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From the triangular to the kagome lattice: Following the footprints of the ordered state
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We study the spin-1/2 Heisenberg model in a lattice that interpolates between the triangular and the kagome
lattices. The exchange interaction along the bonds of the kagome lattl;eail the one along the bonds
connecting kagome and nonkagome site¥ jso that)’ =J corresponds to the triangular limit adé=0 to the
kagome one. We use variational and exact diagonalization techniques. We analyze the behavior of the order
parameter for the antiferromagnetic phase of the triangular lattice, the spin gap, and the structure of the spin
excitations as functions af’ /J. Our results indicate that the antiferromagnetic order is not affected by the
reduction of)’ down toJ’/J=0.2. Below this value, antiferromagnetic correlations grow weaker, a description
of the ground state in terms of a Néel phase renormalized by quantum fluctuations becomes inadequate, and the
finite-size spectra develop features that are not compatible with antiferromagnetic ordering. However, this
phase does not appear to be connected to the kagome phase as well, as the low-energy spectra do not evolve
with continuity forJ’ — 0 to the kagome limit. In particular, for any nonzero valuelgfthe latter interaction
sets the energy scale for the low-lying spin excitations, and a gapless triplet spectrum, destabilizing the kagome
phase, is expected.
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. INTRODUCTION state with Néel correlations with & 3 pattern(see Fig.

Geometrically frustrated antiferromagnets are the historiL): Whether such classical minimum energy configuration
cal candidates for the realization of spin liquid ground ~ POSSEsSes true long-range offler it is a critical point with
state. Indeed, the spin-half Heisenberg antiferromagnet oRCWer-law correlatiori§-!7is still an open issue. In any case,
the triangular lattice was the first model to be proposed byY€ to the partlcularly d_ellcate meCha”'S"_‘ leading to the
Anderson and Fazekhdin 1973 as a system where geomet- cIaS_S|caI antlf_grromagnet|c order, the Ia_tter is expected to be
ric frustration and quantum fluctuations could prevent zero—eas'h’ destabilized by ?uantum fluctuations. 0 "
temperature magnetic ordering in two dimensions, stabilizing The investigation of the quantum Heisenberg antiferro-
instead a ground state with gapped spin excitations and ext:29"et ﬁ%[;ghe kagome lattice has been capturing increasing
ponentially decaying correlations. Since then, a good amourﬁgﬁ]n;'r?cal w:)?li Sg\':?geg?ee r?e(l)sw.a'(\:/lcimﬁlgtg dth:u bai'r?mOf a
of work has been devoted to investigate the nature of thd ' PP 9

ground state of the triangular Heisenberg médélwhich spin-liquid ground state, even though a very peculiar one:
this, in fact, would be characterized by a small gap

remained an open question until quite recently. At present +3/20) to spin excitations, and by an exponentialy large

however, there is a general consensus on the existence ber of sinalet i to th d St Th
long-range antiferromagnetic order following a 120° NeéelNUMbEr OF Singlets contiguous 1o the ground State. 1he
classification of spin liquid of Type Il has been recently

attern in the ground state of this modéli>4frustration e _ ;
P g proposea8 to classify this particular behavior.

and quantum fluctuations on the two-dimensional triangula On th ; tal side. the tri | t
lattice are not strong enough to stabilize a nonmagnetic n the expenmental side, the trnanguiar geometry pro-

ground state. vides the scenario for interesting physical phenomena taking
A more promising candidate for a disordered ground state
can be obtained through a “dilution” of the triangular lattice,
leading to the so-callelagomenet (Fig. 1). In fact, on this
geometry, due to the lower coordinatiar4 compared with
z=6 in the triangular cagefrustration is much stronger and
even in the classical limit it gives rise to an infinite number
of classical ground states, with ordered and disordered con-
figurations degenerate in enerdy!’ Due to the extensive
entropy of the classical ground state, the so-cabkelbr from
disorder mechanism—usually stabilizing, among degenerate
manifolds, long-range ordered configurations—is much less F|G. 1. The depleted triangular lattice. Filled and empty circles
effective than in other frustrated models. In particular, whileare the kagome and nonkagome sites; solid and dashes lines indi-
harmonic fluctuations select planar configurations, they turateJ andJ’ bonds of the Hamiltoniarl). The letters A,B,C label
out to be completely insensitive to their degree of order, andhe three different spin directions oriented 120° apart of {Be
only nonlinear effects eventually stabilize a classical groundx 3 classical Néel state.
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place in the superconducting compounds,8&0, H,O including Gaussian fluctuations by means of a Jastrow factor
(Ref. 31) and the organic materials—(BEDT-TTF),X, containing two-spin correlatiof3?
with X being k, CUN(CN),]Br or CUSCN),*2. Two spin-
1/2 kagomelike materials have been also recently reported, |4h,) = Py ex 12 oli —j)§§>|N>, 2)
the Volborthite CyV,0,(OH), 2H,0 Ref. 33 and the 25
kagome-staircase compounds;¥jOg and CaV,0g.34 .
In the present work, we consider the spin-1/2 HeisenbergvherePy is the projector onto th&=0 subspacgN) is the
antiferromagnet on a lattice that interpolates between the triclassical Néel state in they plane,
angular and the kagome ones. The Hamiltonian is

