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We study the influence of collective magnetic excitations on the interlayer exchange coupling(IEC) in
metallic multilayers. The results are compared to other models that explain the temperature dependence of the
IEC by mechanisms within the spacer or at the interfaces of the multilayers. As a main result we find that the
reduction of the IEC with temperature shows practically the same functional dependence in all models. On the
other hand, the influence of the spacer thickness, the magnetic material, and an external field are quite different.
Based on these considerations we propose experiments that are able to determine the dominating mechanism
that reduces the IEC at finite temperatures.
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I. INTRODUCTION

Many aspects of the coupling of two magnetic layers
separated by a paramagnetic, metallic spacer are well under-
stood today.1 The coupling is caused by spin dependent re-
flections of spacer electrons at the interfaces. It oscillates
with the spacer thicknessD. The periods are determined by
the spacer, namely by stationary Fermi surface spanning vec-
tors in growth direction. These are vectors parallel to the film
normal that connect two points on the Fermi surface and
have a vanishing first derivative with respect to the planar
components of the Fermi vectors.

However, the origin of the temperature dependence is still
under discussion. Up to now it is not clear if the temperature
dependence is governed by effects within the spacer, at the
interface or within the magnetic layers. There are several
proposals for mechanisms reducing the coupling at finite
temperatures.

(i) Spacer contribution
One reason for the reduced IEC is the softening of the

Fermi edge at higher temperatures, which makes the cou-
pling mechanism less effective. This was proposed by Bruno
and Chappert2 and Edwardset al.3 It leads to a certain tem-
perature dependent factor for each oscillation period.

(ii ) Interface contribution
The argumentfs of the complex reflection coefficients

rs= ursueifs at the spacer/magnet interface may be highly en-
ergy dependent. This gives rise to an additional temperature
dependence of the IEC since the energy interval of interest
around the Fermi energy increases with temperature.4,5 The
same may in principle apply to the norm ofrs.6 A rather
obvious effect is the reduction of the spin asymmetry of the
reflection coefficientDr =r↑−r↓ with temperature.

(iii ) Magnetic layers
Collective excitations within the magnetic layers reduce

their free energy. Since the layers are coupled the excitations
depend on the angle between the magnetization vectors of
both layers. Thus the reduction of the free energy will be
different for parallel and antiparallel alignment of the mag-
netic layers. This difference

DFmagsTd = Fmag
↑↑ sTd − Fmag

↑↓ sTd s1d

contributes to the temperature dependence of the IEC.

The first two contributions are closely associated with the
coupling mechanism. The third effect works rather parallel to
the coupling mechanism itself, but, nevertheless, has conse-
quences for the amount of energy achieved by the coupling.

It is the aim of this paper to study the role of the different
contributions to the temperature dependence of the IEC.
Thereto we have to gain explicit expressions for case(iii ).
The first two contributions can be described in the frame of
ab initio theory combined with Fermi liquid theory7,8 as well
as in a quantum well picture.1 They are thoroughly discussed
in literature. The third mechanism is due to collective mag-
netic excitations which are beyond the scope of these theo-
ries. We derive the expressions using a Heisenberg model
which is best suited to describe the low energy spin wave
excitations within the magnetic layers.

The paper is organized as follows: In the next section we
review and discuss the spacer and the interface contribution.
In Sec. III we introduce our model system, derive the expres-
sions for the magnetic contribution, and discuss its qualita-
tive behavior. A comparison of the different contributions
follows. In the last section we compare experimental results
with these trends and propose experiments that are able to
decide whether one of these mechanism dominates in real
trilayer systems.

II. SPACER AND INTERFACE CONTRIBUTION

The interlayer coupling energyJinter is usually defined as
the difference of grand canonical potential densities of the
parallel and antiparallel aligned system1,9

− 2Jinter = V↑↑ − V↑↓. s2d

To consider the temperature dependence one wants to de-
scribe the system at a given particle number rather than at a
fixed chemical potential. Therefore the grand canonical po-
tentials have to be replaced by the free energy densities

