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Maximum density rule for bulk terminations of quasicrystals
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Bravais’ rule, of wide validity for crystals, states that their surfaces correspond to the densest planes of atoms
in the bulk. Comparing a theoretical model of icosahedral Al-Pd-Mn with experimental results on sputter-
annealed surfaces, we find that this correspondence breaks down, i.e., the surfaces parallel to the densest planes
in the model are not necessarily the most stable bulk terminations. The correspondence is restored by recog-
nizing that there is a contribution to the surface not just from a single geometrical plane but from a layer of
stacked atoms, possibly containing more than one plane. We find that not only does the stability of high-
symmetry surfaces match the density of the corresponding layerlike bulk terminations but the exact spacings
between surface terraces can be determined and the typical area of the terraces can be estimated by a simple
analysis of the density of layers predicted by the bulk geometric model.
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I. INTRODUCTION

The tribological properties of the surfaces of quasicr
tals, such as low coefficient of friction, have motivated ma
studies of the clean surfaces of these materials, see R
and cited therein. These studies have led to signific
progress in the past few years, especially in the case of
aluminum-based icosahedral quasicrystals. Their surface
shown to be perfect ‘‘slices’’ of the bulk structure, with e
actly measured step heights. However, there has not be
full understanding ofwhichbulk planes might be expected t
be seen as surface terminations.

A rule with wide validity for crystals, first suggested b
Bravais2 and later refined by others,3 is that ‘‘the largest fac-
ets have the densest packing of atoms,’’4 usually interpreted
as meaning that, by and large, the most stable surfaces
those parallel to the densest atomic planes in the bulk.
dictions for icosahedral quasicrystals have been calcula5

with a modification of this rule that uses average densitie
planes orthogonal to the rotational symmetry axes. Here
investigate the original Bravais rule using single planes
the context of the bulk model of Boudardet al.7 for icosahe-
dral ~Al-Pd-Mn! @~i-AIPdMn!# and notice that the rule doe
not hold in this form, since thedensest planesare orthogonal
to the twofold axes but it has been observed6 that themost
stable surfacesare orthogonal to the fivefold axes. Cons
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quently, for quasicrystals we propose modifying the rule
use densities of thin layers of bulk planes instead of dens
of single bulk planes. This is suggested by the fact th
whereas the distances between neighboring high-den
planes in the bulk of an ordinary crystal are 1.5–2.0 Å,
the geometric bulk model1,8–10 M of F phase11 icosahedral
quasicrystals the distances are 0.2–1.5 Å. Because the ra
of an Al atom is 1.18 Å~Ref. 12! and the bulk terminations
~at least the fivefold ones! are rich in aluminum,13 we con-
sider a thin layer of 2–3 planes of stacked atoms as a si
termination. We estimate by inspection of i-AlPdMn that t
distanced between the atomic centers of neighboring plan
if they are to be regarded as in the same thin layer, mus
less than somedmax in a range 0.53–0.86 Å, but significantl
less than 0.86 Å. We show that the observed surface struc
of i-AlPdMn is consistent with this modified rule. Measur
ments of the fivefold surfaces of i-AlCuFe are also consist
with this new rule. Preliminary investigations of a scanni
tunneling microscopy~STM! image of a decagonal plane o
decagonal Al-Cu-Co,14 based on Burkov’s model,15 indicate
that dense atomic layers, rather than dense planes, are
evant for decagonal quasicrystals as well.16

II. EXPERIMENTAL EVIDENCE ON THE STABILITY OF
SURFACES OF ICOSAHEDRAL Al-Pd-Mn

We first present experimental evidence on the stabi
and texture of sputter-annealed surfaces of i-AlPdMn deri
©2004 The American Physical Society01-1
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Z. PAPADOPOLOSet al. PHYSICAL REVIEW B 69, 224201 ~2004!
from STM and low-energy electron diffraction~LEED! mea-
surements.