21
Hng‘;si-sju’ES-S,, (N IN) EX:eXp[ 3 (IEBSZ E:SZ)]')O’ &
g Gi"

- ) N and|x) is an Ising spin configuration specified by assigning
where S are spin-half operators(ij) denotes nearest- the value ofS for each site. On the square lattice case, the
neighbor bonds belonging to the kagome lattice, @jij are  classical Néel state reproduces exactly the phases of the
the remaining bonds connecting kagome and nonkagomground state of the Heisenberg Hamiltonian according to the
sites. A scheme is indicated in Fig. 1. In this way=J Marshall theorem? On the triangular lattice, instead, the
corresponds to the usual triangular lattice, while=0 de-  exact phases of the ground state are unknown, and the clas-
fines the kagome one. Our aim is to start from the triangulasical part of the wave functio(2) does not reproduces them
limit and to investigate the stability of the ordered state asaccurately. However, as originally suggested by Huse and
J'/J decreases. This is sensible because the classical Néglser? a very accurate ansatz of the ground-state phases can
state on the triangular lattice is compatible with the expectede obtained by including three-spin correlation factors of the
V3X 3 classical ordering on the kagome antiferromagnetform:

The first to study this model were Zeng and ERewho

performed a spin-wave analysis and concluded that, for spin- T(x) = exp(i B> yijkszgzsﬁ), (4)

1/2 particles, the ordered state could be stabldfatown to @ik

J'/J=0.2. Very recently, this model has been investigate

with a coupled cluster treatmeft.This technique is based as to preserve the symmetries of the classical Néel state
on the three-sublattice structure characterizing the 120°-Né&’ P o y . . '
and by the variational parametgr In particular the sum in

order of the triangular lattice, which is found to break down Eq. (4) runs over all distinct triplets of siteisj,k where both

very close ta)’ =0, indicating the instability of the magnetic . . . : )
ordered state very close to the kagome limit. i and k are nearest neighbors ¢f andi and k are next

In this paper, we tackle this problem using variational "€&7€st neighbors to one another. The sign fagiRF ¥

) R =+1 is invariant under rigid translations and rotations in real
approaches, and exact diagonalization of small clusters. In 9

particular, in Sec. Il, we employ the so-called fixed-node>Pac® by an angle of 120° of the three-spin clusfek, but

(FN) techniqué® in order to improve the accuracy of a wave ;:har:_ges S|gdn ;Jhnde:c rot.atlons by 60°. The resulting wave

function with long-range antiferromagnetic order previously unction reads therefore.

introduced in the pure triangular ca®¥ This technique, is R 1

usually used in the context of qguantum Monte Carlo simula- lih,) = P>, Q(x)ex 52 v(i - j)szqz)|x), (5)

tions as a method to approximate the Hamiltonians affected X L

by sign-problem instabiliti€ and obtain exact ground-state

properties of the corresponding “effective Hamiltonian,” no

longer affected by the sign problem. Here we use the FN 2

method to define a variational state with long-range antifer- Q(x) = T(X)exp[?(z §-25 )] (6)

romagnetic order, and we check its accuracy in describing ieB ieC

the ground state of the model a5/J is reduced through @ = gjnce the Hamiltonian is real, a better variational wave func-

direct comparison with exact diagonalization results on thg;y is defined by the real part of E¢p).

