generally decrease as one
goes to largefs; second, the operators become increasingly
The actual state of the system involves an interplay beirrelevant at the RK fixed point; and third, the length scale
tween the propensity of the system to establish a tilt disincreases at the crossover from the quantum critical regime,
cussed thus far and the discreteness of the microscopia which the locking potential is irrelevant to the tilted re-
heights. As we will quantify a little later, the operators en-gime, where it becomes relevant. These effects combine to-
coding the discreteness are much more irreleyalthough  gether to make the renormalized strength of the locking po-
dangerously so, see belpat the RKFP than those respon- tential, and thus the size of the gap in each commensurate
sible for the selection of the tilt magnitude and direction.phase, as well as the width of the parameter range in the
Therefore, near the RKFP, the problem can be treated in thghase diagram occupied by the phase, all vanish at small tilts
order in which we have discussed it. Away from this limit, C exponentially in 1C?; for example, the gap
one can worry about more complex phase diagrams. 5
In order to treat height discreteness properly, we need to A ~ C¥PaCY, (5.2)
generalize our treatment of the discreteness of the height in _ L .
Eq.(2.2. There, we included a potential that favors discrete~S the correlation lengtit<1/C, this is equivalent to an
flat configurations of the height field, but in doing so, we
ignored the possibility of the height locking into tilted con- aréip,
figurations. To identify the full set of locking potentials, we &~ ¢ ' (5.3

note that the height and the lattice points together define §herea anda’ are positive constants. Consequently, even
3D lattice with points(h,x). A general locking potential, in  the commensurate phases are for all practical purposes gap-
particular the one generated from the microscopic constraintgss in this weak-tilt regime. Thus, when the tilting transition
under renormalization, can be expanded in the set of recins either continuous or very weakly first order, there is a

ordering length that grows rather fantastically, as

rocal lattice vector¢G} of this 3D lattice, given by deconfined, weakly ordered dimer-crystal phase near the RK
B (GG, point where the ordering is generically incommensurate! By
Vioah,x) = 2 Ve e, (5.2) contrast, the existence of the strong locking regime will need

el to be determined by actual solution of the relevant models;

and thus eacls defines a locking potential. Nicely enough, the existence of the fully tilted states is not proof of strong
the height—space lattice for the honeycomb dimer problem ifocking, merely of the existence of a maximum tilt as a con-
the simple cubic lattice with thg§l11] direction measuring sequence of the periodicity of the height variable.
height, so that working out the set of locking potentials is Returning to the infinite-volume and zero-temperature
particularly simple. phase diagram, the commensurate and incommensurate

As discussed in the previous section, in the tilted phasatates will be interleaved in the classic manner of the devil's
the mean-square fluctuations of the height are finite. As ataircase studied in a variety of commensurate—
consequence of this, whenever the average tilt of the heighihcommensurate problem$At weak locking, close to the
surface is commensurate with the lattice, the correspondinBK point, the staircase is incomplete; that is, the deconfined
terms in the locking potentighbove are asymptotically rel- incommensurate points will form a set of finite measure as
evant. At such points the ground state is a commensuratie control parametep, or gs, is varied. In fact, the fraction
valence bond crystal with a gapped spectrum. At incommenef the phase diagram occupied by the incommensurate de-
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confined states approaches unity as the RK point is ap- The analysis of the tilted phase now requires identifying
proached. This is the phenomenon we have termed Cantdine reciprocal lattice vectors of the diamond lattice, with its
deconfinement. Farther away from the RK point, the stair{100] direction measuring the height. The qualitative features
case could become complete, with the incommensuratef the devil's staircase are exactly as in the honeycomb case.
points being a set of zero measure, before the maximallf8ragg peaks now appear (@t, =) and neafs,0) and(0, ).
tited phase is reached. Needless to say, this scenario as-
sumes that no first-order transitions intervene.

Finally, a brief comment on Bragg peaks. The actual de-
tails of the ordering—periodic in the commensurate states We turn finally to the case of thé=3 cubic lattice. Now,
and quasiperiodic in the incommensurate states—will causghe constraint is solved by introducing a gauge fidldin
the second peak to fragment into multiple and even a denserms of which the action is of the fofth
set of higher-order Bragg peaks.

VII. THE CUBIC LATTICE

L= %(&tA)2+ %PZ(V X A)2+ %p4(V X V X A2,

VI. EXPANDED ACTION ON THE SQUARE LATTICE (7.2)
On the square lattice, the generic case requires thaawe

allow p, to vary, (b) include the quadratic and strictly mar- WIth p2=0 again signaling the RK point. In gauge-invariant

notation, the quadratic terms become the squares of the elec-

ginal term tric and the corresponding magnetic fieldde3+1.
L= 3pd ()2 + (Fh)7], (6.2) The discreteness of the microscopic fields is irrelevant in
) ) ) a finite interval around the RK point and hence can be ig-
and(c) include the interactions nored in its proximity. The only nonirrelevant term consis-

