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We treat a system(a molecule or a solid) in which electrons are coupled linearly to any number and type of
harmonic oscillators and which is further subject to external forces of arbitrary symmetry. With the treatment
restricted to the lowest pair of electronic states, approximate “vibronic”(vibration-electronic) ground-state
wave functions are constructed having the form of simple, closed expressions. The basis of the method is to
regard electronic density operators as classical variables. It extends an earlier “guessed solution,” devised for
the dynamical Jahn-Teller effect in cubic symmetry, to situations having lower(e.g., dihedral) symmetry or
having no symmetry at all. While the proposed solution is expected to be quite close to the exact one, its formal
simplicity allows straightforward calculations of several interesting quantities, like energies and vibronic re-
duction(or Ham) factors. We calculate for dihedral symmetry two differentq factors(“qz” and “qx” ) and ap
factor. In simplified situations we obtainp=qz+qx−1. The formalism enables quantitative estimates to be made
for the dynamical narrowing of hyperfine lines in the observed electron spin resonance spectrum of the dihedral
cyclobutane radical cation.
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I. HISTORICAL BACKGROUND AND AIMS

For the so-calledE^ e Jahn-Teller case(involving an
electron-nuclei system, in which a doubly degenerate elec-
tronic state is coupled to a doubly degenerate nuclear dis-
placement mode) the wave function was fully obtained as
long ago as 1957.1,2 The physical object of reference is com-
monly a molecule of some high symmetry(say, one belong-
ing to the cubic group, likeO), or a localized impurity in a
solid. The solution(or set of solutions) to this “dynamic
Jahn-Teller effect”(DJTE) are the vibronic states. Though
this has received, as just noted, a full treatment early on,
subsequent efforts to give simple approximate treatments or
to provide additional insight into the dynamic problem have
been numerous. Descriptions of some of the early works are
found in two books.3,4 Notable are the treatments in Refs.
5–9; the most recent publication known to us, which in-
volves a variational approach to this problem is in Ref. 10.

To lead us into the present work we recall a “guessed
solution” for the ground state of the linear Jahn-Teller effect,
suggested by one of the present authors and collaborators,
which is transparent, intuitively simple, and algebraically
easily manageable. This proposal was originally worked out
for a molecule of cubic symmetry that had a single set of
interacting normal modes.11,12,3Though not variationally ob-
tained, the guessed solution was found to have energies that
are considerably closer to the exact, computed energies of
Ref. 2 than the other approximate solutions with which it
was compared. This comparison is seen in Fig. 2 of Ref. 13.
Later treatments did not test their methods by comparison
with the guessed solution, though a critical review can be
found in Sec. 4.5.3 of Ref. 4.

The present work is an extension of the earlier approach
to a substantially broader and harder problem, namely to a
pair of electronic states in unrestricted symmetry and subject
to interaction with an arbitrary number of nuclear displace-
ment modes, but only in a linear manner. The subject of

two-state interactions with bosons(which may either be
phonons or photons) has very extensive literature written
about it. The spin-boson Hamiltonian that forms the starting
point of Ref. 14 is a special case of the Hamiltonian intro-
duced in this paper. Likewise, several books contain ac-
counts of the related Jaynes-Cummings method.15,16 The
present work also belongs to this field, but is restricted to a
pair of ground-level states. Even with this restriction, the
closed solution that we present here can find its uses in treat-
ing the energy dissipation of a spin system.14

The handling of external perturbationafter taking care of
the electron-nuclear interaction is a potential tool to tackle
Berry phases in open systems.17,18 We would also recall a
recent work on the Jahn-Teller effect in lower than cubic
symmetry, which is less general than the present one, but has
permitted us to check some of our results numerically.19 The
reduced symmetry case(named “the elliptic form” to differ-
entiate it from the circular energy trough inE^ e) was stud-
ied previously in Ref. 20. We calculate the experimentally
important reduction factors for the low symmetry case(Sec.
IV A ) having pointed out(at the end of Sec. III D) that, when
the electron-nuclear coupling is strong, one meets broken
symmetry instabilities.

The formalism, initially formulated in very general terms,
is gradually shifted to more specific situations, such as sys-
tems of cubic and of lower(e.g., dihedral) symmetries, and
to systems with two(rather than an arbitrary number of)
vibrational modes and, ultimately, to a specific molecular
system. In this last, the formalism and the numerical results
for the reduction factors lead to quantitative conclusions for
the dynamical narrowing of hyperfine lines in the observed
electron spin resonance(ESR) spectrum of the dihedral cy-
clobutane radical cation. This is the subject of Sec. V B.

II. A GENERAL HAMILTONIAN

We now write down a Hamiltonian for a pair of(diabatic,
or nuclear coordinate independent) electronic states, denoted
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by the symbolszu and ze. The states are understood to be
functions of any number of electronic coordinates, e.g., all
the electrons in an atom or a molecule, but this functional
dependence is absent in the formalism as long as the behav-
ior of the doublet states alone is under consideration. A two-
state situation can come about for an atom that is placed in a
strongly coupled environment, such that this separates the
doublet from the rest of the electronic manifold, or for a
molecule in which the internal, intramolecular forces achieve
the same effect. The two states need not be degenerate but, in
order that it should be legitimate to consider them separately,
they must be, in some sense, isolated from the rest of the
electronic states(e.g., either by symmetry consideration or
by a large energy gap). If so, then the “two-level-the rest”
matrix elements of all interactions can be neglected to some
approximation. This is the physical setting for the formalism
that follows. It leads naturally to the representation of the
electronic states as the column vectors

szu,zed = S1

0
D,S0

1
D . s1d

The electronic states are coupled to any number of nuclear
displacements coordinatesqnsn=1, . . .Nd. We assume that
these are organized into a set of normal modes brought to a
standard form(i.e., having the same effective mass) and re-
strict the coupling to be of no higher order than linear in the
displacement coordinates. Thus, one has for the displacement
coordinates the following harmonic-oscillator Hamiltonian:

Hnuc= o
n=1

N
"vn

2
S−

]2

] qn
2 + qn

2D , s2d

where"vn are the quanta of vibrational energies. In the two-
state representation the nuclear Hamiltonian is written as a
scalar or, equivalently, asHnuc times the 232 unit matrix I.