Our STM images of the fivefold surfaces of i-AlPdM
~Fig. 1! reveal large scale terraces1 that are stable afte
Ref. 6. We showed9 that the intervals between terraces
the fivefold surfaces of i-AlPdMn match a Fibonac
sequence of planes in the modelM with S54.08 Å and
L5tS56.60 Å, where t5(11A5)/2. In Refs. 1 and
13 it was found that the fivefold bulk terminations
i-AlPdMn consist of two close atomic planes. In Ref. 1 t

FIG. 1. STM image of a fivefold surface of i-AlPdMn, siz
175031750 nm2. Large scale terraces appear.

FIG. 2. STM image of a twofold surface of i-AlPdMn, siz
200032000 nm2. Terraces appear, but not in a clear sequence o
large scale. At the scale of the image the picture looks rather lik
landscape with mesas and flat depressions.
22420
separation between the planes is given as 0.48 Å in the b
which contracts to a separation of 0.38 Å at the re
surface.13

According to Ref. 6 both twofold and threefold surfac
facet, i.e., they are less stable.

Terraces are also seen on the twofold surfaces
i-AlPdMn, but they are not so pronounced as those on fi
fold and threefold surfaces. The twofold terraces are bro
up by holes and lumps which can be interpreted as fragm
of intermediate, less stable terraces; see Figs. 2 and 3~a!–
3~c!. The heights of the large terraces and depths of the h
have been measured, see Figs. 3~a! and 3~c!.

The threefold surfaces of i-AlPdMn show clear mediu
scale terraces with only few flat holes and lumps; see Fig

Also the sizes of the facets of the equilibrium shape
grown-in voids in Fig. 1~a! of Ref. 17 indicate that for
i-AlPdMn the fivefold surfaces are the most stable, follow
by twofold and threefold surfaces.

Further evidence that the traditional Bravais rule is brok
for quasicrystals comes from the high-resolution STM ima
of a particularly clear and stable fivefold surface
i-AlPdMn in Fig. 4 of Ref. 18. The Al atoms in the singl
terminating plane are clearly distinguished and can
counted. It is easy to estimate the resulting atomic densit
the plane. It is smaller than the maximal density of fivefo
planes in the modelM, which is 0.086 Å22; see Table II.

III. BRAVAIS’ RULE FOR QUASICRYSTALS

We explain the experimental evidence cited above
terms of the particular geometric model1,8–10M of the qua-

a
a

FIG. 3. ~a! STM image of a twofold terrace-stepped surface
i-AlPdMn, size 5003500 nm2. Small scale terraces and depre
sions appear.~b! Flattened image covering only three terraces a
two steps, size 1603160 nm2. ~c! Height profile along the line in
~a! with step heights. Note the large terraces with heights 0.62
and 0.95 nm on which are superimposed smaller terraces
heights 0.24 nm and 0.36 nm.~d! LEED pattern at 50 eV.
1-2
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MAXIMUM DENSITY RULE FOR BULK TERMINATION S . . . PHYSICAL REVIEW B 69, 224201 ~2004!
sicrystals i-AlPdMn~Refs. 7 and 19! and i-AlCuFe.19,20 The
model is a superposition of three icosahedral quasilatticeq,
a, andb of atomic positions in the physical spaceEi . These
are defined in the caption to Table I. As described in Re
and references cited therein, there is acoding spaceE' ,
containing threewindows Wq , Wa , andWb ~shown in Fig.
5, see also Fig. 8 of Ref. 10! and a*-map~effected by chang-
ing t to 21/t everywhere21! that takes each point of one o
the quasilattices into a point of the moduleMF in the corre-
sponding window. Conversely~also under the *-map!, the
module points in the windows give rise to all the atom
positions anddefinethe modelM. The * -map is not con-
tinuous: it maps a discrete unbounded quasilattice to a d
point set bounded by a window. It does, however, map li
and planes in physical spaceEi to lines and planes in codin
spaceE' and preserves orthogonality. It is also reversib
from E' to Ei . The atomic positions on a given planeP,
orthogonal to a chosen axiszi ~fivefold, threefold, or two-
fold! alongzi , belong to a given classh (5q, a, or b) arise
as the inverse images under the* -map of the points ofMF in
the intersection of the windowWh with the image planeP* ,

FIG. 4. Two STM images of a threefold surface of i-AlPdM
each 8003800 nm2. These images overlap, with a common p
that can be easily recognized. There are clear terraces of me
area~smaller than in the fivefold case!. Flat depressions and lump
appear on the terraces.