6 X 6 cluster. In order to detect any indic_ation of a changg irj The two-body Jastrow potential if5) contains in prin-

the nature of the ground state approaching the kagome limibinje a5 many variational parameters as the independent dis-

in Sec. lll we analyze the structure of the low-energy spectrgances on the lattice. However, the same level of accuracy

as a function of)’/J, using the exact diagonalization of the .o pe obtained by optimizing separately the nearest-

Hamiltonian on small clu_sters. Section IV is finally devoted neighbor and next nearest-neighbor distances and adopting

to summary and conclusions. for the longer-range correlations an expression based on the
consistency with linear spin-wave theds:

ddefined by the coefficienty; =0, +1, appropriately chosen

with the phase factor given by

II. VARIATIONAL APPROACHES

v(r)= % > ey, (7)

A fairly accurate representation of the ground state of the 470

spin-1/2 Heisenberg antiferromagnet on the triangular lattice
can be obtained starting from a 120° Néel ordered state andgith

224414-2



FROM THE TRIANGULAR TO THE KAGOME LATTICE .. PHYSICAL REVIEW B 69, 224414(2004)

TABLE |. Variational parameters and variational energies for I
the spin-wave wave functiofb) for different values of the ratio o é\n
J'1J (|)n thestg <f:|uster. Thg Lanczos exact values of the energy E 0.1 i—\ N E

T~ ~
are also reported for co’mparlson. 0.05 _ \’\u: QLE?A::_—_A:_—___—__-_{E
Y B n n 2 7 B,/ BolJ oo' ' '012' ' '014' ' 'ols' ' 'olsl = {
0.1 020 -0.63 -0.58 0.055 1.00 -10.7687 -12.0799 T ——
0.2 020 -0.63 -0.58 0.055 1.00 -11.7299 -12.7120 o Y Y - A--=-= = 1
0.3 020 -0.63 -0.58 0.055 1.00 -12.6911 -13.5026 & A ——aT]
04 020 -0.63 -0.58 0.055 1.00 -13.6522 -14.3708 E - S _
06 020 -0.65 -0.62 0.055 1.00 -15.5730 -16.2287 2 0.9 — __E
08 023 -0.70 -0.69 0.055 1.00 -17.4873 -18.1754 g04p // ®o08 E 1
1.0 023 -0.73 -0.73 0.055 1.00 -19.4239 -20.1734 § 0.2 :_A( g:; . |||||_ _
r 0 0204068 08 1 1
0 I BRI B 1 PETE EEEE B

0 0.2 0.4 0.6 0.8 1
[1+2
vg= 1- _yk, (8) I/3
1-%

_ FIG. 2. Results on thBl=36 cluster. Upper panel: Relative error
=2(cosk,+2 cosk,/2 cosy3k,/2) and 7. is a variational  on the ground-state energy, for the spin-wéempty trianglesand
parameter. For the anisotropic triangular lattisee Fig. 1 FN (full triangles wave functions. Stars refer to the accuracy of the
we have optimized separately the nearest-neighbor bondgper bound on the energy given by the lowest eigenvalue of the
connecting two kagome sitésy;), and a kagome site and a FN Hamiltonian,E5N. Lower panel: average sign of both the spin-
nonkagome site»;), as well as the next-nearest-neighborwave and FN wave functiocircles and their overlap with the
bonds(7,). As a result, the total number of variational pa- €xact ground statesame symbols as abovenset: antiferromag-
rameters for the present variational wave function is 5. Theif €tic order parameter. The circles are the exact ground-state values,
optimal values, and the corresponding variational energieé’y.h”e empty and full triangles correspond o the _results _obtamed
are reported foN=36 in Table |, for various values of /J. Wlt.h spin wave and FN wave functions, respectively. Lines are

! uides for the eye.

The accuracy of the present long-range ordered wavd
function in the triangular lattice limitJ’/J=1) has been ana- _ _ off
lyzed in detail in Refs. 12 and 13. In this limit the wave tonian, whose matrix elementsj ,,, can be constructed
function is known to provide a qualitatively correct represen-starting from the original Hamiltonian and a variational
tation of the ground-state correlatioh® 4 In order to  guess on the ground-state phases given, in our case, by the
check the accuracy within a larger range bfJ we have wave function(5), [¢,) == ,(X)[x):
compared several variational properties with the exact —

ground-state values calculated by exact diagonalization on Hy x if Hex<0

the largest cluster presently accessitNe;36. As shown in HE =4 g if o >0 (10)
Fig. 2, for 0.4<J'/J<1 both the accuracy on the ground- XX X' X

state energy and the overlap with the exact ground state, Hyx + V(X) x=x'

remain approximatively constant and equal to the values in _
the triangular limit(J’/J=1). In addition, the wave function WhereH,, =, (X')Hy 4/ ,(x), and
(2) provides an accurate representation of the phases of the

actual ground state up t/J=0.2, as it can be checked by o= X Hy x: 11
measuring the average-sign {Hy >0, X' #x}
Indicating with EEN the ground-state energy of the FN
S)=2,s X) () 1| (X)|?, 9 0 -
© % OrLy 0400 1] ) Hamiltonian, with EJN=(en|H|en) /(en| ¥e) and E,

with i) ==, #(x)|x) (Fig. 2). This remarkable feature is due =([HIg) /(4| ) the energy expectation values pfiy)

to the presence of the triplet ter(d), allowing us to adjust iand_|¢u),hre_spec.tively, IIt .iS prtl)sksjib.le to shéthat the fol-
the phases in a nontrivial way, without changing the underlOWing chain of inequalities holds:

lying Néel order. For instance, in the triangular limit the E,=ElN=EN=E,,
average sigrioverlap of the wave function is 0.738.562 v R
without the triplet term and 0.93®.779 with it. where E, is the ground-state energy &f. Hence, the FN