The remainder of the Hermitian representation matrices
for the two level system are the familiar Pauli matrices

sW = ssx,sy,szd = S0 1

1 0
D,S0 − i

i 0
D,S1 0

0 − 1
D . s3d

In terms of these we can write out a general linear form of
interaction between the electronic motion and the(real)
nuclear coordinates(in the absence of any molecular sym-
metry), as

Hel−nuc= − o
n=1

N
"vn

2
sanqnsz + bnqnsxd, s4d

in which (the dimensionless) an andbn express the strength
of interaction between the electrons and the nuclear motion
in the n mode. [A detailed discussion of the linear many
mode interaction in a symmetrical setting is found in Sec.
3.5.3 of Ref. 4. In Eq.(4) frequency changes between the
two states are ignored to be consistent with a purely linear
coupling.]

sy is absent in the above interaction Hamiltonian, as also
in several previous works.1–8 When the states of the two-
level system are orbital states, then, for all molecular point
groups considered in this work, the symmetric product of the

state representations does not contain the representation of
the sy matrix. When the two states are a Kramers doublet,
the situation becomes more complex, since in a low-order
perturbation the coefficientsan and bn vanish, unless some
further effects(like crystal field, spin-orbit interaction, exter-

nal magnetic fieldsHW , spin-spin coupling) are included in the
perturbational calculation of these coefficients. Working out
the spin-lattice coupling for a Kramers doublet(on a six
coordinatedCu2+) Stoneham gave symmetry arguments(in
the last equation of23) to show that, for bothan andbn to be
nonzero, bothHx and Hz need to be non-vanishing(while
Hy=0). This corresponds to the form shown in the above
equation(where the coefficients would be magnetic field de-
pendent). If, on the other hand,Hy is also nonvanishing, then
for a Kramers doublet a term withsy will also be present.
Since this term is absent in orbitally two-state systems, we
do not complicate the formalism by adding thesy term.

One also has to consider the electron being acted upon by
external fields.(The interaction of the external field on the
nucleus is supposed to be contained in the potential of the
nuclear coordinates.) In the preceding vector representation
of the two states, any interaction Hamiltonian(that expresses
the coupling between the electron and any external field)
must have the form

Hel−f =
"

2
VW · sW s5d

with the representative of the fieldsVW =sVx,Vy,Vzd inside
the two-level system being constant(independent of the val-
ues of the electronic or of the nuclear variables), this being
the most general form of expression for the system. In Sec.
IV, which discusses the effect of external forces, we give
examples for the interaction.

Any difference between the two-state energies can be con-
sidered to be part ofVz so that, until we come to the subject
of the external fields in Sec. IV, the states can be considered
as a pair ofdegeneratedoublets. However, the rest ofVz (as
well asVx andVy) comes from externally applied sources.

The total HamiltonianHtot is the sum of the previous
Hamiltonians

Htot = sE0 + HnucdI + Hel−nuc+ Hel−f , s6d

to which has been added a scalar term withE0 representing
the mean energy of the noninteracting states.[The spin-
boson Hamiltonian which forms the basis of Ref. 14 is ob-
tained from Eqs.(4) and (5) upon puttinganÞ0, bn=0, Vx
Þ0ÞVz, Vy=0.]

The treatment ofHel−f will be postponed until later. In its
absence, we have a pure “vibronic”(vibrational-electronic)
situation, which we will now treat.

III. VIBRONIC DOUBLET

The Hamiltonian

Hv = Hnuc+ Hel−nuc s7d

involving (partially) the electronic and nuclear degrees of
freedom will be the subject of our investigation in this sec-
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tion. We first show that solutions of the partial Hamiltonian
form a degenerate doublet(with the understanding that the
energy difference between the two states is shifted to the
external field part).

A. State degeneracy

The following nonidentity transformation leaves the
above Hamiltonian invariant:

T = fAegfPqg, s8d

whereAe stands for the following simultaneous changes in
the electronic statess 1

0
d→ s 0

−i
d and s 0

1
d→ s i

0
d and Pq is the

parity operator for all mode coordinates, namely,

Pqqn = − qnn = 1, . . .N. s9d

The transformationAe can be achieved by the unitary matrix
sy. But, clearly,

T 2 = 1 s10d

so that, simultaneously with any eigenvalue of the Hamil-
tonian Hv, T has an eigenvalue +1 corresponding to a state
unchanged under theT transformation and another eigen-
value −1, that corresponds to(another, different) state that
changes sign under this transformation. The conclusion is
that the vibronic Hamiltonian has doubly degenerate eigen-
states. This degeneracy is lifted, when field interaction term
Hel−f is inserted, as we shall see.

B. The quasiclassical ground state

Based mainly on the numerical agreement of the energies
underO symmetry, noted in the opening section, we extend
here the method of Refs. 3 and 12 to the general case under
study, that is, we propose the following form for the ground-
state wave function

Ĉ = N expF−
1

2o
n=1

N SqnI −
an

2
sz −

bn

2
sxD2G , s11d

whereN8 is a normalizing factor. The wave-function genera-

tor Ĉ is a matrix (or operator). It possesses the fullsA1d
symmetry of the Hamiltonian. Therefore, operating withĈ
on an electronic component with some symmetry will gen-
erate a state with the symmetry of the component. In order to
get the probability amplitudes in the two electronic states of

Eq. (1), one has to left operate withĈ on the basic vectors or
on any linear combination of them, as will be shortly de-
scribed. The prescription(and the underlying rationale) for
the proposed construction is to regard the Pauli matrices
(which are the electronic density operators) as c numbers.
Having done this, we write down the ground-state wave
function in the form of a set of displaced independent vibra-
tional coordinates. The initial handling of(quantum me-
chanical) matrices in the manner ofc numbers has suggested
naming the method “quasiclassical.” However, the modes are
now no longer independent: Thus, the moment(e.g., the ex-
pectation value or the spread) of any mode depends on the
coupling constants of the other modes.

