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We treat a systerta molecule or a solidin which electrons are coupled linearly to any number and type of
harmonic oscillators and which is further subject to external forces of arbitrary symmetry. With the treatment
restricted to the lowest pair of electronic states, approximate “vibrofvitfration-electronig ground-state
wave functions are constructed having the form of simple, closed expressions. The basis of the method is to
regard electronic density operators as classical variables. It extends an earlier “guessed solution,” devised for
the dynamical Jahn-Teller effect in cubic symmetry, to situations having I¢evgr, dihedrgl symmetry or
having no symmetry at all. While the proposed solution is expected to be quite close to the exact one, its formal
simplicity allows straightforward calculations of several interesting quantities, like energies and vibronic re-
duction(or Ham) factors. We calculate for dihedral symmetry two differgrfactors(“q,” and “g,”) and ap
factor. In simplified situations we obtap=q,+q,— 1. The formalism enables quantitative estimates to be made
for the dynamical narrowing of hyperfine lines in the observed electron spin resonance spectrum of the dihedral
cyclobutane radical cation.
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I. HISTORICAL BACKGROUND AND AIMS two-state interactions with bosornsvhich may either be
For the so-calledE®e Jahn-Teller casdinvolving an ~ Phonons_or photonshas very extensive literature written
electron-nuclei system, in which a doubly degenerate eIe(,"E‘b_OUt it. The sp|r_1-boson I—_Iamlltoman that form_s th_e starting
tronic state is coupled to a doubly degenerate nuclear digCint of Ref. 14 is a special case of the Hamiltonian intro-
placement modethe wave function was fully obtained as duced in this paper. Likewise, sever_al books contain ac-
long ago as 195¥2 The physical object of reference is com- counts of the related Jaynes-Cummings mettidfl. The

monly a molecule of some high symmetisay, one belong- present work also belongs to this field, but is restricted to a
ing to the cubic group, lik®), or a localized impurity in a P&l of ground-level states. Even with this restriction, the
solid. The solution(or’set of, solutions to this “dynamic closed solution that we present here can find its uses in treat-

” : : ing the energy dissipation of a spin syst&m.
Jahn-Teller effect’(DJTE) are the vibronic states. Though gThe han d%)rqg of epxternal pertuﬁbatiéxﬁter taking care of
this has received, as just noted, a full treatment early ony,

. . . e electron-nuclear interaction is a potential tool to tackle
subsequent efforts to give simple approximate treatments Berry phases in open systeris® We would also recall a

to provide additional insight into the dynamic problem havegcent work on the Jahn-Teller effect in lower than cubic
been numerous. Descriptions of some of the early works argymmetry, which is less general than the present one, but has
found in two books:* Notaple are the treatments |n'Ref's. permitted us to check some of our results numericdllyhe

5-9; the most recent publication known to us, which in-reduced symmetry cagaamed “the elliptic form” to differ-
volves a variational approach to this problem is in Ref. 10. entiate it from the circular energy trough i e) was stud-

To lead us into the present work we recall a “guesseded previously in Ref. 20. We calculate the experimentally
solution” for the ground state of the linear Jahn-Teller effectimportant reduction factors for the low symmetry c&Sec.
suggested by one of the present authors and collaboratons/ A) having pointed outat the end of Sec. Ill Pthat, when
which is transparent, intuitively simple, and algebraicallythe electron-nuclear coupling is strong, one meets broken
easily manageable. This proposal was originally worked ousymmetry instabilities.
for a molecule of cubic symmetry that had a single set of The formalism, initially formulated in very general terms,
interacting normal mode'$:123Though not variationally ob- is gradually shifted to more specific situations, such as sys-
tained, the guessed solution was found to have energies thtgtms of cubic and of lowete.g., dihedral symmetries, and
are considerably closer to the exact, computed energies & systems with two(rather than an arbitrary number)of
Ref. 2 than the other approximate solutions with which itvibrational modes and, ultimately, to a specific molecular
was compared. This comparison is seen in Fig. 2 of Ref. 13system. In this last, the formalism and the numerical results
Later treatments did not test their methods by comparisoifor the reduction factors lead to quantitative conclusions for
with the guessed solution, though a critical review can bghe dynamical narrowing of hyperfine lines in the observed
found in Sec. 4.5.3 of Ref. 4. electron spin resonang&SR spectrum of the dihedral cy-

The present work is an extension of the earlier approaciglobutane radical cation. This is the subject of Sec. V B.
to a substantially broader and harder problem, namely to a
pair of electronic states in unrestricted symmetry and subject
to interaction with an arbitrary number of nuclear displace- We now write down a Hamiltonian for a pair édiabatic,
ment modes, but only in a linear manner. The subject obr nuclear coordinate independgatectronic states, denoted

Il. A GENERAL HAMILTONIAN
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by the symbols{, and {.. The states are understood to be state representations does not contain the representation of
functions of any number of electronic coordinates, e.g., althe o, matrix. When the two states are a Kramers doublet,
the electrons in an atom or a molecule, but this functionathe situation becomes more complex, since in a low-order
dependence is absent in the formalism as long as the behaperturbation the coefficients, and b, vanish, unless some

ior of the doublet states alone is under consideration. A twofurther effectglike crystal field, spin-orbit interaction, exter-

state situation can come about for an atom that is placed in gg| magnetic field$l, spin-spin couplingare included in the
strongly coupled environment, such that this separates thgerturbational calculation of these coefficients. Working out
doublet from the rest of the electronic manifold, or for athe spin-lattice coupling for a Kramers doubl@n a six
molecule in which the internal, intramolecular forces achieveggordinatedCu?*) Stoneham gave symmetry argumeits
the same effect. The two states need not be degenerate but,{p |ast equation &%) to show that, for botta, andb, to be
order that it should be legitimate to consider them separatelyonzero, botrH, and H, need to be non-vanishingvhile
they must be, in some sense, isolated from the rest of the =0). This corresponds to the form shown in the above
electronic statege.g., either by symmetry consideration or equation(where the coefficients would be magnetic field de-
by a large energy gaplf so, then the “two-level-the rest” pendeny. If, on the other hand, is also nonvanishing, then
matrix elements of all interactions can be neglected to somgyr 3 Kramers doublet a term wittr, will also be present.
approximation. This is the physical setting for the formalismsince this term is absent in orbitally two-state systems, we
that follows. It leads naturally to the representation of thegyg not complicate the formalism by adding thg term.