Since the variational wave functiai?) reproduces accu- procedure is granted to produce a wave function with a better
rately the phases of the ground state its quality can be imvariational energy thany,). In addition, also the lowest ei-
proved by adopting the FN scheme of Ref. 30. This allowsgenvalue of the FN HamiltoniarEy™, gives an upper bound
one to obtain a new variational wave functid#g,), defined  of the ground-state energy better than the variational energy
as the ground state of the so-called FN effective Hamil-E,. This is the quantity which is usually considered in the
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quantum Monte Carlo application since it is the most directly L LA B B B
accessible.
The FN Hamiltonian is explicitly defined in such a way

o eff _ ’ ff
that the matrleX‘?’x—sgr[z,/;U(x )]Hx?,x sgri¢,(x)] has all
negative off-diagonal matrix elements. By the Perron-
Frobenius theorem, the amplitudes of the ground state of this

matrix, ¥en(X), have the same sign for all the configurations o4l vl v
[x). This implies in turn that the FN ground staté,), and 0 0.05 o1 015 0.2

the starting variational wave functiohy,), have exactly the N

same phases. In fact, the amplitudes of the ground state of FiG. 3. size scaling of the antiferromagnetic order parameter for
He o ¥en(X), are related to the amplitudes of the groundthe spin-waveempty symbols and dashed lingand the FN(full

state of the transformed matrgx'fﬁx, EFN(X)i by the simple symbols and dotted linewave functions:J’/J=0.2 (triangles,

L . J'/J=1.0(squares
relation en(X) = Yen(X)sgi ¢,(x)]. For this reason, the FN

wave function is expected to provide an accurate descriptioparametem’ to much larger sizes by using quantum Monte
of the ground state only when it is constructed with a goodCarlo techniqued® As shown in Fig. 3, even at a value of
variational ansatz of the ground-state phases. In the presept/J=0.2, the lowest coupling ratio when the variational
case for 0.2J'/J=<1. wave function is expected to be accurgsee Fig. 2 the

In order to thoroughly check the accuracy of the FN waveorder parametem' remains sizably larger than the triangular
function, we have exactly diagonalized with the Lanczos al-)’/J=1 case. This indicates that, as we increase the size at
gorithm the FN Hamiltonian for several valueslfJon the  fixed ratio J'/J<1, the stability of the ordered phase, al-
N=36 cluster. This has allowed us to calculate not only theready evident in the exact diagonalization in %e36 clus-
FN energies but also the overlap of the FN wave functioner (see Fig. 2, becomes more and more clear. We expect
with the exact ground state. As shown in Fig. 2, both the FNthat this qualitative behavior, confirmed both by the exact
upper bounds to the ground-state enefgf,' andES", are  diagonalization, and even more strongly by the variational
sizably more accurate than the simple variational estimatand the FN approaches on larger sizes, is a genuine feature of
E,. In particular, the FN wave functions has a much higherthe model, even though the quantitative results that we have
overlap than|¢,), and its accuracy is almost constant andobtained by quantum Monte Carlo may be affected by a siz-
comparable to the one in the triangular limit down to valuesable error. This feature may appear rather surprising, as the
of J'/J as small as-0.2. quantum fluctuations should increase for smi#llJ and

We have finally compared the variational, FN, and exackhould tend to destabilize the ordered phase, as expected for
estimates of the antiferromagnetic order parameter for a 12Qastance within spin-wave theolyHowever, the wave func-

o T

Neel order, tion that we have used is consistent with spin-wave theory in
2 the large spin limit, and therefore, since also at the varia-
2 M tional level the value ofn' increases, we conclude that the
m<=36—_, (12 X ' )
N(N + 6) quantum fluctuations are not very accurately described

here M2 is th blatii tizati fdt ¢ within a method that is not controlled by the variational prin-
where IS the sublatlice magnetization squaraalerest- ciple (the large spin limit, at least in the region of small

ingly, by decreasing’/J the exact ground-state order param- 3,/ y

eter remains approximatively constant down XdJ=0.2 A similar size-scaling analysis can be carried out to esti-

thus indicating a possible destabilization of the antiferromag-mate the ground-state energy per spin in the thermodynamic
netic order only very close to the kagome limit. In addition, limit as illustrated in Fig. 4. The extrapolated energies are

though the varigtiongl and FON e_stimates of the order ParaMyistad in Table II. Since the FN energy error is known exactly
eter are approximatively 10/9 higher than the exact one th to the 6x 6 cluster, we can estimate the ground-state en-
same degree of agreement is observed in all the range 0. ’