The mathematical meaning of the exponential form in Eq.
(11) is that one has to expand the exponential in a power

series of the exponent. Remarkable in the positedĈ is that
the individual frequencies do not appear in it(just as they do
not in the wave function of a set of uncoupled oscillators,
when expressed in a standard form). Of course, the energy
expectation value depends on the frequencies, since the
Hamiltonian does and so do, implicitly, the dimensionless
coupling constantsan andbn.

The success of the method hinges on the fact that it is
possible to sum the power series exactly, in spite of the non-
commuting terms in the exponent. This is made possible by
the property of the two-dimensional spin(Pauli) matrices,
that

sis j + s jsi = 2di j , s12d

where di j is the Krönecker delta. Using this property, one
readily obtains the simplified expression

Ĉ = NFI cosh
esqWd

2
+

on=1

N
sszanqn + sxbnqnd

esqWd
sinh

esqWd
2
G ,

s13d

with N being another normalizing factor. In the argument of
the hyperbolic functions one has

esqWd =ÎFSo
n=1

N

qnanD2

+So
n=1

N

qnbnD2G . s14d

It must be stressed again that the resulting quasiclassical
wave function is only an approximation, whose accuracy de-
pends on how well the Pauli matrices can be approximated
by c numbers. This will be the case when, e.g., one of the
potential wells is deep, since then the energy of the state will
be dominated by the electron occupancy near the minimum.
On the other hand, when the frequencies of the different
oscillators differ markedly, the quasiclassical approximation
could be in error, since then, e.g., the positions of the saddle
points in the potential may not coincide with the maxima in
the overlap of wave functions coming from different poten-
tial wells. A scale transformation applied to each well, in the
form proposed in Refs. 10, 21, and 22 for cases of higher
degeneracies than two and with modes of various dimension-
alities, could lead to improvements in the wave function, but
requires a formalism that is more complex than the one ad-
vocated here.

C. Some elementary symmetry considerations

As already emphasized, there need not be any relation
(symmetry based or otherwise) between the two states and
among the nuclear coordinates for the foregoing formalism
to hold. However, if the system has some symmetry proper-
ties (or we choose to relate it to a symmetric framework)
things become at the same time clearer, more systematic, and
more familiar.

We therefore formulate the foregoing in a symmetry set-
ting and employ implicitly the theory of point molecular or
point groups.
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1. Cubic symmetry

In a system which nominally belongs to a cubic symmetry
group (like O), the two electronic states could belong to a
doubly degenerateE representation, whose two components
are designated in Ref. 24 assu ,ed. This designation was
already used by us above in Eq.(1). We have chosen these
symbols in preference to others, such as those in Ref. 25,
because we shall later use the so-calledW-coefficients and
these were tabulated for the symmetry groups of interest in
Ref. 24 using the present symbolism. In the expression, Eq.
(4), for the coupling to the nuclear motion coordinatesqn, the
coefficientsan are nonzero for modes belonging to theu
representatives of a twofolde mode andbn are nonzero for
modes belonging to thee component of ane-mode, with the
two coefficients being numerically pairwise equal. This is, of
course, the multimodeE^ se1+e2+¯ +eN/2d Jahn-Teller
situation, described in detail in Refs. 3 and 4.

Ĉ in Eq. (11) generates vibronic wave function in the
following way. When it is let to operate ons 1

0
d, one obtains

theu component of the ground-state vibronic doublet(in the
present quasiclassical approximation); if it is let to operate
on s 0

1
d, one obtains thee component of the same. For future

use we write thesevibronic wave-function components in a
curly ket form, as

ĈS1

0
D = uuj, ĈS0

1
D = uej. s15d

If, instead, one operates withĈ on the two orthogonal
linear combinationss1/Îs2dds 1

71
d, one reaches a pair of other

vibronic states, preferentially localized in a different part of
the coordinate space than the ones in Eq.(15). (These vi-
bronic states have properties similar to polaronic states,
which term is in use for a single electronic state.)

If, alternatively, one operates on the following complex
combinations of the electronic states, 1/Îs2s 1

7i
d, one obtains

vibronic states that have values of +1 and −1 of a “compos-
ite” vibrational angular momenta, this being defined in terms
of the composite vibrational angle variable, given by

F = arctan
on8=1

N
bn8qn8

on=1

N
anqn

. s16d

Clearly, although the vibrational modes were originally inde-
pendent, the resulting angular variable is not the sum of the
mode angular variables, like

F = o
m=1

N
2

o
m8=N

2
+1

N

arctan
qm8

qm
snot trued. s17d

This is, of course, due to the coupling of the modes to the
electronic degree of freedom. A pair of states in any of the
combinations are energy degenerate and mutually orthogo-
nal.

2. Dihedral symmetry

In a lower symmetry situation, likeD2d, the doublet state
could belong to the doubly degenerateE representation, with
components designated bysu ,ed, as before. Thean coeffi-
cients are nonzero for modes possessingb2 symmetry and
the bn coefficients belong tob1 symmetry types. However,
this time (unlike for O symmetry) there are no symmetry-

based relationships betweena’s andb’s. The operatorĈ still
possesses fullsA1d symmetry. This can best be seen in the
form given in Eq.(13). Here the first term is clearly invariant
under all group operations(since the squares of these are the
identity operator) and the second term is also invariant be-
cause it has the symmetry of the Hamiltonian. Therefore op-

erating withĈ on an electronic component with some sym-
metry, will again give a state with the symmetry of the
component.