electronic states as the column vectors One also has to consider the electron being acted upon by
1\ /0 external fields(The interaction of the external field on the
(L9l = (O)(l) (1)  nucleus is supposed to be contained in the potential of the

nuclear coordinatesIn the preceding vector representation
The electronic states are coupled to any number of nucle&f the two states, any interaction Hamiltoni@hat expresses
displacements coordinateg,(n=1,...N). We assume that the coupling between the electron and any external )field
these are organized into a set of normal modes brought to @ust have the form

standard forni.e., having the same effective massd re- P

strict the coupling to be of no higher order than linear in the Heri=2Q -0 (5
displacement coordinates. Thus, one has for the displacement 2
coordinates the following harmonic-oscillator Hamiltonian: with the representative of the field@z(QX,Qy,Qz) inside

N ﬁwn( P ) the two-level system being constaimdependent of the val-

Hnue= > 5 \ 7 o2 + qﬁ (2 ues of the electronic or of the nuclear variabldhis being
n=1 Jq .
the most general form of expression for the system. In Sec.
wheret o, are the quanta of vibrational energies. In the two-1V, which discusses the effect of external forces, we give
state representation the nuclear Hamiltonian is written as 8xamples for the interaction. .
scalar or, equivalently, ad,,. times the 2<2 unit matrix|. ~ Any difference between the two-state energies can be con-
The remainder of the Hermitian representation matricegidered to be part df}, so that, until we come to the subject
for the two level system are the familiar Pauli matrices of the external fields in Sec. IV, the states can be considered
, as a pair ofdegenerataloublets. However, the rest ©OF, (as
> 0 1)(0 -i)(1 O well as(), and(),) comes from externally applied sources
7= (0y,0y.07) = , , NE) x anall, y :

n

1 0/\i O 0 -1 The total HamiltonianH,,; is the sum of the previous
: . THamiItonians
In terms of these we can write out a general linear form o
interaction between the electronic motion and ifneal) Hiot = (Eg + Hpud! + Helnue ™ Helt (6)
nmue(ilrvil)a,lra(;oordmateen the absence of any molecular sym to which has been added a scalar term viathrepresenting
the mean energy of the noninteracting stat@he spin-
N fo, boson Hamiltonian which forms the basis of Ref. 14 is ob-
Hel-nue= = > > (8n0noz *+ bnGnoy), (4 tained from Egs(4) and (5) upon puttinga,# 0, b,=0, Q,
=1 #0# €y, 0,=0]

in which (the dimensionlegsa, andb, express the strength ~ The treatment oH,,_; will be postponed until later. In its
of interaction between the electrons and the nuclear motioabsence, we have a pure “vibroni@/ibrational-electronig
in the n mode. [A detailed discussion of the linear many situation, which we will now treat.

mode interaction in a symmetrical setting is found in Sec.

3.5.3 of Ref. 4. In Eq(4) frequency changes between the I1l. VIBRONIC DOUBLET
two states are ignored to be consistent with a purely linear o
coupling] The Hamiltonian
gy is absent in the above interaction Hamiltonian, as also H, = Hyuet Hopnue 7)

in several previous works® When the states of the two-
level system are orbital states, then, for all molecular poininvolving (partially) the electronic and nuclear degrees of
groups considered in this work, the symmetric product of threedom will be the subject of our investigation in this sec-
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tion. We first show that solutions of the partial Hamiltonian =~ The mathematical meaning of the exponential form in Eq.
form a degenerate doubléwith the understanding that the (11) is that one has to expand the exponential in a power

energy difference between the two states is shifted to thgeries of the exponent. Remarkable in the posﬁge'd; that

external field pajt the individual frequencies do not appear ifjitst as they do
not in the wave function of a set of uncoupled oscillators,
A. State degeneracy when expressed in a standard forr@f course, the energy
The following nonidentity transformation leaves the €xpectation value depends on the frequencies, since the
above Hamiltonian invariant: Hamiltonian does and so do, implicitly, the dimensionless
coupling constants,, andb,,.
T=[A][Pyl, (8) The success of the method hinges on the fact that it is

possible to sum the power series exactly, in spite of the non-
commuting terms in the exponent. This is made possible by
the property of the two-dimensional spifaul) matrices,

where A, stands for the following simultaneous changes in

the electronic state§y)— (%) and (})—(y) and P, is the

parity operator for all mode coordinates, namely,

that

Pg@n=—0n=1,...N. (9) 0\0; + 00, = 25, (12)
The transformationd, can be achieved by the unitary matrix \ynere 8; is the Kronecker delta. Using this property, one
oy- But, clearly, readily obtains the simplified expression

2= N
77=1 (10 - e(q) En:l (022,00 + 03040l €0

so that, simultaneously with any eigenvalue of the Hamil- ¥ =//| | cosh > + ) sinh=>= |
tonianH,, 7 has an eigenvalue +1 corresponding to a state
unchanged under th& transformation and another eigen- (13

value -1, 'ghat correqunds (another,'differer)tstate thgt ‘with A being another normalizing factor. In the argument of
changes sign under this transformation. The conclusion ig,q hyperbolic functions one has

that the vibronic Hamiltonian has doubly degenerate eigen-
states. This degeneracy is lifted, when field interaction term N 2 2