=J'/J=<1. For theN=36 cluster, the FN wave function, 03l T
based on the variational wave functi¢s), provides a good C 3
quantitative description of the exact ground state for 0.2 -0.32 | -
=<J'/J=<1. In this range, the variational and the exact expec- - A —— A A ]
tation values of antiferromagnetic order parameter remain 2 -033 ]
constant and equal to their values in the triangular limit. s U . ]
Below J'/J=0.2, the exact value of the order parameter be- —o3a | T A
gins to decrease and the accuracy of the our Néel ordered F ]
wave function quickly degrades, indicating a change in the _o.35 L | -
ground-state correlations only very close to the kagome 0 0.002 Neore 0.004 0.006
limit.

In order to support further the stability of the antiferro-  FIG. 4. Size scaling of the ground-state energy per spin for
magnetic phase for very small values 3 J we have ex- J'/J=0.2: Spin-wave wave functiogempty triangles FN (full
tended the variational and the FN calculations of the ordetriangles.
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TABLE II. Ground-state energy per spin for different values of Jh&J ratio obtained with the spin-wave
wave function(e,), the FN techniquéel™), and the estimated ground-state ene@y") obtained by assum-
ing that the FN error in the energy is weakly size depen¢ess text The data ford’/J=0 are normalized
to give the energy per spin on the kagome lattice. Uncertainties are of the order of one unit on the last digit.
The coupled cluster method results, from Table | and Fig. 2 of Ref. 35, are also shown for comparison.

J1I 0.0 0.2 0.4 0.6 0.8 1.0
e, -0.369 -0.324 -0.374 -0.425 -0.478 -0.532
e -0.392 -0.334 -0.381 -0.431 -0.482 -0.537
Ref. 35(m=6) -0.418 -0.346 -0.390 -0.438 -0.490 -0.543
BN -0.419 -0.349 -0.393 -0.443 -0.494 -0.550
Ref. 35(m— o) -0.4252 -0.5505

ergy in the thermodynamic limit, by adding the<@® correc-  energy of the lowest levels in the different subspaces labeled

tion to the infinite-size FN estimate. The corresponding exby total spinS, can be approximated by,

trapolated values of the ground-state energy shown in the

Table Il represent reasonable benchmark values for this E(9-E (O)-S(S+ 1)

quantity (or at least good upper boundss the FN error is N N ™ 2l

expected to increase weakly for larger sizes even for a good

variational ansatz. This behavior has been verified up to &vhere Iy is the inertia of the top, which is an extensive

X 6, and is also very reasonable to expect in general for aguantity. Hence, the plots of the lowest energy levels as func-

approximate variational calculation. tions of §(S+1), have the appearance of a “Pisa tower” with
In the triangular limit,J’/J=1, our estimated ground-state a slope that decreases Msncreases. An important property

energy coincides with the corresponding one obtained witlof the states of the “Pisa towefihdicated in Ref. Guaside-

the coupled cluster methétby extrapolating in the size of generate joint statgsis that they belong to irreducible rep-

the clusters(m— e, with the notations of Ref. 35 This  resentations of the point group that are compatible with the

value is instead slightly lower than the extrapolated resultsymmetry of the ordered state. In the case of ti8ex \3

based on small cluste(dN=<36) obtained in Ref. 6, giving order, these are the representations labeldd 45,15 of the

€,=-0.5445. A good agreement between the coupled clusteC;, group, which correspond tgk=0,R V=V R, sV

for m=6 and the FN method is also seen for valued'd =W, o, V=], [k=0,R,¥=-V, R, s¥V=V,0,¥="]; [k

down to 0.2(Table Il). Furthermore, our extrapolated ener- =Q , R W=V R, V=V,

gies, based on the error for the 6 cluster and the FN energy;, W =W, respectively. We have followed the same notation

remain lower than then=6 coupled cluster result by a simi- of Refs. 5, 6, and 25R, denoting a rotation ofp,0;, a

lar amount, suggesting that our variational approach remaingflection with respect to a mirror plane with the normal

accurate enough also in this regionnfortunately the ex- pointing alongx, and beingQ=(27/3,-27/3), the corner of
trapolationan— oo are not given in Ref. 35 for€J'/J<1).  the Brillouin zone of the kagome lattice.