− 2Jinter = F↑↑ − F↑↓. s3d

Within the quantum well picture it is assumed that the sys-
tem is a Fermi liquid, which is correct for the spacer only.
Furthermore, it is assumed that the single particle energies
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are temperature independent. Actually, this is the assumption
that excludes the effects of thermally excited spin waves in
this model. Furthermore, this assumption leads to tempera-
ture independent reflection coefficients and is justified only
at temperatures well below the Curie temperature. Finally,
the norm of the reflection coefficients should vary only
slightly with energy while its argument has to be a continu-
ous function of energy at the Fermi edge. Now, the crucial
quantities for the temperature dependence are the
following:10

• the spacer thicknessD, or equivalently, the number of
spacer monolayersN;

• the stationary Fermi surface spanning vectors parallel to
the film normalqF

a. Here the indexa counts these vectors;
• the Fermi velocity at these vectors

s"nFs+;−d
a d−1 =

dkzs+;−d
a

de
e=eF

,

where kzs+;−d denotes thez components of the starting and
end point of the spanning vector;

• and the energy derivative of the argument of the reflec-
tion coefficient asymmetryDra= uDraueifa

at the stationary
pointska

Df
a =

dfa

de
ue=eF

. s4d

With the restrictions mentioned above the coupling can be
written as10

Jinter = o
a

Jinter
a sN,0d · fasN,Td s5d

with the temperature dependent functions

fasN,Td =
caT

sinhscaTd

ca = aaN + ba . s6d

Here

aaN =
2pkBD

"nF
a depends solely on the spacer and

ba = 2pkBDf
a is the interface contribution. s7d

Recall thata counts the number of stationary Fermi surface
spanning vectors and hence the number of oscillation periods
in JintersNd1. The spacer contribution constantsaa depend
only on the well known variablesnF

a anddsp=D /N. They are
very small with a typical order of magnitude ofaa

<10−4 K−1. Ab initio studies show that the values forba are
not considerably higher.8 Thusca ·T is a very small quantity,
too, in the temperature regime of interest. We can therefore
expand

fasca ·Td <
1

1 + 1
6sca ·Td2

< 1 −
1

6
sca ·Td2S1 −

1

6
sca ·Td2D .

s8d

This behavior resembles a potential law. The effective expo-
nentya, defined as the best fit parameter in

fasTd < 1 − xaTya s9d

is between one and twos1,ya,2d. One can read off from
Eq. (7) that the main difference between the spacer and the
interface contribution is their dependence on the spacer
thicknessD. While the spacer contribution scales linearly
with D the interface contribution is independent ofD.

Let us discuss the ratioJintersTd /Jinters0d. For the case of a
single oscillation period it is simply given byfsTd from Eqs.
(6) or (9). This simple relation does not hold for more than
one oscillation period. However, as seen in Fig. 1, the spacer
and interface contribution to the temperature dependence is
still approximately given by

JintersTd
Jinters0d

=
cT

sinhscTd
s10d

and the fit parameterc has the same order of magnitude as
the parametersca from Eq.(6). In the next section we derive
the respective expressions for the magnetic contribution and
compare them with the results described above.

III. CONTRIBUTION OF MAGNETIC LAYERS

A. The model

Our model consists of two equivalent magnetic monolay-
ers A, B with a ferromagnetic nearest neighbor Heisenberg
exchange

FIG. 1. The spacer contribution to the temperature dependence
of Jinter according to Eq.(5) for the case of a Cu(001) spacer with
20 ML (dashed line). The parametersc1, c2 were taken from Ref. 8;
all other parameters from Ref. 2. The solid line is the function
cT/sinhscTd.
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H1 = − Jo
ki j l

sSia ·Sja + Sib ·Sjbd J . 0. s11d

The sum runs over all pairs of nearest neighbors within a
layer. The layers are coupled by an interlayer exchange term

H2 = − JIo
i

Sia ·Sib s12d

and a magnetic field is added

H3 = − B8o
i

sSiaz + Sibzd. s13d

B8 is shorthand forgmBB. The field is strong enough to align
the magnetic moments of both layers parallel, even if the
interlayer couplingJI is antiferromagnetic. This suits the ex-
perimental situation of a ferromagnetic resonance experi-
ment in the saturated limit.11 The second term describes the
interlayer coupling mediated by the spacer[JI . s,d0 gives
(anti)ferromagnetic coupling]. The microscopic constantJI
should be distinguished from the interlayer coupling energy
Jinter which is a contribution to the free energy density of the
system as defined in Eq.(3). At zero temperatureJI andJinter
are closely connected and one finds after a simple and
straightforward calculation