N
He¢ is inserted, as we shall see. ed) = 2 qa,| + E g.b (14)
n n-n :
n=1 n=1

B. The quasiclassical ground state

Based mainly on the numerical agreement of the energie$ Must be stressed again that the resulting quasiclassical
underO symmetry, noted in the opening section, we extendVave function is only an approximation, whose accuracy de-
here the method of Refs. 3 and 12 to the general case undBfnds on how well the Pauli matrices can be approximated

study, that is, we propose the following form for the ground-PY ¢ numbers. This will be the case when, e.g., one of the
state wave function potential wells is deep, since then the energy of the state will

be dominated by the electron occupancy near the minimum.

R 10 a, b, \? On the other hand, when the frequencies of the different
V=Nexp - 52 <Qn| ~ 502 EUX) , (11  oscillators differ markedly, the quasiclassical approximation

n=1 could be in error, since then, e.g., the positions of the saddle

where\” is a normalizing factor. The wave-function genera-Points in the potential may not coincide with the maxima in
tor W is a matrix (or operatoy. It possesses the fulla,) the overlap of wave functlon§ coming from different poten-

. . P tial wells. A scale transformation applied to each well, in the
symmetry of the Hamiltonian. Therefore, operating With  form proposed in Refs. 10, 21, and 22 for cases of higher
on an electronic component with some symmetry will gen-gegeneracies than two and with modes of various dimension-
erate a state with the symmetry of the component. In order tgjities, could lead to improvements in the wave function, but
get the probability amplitudes in the two electronic states ofequires a formalism that is more complex than the one ad-
Eq. (1), one has to left operate with on the basic vectors or vocated here.
on any linear combination of them, as will be shortly de- ) )
scribed. The prescriptiofand the underlying rationaldor C. Some elementary symmetry considerations
the proposed construction is to regard the Pauli matrices As already emphasized, there need not be any relation
(which are the electronic density operajoes ¢ numbers. (symmetry based or otherwisbetween the two states and
Having done this, we write down the ground-state waveamong the nuclear coordinates for the foregoing formalism
function in the form of a set of displaced independent vibrato hold. However, if the system has some symmetry proper-
tional coordinates. The initial handling gqfjuantum me- ties (or we choose to relate it to a symmetric framework
chanica) matrices in the manner afnumbers has suggested things become at the same time clearer, more systematic, and
naming the method “quasiclassical.” However, the modes armore familiar.

now no longer independent: Thus, the mom@ng., the ex- We therefore formulate the foregoing in a symmetry set-
pectation value or the spreadf any mode depends on the ting and employ implicitly the theory of point molecular or
coupling constants of the other modes. point groups.
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1. Cubic symmetry 2. Dihedral symmetry

In a system which nominally belongs to a cubic symmetry In a lower symmetry situation, likB,q4, the doublet state
group (like O), the two electronic states could belong to acould belong to the doubly degener&teepresentation, with
doubly degeneratE representation, whose two componentscomponents designated fy, €), as before. The, coeffi-
are designated in Ref. 24 d9,¢). This designation was cients are nonzero for modes possesdipgsymmetry and
already used by us above in Ed). We have chosen these the b, coefficients belong td; symmetry types. However,
symbols in preference to others, such as those in Ref. 28his time (unlike for O symmetry there are no symmetry-
because we shall later use the so-calgeaoefficients and based relationships betweais andb’s. The operatoX still
these were tabulated for the symmetry groups of interest ipossesses fullA;) symmetry. This can best be seen in the
Ref. 24 using the present symbolism. In the expression, Edorm given in Eq.(13). Here the first term is clearly invariant
(4), for the coupling to the nuclear motion coordinatgsthe  under all group operationsince the squares of these are the
coefficientsa, are nonzero for modes belonging to tlle identity operator and the second term is also invariant be-
representatives of a twofold mode andb, are nonzero for cause it has the symmetry of the Hamiltonian. Therefore op-
modes belonging to the component of ae-mode, with the grating withd on an electronic component with some sym-

two coefficients bging numerically pairwise equal. This is, Ofmetry, will again give a state with the symmetry of the
course, the multimodeE® (e;+e,+---+ey,) Jahn-Teller

O . ; - component.
situation, described in detail in Refs. 3 and 4.
¥ in Eq. (11) generates vibronic wave function in the D. Energies and other expectation values in dihedral
following way. When it is let to operate di}), one obtains symmetry
the 6 component of the ground-state vibronic doulglatthe The advantage of the quasiclassical form is that the ex-

presoent quasiclassical approximaioif it is let to operate  pectation values of numbers or of operators can be calcu-
on (1), one obtains the component of the same. For future |ated using the explicit form of the states just giveA.re-
use we write theseibronic wave-function components in a cent calculation of the expectation value of an angular

curly ket form, as momentumoperatoris in Ref. 26) As already noted in the
opening section, these expectation values have proven to be

- (1) ~(0) very accurate for the single mode cas&®isymmetry, where
v o/~ 6 W, )=le (15 comparison was made with the exact, computed results that

R were available. One can carry out similar calculations for

If, instead, one operates witlr on the two orthogonal several modes in any dihedral group, like onébgfsymme-
linear combinationg1/,/(2))(%,), one reaches a pair of other try (as well as in other dihedral groups, lik&, D,q, €tc).
vibronic states, preferentially localized in a different part of Actual results will not be given here for several modes, since
the coordinate space than the ones in Bd). (These vi- these will depend on details of the systef8ome relevant
bronic states have properties similar to polaronic stategnolecular systems will be considered in Seo. V.
which term is in use for a single electronic state. A sporadic comparison has been made with results of a