D. Energies and other expectation values in dihedral
symmetry

The advantage of the quasiclassical form is that the ex-
pectation values ofc numbers or of operators can be calcu-
lated using the explicit form of the states just given.(A re-
cent calculation of the expectation value of an angular
momentumoperator is in Ref. 26.) As already noted in the
opening section, these expectation values have proven to be
very accurate for the single mode case inO symmetry, where
comparison was made with the exact, computed results that
were available. One can carry out similar calculations for
several modes in any dihedral group, like one ofD4 symme-
try (as well as in other dihedral groups, likeD4h, D2d, etc.).
Actual results will not be given here for several modes, since
these will depend on details of the system.(Some relevant
molecular systems will be considered in Sec. V.)

A sporadic comparison has been made with results of a
recent paper.19 This paper showed graphs of eigenenergies of
the (degenerate) vibronic ground computed exactly(by a nu-
merical method), as well as with several approximation
schemes. We compare the energy expectation values com-
puted within our quasiclassical approach with theirs, at val-
ues of parameters for which the discrepancies between the
exact and approximate values appear to be largest. This is the
region where neither perturbation theory(weak coupling),
nor asymptotic formula(very strong coupling) holds. Relat-
ing to Figs. 3(a) and 3(b) in Ref. 19 and to parameter values
a=2,b=1.5 (equal tom=0.5,x=0.75 in the symbols of Ref.
19), their exact eigenenergy isE=−0.167 25. We compare
this to −0.15075 obtained by our method, which is higher(as
it should be for a nonexact expectation value) by 0.0165.
This discrepancy is worse than thebest approximation in
Ref. 19, rather better than the next best(obtained variation-
ally), and considerably better than three others. Testing addi-
tionally our quasiclassical approximation against the exact
results exhibited in the Figs. 4(a) and 4(b) of the above ref-
erence, fora=2Î2, b=1.5Î2 sm=1.0,x=0.75d, the exact
value isE=−1.172 95, with which we can compare our value
of −1.133 70, or a discrepancy of 0.039 25. This is some-
what worse than the first and second best approximations of
Ref. 19.
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In summary, it seems that the intuitive, quasiclassical
method can answer most practical needs for energy values.
One would expect at least semiquantitative guidance for
other numerical quantities, when derived from the quasiclas-
sical model. The next section contains some such quantities.

It is also of interest to consider the limiting case of very
strong electron-vibrational coupling. This comes about when
at least some of the coupling strengthsan andbn in Eq. (4)
are numerically much larger than unity.(The opposite ex-
treme of zero coupling has for its vibronic ground states the
product of Gaussian states multiplying some linear combina-
tion of the electronic basic states.)

In the strong coupling limit the vibronic ground state is
stabilized by the coupling and again takes the form of a
product of vibrational and electronic factors. The form of the
latter depends critically on the ratio of two stabilization en-
ergies.(This result goes back to Öpik and Pryce’s classic
paper.29 Modifications due to higher-order coupling are
treated in Ref. 30) The stabilization energies(analogous to
the static Jahn-Teller energy,3,4) are

DEb2
=

1

8o
n=1

N

"vnsand2, s18d

DEb1
=

1

8o
n=1

N

"vnsbnd2, s19d

where the subscriptsb2 and b1 signify the types of the dis-
tortion mode inD2d symmetry. The ratio of the two

R=
DEb2

DEb1

s20d

enters now so that forR.1, the stabilized electronic states
are thesu ,ed components, shown in Eq.(1), and the stabili-
zation energy isDEb2

, while for R,1, the stabilized elec-
tronic states ares1/Îs2dds 1

1
d and the stabilization energy is

DEb1
. (R=1 is a coincidental case in dihedral symmetry. It is

the normal case under cubic symmetry and results in a con-
tinuum of stable configurations, rather than a single point in
the multidimensional configuration space for each state.)

The transition betweenR,1 and R.1 represents a
change from one broken symmetry type to another. The sub-
ject of broken symmetries is, of course, an important issue
for macroscopic systems and also for the observed inhomo-
geneous state of the universe. In these cases each stabiliza-
tion energy is large on a characteristic quantum scale(in a
macroscopic or in an astronomical manner). Yet, it is a tiny
difference between the stabilization energies that tips the bal-
ance between different types of broken symmetry. This
means that if, in the neighborhood of a situation where the
stabilization energies are the same, the coupling constants
are made varied, then changes in the macroscopic symmetry
and energy can come about by microscopic causes.(This is
exemplified in our treatment of the cyclobutane radical cat-
ion in Sec. V B 2) The foregoing treatment is of course very
approximate and does not take into account higher-order

couplings or thermal fluctuations; still as a model it is in-
structive and can prove to be helpful for extensions to more
realistic cases.

IV. EXTERNAL FIELDS

The form of the interaction, shown in Eq.(5), between the

electronic part and an external field(represented byVW ) is the
consequence of the Hermitian nature of the Hamiltonian, the
three matricesssx,sy,szd being the only 232 matrices hav-
ing this property(apart from the unit matrix, which only
shifts both states by an equal, constant amount).