Jinter = JIS
2. s14d

S denotes the spin quantum number. To account for the tem-
perature dependence resulting from the spacer and the inter-
faces one has to replace the constantJI by an effective, tem-
perature dependent quantityJI · fsN,Td. However, we want to
calculate the effect of the magnetic contribution alone and
assume in the following that the mechanisms(i) and (ii ) are
unimportant for the considered temperatures. The constantJI
comprises all important spacer and interface properties at
zero temperature as, e.g., spacer thickness, spacer material,
geometry, interface roughness and so on. The whole Hamil-
tonian is the sum of all terms above

H = H1 + H2 + H3. s15d

The same model was studied by Almeida, Mills, and
Teitelman12 to get information about the interlayer exchange
coupling. However, they discuss the temperature dependence
of the spin wave excitations within a renormalized spin wave
theory following Dyson.13 In this theory the spin wave exci-
tations can be described by effective, temperature dependent
coupling “constants”JI

!sTd and J!sTd. In Ref. 12 the tem-
perature dependence ofJI

! is discussed.
But note that in our case the crucial quantity is notJI

!sTd
but the interlayer coupling energyJintersTd as defined in Eq.
(3). One has to distinguish carefully between both variables.
An important difference is that the temperature variation of
JI

!sTd is caused byinteractionsof spin waves, while the mere
excitationof spin waves already reducesJintersTd.

We will now describe howJintersTd is extracted from our
model and present analytical as well as numerical results.

B. The coupling

We solve the Hamiltonian(15) within the free spin wave
approximation which is a good treatment for low tempera-

tures and is correct for zero temperature. Using the Holstein-
Primakoff transformation14 we obtain a bosonic Hamiltonian
that describes spin waves in the magnetic sheetsA andB

H = E0 + o
q

fD1qsnqa + nqbd + D2saq
†bq + bq

†aqdg,

1

N
E0 = − JIS

2 − 2JpS2 − 2B8S,

D1q = 2JqS+ JIS+ B8,

D2 = − JIS. s16d

The termasbdq
† creates a spin wave with wave numberq in

the layerAsBd; nq
asbd is the respective spin wave density;p

denotes the in-plane coordination number;Jq is an abbrevia-
tion for Jsp−gqd; andgq is a geometrical factor

gq = o
D

eiqD

with D denoting a vector between nearest neighbors within a
layer. The new Hamiltonian is bilinear and can be solved
exactly, for instance, by a Bogoliubov transformation. Thus
one obtains the single particle excitation energies

vq+
= 2JqS+ B8

vq−
= 2JqS+ B8 + 2JIS s17d

and the ground state energyE0 from Eq. (16). For antiferro-
magnetic coupling a minimal fieldB8= u2JISu is needed to
avoid negative excitation energies. To define the interlayer
exchange coupling we follow, e.g., Ref. 15 whereJinter is
treated as a contribution to the free energy density

F = F0 + Fex,

Fex = − Jinter cossfd f = /sM A,M Bd. s18d

Insertingf1=0 andf2=p into this expression we immedi-
ately arrive at the definition(3) used in the quantum well
picture and inab initio theory. However, for finite coupling
sJI Þ0d one of these angles is not the equilibrium angle. The
respective configuration is unstable against spin wave exci-
tation, which may cause problems in the evaluation of Eq.
(3). To avoid these complications we evaluate Eq.(18) di-
rectly. F0 is the part of the free energy density that is not
connected with the interlayer coupling. It can be obtained
immediately using

F0 = FsJI = 0d. s19d

Here FsJI =0d is the free energy density of the uncoupled
system where the couplingJI is set to zero while all the other
parameters are the same as in the full system. Since we con-
sider a parallel alignment of all magnetic moments in the
ground statesf=0d we simply get
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− Jinter = Fex = F − FsJI = 0d. s20d

For the free energy densities of the full and the uncoupled
system we find, respectively,

L ·F = − kBT ln J

= E0 + kBToq
flns1 − e−bvq+d + lns1 − e−bvq−dg,

L ·F0 = − kBT ln J0 = E0sJI = 0d + kBTo
q

2 lns1 − e−bvq+d.