If, alternatively, one operates on the following complex recent papet? This paper showed graphs of eigenenergies of
combinations of the electronic states,12(), one obtains the(degeneratevibronic ground computed exactipy a nu-
vibronic states that have values of +1 and -1 of a “composMerical methogl as well as with several approximation
ite” vibrational angular momenta, this being defined in termsSchemes. We compare the energy expectation values com-

of the composite vibrational angle variable, given by puted within our quasiclas_sical app_roach with theirs, at val-
ues of parameters for which the discrepancies between the

exact and approximate values appear to be largest. This is the

N
_ En':l By e region where neither perturbation theomyeak coupling,
@ = arctan SV aq (16)  nor asymptotic formulgvery strong couplingholds. Relat-
ne1 &nln ing to Figs. 3a) and 3b) in Ref. 19 and to parameter values

a=2,b=1.5(equal tox=0.5,x=0.75 in the symbols of Ref.
Clearly, although the vibrational modes were originally inde-19), their exact eigenenergy i§=-0.167 25. We compare
pendent, the resulting angular variable is not the sum of théhis to —0.15075 obtained by our method, which is higlzer
mode angular variables, like it should be for a nonexact expectation valiey 0.0165.

This discrepancy is worse than thest approximation in

g N Ref. 19, rather better than the next bésbtained variation-
B O ally), and considerably better than three others. Testing addi-
®= m2:1 EN arctani(not trug). (17) tionally our quasiclassical approximation against the exact

m=5+1 results exhibited in the Figs(@ and 4b) of the above ref-

erence, fora=2y2, b=1.5/2 (©=1.0,x=0.79, the exact
This is, of course, due to the coupling of the modes to thevalue isE=-1.172 95, with which we can compare our value
electronic degree of freedom. A pair of states in any of theof —=1.133 70, or a discrepancy of 0.039 25. This is some-
combinations are energy degenerate and mutually orthogavhat worse than the first and second best approximations of
nal. Ref. 19.
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In summary, it seems that the intuitive, quasiclassicakouplings or thermal fluctuations; still as a model it is in-
method can answer most practical needs for energy valuestructive and can prove to be helpful for extensions to more
One would expect at least semiquantitative guidance forealistic cases.
other numerical quantities, when derived from the quasiclas-
sical model. The next section contains some such quantities. IV. EXTERNAL FIELDS

It is also of interest to consider the limiting case of very
strong electron-vibrational coupling. This comes about when The form of the interaction, shown in E(), between the
at least some of the coupling strengtigsandb, in Eq. (4)  electronic part and an external figigtpresented bd) is the
are numerically much larger than unityThe opposite ex- consequence of the Hermitian nature of the Hamiltonian, the
treme of zero coupling has for its vibronic ground states thehree matricegoy, oy, o) being the only 2 2 matrices hav-
product of Gaussian states multiplying some linear combinaing this property(apart from the unit matrix, which only

tion of the electronic basic statgs. shifts both states by an equal, constant ampunt
In the strong coupling limit the vibronic ground state is

stabilized by the coupling and again takes the form of a
product of vibrational and electronic factors. The form of the
latter depends critically on the ratio of two stabilization en- The simplest example is the Zeeman effect on an elec-
ergies. (This result goes back to Opik and Pryce’s classictronic spin, for whichﬁ:ﬂﬁ (with B being the Bohr mag-
paper® Modifications due to higher-order coupling are neton). The effect of a magnetic field, acting within the
treated _in Ref. 3pThe stabilization energie@nalogous to  two states(tyg s tag.,), Which are split off from a &-state
the static Jahn-Teller energdy) are manifold by crystal fields of cubic and tetragonal symme-
tries, would be represented Ify,= constantH,, where the

A. Examples for Q

N
21 2 constant includeg@ and a radial integralsee Ref. 23, Table
ARy, = sglﬁw”(a”) ' (18) I). A uniform stress of the type, acting upon a doubly
degenerate set und€r,,, with z the fourfold axis will be
N expressed by),. An applied variable electric field given by a
1 ) potential V(r)=xyf(|F|), when acting within an electronic
ABp, = gzﬁw”(b“) : (19) pair having the real form)=xg(|r|), [2)=yh(|r|) will yield

where the subscripts, and b; signify the types of the dis- O={1MD)2), 2D
tortion mode inD,y symmetry. The ratio of the two with all other{) components being zero.
In a general way, for a perturbational Hamiltonia

_ AEb2 being an arbitrary function of the coordinates, thenagni-
R= AE, (20 tudes and real and imaginary parts of the matrix elements
! inside the 1,2 manifold are connected by
enters now so that foR>1, the stabilized electronic states 1
are the(d, e) components, shown in E@l), and the stabili- O, =Re(AH); 5 Qy=-IMm(AH);, Q,= 5[(AH)1,1
zation energy isAEbzivhile for R<1, the stabilized elec-
tronic states aré1/4(2))(;) and the stabilization energy is = (AH); 5] (22)