A. Examples for V¢

The simplest example is the Zeeman effect on an elec-

tronic spin, for whichVW =bHW (with b being the Bohr mag-
neton). The effect of a magnetic fieldHz acting within the
two states(t2g,j, t2g,h), which are split off from a 3d-state
manifold by crystal fields of cubic and tetragonal symme-
tries, would be represented byVy= constant Hz, where the
constant includesb and a radial integral(see Ref. 23, Table
I). A uniform stress of the typetzz acting upon a doubly
degenerate set underC2v, with z the fourfold axis will be
expressed byVz. An applied variable electric field given by a
potential VsrWd=xyfsurW u d, when acting within an electronic
pair having the real formsu1l=xgsurW u d, u2l=yhsurW u d will yield

Vx = k1uVsrWdu2l, s21d

with all otherV components being zero.
In a general way, for a perturbational HamiltonianDH

being an arbitrary function of the coordinates, theV magni-
tudes and real and imaginary parts of the matrix elements
inside the 1,2 manifold are connected by

Vx = ResDHd1,2, Vy = − ImsDHd1,2, Vz =
1

2
fsDHd1,1

− sDHd2,2g. s22d

Since the interaction termHel−f leads naturally to consid-
eration of the vibronic, or Ham, reduction factors,27,28 we
will introduce these now.

B. Reduction factors

One starts with some coupling affecting the electrons.
Within the two-state manifold, this can be expressed in terms
of matrix elements between the diabatic states. The question
is how do these matrix elements change, when the two states
are no longer purely electronic, but rather vibronic(coupled
electronic-vibrational) states? The answer, given in a context
similar to the present one and originally due to Ham,27,28 is a
reduction in the strength of the original coupling by factors
originally denoted byq and p (that are 1 in the absence of
vibrational coupling and less than 1 in their presence). These
reduction factors have further been described in Ref. 3 and,
at considerable length, in Ref. 4 where references to several
literature sources can be found. Section 4.7 in the book4

contains an analysis of the reduction factors in terms ofW
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coefficients, tables for which(in both cubic and dihedral
groups) can be found in Ref. 24.

In the lower symmetry situation under concern here(e.g.,
in dihedral symmetry), when the coupling strengths in the
diagonal position differ from those in the off-diagonal posi-
tions, there are three reduction factors. These are here named
qx, p, andqz. The formal definitions are in terms of the scalar
product of the vibronic states introduced in Eq.(15), in the
form

qx = huusxuej = heusxuuj, s23d

qz = huuszuuj = − heuszuej, s24d

p = ihuusyuej = − iheusyuuj. s25d

[On notation: The subscripts of theq’s agree with those of
thes matrices; the letterp has been retained in preference to
a possibleiqy for historic reasons. In terms of the more re-
cent symbolsKsad used in, e.g., Sec. 4.7.1 of Ref. 4, wherea
is a representation of the group, one can identify

qx = KsB2d, qz = KsB1d, p = KsA2d, 1 =KsA1d.

s26d

The symbolKsad will be used later in obtaining formal ex-
pressions for the reduction factors. In a higher symmetry
situation(e.g.,O) qx=qz=q, as shown on page 43 of Ref. 3,
where the ket in Eq.(3.38) should be corrected to be ane
type.] The results of our computations are shown for the
simplified situation that there is a singleb2 and a singleb1
mode coupled to the electrons. When the coupling strength
are of the same strengthsa= ±bd, our results are identical to
those quoted in the literature forO symmetry. In particular,

qx = qz = q,p = 2q − 1sin O symmetryd, s27d

but when the coupling strength are unequal a remarkable
change occurs, as shown in the accompanying figures(Figs.
1 and 2).

These exhibit the three reduction factors as functions of
increasing strength of the dominant coupling and for two
different values of the ratiob/a. It is apparent that while one
q factor decreases monotonically to zero, the other drops
only slightly below unity and does so for only a limited

range. (In cubic symmetry, also for linear coupling, the
singleq factor decreases from unity to one-half.) The p fac-
tor shows a regular behavior.

The following further results are of interest, and are ca-
pable of straightforward interpretation:

(a) When(say) b becomes very small, there is no “re-
duction” in qz, which is <1 except in a small range of the
strengths. In the limit ofb=0 one has the simple polaron
case, with no off-diagonal interaction.

(b) When (instead of the cases shown in the figure)
b.a, the roles of the two reduction factorsqx and qz are
reversed.

This can be justified as follows: Interchanginga andb in
the Hamiltonian of Eq.(4) has the effect of interchanging the
operatorssx andsz. This interconverts, per definition in Eqs.
(23) and (24), qx and qz. Formally, the interchange can be
performed by applying the unitary transformation matrix
s1/Î2dssx+szd on the Hamiltonian.

(c) The second relation in Eq.(27), which is expected
to hold for linear coupling to a single-mode coordinate inO
symmetry, does not in general hold for neitherq separately,
but holds accurately for their mean. Thus we find, under
linear b1,b2 coupling in dihedral symmetries, that our data
satisfy the new relations

p = qx + qz − 1. s28d

(d) Because the vibrational quanta are absent from the
(proposed, quasiclassical) vibronic wave functions, they do
not play a role in the reduction factors, as long as the cou-
pling constants are defined in the nondimensional form, in
the way done here.

1. Expressions for the reduction factors in dihedral symmetry

The following expression relates the reduction factors to
the W coefficients,

WSa b c

d e f
D , s29d

defined and listed in Ref. 24 for point groups.(The definition
of W allows various rearrangements of the symbols, not de-
tailed now.)

For electronic states belonging to a doubletE

FIG. 1. Reduction factors vs dominant coupling strengtha. The
diagonalqz and the two off-diagonal reduction factorsqx andp are
shown. Unlike the cubic symmetry case, whenqx=qz, in the dihe-
dral case shown here the twoq factors are dissimilar, whilep re-
mains qualitatively similar to that in cubic symmetry.

FIG. 2. Reduction factors vs dominant coupling strengtha.
Same as Fig. 1, but with the ratio of coupling strengthsb/a de-
creased to 0.667. The dissimilarity betweenqz andqx increases. The
ratio of coupling strengthsb/a is maintained a constant, 0.8.
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Ksad = s− 1dsadlsEdo
b

s− 1dsbdWSa E E

b E E
Dkxb

2l. s30d

In the octahedral or dihedral groupss−1dsad is −1 for a=A2

and 1 otherwise.lsEd=2 is the dimension of theE represen-
tation. kxb

2l is the weight of the nuclear component having
theb representation in the vibronic state. The above formula
is to be compared to the expression in Eq.(4.7.5) shown in
Ref. 4, whose derivation is based on the Wigner-Eckart theo-
rem, and to the corresponding expression for triplets in Ref.
31.