L is the size of the system, i.e., the number of sites within a
layer. Js0d denotes the partition function. Note that in our
model the chemical potential is equal to zero. Consequently
the free energy is identical to the grand canonical potential
which justifies the equations above. The interlayer exchange
coupling finally reads

Jinter = JIS
2 − kBT

1

Lo
q

ulns1 − e−bvq+du − ulns1 − e−bvq−du.

s21d

This equation can be easily evaluated. Furthermore, an ana-
lytical expression can be derived: Let us assume, e.g., a qua-
dratic lattice. The dominating terms in the sum over the two-
dimensional Brillouin zone stem from the vicinity of theG
point whereq is small and we can write:Jq<Jq2, whereq is
the norm ofq. After expanding the logarithm and replacing
the q summation by an integral we get

Jinter < JIS
2 − kBTo

n=1

`
1

n
e−bB8n

3s1 − e−b·2JISnd ·
1

2p
E

0

q0

dqqe−b2JSnq2. s22d

The integral is written in polar coordinatessq,fd and the
trivial f integration has already been performed. The termq0
is the averaged extension of the first Brillouin zone. Since
terms with large values ofq only contribute negligibly to the
integral, we may approximately replace the upper limit by
infinity and use the tabulated integrale0

` dtte−at=s2ad−1.
Thus we end up with

fsTd =
JintersTd
Jinters0d

= 1 −
1

8pJS

1

Jinters0d
skBTd2 · SsTd,

SsTd = o
n=1

`
1

n2e−bBns1 − e−1
S

Jinters0dbnd. s23d

The infinite sum converges by the majorant criterion(note
the constraintB8. u2JISu for antiferromagnetic coupling).
The first derivative ofSsTd with respect toT is negative,16

while the first derivative of the termkBT·SsTd is larger than
zero. Thus the coupling decreases with temperature faster
than 1−x T but slower than 1−x T2. The effective coefficient
y, defined in Eq.(9), is between 1 and 2. The evaluation of
Eq. (21) clearly corroborates this trend as can be seen in Fig.
2. The effective coefficient is aroundy=1.5 except for very

low temperaturesT,30 K. Here and in the following calcu-
lations the parametersJI are chosen to be comparable with
experiment11,15 using Eq.(14). The effective intra-layer cou-
pling J is chosen such that the spin wave stiffness of the bulk
material has a realistic order of magnitude(J=10
−100 meV for transition metals17). For these parameters we
find a certain decrease ofJinter between 0 and 300 K.

Figure 3 shows the dependence offsTd on the zero tem-
perature couplingJinters0d. The temperature dependence is
more pronounced ifJinters0d is small. However, the differ-
ences between the curves are very small.Jinters0d appears
twice in Eq. (23), once in the denominator and once in the
exponent. These contributions seem to cancel each other al-
most perfectly. The dependence on the intra-layer couplingJ
is much more pronounced. This is seen in Eq.(23) as well as
in Fig. 4. Materials with a large effective couplingJ have a
much less pronounced temperature dependence.

In addition, the functionfsTd depends on the external field
B (Fig. 5). External fields stabilize the coupling, since more
energy is needed to excite a magnon and the ground state is
stabilized.

FIG. 2. Temperature dependent factor ofJinter plotted against
temperature in different scales. Here and in the following figures
solely themagneticcontribution to the temperature dependence is
shown.

FIG. 3. Temperature dependent factor ofJinter plotted against
temperature for different zero temperature couplingsJIS

2.
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This property also influences the dependence offsTd on
the coupling sign. One can read off from Eq.(23)

fsT,fm,B8 − 2JISd = fsT,afm,B8d, s24d

which means, that for antiferromagnetic coupling an effec-
tive field

Beff = B8 − 2JIS, s25d

rather than the pure external field, is decisive. Thus the tem-
perature dependence is more pronounced for antiferromag-
netic coupling compared with ferromagnetic coupling. This
is shown in Fig. 6, where results for antiferromagnetic and
ferromagnetic coupling are shown foruJinters0du=22.5meV.
For comparison a curve forJinters0d= +40 meV is shown.
The dependence on the norm ofJinter is almost negligible
compared to the influence of the sign. However, this very
influence is rather weak, too.