AEy,. (R=11is a coincidental case in dihedral symmetry. Itis  gjnce the interaction ter,, ; leads naturally to consid-
the normal case under cubic symmetry and results in @ consration of the vibronic, or Ham, reduction factéf<® we
tinuum of stable configurations, rather than a single point ini introduce these now.
the multidimensional configuration space for each state.
The transition betweerR<1 and R>1 represents a
change from one broken symmetry type to another. The sub-
ject of broken symmetries is, of course, an important issue One starts with some coupling affecting the electrons.
for macroscopic systems and also for the observed inhomaA/ithin the two-state manifold, this can be expressed in terms
geneous state of the universe. In these cases each stabilizd-matrix elements between the diabatic states. The question
tion energy is large on a characteristic quantum s@alea  is how do these matrix elements change, when the two states
macroscopic or in an astronomical mannéfet, it is a tiny  are no longer purely electronic, but rather vibrotgoupled
difference between the stabilization energies that tips the baklectronic-vibrationglstates? The answer, given in a context
ance between different types of broken symmetry. Thissimilar to the present one and originally due to H&ris a
means that if, in the neighborhood of a situation where theeduction in the strength of the original coupling by factors
stabilization energies are the same, the coupling constantsiginally denoted byg and p (that are 1 in the absence of
are made varied, then changes in the macroscopic symmetwbrational coupling and less than 1 in their presgntbese
and energy can come about by microscopic caudéss is  reduction factors have further been described in Ref. 3 and,
exemplified in our treatment of the cyclobutane radical catat considerable length, in Ref. 4 where references to several
ion in Sec. V B 3 The foregoing treatment is of course very literature sources can be found. Section 4.7 in the bhook
approximate and does not take into account higher-ordecontains an analysis of the reduction factors in term&\of

B. Reduction factors
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Reduction Factors Reduction Factors
1 1

d:z dz
0.8 0.8
0.6 0.6
0.4 0.4

0.2 P < 0.2 P\ &

5 10 15 20 2 2 4 6 8 10 12 14 2

FIG. 1. Reduction factors vs dominant coupling strergtfihe FIG. 2. Reduction factors vs dominant coupling strength
diagonalqg, and the two off-diagonal reduction factaggandp are ~ Same as Fig. 1, but with the ratio of coupling strengtiia de-
shown. Unlike the cubic symmetry case, whegFq,, in the dihe-  creased to 0.667. The dissimilarity betwegrandq, increases. The
dral case shown here the twgpfactors are dissimilar, whil@ re- ratio of coupling strengthb/a is maintained a constant, 0.8.
mains qualitatively similar to that in cubic symmetry.

range. (In cubic symmetry, also for linear coupling, the
coefficients, tables for whicliin both cubic and dihedral singleq factor decreases from unity to one-hpifhe p fac-
groupg can be found in Ref. 24. tor shows a regular behavior.
In the lower symmetry situation under concern h@g., The following further results are of interest, and are ca-
in dihedral symmetry when the coupling strengths in the pable of straightforward interpretation:
diagonal position differ from those in the off-diagonal posi- (@ When(say b becomes very small, there is no “re-
tions, there are three reduction factors. These are here namddction” in q,, which is =1 except in a small range of the
Oy, P, andg,. The formal definitions are in terms of the scalar strengths. In the limit ob=0 one has the simple polaron
product of the vibronic states introduced in E5), in the case, with no off-diagonal interaction.
form (b) When (instead of the cases shown in the figure
= {blorl &) = (el 6}, (23) EeT/ :r’stehde. roles of the two reduction factorg and g, are
This can be justified as follows: Interchangiagandb in
A, ={6lo|6} = ~{e|o] e}, (24) the Hamiltonian of Eq(4) has the effect of interchanging the
) ) operatorsr, ando,. This interconverts, per definition in Eqgs.
p=i{floyle} = -i{e|oy|6}. (25 (23) and (24), q, and q,. Formally, the interchange can be
[On notation: The subscripts of tlgs agree with those of peffgfmed by applying th_e u_nitary transformation matrix
the o matrices; the lettep has been retained in preference to (1/v2)(0x+a7) on the Hamiltonian. o
a possibleig, for historic reasons. In terms of the more re- (¢) The second relation in E¢27), which is expected
cent symbol&(a) used in, e.g., Sec. 4.7.1 of Ref. 4, whare to hold for linear coupling to a single-mode coordinateédn

is a representation of the group, one can identify symmetry, does not in genergl hold for neithpsepgrately,
but holds accurately for their mean. Thus we find, under

A =K(By), 0,=K(By), p=K(Ay), 1=K(Ap. linear by, b, coupling in dihedral symmetries, that our data
(26)  satisfy the new relations

The symbolK(a) will be used later in obtaining formal ex- p=0y+0,— 1. (28)
pressions for the reduction factors. In a higher symmetry
situation(e.g.,0) 9,=0,=q, as shown on page 43 of Ref. 3,
where the ket in Eq(3.38 should be corrected to be an
type] The results of our computations are shown for the
simplified situation that there is a singe and a singleb;
mode coupled to the electrons. When the coupling strengt
are of the same strengta=+b), our results are identical to
those quoted in the literature f@ symmetry. In particular,

(d) Because the vibrational quanta are absent from the
(proposed, quasiclassigalibronic wave functions, they do
not play a role in the reduction factors, as long as the cou-
pling constants are defined in the nondimensional form, in
We way done here.

1. Expressions for the reduction factors in dihedral symmetry

The following expression relates the reduction factors to
the W coefficients,
but when the coupling strength are unequal a remarkable
change occurs, as shown in the accompanying fig(Figs. abc
1 and 3. def/)’
These exhibit the three reduction factors as functions of
increasing strength of the dominant coupling and for twodefined and listed in Ref. 24 for point grou$he definition
different values of the ratib/a. It is apparent that while one of W allows various rearrangements of the symbols, not de-
q factor decreases monotonically to zero, the other dropgiled now)
only slightly below unity and does so for only a limited  For electronic states belonging to a douliet

Ox=0,=0,p=2q- 1(in O symmetry, (27)

(29)
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o> R
><Xk2)> (30) Hel—f = EQ 0 — EQU C0, = Hu—f! (37)

(1@ _non(2EE
K@) =(-1) Mag(l)W&EE

In the octahedral or dihedral groups)@ is -1 fora=A, Where

and 1 otherwise\ (E)=2 is the dimension of thE represen- L
tation. (x2) is the weight of the nuclear component having 0, = (AP 0y, G2 (38)
the b representation in the vibronic state. The above formulaand(;v are 2x 2 Pauli matrices defined in the function space
is to be compared to the expression in E4.7.5 shown in  of the vibronic doublet

Ref. 4, whose derivation is based on the Wigner-Eckart theo- The constant interaction Hamiltonia#, ¢ has to be di-
rem, and to the corresponding expression for triplets in Refagonalized between degenerate eigenstatés;, ah Eq. (7).