Using Eq.(30) and Table D3.3 in Ref. 24, one arrives at
the following expressions for the reduction factor in dihedral
symmetry:

KsA1d = 1 = kxA1

2 l + kxA2

2 l + kxB1

2 l + kxB2

2 l, s31d

KsA2d = p = kxA1

2 l + kxA2

2 l − kxB1

2 l − kxB2

2 l, s32d

KsB2d = qz = kxA1

2 l − kxA2

2 l − kxB1

2 l + kxB2

2 l, s33d

KsB1d = qx = kxA1

2 l − kxA2

2 l + kxB1

2 l − kxB2

2 l, s34d

KsEd = 0. s35d

One notices immediately thatKsB2d=qzÞqx=KsB1d, as
shown by the computed results in Figs. 1 and 2. Similarly,
upon adding up the first two lines and the last two lines
separately and subtracting the sums from each other, one
obtains

p − sqx + qz − 1d = 4kxA2

2 l. s36d

This is similar to Eq. 4.7.14 in Ref. 4 obtained inO symme-
try. The right-hand member is non-negative. However, for
what are termed in Ref. 4 “ideal cases,” the right-hand side is
zero and one recaptures Eq.(28), as also found in our com-
putation. Nonideal cases are systems with coupling to more
than one pair of modes,32 and others.33,34

C. Diagonalization within the vibronic doublet

Two cases are of interest here. First, when the vibrational
energies of the modes in Eq.(4) are finite (this excludes
acoustic modes in a solid), and the external fields are weaker

than the vibrational energiesuVW u!vn (all n). Then the ad-
mixture by the external fields of higher vibronic states can be
neglected and one can work within the ground-state vibronic
doublet. This is carried out here.

Secondly, when the external field components are periodic

with a period 2p /v f that is long, in the sense ofv f ! uVW u, so
that during a period the system will stay in the lowest vi-
bronic state(the adiabatic theorem).17,18Then, again, one can
work solely within a ground vibronic state. This case will be
treated in a future work.

In terms of the reduction factors, the external field Hamil-
tonian in Eq.(5) changes as follows:

Hel−f =
"

2
VW · sW → "

2
VW v · sv = Hv−f , s37d

where

VW v = sqxVx,p Vy,qzVzd s38d

andsv
W are 232 Pauli matrices defined in the function space

of the vibronic doublet.
The constant interaction HamiltonianHv−f has to be di-

agonalized between degenerate eigenstates ofHv in Eq. (7).
The diagonalization splits the states by an amount of

2D = 2"uVW vu = 2"Rv s39d

and selects the following two linear combinations of theu
ande states:

ull = − sin
uv

2
e−i

fv
2 uuj + cos

uv

2
ei

fv
2 uej, s40d

uul = cos
uv

2
e−i

fv
2 uuj + sin

uv

2
ei

fv
2 uej, s41d

where we have defined two angles involving the three vi-
bronic reduction factors and the three components of the
field, through the expressions

uv = arctan
fsqx Vxd2 + sp Vyd2g1/2

qzVz
s42d

and

fv = arctan
p Vy

qx Vx
. s43d

[The reason for the notation is thatsRv ,uv ,fvd make up the
spherical coordinate representation of the “reduced” field

vectorVW v in Eq. (38).] ull anduul are, respectively, the lower
and upper split states of the doublet, but forVz,0 one has to
take the branch betweenp /2 andp in the inverse tangentuv.

1. A counterintuitive effect of the off-diagonal coupling on the
energy splitting

For any given strength of the diagonal coupling, as the
off-diagonal coupling increases,qz decreases. This is seen by
comparing in Fig. 3 the three curves depictingqz (computed
with a.b, so that the diagonal coupling is dominant), in
which the curves decrease as the off-diagonal coupling
strength increases. This behavior is unexpected for the fol-
lowing reason: WhenVx=Vz=0, the splitting of the vibronic
doublet components is, as we have just seen in Eq.(39),
2uqzVzu. Here Vz is a constant, while the multiplierqz is a
function of the coupling strength parameters. However, the
often-quoted phenomenon known as the “repulsion of neigh-
boring energy levels by interaction between them” would
seem to require thatqz shouldgrow as the off-diagonal cou-
pling increases, so as to make the splitting wider. This does
not happen, and the reason is that the off-diagonal coupling
bnqn is not just a constant(a “magnitude”), but has a dynami-
cal character.(We have purposely chosen forb low values, to
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show that the result shown here is not a high-order effect in
b. We also recall some related discussion in the literature that
lay the claim that the repulsion between levels need to hap-
pen only when the set of states is complete.)

V. APPLICATION TO SOME LOW-DIMENSIONAL
SYSTEMS

A. Introductory remarks

A number of organic hydrocarbon molecules or radical
ions provide instances for a doublet interacting with two in-
dependent modes. Investigations of their stereochemical
properties(that is, their possible configurations) in either the
ground or excited states have been lucidly summarized by
Bersuker,35 giving also extensive references.

When the molecules belong to a dihedral symmetry
group, they can be subject to linear couplings by two types
of nontotally symmetric nuclear displacement modes. When
these are of unequal strength, the adiabatic potential surface
will have two minima along the dominant coordinate and
two saddle points along the nondominant one.[Couplings
quadratic or of higher order in the mode coordinates(not
considered in this paper and also not of paramount impor-
tance in many hydrocarbons) can turn the saddle points into
minima.30] Further distortions from these simple configura-
tions are also possible.35,36 Typical energy differences be-
tween alternative configurations are of the order of 2.5 kK,
which are also the values in these systems for the Jahn-Teller
(or stabilization) energies that are relevant to the consider-
ations in this paper. Transitions between minima take place
typically across the saddle point(a “transition state”); this is
discussed for the cyclobutane radical cationsC4H8

·+d in Ref.
37, see Fig. 4.