TABLE I. The atomic positionsx5
1
2 (n1 , . . . ,n6) in any five-

fold or threefold plane are all of the same class, but twofold pla
may contain atomic positions of all classes. A unit normal vecto
an i fold plane (i 55, 3, or 2! is denoted byni

i . The symbole stands
for an even integer ando for an odd one. The scalar products a
given in the unitsk35c/3, k55e/A5, and k25b/4, where
e/At125c/A35b/251/A2(t12). We use a fivefold coordi-
nate system of six unit orthogonal basis vectors projected icos
drally. ~Some authors working with similar models use a threef
coordinate system, Ref. 8.!

Class criterion Class ni
3xi@k3# ni

5xi@k5# ni
2xi@k2#

1
2 (e1 , . . . ,e6); qD6

e1et e1et e1et
1
2 ( iei5e
1
2 (e1 , . . . ,e6); b o1ot o1et e1et
1
2 ( iei5o
1
2 (o1 , . . . ,o6); a o1et e1ot e1et
1
2 ( ioi5o
1
2 (o1 , . . . ,o6); c e1ot o1ot e1et
1
2 ( ioi5e
22420
1
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which is orthogonal toz' in E' ~see Ref. 9 and, in particular
Fig. 12 in Ref. 1!. It turns out that the atomic density func
tion r(zi) of planes orthogonal to a given axiszi , which is
an erratic discrete function on the physical space axiszi , is a
continuous function@which we also designater(z')] on the
coding space axisz' and can be graphed as in Figs. 6, 7,
and 10. Hence the atomic densities of terminations are m
conveniently calculated and visualized inE' .

To specify scale in the modelM we use standard dis
tances, denoted bye, b, andc along the fivefold, two-
fold, and threefold axes, respectively, which are related
c/A35e/At125b/2@51/A2(t12)#, where t5(1
1A5)/2. The standard distances are used both in the obs
able spaceEi and in the coding spaceE' . The standard
distancee (51/A2) in Ei is set to be 4.561 Å for i-AlPdMn
and 4.465 Å for i-AlCuFe.

For ordinary lattices the density of points in a plane d
pends only on the orientation of the plane, but the density
a plane section of the quasilatticesq, a, andb is a product of
two factors: themodule factor22 that depends on the orienta
tion of the plane~see row 8 in Table II and cf. Table III o
Ref. 5! and thewindow factorthat is the area of the sectio
of the window by the* -mapped plane in coding space. W
also use the fact that each plane orthogonal to a threefol
fivefold axis contains points of one quasilatticeq, a, or b
only, but each plane orthogonal to a twofold axis may co
tain points of all three quasilattices, as shown in Table I.

Row 9 of Table II gives the maximum density of planes
the main symmetry directions, and rows 10 and 11 the ma
mum density of terminations~described below!. As in the

t
um

FIG. 5. The windowsWq , Wa , and Wb are polyhedra in the
coding spaceE' . They define the geometric modelM of atomic
positions based on the icosahedralD6 moduleMF . The modelM
describes both i-AlPdMn and i-AlCuFe.~a! Wq with edge lengths
t21 e andb 52e/At12. ~b! Wa is a triacontahedron of edg
length t21e. ~c! Wb is obtained by taking the marked tetrahed
(D) away from the triacontahedron of edge lengthte. The tetra-
hedronD has two mirror symmetry planes and edges of leng
t21e, t22e, and b. The windows fulfill the closeness cond
tion.
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Z. PAPADOPOLOSet al. PHYSICAL REVIEW B 69, 224201 ~2004!
model of Boudardet al. with spherical windows,23 used in
Ref. 6, there are twofold planes denser than the densest
fold or threefold planes even though experimental evide
indicates that the fivefold sputter-annealed surfaces are
most stable.6

In the light of this, and the fact that fivefold termination
are observed to consist of a pair of neighboring planes,
propose a modification to the Bravais rule to take into
count close neighboring planes in the main symmetry dir