31. The diagonalization splits the states by an amount of
Using Eq.(30) and Table D3.3 in Ref. 24, one arrives at R
the following expressions for the reduction factor in dihedral 2A =2h|Q,| = 2AR, (39
symmetry:
y y and selects the following two linear combinations of the
K(A) =1 =<X/2«1> + <Xf\2> + <Xél> + <X§2>, (31) ande states:
Iy sin&e‘i% 6} + cos eiﬂ| } (40)
= - > €y,
K(A)=p=(xa) +(xa) ~(xa) ~(xg), (32 2° ° 2°°
o 2N 2N _y2 2 0. b 0. %
K(By) =0q,= <XA1> <XA2> <XBl> + <X82>a (33 |u> = COSEUG_'7| 6+ sinEve'7|€}, (41)
KBy =0 =(xa) ~ (xa) + (X)) ~ (X8, (34  where we have defined two angles involving the three vi-

bronic reduction factors and the three components of the
field, through the expressions

K(E)=0. (35
QO 2+ QO 27172
One notices immediately thakK(B,)=q,# q,=K(B;), as Hvzarctarg(qx )7+ (P Q)] (42)
shown by the computed results in Figs. 1 and 2. Similarly, 042,
upon adding up the first two lines and the last two linesand
separately and subtracting the sums from each other, one o
obtains ¢, = arctaﬁ—xp . (43
ax Oy

P (G* 0~ 1) = 4xa,)- (36) o
- & [The reason for the notation is th@,, 6,, ¢,) make up the
This is similar to Eq. 4.7.14 in Ref. 4 obtained@symme-  spherical coordinate representation of the “reduced” field
try. The right-hand member is non-negative. However, forvector(), in Eq.(38).] |I) and|u) are, respectively, the lower
what are termed in Ref. 4 “ideal cases,” the right-hand side iaind upper split states of the doublet, butfiy< 0 one has to

zero and one recaptures E@8), as also found in our com- take the branch betweer' 2 and in the inverse tangert,.

putation. Nonideal cases are systems with coupling to more
than one pair of mode®,and others334 1. A counterintuitive effect of the off-diagonal coupling on the

energy splitting

C. Diagonalization within the vibronic doublet For any given strength of the diagonal coupling, as the
a?ff-diagonal coupling increasesg, decreases. This is seen by

Two cases are of interest here. First, when the vibration L omparing in Fig. 3 the three curves depictigcomputed

energies of the modes in E¢4) are finite (this excludes X : S L
acoustic modes in a sohdand the external fields are weaker W'th a>D, so that the diagonal coupling IS dominanin .
which the curves decrease as the off-diagonal coupling

than the vibrational energig$)| <w, (all n). Then the ad-  gyrength increases. This behavior is unexpected for the fol-
mixture by the external fields of higher vibronic states can b‘ffowing reason: Whei), =(),=0, the splitting of the vibronic
neglected and one can work within the ground-state vibronigjgplet components is, as we have just seen in (88),
doublet. This is carried out here. _ 2|g,]. HereQ, is a constant, while the multiplies, is a
Secondly, when the external field components are periodignction of the coupling strength parameters. However, the
with a period 27/ w; that is long, in the sense ef;<|()|, so  often-quoted phenomenon known as the “repulsion of neigh-
that during a period the system will stay in the lowest vi- boring energy levels by interaction between them” would
bronic statethe adiabatic theorey’18Then, again, one can seem to require that, shouldgrow as the off-diagonal cou-
work solely within a ground vibronic state. This case will be pling increases, so as to make the splitting wider. This does

treated in a future work. not happen, and the reason is that the off-diagonal coupling
In terms of the reduction factors, the external field Hamil-b, g, is not just a constarga “magnitude}, but has a dynami-
tonian in Eq.(5) changes as follows: cal charactertWe have purposely chosen foilow values, to
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qz A . B.

8 10 D=0 D2d+Cav
EN

0.98

0.96
0.94
0.92

0.9

0.88

FIG. 3. Dependence of the diagonal reduction factpon the - e
off-diagonal coupling strength. Reading the curveéere plotted
against the dimensionless diagonal coupling streagfhom above
to below, these were plotted ftx<a)=0.2,0.5,0.8

FIG. 4. Distortions and states of the cyclobutane radical cation
show that the result shown here is not a high-order effect ifC,Hy). The upper part shows two possible distorted configurations
b. We also recall some related discussion in the literature thaif the frame of the four carbon atoms. Experiments favor Bhe
lay the claim that the repulsion between levels need to hapsonfiguration(Cy,). The puckered form of this configuratigtwo
pen only when the set of states is complete. carbon atoms above the paper and two bgliswot shown; neither

are the positions of the eight protoaso outside the plane of the
papel. The lower part shows the splitting of the energy levels of the
V. APPLICATION TO SOME LOW-DIMENSIONAL highest lying partly occupied doubly degeneratgtate after distor-
SYSTEMS tion, as well as the shapes of the orbitals. Three spinning electrons
are placed in the levels. The three-electron, product state is labeled
in the text asg, while the state in whictw, is doubly occupied and
A number of organic hydrocarbon molecules or radicalp, singly occupied is labelled. Note that the electron densities on
ions provide instances for a doublet interacting with two in-two-two carbon atoms differ iB, but are the same iA. [With
dependent modes. Investigations of their stereochemicglermission, after Ref. 39. Copyrighit983 American Chemical
propertiegthat is, their possible configurations either the  Society]
ground or excited states have been lucidly summarized b
Bersuker® giving also extensive references.