The activation energies for the transitions are estimated in
the same source as perhaps 1 kK, possibly dropping below
0.5 kK. With dynamic processes included, as in the present
paper, the “transition” is of course an ingredient of the
ground-state wave function,(also termed “tunneling”) and
does not represent a real process. Exceptions are when the
molecule is embedded in a matrix with a lower symmetry
than the nominal one. Then the molecule may be forced into
one of the minima, from which it can make a real transition

to other minima. A further instance of real transition is a
thermally activated one. The two states obtained in the last
section,[Eqs.(40) and(41)] can be the basis for calculating
transition rates but, typically, in a thermally activated process
one includes states higher than the ground doublet and their
inclusion is outside our concern here.

Molecular data(like potential energy surfaces) have been
calculated for the cyclobutane radical cation in Ref. 37, for
the cyclobutadienesC4H4d radical cation in,36 and for radical
cations of several cycloalkanes in Ref. 38. We cite Ref. 35
for other systems. Calculated results tend to be very sensitive
to the level of the computational effort(and this sensitivity
also includes the order of relative stability among different
configurations). In particular, single determinant wave func-
tions appear to be unreliable.

ESR experiments have the capability of throwing light on
dynamic effects, which we have studied here. Experimental
determination of the vibronic reduction factorssqx,p,qzd
from the observedg factors in the spectra are unfortunately
unlikely, due to covalency effects and the small spin-orbit
coupling in these cyclic compounds(this is unlike the tran-
sition ion compounds12,28). However, the behavior of the pro-
ton hyperfine lines in hydrocarbons can give a clue to dy-
namic processes and, especially, to their coalescence and
narrowing as the temperature is raised.38,39

B. ESR in the cyclobutane radical cation

In particular, we wish to apply the present theory to the
hyperfine lines of C4H8

·+ in a solid matrix, which are ob-

FIG. 3. Dependence of the diagonal reduction factorqz on the
off-diagonal coupling strengthb. Reading the curves(here plotted
against the dimensionless diagonal coupling strengtha) from above
to below, these were plotted forbs,ad=0.2,0.5,0.8

FIG. 4. Distortions and states of the cyclobutane radical cation
sC4H8

·+d. The upper part shows two possible distorted configurations
of the frame of the four carbon atoms. Experiments favor theB
configurationsC2vd. The puckered form of this configuration(two
carbon atoms above the paper and two below) is not shown; neither
are the positions of the eight protons(also outside the plane of the
paper). The lower part shows the splitting of the energy levels of the
highest lying partly occupied doubly degeneratee state after distor-
tion, as well as the shapes of the orbitals. Three spinning electrons
are placed in the levels. The three-electron, product state is labeled
in the text asu, while the state in whichb2 is doubly occupied and
b1 singly occupied is labellede. Note that the electron densities on
two-two carbon atoms differ inB, but are the same inA. [With
permission, after Ref. 39. Copyright(1983) American Chemical
Society.]
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served and discussed by the authors of Ref. 39. Their mea-
surement of the electron spin resonance absorption at and
above 77 K gave fairly equidistant nine-line spectra, which
are indicative of electron-nuclear interaction witheight
equivalent protons. On the other hand, low temperature ob-
servations at 4.2 K showed hyperfine lines withdifferent
separations. The observed separations are consistent with
nonequivalent coupling to the four pairs of protons. This
nonequivalence can be understood if one has a puckered
molecule in which the four carbon atoms have undergone
further distortion fromD2d to C2v. This entails ab2 distortion
mode leading to a rhombuslike structure, as illustrated in Fig.
4. In our terminology, for the coupling coefficients this im-
plies thatuau. ubu.

Part of the nonequivalence among the proton pairs may
well disappear at higher temperatures, either by the flattening
of the puckered molecule or by thermal averaging between
alternative nonplanar forms(assuming a softening of the bar-
rier in the matrix at the higher temperatures). However, the
remaining distinctness between two pairs of carbons(lo-
cated, respectively, on the blunt and the sharp angle apexes
of the rhombus) cannot be fitted to the high-temperature iso-
tropic spectra. It has been suggested in Ref. 39, that the
dynamic Jahn-Teller effect is capable of removing this non-
equivalence.

Since the quasiclassical theory enables one to quantita-
tively evaluate the extent of the “democratization” of the
carbon atoms, we shall now provide some numerical esti-
mates for this.

1. Electron densities

The effects of Jahn-Teller distortions and of the motions
between them on the hyperfine structure have been clearly
formulated in Refs. 40 and 41 and amply reviewed in Ref.
42, so that we do not have to repeat the theory. In essence,
what one sees is the proton-nuclear spin interacting with the
electronic spin density on the carbons. For either of the car-
bon pairs,C1 andC3 on the sharp angled apexes andC2 and
C4 on the blunt angled apexes, the spin density will differ in
the zu andze electronic states in Eq.(1). The density differ-
ence of the two states will express itself in the spectrum in an
opposite manner.

On the other hand, the nuclear function cofactor ofzu and
ze in the vibronic state will regulate the relative weights of
these electronic states in the vibronic state. We are now look-
ing for the average weights of these electronic states. They
are clearly given by the expectation values of the projection
operatorsPu and Pe in the vibronic state. These electronic
projection operators can be written as

Pu/e =
1

2
sI ± szd. s44d

Suppose now that the host matrix of the cation radical stabi-
lizes thezu electronic state in preference to theze state. This
stabilization can come about by having the following exter-
nal field parameters:Vx=Vy=0 andVz=−uV0u,0, leading
to

Hel−f = −
"

2
uV0usz s45d

[Cf. Eq. (5)]. In the absence of any coupling to the nuclear
motion, the pure electroniczu state is stabilized. This state
leads clearly to nonequivalent couplings, whereas equiva-
lence is regained only for states in whichzu and ze appear
with equal weight.