L= Vh- Vh2+GL(ah)*+ (ayh)4]2_ 6.2) tent with cubic symmetry missing from E(7.1) is

The impact of(a) and(b) together is that we are interested in Pa [a(V X AT, (7.2
flows about a 2D surface of fixed points. Unlike the honey- i

comb lattice, there is no cubic invariant so that the transitioqynich is strictly marginal. Hence the critical behavior repre-
is continuous at the level of mean-field theory for the heightgenteq by the RK point igmarginally) stable. The additional

action. However, there are two tree-level marginal couplinggoupling leads to rotationally noninvariant critical points.
whose fate needs to be decided by fluctuations. Let us focus For 5, <0, we need to include thédangerously irrel-

for now on the flow around the fixed line wiy=0. evant terms that control the magnitude of the “magnetic
The lowest nontrivial order flows of interest are field,” B=VXA. These are8* and B4+B*+B? and lead to
dn - staggered crystaf;mow with a modulation of the dimer den-
pm =- (2—1,2 - 2))\, sity at (7,7, 7)] aligned parallel or intermediate to the lat-
Pa tice axes. The connected correlations of the dimer density
exhibit distorted dipolar correlations. This spectrum exhibits
dg, - ( 2L aE.+ }~2> a gapless photon with fluctuations of the fields about their
dt Am(pg)®? 94" 0uGa ™ Ga ), ground state values, and deconfined spinons. Altogether, one

obtains critical points separating a liquid of dimers from a
dg, 9 2 1, crystal. At larger tilts, confinement and further symmetry
m == 3\ 2904+ 204 ). (6.3 breaking can be expected to set in, but that is outside the
t A7(py)°'\ 3 2 L :
validity of our analysis.
Interestingly, the flows in thég,,d,) plane are attracted to We also note that other related problems, such as the two-
the origin only along the positivg, axis; generically, the dimer model on the bipartite diamond lattice studied by Her-
flows run away to the region where the action is unstable ameleet al!® in its incarnation as a pyrochlore Ising antifer-
quartic order in gradients. From this we conclude that it isromagnet with Ising dynamics, withutatis mutandigxhibit
highly likely that the transition is driven first order by fluc- the same phase diagram.
tuations in the generic case. Now, the RK point behavior
requires a further fine tunin@,=0, and hence it represents
the behavior of a multicritical surface of codimension two.
We find that the inclusion of a smafi, does not alter the
topology of the flows and there remains only one trajectory In Ref. 2, three of us commented that the RK point in the
flowing into the fixed point at the origin. simplest bipartite QDMs id=2+1 sat at theransition be-
For the runaway flows, the pattern of symmetry breakingtween two symmetry incompatible VBCs and attributed the
is indicated by the initial sign of,, and depending on that, divergence of the correlation length at it to the deconfine-
we find four states with the tilt either aligned or at angle?  ment of the gauge/height field at the RK point. Recently,
to the lattice axes. All of them exhibit, necessarily, a modu-Senthil et al'® have considered a similar scenario for the
lation of the dimer density at wave vect6tr, 7). If §,=0, transition between a Néel state and a VBC although now
the sixth-order term is now responsible for the orientationalith dynamical spinons, and christened the intervening criti-
selection. cal point a deconfined critical point.

VIII. LANDAU RULES AND ORDER PARAMETER
THEORIES
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At issue in these discussions are two distinct but closel\staggered VBC. QDMs that exhibit these phenomena can be
related possibilities. First, the violation of the Landau ruleconstructed by adding multidimer potential energies to the
that a phase transition between two symmetry incompatibl®&K point Hamiltonians. Whether the phenomena here can be
phases must generically be first order, except at multicriticaldentified in a spin model or in other physical systems, is an
points. Second, the formulation of the theory of the phasénteresting topic for future work. Finally, we note that as we
transition in terms of fields other than the order parametersvere writing up this work, there appeared Ref. 28, which has
of the proximate phases. At a technical level, this happensonsiderable overlap with our work, but which differs from
when the ordering is driven by dangerously irrelevant operaeur conclusions on some points.
tors.

As we have discussed in this paper, the situation near the
RK points is more complicated than was assumed in Ref. 2.
Instead of a single tilting transition between the plaguette We would like to thank P. Fendley, C. Henley, J. Kondev,
phase and the staggered phase, there is a devil's staircase®if Sachdev, and T. Senthil for useful discussions; the latter
commensurate—incommensurate transitions. Neverthelessspecially for focusing our attention on the implications of
sufficiently close to the RK point, any commensurate orderfattice symmetries. This work was in part supported by the
ing is extremely weak, and for practical purposes one caMinistere de la Recherche et des Nouvelles Technologies
think of the RKFPs controlling a continuous transition be-with an ACI grant(R.M.), by the National Science Founda-
tween a flat phase with plaquette order and a tilted phasgon grants NSF-DMR-9978074 and NSF-DMR-0213706 at
with staggered order as well as incommensurate order with Rrinceton UniversityS.L.S., D.A.H., and V.Q, NSF-DMR-
continuously varying wave vector. The weakly tilted phase,01-32990 at the University of lllinoigE.F), and by the
however, is(logarithmically deconfined, unlike the fully David and Lucile Packard Foundati¢8.L.S. and V.O.
tilted staggered phase.