A. Introductory remarks

Yo other minima. A further instance of real transition is a
When the molecules belong to a dihedral Symmetrythermally activated one. The two states obtained in the last

- ; : ection,[Eqgs.(40) and(41)] can be the basis for calculating
group, they can be subject o linear couplings by two type%‘:Jransition rates but, typically, in a thermally activated process

of nontotally symmetric nuclear displacement modes. Whe'?)ne includes states higher than the ground doublet and their

these are of unequal strength, the adiabatic potential Surfacfﬁclusion is outside our concern here

will have two minima along the dominant coordinate and " ;qjecylar datalike potential energy surfacebave been
two saddle points along the nondominant ofouplings  cajcylated for the cyclobutane radical cation in Ref. 37, for
quadratic or of higher order in the mode coordina®st  the cyclobutadienéC,H,) radical cation irf® and for radical
considered in this paper and also not of paramount imporzations of several cycloalkanes in Ref. 38. We cite Ref. 35
tance in many hydrocarbopsan turn the saddle points into for other systems. Calculated results tend to be very sensitive
minima®’] Further distortions from these simple configura- o the level of the computational effofand this sensitivity
tions are also possibfé:3 Typical energy differences be- also includes the order of relative stability among different
tween alternative configurations are of the order of 2.5 kK,configurations In particular, single determinant wave func-
which are also the values in these systems for the Jahn-Tellgons appear to be unreliable.
(or stabilization energies that are relevant to the consider- ESR experiments have the capability of throwing light on
ations in this paper. Transitions between minima take placéynamic effects, which we have studied here. Experimental
typically across the saddle poifd “transition statej; thisis  determination of the vibronic reduction facto(s,,p,d,)
discussed for the cyclobutane radical cati@hHg) in Ref.  from the observed factors in the spectra are unfortunately
37, see Fig. 4. unlikely, due to covalency effects and the small spin-orbit
The activation energies for the transitions are estimated igoupling in these cyclic compoundthis is unlike the tran-
the same source as perhaps 1 kK, possibly dropping belogition ion compound$-29. However, the behavior of the pro-
0.5 kK. With dynamic processes included, as in the preserton hyperfine lines in hydrocarbons can give a clue to dy-
paper, the “transition” is of course an ingredient of thenamic processes and, especially, to their coalescence and
ground-state wave functiofalso termed “tunneling”’and  narrowing as the temperature is rai$&d®
does not represent a real process. Exceptions are when the _ _ _
molecule is embedded in a matrix with a lower symmetry B. ESR in the cyclobutane radical cation
than the nominal one. Then the molecule may be forced into In particular, we wish to apply the present theory to the
one of the minima, from which it can make a real transitionhyperfine lines of GHg" in a solid matrix, which are ob-
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served and discussed by the authors of Ref. 39. Their mea- h o
surement of the electron spin resonance absorption at and Hel—f:_E|Q o (45)
above 77 K gave fairly equidistant nine-line spectra, which

are indicative of electron-nuclear interaction wittight [t Eq.(5)]. In the absence of any coupling to the nuclear
equivalent protons. On the other hand, low temperature obyqtion, the pure electroni¢, state is stabilized. This state
servations at 4.2 K showed hyperfine lines wiifferent 445 clearly to nonequivalent couplings, whereas equiva-

separat!ons. The opserved separation_s are consistent ‘,’Vi@hce is regained only for states in whi¢p and ¢, appear
nonequivalent coupling to the four pairs of protons. Thisyith equal weight.

nonequivalence can be understood if one has a puckered | ot ys now turn on the coupling to the nuclear coordi-

molecule in which the four carbon atoms have undergongates. By the results in Sec. IV B, the lower energy solution
further distortion fromDq to Cy,. This entails &, distortion 5 Eq. (40). Since, with our choice of the external fields, the
mode leading to a rhombuslike structure, as illustrated in F'gangle 9,=, this solution is simply the vibronic state}

4. In our terminology, for the coupling coefficients this im- ghown in Eq.(15). We can now evaluate the expectation

plies that|al> b|. values of the electron projector operators in this state by

Part of the nonequivalence among the proton pairs maysing the definitions of the reduction factgy in Eq. (24).
well disappear at higher temperatures, either by the flattening e et

of the puckered molecule or by thermal averaging between

alternative nonplanar form@ssuming a softening of the bar- 1 1

rier in the matrix at the higher temperaturelowever, the {6|P, 6} = 5(1 +q,)and {6|P |6} = 5(1 —-d). (46
remaining distinctness between two pairs of carbdos

cated, respectively, on the biunt and the sharp angle APEXSRhat happens in the dynamic case? Remarkably, even here

of the rhombugcannot be fitted to the high-temperature iS0- e does not achieve the extent of uniformity in the spin

tropic spectra. It has been suggested in Ref. 39, that th&ensity, which is achieved in the high symmetry cése.,

dynamlc Jahn-Teller effect is capable of removing this non-o) for which q,=0.5, since, as seen in Figs. 1 andcg,
equivalence.