Let us now turn on the coupling to the nuclear coordi-
nates. By the results in Sec. IV B, the lower energy solution
is Eq. (40). Since, with our choice of the external fields, the
angle uv=p, this solution is simply the vibronic stateuuj
shown in Eq.(15). We can now evaluate the expectation
values of the electron projector operators in this state by
using the definitions of the reduction factorqz in Eq. (24).
We get

huuPuuuj =
1

2
s1 + qzdand huuPeuuj =

1

2
s1 − qzd. s46d

What happens in the dynamic case? Remarkably, even here
one does not achieve the extent of uniformity in the spin
density, which is achieved in the high symmetry case(e.g.,
O) for which qz=0.5, since, as seen in Figs. 1 and 2,qz
decreases only slightly below 1, so that the difference be-
tween the two projectors will still remain.[Of course, this
comes about because of the dominance of the(rhombic) b2
distortion over the vyingb1 distortional mode.] The end re-
sult is that under realistic conditions that the(rhombus-
inducing) b2 coupling is significantly stronger than the
(rectangle-making) b1 mode, the DJTE cannot make the two
pairs of carbons equivalent, or the spectrum equidistant. For
this to happen(at some elevated temperature), either the ex-
ternal splitting fieldV0 must be lowered, or fast jumps be-
tween the two vibronic eigenstatesuuj and uej or to higher
lying vibronic states will have to occur.(“Fast” means
shorter than 10−7 s, the hyperfine coupling time scale.)

2. Dynamic effects on hyperfine lines

A numerical estimate for theqz factor confirms this con-
clusion. We have first estimated the coupling strengths for
two coupling modes in the cyclobutane radical cation from
computed stabilization energies in the rectangular and rhom-
bic configurations, shown in Fig. 7 of Ref. 37. The values
obtained from the UMP2/6-31G*//UHF/6-31G* variational
method were adopted, since this places the rhombic configu-
ration below the rectangular one, as is observed. The com-
puted stabilization energies relative to the square configura-
tions are 6600 cm−1 (for the rectangular shape) and
7250 cm−1 (for the rhombic form). Taking the experimental
wave numbers in cyclobutane observed by Ref. 43 for the
modes: namely, 926 cm−1 in the C−C stretchingsb1d and
1001 cm−1 in theCCC angle bendingsb2d modes, we obtain
for the dimensionless coupling strengths:

ab2
= 7.611, bb1

= 7.551. s47d

We note that these values are close to each other.
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From our expression for the vibronic wave function and a
simple quadrature, we obtain for these values a reduction
factor

qz = 0.999 998, s48d

that is, near enough unity, thus excluding the attainment of
equidistant spectra by a pure dynamic mechanism alone.
Phrased alternatively, the relevant matrix elements of the re-
laxation matrix are proportional to the overlaps between
Gaussian wave functions localized around different minima.
These are greatly reduced by the strong vibronic coupling.44

We recall that inO symmetry, when the two coupling
strengthsuau and ubu are precisely identical, so thatqz=qx
=q, for strong linear coupling these reduction factors ap-
proach 1/2, which indeed halves the difference betweenu
and e occupancies. InD2d symmetry, when the coupling
strengthsa and b are different and large@1, the tunneling
between different stabilized wells is negligible.

VI. SUMMARY AND OUTLOOK

We have tackled(fully, though not exactly) the time-
independent quantum mechanics of a pair of isolated elec-
tronic states, and this under rather general conditions:
Namely, the states are subject to interaction both with static
external fields and with a dynamic surrounding, the latter in
the linear approximation. Our nonperturbational treatment
was made possible(a) by having a closed solution(the qua-
siclassical vibronic wave function) for the part expressing the
coupling between the electron and its dynamical surround-
ing, and(b) by inverting the usual order of solution through
taking step(a) first and including the external field later.
Thereby, the dynamically coupled states maintain convenient
symmetry-group properties in the(Hilbert) function space;
the external forces are subsequently treated within this
framework. Their strength is, however, modified(“renormal-

ized”) by “vibronic” reduction factors. The use of these fac-
tors in a nonperturbational way is yet another new feature of
this approach.

Branching out from the present treatment carried through
for two states, one can similarly tackle problems with inter-
actions affecting three arbitrary electronic states, as well as
any chosen number of states. By extension of the approach
worked out in this work and shown in Eq.(11), one finds in
these cases also that the wave-function generator, the gener-

alization of Ĉ, is of a closed form. This consists of a finite
number of terms, each with a given symmetry. Precisely, the
generators(matrices) correspond to all representations of the
symmetric product of the electronic multiplet in its reference
group. Thus, recalling the results in this paper, for a doublet
we havethreematrices[those appearing in Eq.(13)]. (These
three matrices are recognized as representatives inO of the
symmetric product of theE representation, namely,A1 and
E.) In a similar manner, for an electronic triplet one hassix
matrices: namely, the identity matrix, three angular momen-
tum matrices, and two more traceless matrices. All these
make up the generator wave function, and likewise, for any
larger number of states. Algebraic relations connect the func-
tions belonging to these relations, determining which rela-
tions have to be solved simultaneously.(The point of these
remarks is to assert that the doublet is not a fluke case, but
rather a special, though by far the simplest, case of multiple
electronic states in interaction with their surroundings.)

In conclusion, we restate that the major restrictions on the
applicability of this work and of its possible extensions are
the validity of regarding a finite number of states in isolation
and the linear approximation.
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