Instead in the kagome limit our variational ansatz should be There are not so many finite periodic clusters, which can
clearly less accurate, as the ground state is believed to bep exactly diagonalized and that interpolate between the tri-
spin liquid with no magnetic order in the thermodynamic angular and kagome lattices without frustrating the antiferro-
limit, i.e., qualitatively different from our initial variational magnetic order. The smallest ones &le12 and N=36,
guess given by Eq2). This may explain why in this case which evolve, respectively, towart=9 andN=27 at the
our energy estimate is slightly higher than the- < coupled  pyre kagome limifJ’ =0). The unit cell of the interpolating
cluster result. We note, however, that our values reported ifyttice contains 2 unit cells of the pure triangular lattice,
Table Il represent in general reasonable upper bounds for thgyplying a reduction of the translation operations of the pe-
energy, as they are obtained by a rigorous variational methoggic cluster of a factor 4 with respect to the number of
such as the FN one. translations at the pure triangular limit. This implies a much
bigger Hilbert space to be dealt with in the numerical proce-
dure. In concreteness, even exploiting all the available sym-
metries, the number of states is 42035724Ner36 spins. In

An effective method to investigate the possibility of mag- this cluster, a complete study of several excited states within
netic order in spin systems is to analyze the structure of thdifferent spin sectors for several valuesJfis prohibitive
spectrum of finite-size samples, following the strategy offrom the computational point of view, while tHé=12 clus-
Refs. 5, 6, and 25. The tendency toward antiferromagnetiter maybe too small. We have, therefore, included in the
order in the thermodynamic limit manifests itself in finite- analysis the clusters wittN=16 and N=28 sites (which
size clusters through the fact that the spin excitations withevolve toward kagome clusters witl=12 andN=21, re-
the lowest energies can be described by the effective Hamikpectively, by introducing twisted boundary conditions as
tonian of a “quantum top.” Within such a description, the explained in Refs. 6 and 25. The latter are equivalent to

: (13

IIl. LOW-ENERGY EXCITATIONS
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s | . . 2 . -10r 1r %-
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e gt se08s 1% J'=0.6
-498 § JS=0.8J ) J'=0.6J f =0. =0.
f _18 1 1 1 1 1 1 1 1 1 1
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: : : : : : : : ol 10
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T 14 ¢ J=04J 1° J'=0.2J
-4 58 %7 J'=0.4J -R-7 J'=02J A
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—80 1.0 2|0 3|0 4|0 : 1.0 2|0 3'0 4|0 0 10 20 3%1240 50 0 10 20 3%2240 50
S(S+1) S(S+1)

FIG. 7. Lowest energy levels within the differeﬁi subspaces
for N=28 and twisted boundary conditions. Details are the same as

FIG. 5. Energy spectra as functions®f+1) for a cluster with in Fig. 5

N=12 spins, periodic boundary conditions, afdJ=0.8, 0.6, 0.4,
0.2 (left to right and top to bottoim The crossegcircles indicate 4 o1ysined the lowest eigenvalues within all the subspaces
energy levels belonging to symmetry representations compatible _. the L lqorith
(incompatible with the Y3 X 3 magnetic order. using the Lanczos aigorithm. . . .
We have plotted the states with symmetries_compatible
rotate the local frame ife27/3, ¥ 277/3) at each translation (noncompatiblg with the antiferromagnetio/3 < y3 order

along a unitary lattice vector. This procedure restores thvith crossescircles. The first striking feature is the fact that

otherwise frustrated antiferromagnetic order in thg spin ~ ONly @ subset of the states forming the “Pisa tower” in the

plane but obviously breaks the spin-rotational symmetry adiangular limit remains aligned a3'/J decrease. Those
tates build up, so to say, a “small Pisa tower,” whose slope

well as some symmetry operations of the point group. FoP g
this reason, in this case, a law like that expressedlB), decreases with'. ) ) ,

with the replacemers(S+ 1)_>§, should be obeyed by the In order to anfllyze in more de}all the behavior of the
quasi degenerate joint states, as the tStalong thez axis, states along the “small Pisa tower” we show zooms of the

cannot couple with the remaining total spin components How-energy and low-spin sector of the spectra for Nwel2,

the clusters with twisted boundary conditions. Results ar nd N:ZS CIUSter.S in Figs. 8_and 9 respectwe_ly. In the case
shown in Figs. 5-7 foN=12, 16, and 28, respectively. Fig- of N=12, shown in Fig. 8, this small set contains levels that

ures 5 and 6 show the full spectra, obtained by diagonalizin&elong to representations compatible with t#x 3 order

all the blocks of the Hamiltonian matrix. In the case Nf
=28 (Fig. 7), we have not diagonalized the full Hamiltonian

36F
38 %
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J'=0.4J

6

-10

"

E 10 s=02 i ]
§ J

0 5

i b
10 15

2 20 25

S

z

FIG. 6. Energy spectra as functionsﬁfor a cluster withN

in Fig. 5.