.. decreases only slightly below 1, so that the difference be-
tively evaluate the extent of the “democratization” of theEl‘Ween the two projectors will stil .remalr[Of course, this
carbon atoms, we shall now provide some numerical esti-CQmeS- about becaus_e of th_e dommance of(thembig b,
Y distortion over the vyindy; distortional modg.The end re-
mates for this. sult is that under realistic conditions that tlighombus-
- inducing b, coupling is significantly stronger than the
1. Electron densities (rectangle-makingb, mode, the DJTE cannot make the two

The effects of Jahn-Teller distortions and of the motionsoa}irs of carbons equivalent, or the spectrum'equidistant. For
between them on the hyperfine structure have been clearif?is t0 happerat somoe elevated temperatyreither the ex-
formulated in Refs. 40 and 41 and amply reviewed in Refernal splitting field)” must be lowered, or fast jumps be-
42, so that we do not have to repeat the theory. In essenciveen the two vibronic eigenstatég} and|e} or to higher
what one sees is the proton-nuclear spin interacting with th&ng vibronic states will have to occur“Fast” means
electronic spin density on the carbons. For either of the carShorter than 10's, the hyperfine coupling time scale.
bon pairs,C; andC; on the sharp angled apexes a@gdand ) o
C, on the blunt angled apexes, the spin density will differ in 2. Dynamic effects on hyperfine lines
the £, and ¢, electronic states in Eq1). The density differ- A numerical estimate for thg, factor confirms this con-
ence of the two states will express itself in the spectrum in agjysjon. We have first estimated the coupling strengths for
opposite manner. ) two coupling modes in the cyclobutane radical cation from

On the other hand, the nuclear function cofactofpand  computed stabilization energies in the rectangular and rhom-
{ in the vibronic state will regulate the relative weights of pic configurations, shown in Fig. 7 of Ref. 37. The values
these electronic states in the vibronic state. We are now lookgptained from the UMP2/6-31G*//UHF/6-31G* variational
ing for the average weights of these electronic states. Theyethod were adopted, since this places the rhombic configu-
are clearly given by the expectation values of the projectionation belowthe rectangular one, as is observed. The com-
operatorsP, and P, in the vibronic state. These electronic pyted stabilization energies relative to the square configura-
projection operators can be written as tions are 6600 cnt (for the rectangular shapeand
7250 cm? (for the rhombic forn. Taking the experimental
wave numbers in cyclobutane observed by Ref. 43 for the
modes: namely, 926 cth in the C—C stretching(b;) and
1001 cm' in the CCC angle bendingb,) modes, we obtain

Suppose now that the host matrix of the cation radical stabifor the dimensionless coupling strengths:
lizes thel, electronic state in preference to thiestate. This

1
Pye= 5(| t0,). (44)

stabilization can come about by having the following exter- a,,=7.611, by =7.551. (47)
nal field parameterst),=,=0 and(,=-Q% <0, leading
to We note that these values are close to each other.
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From our expression for the vibronic wave function and aized”) by “vibronic” reduction factors. The use of these fac-
simple quadrature, we obtain for these values a reductiotors in a nonperturbational way is yet another new feature of
factor this approach.

Branching out from the present treatment carried through

g, = 0.999 998, (48) for two states, one can similarly tackle problems with inter-

that is, near enough unity, thus excluding the attainment ofctions affecting three arbitrary electronic states, as well as
equidistant spectra by a pure dynamic mechanism alon@ny chosen number of states. By extension of the approach
Phrased alternatively, the relevant matrix elements of the revorked out in this work and shown in E¢L1), one finds in
laxation matrix are proportional to the overlaps betweerfhese cases also that the wave-function generator, the gener-
Gaussian wave functions localized around different minimaalization of ¥, is of a closed form. This consists of a finite
These are greatly reduced by the strong vibronic cougftng. number of terms, each with a given symmetry. Precisely, the

We recall that inO symmetry, when the two coupling generator§matrice$ correspond to all representations of the
strengths|a| and |b| are precisely identical, so that=g,  symmetric product of the electronic multiplet in its reference
=q, for strong linear coupling these reduction factors ap-group. Thus, recalling the results in this paper, for a doublet
proach 1/2, which indeed halves the difference between we havethree matrices[those appearing in E¢13)]. (These
and e occupancies. IrD,y symmetry, when the coupling three matrices are recognized as representativ€s dfi the
strengthsa and b are different and large-1, the tunneling symmetric product of thé& representation, namely; and
between different stabilized wells is negligible. E.) In a similar manner, for an electronic triplet one lsis
matrices: namely, the identity matrix, three angular momen-
tum matrices, and two more traceless matrices. All these
make up the generator wave function, and likewise, for any

We have tackledfully, though not exactly the time- larger number of states. Algebraic relations connect the func-
independent quantum mechanics of a pair of isolated eledions belonging to these relations, determining which rela-
tronic states, and this under rather general conditionstions have to be solved simultaneougiyhe point of these
Namely, the states are subject to interaction both with statiéemarks is to assert that the doublet is not a fluke case, but
external fields and with a dynamic surrounding, the latter inather a special, though by far the simplest, case of multiple
the linear approximation. Our nonperturbational treatmenglectronic states in interaction with their surroundings.
was made possibl@) by having a closed solutiofthe qua- In conclusion, we restate that the major restrictions on the
siclassical vibronic wave functiorior the part expressing the applicability of this work and of its possible extensions are
coupling between the electron and its dynamical surroundthe validity of regarding a finite number of states in isolation
ing, and(b) by inverting the usual order of solution through and the linear approximation.
taking step(a) first and including the external field later.
Thereby, the dynamically coupled states maintain convenient
symmetry-group properties in th@lilbert) function space; The authors thank Isaac B. Bersuker, Viktor Polinger, and
the external forces are subsequently treated within thigoris Tsukerblat for help and encouragement, and Serge
framework. Their strength is, however, modifi¢cenormal-  Shpyrko for sending us the numerical data cited in Sec. IlI D.

VI. SUMMARY AND OUTLOOK
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