The behavior of the magnetic contribution, worked out
above, will be compared to the spacer and interface contri-
bution in the next section.

IV. COMPARISON OF THE DIFFERENT COUPLING
MECHANISMS

The spacer, interface and magnetic contribution show
some similarities:

• In the temperature regime where the theories are appli-
cable the functional dependenciesJintersTd resemble each
other. We have for all contributions

fsTd =
JintersTd
Jinters0d

< 1 − xTy s26d

with 1,y,2.
There are, however, certain differences:
• The dependence offsTd on the spacer thicknessD is

quite different. The spacer mechanism exhibits a strictD ·T
dependence

fspacersD,Td = fsD ·Td, s27d

the interface contribution is independent ofD,

f interfacesD,Td = fsTd, s28d

while the magnetic layer contribution shows a very weak
implicit dependence via the zero temperature coupling

fmagnetsD,Td = fsJinters0,Dd,Td s29d

that oscillates with the spacer thickness.
• There are also differences concerning the dependence

on the magnetic material. The spacer contribution is indepen-
dent of the magnetic material, the interface contribution may
be material dependent viaDf and the magnetic contribution
exhibits a strong 1/J dependence, whereJ is the effective
coupling between the magnetic moments of the film.

• The magnetic contribution shows a(weak) dependence
on the coupling sign, i.e., the temperature dependence is
more pronounced for antiferromagnetic interlayer coupling,
if the coupling strength is the same.

• The magnetic contribution is suppressed by an external
field. To our knowledge, there is no such effect for the spacer
or interface contribution.

FIG. 4. Temperature dependent factor ofJinter plotted against
temperature for different intra-layer couplingsJ.

FIG. 5. Temperature dependent factor ofJinter plotted against
temperature for different external fields.

FIG. 6. Temperature dependent factor ofJinter plotted against
temperature for two ferromagnetic couplings and one antiferromag-
netic coupling.
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• Alloying of the spacer introduces disorder and can re-
duce the amplitude of the coupling.18 In this case the tem-
perature dependence of the spacer contribution isreduced
(see Ref. 18), while the temperature dependence of the mag-
netic contribution isincreased(see Fig. 3). However, this
statement has to be taken with care, since alloying may also
change the stationary Fermi surface spanning vectors and
therewith the parametersca of Eq. (6). For this case alloying
may increase or decrease the spacer contribution depending
on the specific combination of materials.

The specific behavior of the different mechanisms opens
the possibility of identifying the dominant mechanism by
experiments. To this end we will review existing experiments
and propose new experiments in the next section.

V. EXPERIMENTS

There are not many reported studies dealing with the tem-
perature dependencefsTd of the interlayer coupling. Zhang
et al.19,20 studied Co32 Å/Rux Å /Co32 Å trilayers using ferro-
magnetic resonance. N. Perat and A. Dina studied
Co24Å/CuxÅ /Co24Å (hcp) samples using squid magnetization
measurements.21 Lindner and Baberschke performed ferro-
magnetic resonance measurements on a Ni7/Cux/Co2s001d
system.15

With one exception(Refs. 19 and 20:D=24 Å) all data
can be fitted to Eq.(6). In all cases the parameterc deviates
clearly from the value expected from the spacer contribution
(7) alone. It was further shown by Lindneret al.22 that the
data can be fitted with the same accuracy to Eq.(9) with y
=1.5. Both functional behaviors fulfill our expectation and
can be caused by any of the described mechanisms. As dis-
cussed in detail above we have to know the dependence on
the intra-layer couplingJ or on the spacer thickness to dis-
criminate between the different contributions. Unfortunately,
the dependence on the magnetic material(and therewith on
J) was not investigated in these studies. On the other hand,
there are some data describing the influence of the spacer
thickness. They are summarized in Fig. 7. There are two
parameters that are a measure of the thickness dependence of
fsTd, namely the parameterx from Eq.(9) and the parameter
c from Eq. (6). Largex or largec indicates a large suppres-
sion of the coupling by temperature. In Fig. 7 the parameter
c is displayed rather thanx since it is more convenient to
obtain its values from the experimental studies. The data
points were taken directly from the papers or were extracted
from the respective plots.