In the quantum dimer models analyzed in this paper, the
RKFPs control multicritical surfaces, in contradiction with
the claim in Ref. 2. However, this is not inevitable in this Quantum vertex models are close cousins of QDMs. Here,
class of problems. A quantum vertex model discussed in th@ie begin with a Hilbert space labeled by configurations of a
Appendix exhibits a critical surface controlled by RKFPs. In classical vertex model, that is, each bond hosts an Ising vari-
either case, the underlying height actiffeq. (2.2)] is not  able that we picture as an arrow marked on it. We then in-
derived from the order parameters of the proximate phasesroduce a local quantum dynamics which consists of revers-
In this sense, they lie outside the Landau paradigm whefhg local closed loops of arrows. In cartoon form, the
applied to quantum phase transitions. resonance move analogous to the one captured if2EL).is

Finally, we note that in the=3+1cubic QDM, the tilting  given by 2=k
transition remains continuous for weakly perturbed QDMS, aAg the bond variables here are oriented, their physical
and that the tilted phase exhibits only staggered correlation%rigmS will neccessarily be distinct from those of dimers.
This is now a continuous transition inside a deconfined regq, example, a quantum six-vertex model was introduced in
gion where Landau theory predicts a continuous transitiongef. 29 as a model for quantum effects in 2D ice as well as
That said, the critical theory is still not what one would na- iz g mapping from a planar pyrchlore Ising magnet placed
ively deduce from an order parameter analysis of the orderegh 5 transverse magnetic field. Subsequently, it has also been
(staggerefiphase: the correlations of the order parameter ajrgyed to arise as an effective theory of the quantum fluctua-
criticality have a dipolar form. The complication is the needyjons in thed-density wave state where the microscopic vari-
to properly treat the local constraift-E=0, which is ac- gples are oriented curreri.
counted for in the action Eq7.1) by the introduction of the An exhaustive analysis of the RK point manifold in the
vector potentialA. It is also the case that the ordered phasequantum eight-vertex model is contained in Ref. 23. When
breaks rotational symmetry due to a dangerously irrelevangritical, the model is equivalent to the six-vertex model. In
operator. Altogether, while the 3D problem is not quite asihjs case, the conservation law at the vertices leads straight-
unusual as the 2D one, it also furnishes an instance in Wh'CfbrwardIy to a height representation in which the two sublat-
the critical theory requires a departure from the standargices of the square lattice host even and odd values of a
cookbook. height field with circumference 2. A nice feature of the quan-
tum six-vertex problem is that one can find a family of RK
points at which the value g, can be tuned continuously;
the ground state wave functions in these cases are no longer

We have analyzed the phase diagram in the vicinity of theequal-amplitude superpositions, but still exhibit isotropic
RK points in the bipartite QDMs. Inl=2, we find a first-  critical correlations. The analysis of perturbations of these
order transition separating confining plaguette phases from BRK points now closely parallels our discussion of the square
devil's staircase of commensurate/incommensurate anthttice QDM and we conclude that they govern a multicritical
confining/deconfining VBCs on both the honeycomb andsurface, likely between a plaquette phdsand a devil's
square lattices with the RK points sitting on a multicritical staircase region. The significant differences from the dimer
surface of codimension 2. ldi=3, the RKFP controls a con- case involve(a) the degeneracies of the phases @ndthe
tinuous transition between an RVB phase and a deconfinedarying dimension of the vertex operator piece of the dimer
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operator. The latter causes the relative strengths of the stagacal lattice vectors govern the commensurate states in the
gered order and incommensurate order to vary in the tiltedevil's staircase region.

phase. For example, near the equal-amplitude RK point, the The values ofp, stemming from particular microscopic
staggered order is quadratic in the tilt as against cubic for the,ggels in this family are under investigation and will be
Incommensurate piece. reported more fully elsewhefg;here, we content ourselves

Of the 32 possible vertices on a triangular Iattice, .20 CONvith noting that at the equal-amplitude RK point, the height
serve the number of arrows and hence permit a height rep-

5 S .
resentation. The heights live on the dual honeycomb lattice® rougl¥? and hence in its neighborhood we now have an

and are even and odd on its two sublattices with circumfer€xample of critical behavior governed by RK fixed points

ence 2. The symmetries now force the height action to p&nd a Cantor deconfined region which can be accessed with-
even inh and isotropic to fourth order in gradients. Conse-0ut dialing the extra parameter needed in the dimer models
quently, the line of RK fixed points is now stable with a discussed previously in this paper. Based on experience with
dangerously irrelevant sixth-order term picking one of sixthis class of models, it seems likely that the flat phase is
lattice directions to orient the tilted phase. Tthgx) lattice ~ again a plaguette phase which is symmetry incompatible
is an hcp structure with in-plane bonds deleted and its recipwith the Cantor region.
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