FIG. 8. Detail of the low-lying energy levels close to the
kagome limit for a cluster wititN=12 spins and periodic boundary
conditions. The lower panel shows the behavior of the low energy
=16 spins and twisted boundary conditions. Details are the same dsvels at the kagome limit in a cluster witi=9 sites. Details are
the same as in Fig. 5.
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FIG. 10. Gap to the lowest excitation withS,=1 for N=12
(circles, N=28 (triangleg, and (in the I'; representationN=36
FIG. 9. Detail of the low-lying energy levels close to the (squares The open circle and square Ht=0 indicate the value of

kagome limit for a cluster witiN=28 spins and twisted boundary the Spin gap for thé&i=9 andN=27 kagome cluste&fcorresponding
conditions. Details are the same as in Fig. 5. to theN=12 andN=36 depleted triangular clustersThe cross at

J'=0 corresponds to a kagome cluster with=36. Inset: The
ground-state energy as function @f (open diamonds The filled
diamond indicates the ground-state energy of the kagome cluster
with N=27 spins.

and they remain aligned within all the range €1'/J<1.
Signatures of departure from that behavior are observed for.
very low J’'/J=0.05, where the lowest level with=2 devi-
ates from the line of the “small Pisa tower” while a state with general, an upper bound for the spin gap of the cluster in all
a symmetry not compatible with the antiferromagnetic ordetthe range 6<J'/J<1. The behavior oA as a function of)’
becomes quasidegenerate with it. In Fig. 8 the data for th& shown in Fig. 10. As in the clusters previously considered,
relatedN=9 kagome lattice are also shown. In that case, ahe gap decreases rapidly #isdecreases, and, in particular,
similar deviation of the state witB=5/2 from the line con- it does not evolve continuously fd¥ — 0 towards the value
necting the lowest levels in tie=1/2 andS=3/2 sectors is  of the corresponding kagome latti¢l=27, indicated with
observed but within a scale which is an order of magnitudean open square in Fig. 10nstead, it tends to a value which
larger in the energy axis. Another contrasting feature thais even smaller than the magnitude of the spin gap for the
comes from the comparison betweg#r0 andJ’ #0 is that  N=36 kagome latticgindicated by a cross in the same fig-
in the pure kagome limit, there are two states W#h1/2  ure). This is in contrast with the behavior exhibited by the
(one of them belonging to the manifold of the degeneratgyround-state energy, which evolves smoothly toward the
ground statewhose symmetries are not compatible with thevalue of theN=27 kagome latticgsee the inset of Fig. 30
V3% \3 order that have energies within the spin gap. Instead The behavior of the spin gap and the spectra strongly
for J'/J=0.05 the spin gap is clean from such states. Insuggests the closing of the spin-gap in the thermodynamic
addition, the gap to the lowest excitation wif=1 does  Ilimit within the whole range of 8:J'/J<1. In fact, such
not evolve with continuity fod’/J— 0 to the corresponding gap is known to close in the thermodynamic limit at the
gap in the kagome limifsee also Fig. 10 triangular point(J'/J=1) (Refs. 5, 6, and 12and it de-
Similar remarks apply to the 16- and 28-sites clustersreases systematically by decreasihn all the cluster con-
shown in Figs. 6 and 7. In these cases, see e.g., Fig. 9, thgdered as the low-energy scale for the lowest-spin excita-
“small Pisa Tower” contains a larger number of states but theions is set byd’, i.e., by the states of the “small Pisa tower.”
deviation from a perfect alignment is observed already afrhis can be understood in a simple uncorrelated framework
J'/J=<0.2, where states within subspaces not compatiblgvhere forJ’ <J the lowest spin-excitations are clearly ob-
with the V3 \3 order appear at low energies. In particular, tained through a spin-flip on a nonkagome site, with an en-
for S,=1 one of those states is almost degenerate with thergy cost 8’, compared to a cost}4 2J’ for a spin-flip on a
one belonging to the Pisa tower while f§&=2 it is well  kagome site. As the number of nonkagome spins is just a
below it. As in theN=12 cluster, also foN=16 and 28 the fraction of the total number of sites, on a finite cluster such a
gap to the first spin excitation monotonically decreases withmechanism would apply only to the lowest spin excitations:
J’ (Fig. 10. hence the reduction of the number of states belonging to the
To complete the analysis, we have computed the groundpisa tower” with respect to the triangular case.
state energyEy) and the lowest eigenvalue in the subspace This simple picture immediately suggests that the nature
with S=1 within the representatioh,; of C,, (E&LFI), inthe  of the spin excitations is intrinsically different for finit#
periodic lattice withN=36 sites. The latter does not actually and in the pure kagome limit. In the latter case, in fact, the
correspond to the lowest ener@z 1 excitation in the pure spins on the nonkagome sites do not belong to the Hilbert
triangular limit, which is in the subspace corresponding tospace of the model and such low-energy spin excitations are
I'>. In any case, the energy differende=Es.;r ~Eo is, in not possible. For this reason by turning on tie the spin
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gap has a finite discontinuity and it is reasonable to expeatiescribing a state with &3 x y3 Néel ordered phase, is very
the model to be unstable under the perturbation introducedlose to the exact one for 0=2)'/J<1 and that in this range
by J’ bonds. This is also confirmed by the analysis of theits accuracy is almost independent of théJ ratio. Consis-
low-energy excitations for small values &f/J (see Fig. 8  tently, the ground-state expectation value of the antiferro-