The parameterc increases with the spacer thicknessD in
all cases. This qualitative trend is in accordance with the
spacer but also with the magnetic contribution. A linear in-
crease would favor a strong importance of the spacer contri-
bution, while oscillations that followJinters0,Dd would indi-
cate a decisive role of the magnetic mechanism. However, in
all works there are not enough data points to establish a
linear or oscillatory behavior.

If one assumes for a moment a linear dependence accord-
ing to Eq. (7) the solid lines in Fig. 7 are obtained. The
graphs of Refs. 19–21 show a certain finite value for theD
=0 extrapolation. Thus the spacer mechanism cannot be the

only source of temperature dependence in these samples. The
spacer thickness dependence is very weak in Ref. 21 as ex-
pected by the magnetic contribution(indeedJinters0d is very
similar for both data points). On the other hand, the valuea
from Eq.(7), which can be read off from the slope in Fig. 7,
is in rather good agreement with model theory

aex < 2.43 10−4 K−1 ath < 1 3 10−4 K−1. s30d

The theoretical value is taken from Ref. 2.
The situation in the ruthenium samples19,20 seems to be

different. The contribution scaling with the spacer thickness
is more important. There is a very interesting feature in the
upper left panel of Fig. 7. There seems to be evidence for a
slight oscillatory behavior ofc as a function of spacer thick-
ness. The oscillation follows theJinters0d value. For the
spacer thicknesses of Ref. 21 no oscillations ofJinters0d with
spacer thickness. This behavior favors a magnetic mecha-
nism. On the other hand, the fitteda value from Eq.(7) is
again in reasonable agreement with the theoretical result23

aex < 5 3 10−4 K−1 ath < 2.43 10−4 K−1. s31d

The deviations of a factor of 2–3 are not alarming, since the
linear fits are, of course, of bad quality due to the small
number of data points.

The data of Ref. 15 reveal a different picture. Here the
parameterc really seems to scale with the spacer thickness as
predicted by the model theory of the spacer contribution. Of
course, two points are not enough to confirm this mechanism
and the value ofa differs from the theoretical one by an
order of magnitude

aex < 2.43 10−3 K−1 ath < 1 3 10−4 K−1. s32d

Again the theoretical value is taken from Ref. 2. This system
was also investigated byab initio calculations8 corroborating
the order of magnitude ofath. Thus the origin of the strong
difference remains unclear.

FIG. 7. Parameterc displayed against spacer thickness as ob-
tained by different experiments. Large values ofc mean pronounced
temperature dependence. The solid lines are linear extrapolations to
D=0.
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In summary, no clear conclusion can be drawn from the
existing experiments. There is clearly a need for more ex-
perimental data. We propose a systematic investigation of the
temperature dependence at different spacer thicknesses. The
spacer thickness should be varied at least over a full oscilla-
tion of Jinter with D. The parametersc of Eq. (6) or x of Eq.
(9) should be displayed as a function of spacer thicknessD
and as a function of the zero temperature couplingJinters0d.

In addition, we propose the study of the temperature de-
pendence for different magnetic materials(e.g., Co, Ni) sepa-
rated by the same spacer(e.g., Cu).

With these experimental results at hand and with the the-
oretical results summarized in Sec. IV, one may isolate the
dominating mechanism that causes the temperature depen-
dence of the interlayer coupling in metallic trilayers.

There is clearly a need for more theoretical studies as
well. Both aspects, the spacer and interface contribution, on
the one hand, and the magnetic contribution, on the other,
should be described in one model on equal footing. Further-
more, the restriction to low temperatures, which is up to now
inherent to all models, should be removed and effects such as
the temperature dependence of the reflection coefficients
should be studied as well.

VI. SUMMARY

The reduction of the interlayer coupling with temperature
in metallic multilayers may be caused by effects within the
spacer, at the interface, or within the magnetic layers. We
derived the magnetic part at low temperatures and discussed
its dependence on the spacer layer thickness, on the magnetic
materials, on the sign of the coupling, and on the external
field. These dependencies were compared with those of the
spacer and interface contributions. As a main result we found
that the functional dependence of the temperature dependent
factor fsTd is roughly the same for all mechanisms. There are
certain differences in the dependence offsTd on the spacer
thickness and on the magnetic material. Based on these con-
siderations we proposed experiments that are able to identify
the dominant mechanism in metallic trilayers which is not
possible with the experimental data available today.
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