FIG. 6. Candidates for fivefold terminations of i-AlPdMn. Th
curves graph the density of layers along a fivefold axisz' . The
symbole is the standard distance along a fivefold axis.~a! A pair
of parallelb anda planes, a distanced50.30 Å apart. Theb curve
is the density of atomic positions onb planes and thea curve the
density ona planes, both functions ofz' . The solid curve is their
sum. ~b! A pair of parallelq and b planes, a distanced50.48 Å
apart. Theq curve is the density of atomic positions onq planes and
theb curve the density onb planes, both functions ofz' . The solid
curve is their sum. Among the densest fivefold layers are (q,b)
pairs of planes a distance 0.48 Å apart. The support of the platea
the solid curve of 0.48 Å (q,b) layers defines the terminations an
is the coding window of the Fibonacci sequence of terraces of
minations on fivefold surfaces. The height of the plateau is
density of fivefold terminations. The density graph of 0.78 Å lay
has a lower maximum than the graph of 0.48 Å layers, and is
shown here. The 1.56 Å layer is also not shown, as we do
consider it a ‘‘thin layer.’’ For i-AlCuFe, the graphs are the sam
with slightly changed spacings; see Table II.
22420
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tions ~fivefold, twofold, and threefold! of the geometric
modelM. In each of these directions the three shortest
terplanar distances (s,m,l ) occur in the ratios s:m: l
51:t:t2; see rows 2–4 of Table II. For the main symmet
directions we have examined the density graphs in cod
spaceE' of all single atomic planes and of all atomic laye
containing two neighboring planes with the separationsd
listed in Table II. Let us decide that layers of widthd
50.86, 0.92, 1.48 or 1.56 Å cannot be regarded as t
layers forming a single termination. This is equivalent
defining a thin layer to be of thicknessd significantly smaller
than 0.86 Å. We consider such thin layers as candidates

TABLE II. M data of i-AlPdMn. Row 1: shortest interatomi
distances parallel to the axis~min. IA distance!. Rows 2–4: three
shortest interplanar separations orthogonal to the axis~IP distances!.
Rows 5–7: other interplanar separations of neighboring plan
Row 8: D6 module factor. Row 9: maximum absolute atomic de
sity of planes. Row 10: maximum absolute atomic density of la
erlike terminations. Row 11: maximum relative atomic density
layerlike terminations. The corresponding data for i-AlCuFe can
obtained by setting the standard lengthe to 4.465 Å.

fivefold twofold threefold

Min. IA distance t21e t21b t21c

2.82 Å 2.96 Å 2.57 Å
IP distances:s t23e/(t12) t23b/2 t24c/3

0.30 Å 0.57 Å 0.20 Å
IP distances:m5ts 0.48 Å 0.92 Å 0.33 Å
IP distances:l 5tm 0.78 Å 1.48 Å 0.53 Å
IP distance: 2m 0.65 Å
IP distance:t l 0.86 Å
IP distance: 2l 1.56 Å
D6 module factor 1/A5 1/4 1/3
Densest planes~abs.! 0.086 Å22 0.101 Å22 0.066 Å22

Densest layers~abs.! 0.133 Å22 0.101 Å22 0.066 Å22

Densest layers~rel.! 1 0.76 0.50

of

r-
e
s
ot
ot

FIG. 7. If the windows in Fig. 5 are replaced by spheres of
same volume~Boudard’s model! there is no pronounced plateau
the functionr(z') for the densest fivefold terminations. Compa
the solid and dotted graphs.
1-4
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MAXIMUM DENSITY RULE FOR BULK TERMINATION S . . . PHYSICAL REVIEW B 69, 224201 ~2004!
the bulk terminations. We calculate the densities ofd layers
orthogonal to a given symmetry axiszi ~taking the density of
a thin layer to be the sum of the densities of the atom
planes within it!. To do the calculation it is necessary to pa
to the coding spaceE' in order to find the window factor
But coding space also has the great advantage that thd
layers, which in physical spaceEi are distributed along the
entire infinite length of thezi-axis with neighboring layers
having widely different densities, are* -mapped to a finite
interval of z'5zi* in E' , and that within this interval the
density of layers is a smooth function of position,r(z'),
which can be graphed. The maximum of this graph de
mines the maximum possible density of ad layer in the bulk.
For a given axiszi , we compare the graphs of all possibled
layers and choose the one with the highest maximum.
maximum density rule is valid, then the terminations
thogonal to thezi axis should be the densestd layers for this
value ofd. If the density graph for thisd has a plateau~i.e.,
a region of almost constant maximum density! the width of
the support,W, of the plateau will determine the sequence
bulk terminations and hence the sequence of terraces
appear on the surface.