One step further in the analysis of the nature of themagnetic order parameter remains approximately constant
ground state leads to the question whether or not the lattetown toJ’/J=0.2. Below this value the order parameter is
remains ordered down to the kagome limit. The structure obuppressed and the quality of the FN wave function de-
the spectra of the smaN=12 cluster indicates that could grades, suggesting a change in the nature of the ground-state.
well be the case, while those df=16 andN=28 suggests This is also confirmed by the analysis of the low-energy
some change in the nature of the ground state arduhdl  spectra on small clusters, showing some signatures of insta-
~0.2. It is worth recalling, however, that the results for thebility of Néel ordering forJ’/J=<0.2. However, at the same
two latter clusters have been obtained by using twistedime, such analysis also indicates quite clearly that the low-
boundary conditions which could lead to weaker signaturegnergy scale for spin excitations is set By and that in
of ordering. On the other hand, in two dimensions, it seemgarticular the spin-gap has a finite discontinuityJatJ=0,
difficult to conceal the possibility of the closing of the spin the triplet excitations being gapless for any nonzero value of
gap with the absence of some kind of magnetic order. AJ’/J. This would imply that the kagome disordered phase is
simple geometrical analysis reveals that the nonkagomanstable against a slight perturbation tending to restore the
spins, which we have already identified as the responsible af=6 coordination number of the triangular lattice. A possible
the lowest-energy excitations, form themselves a triangulascenario is that within the large amount of singlets that are
lattice with a cell parameter twice the size of the one of thequasidegenerate with the ground state in the kagome clusters,
usual triangular lattice. Therefore, a possible scenario for théhe one corresponding to thé3x \3 state is favored by
evolution of the ground state d& decreases could be that at some kick produced by’.
some point a crossover takes place from a magnetic order in Our results are in disagreement with the predictions of the
the usual3x \3 pattern to a magnetic order with a similar spin-wave theory of Ref. 18, indicating a progressive reduc-
pattern but in the triangular lattice of the nonkagome spinstion of the antlferromag_netlc ordering far'/J<1 and a
Both kinds of order are commensurate and the ground stai@omplete melting of the/3x y3 order for(J’'/J).=0.2. In-
could undergo a smooth evolution from one to the other. stead, our conclusions are closer to those of the recent
coupled cluster treatment of Farnelt al2® providing evi-
dence for instability of the antiferromagnetic order very close
or possibly at the kagome poiftd’'/J).=0.0£0.1, and the

We have investigated the low energy properties af a existence for small’/J of a regime whose correlations are
-J triangular lattice that interpolates between the usual trivery different to those of the triangular antiferromagnet. Fur-
angular(J’'/J=1) and kagomegJ’'=0) lattices. To this end, ther investigations are necessary to clarify the nature of this
we have used a variational approach based on a FN wavé&gime.
function accurately describing the ground state in the trian-
gular (3'/J=1) limit, and exact diagonalization techniques.

We have analyzed the quality of the approximation to the L. A. thanks Professor Fulde for his hospitality as well as
exact ground state, provided by the FN technique in a perithe Alexander-von-Humboldt Stiftung and CONICET, Ar-
odic cluster withN=36 sites and then extended the calcula-gentina for the support. This work was partially supported by
tion up toN=144 sites by using quantum Monte Carlo cal-INFM-PRA MALODI, and by NSF under Grant No.
culations. We have found that such a wave functionDMR02-11166(L.C.).
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