Comparing terminations orthogonal to different dire
tions, we expect the more stable surfaces to correspond t
denser terminations, i.e., to the density function with
higher maximum. To test this we plot in coding spaceE' the
density graphsr(z') of d-layers, determine the termination
of our modelM in the fivefold, twofold, and threefold di
rections, and compare them with the experimental data.

The z' axis in each of the graphs in Figs. 6, 7, 9, and
is a fivefold, twofold, and threefold axis in coding space. Ad
layer, specified in physical spaceEi by the point where its
topmost plane meets thezi axis, is represented by the *-ma
of this point onz' . The ordinate in the graph is the relativ
density of the layer with respect to the densest fivefold
mination in Fig. 6~b!.

Comparing the density graphs of fivefold layers in Fig
6~a! and 6~b! we conclude that indeed, as anticipated in Re
1 and 13, the densest fivefold layers of thickness sign
cantly less than 1.56 Å are pairs of planes 0.48 Å apart a
Fig. 6~b!. This agrees with experimental evidence.1,13 Figure
6~b! graphs the atomic densityr(z') of (q,b) pairs of planes
as a function of position along a fivefoldz' axis in coding
spaceE' . It is close to its maximum along a clear plateau
width about@2t2/(t12)# e. The interval of this plateau~a
‘‘window’’ W) codes a Fibonacci sequence along a fivef
axis zi in Ei of short ~S! and long~L! intervals:S5(2t/(t
12)) e54.08 Å (e is 4.561 Å for i-AlPdMn! and L
5tS56.60 Å, in agreement with Ref. 9 and references ci
there. A slightly longer interval codes a decorated Fibona
sequence1 that includes steps of heightt21S52.52 Å too,
detected in Ref. 24.

On the fivefold surfaces of i-AlCuFe only short sequenc
of up to 6 terraces have been detected;25 they seem
Fibonacci-like, but with some defects. The step heights
S54.0 Å andL56.2 Å, in reasonable agreement with o
predicted valuesS5@2t/(t12)# e53.99 Å (e is 4.465
Å for i-AlCuFe! andL5tS56.46 Å.
22420
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Figure 7 shows that there is not such a clearly defin
plateau as in Fig. 6~b! when the windows of the modelM
~Fig. 5! are replaced by the spheres of the same volum
used by Boudard7 ~and there called ‘‘atomic surfaces’’!.

As the (q,b) layers ~modeled in Fig. 8! there are also
(b,q) layers inM whose density graph is the mirror imag
of Fig. 6~b! and codes another Fibonacci sequence of equ
dense layers. These (b,q) layers arenot seen as surface ter
minations. The planes observed on the surface can be i
tified as typeq by the presence~in some terraces of a surfac
Fibonacci sequence! of a local configuration called a
‘‘ring.’’ 1 This preference of (q,b) layers to become the ter
minations can perhaps be understood from the densitie
the parallel planes next above and below the layers: abo
(q,b) layer there is a low-density plane and below a hig
density plane; for the mirror-image (b,q) layer the neighbor-
ing planes are mirrored too.

The densest twofold layers are single planes, seen
comparing the graphs in Figs. 9~a! and 9~b!. In Fig. 9~b! we
can identify a not very sharply defined plateau of wid
aboutb/2 that defines the twofold terminations. A windo
of this width on a twofold axis inE' encodes a Fibonacc
sequence of terminations along a twofold axis ofEi with S
5(t2/2) b50.63 nm, L5tS51.02 nm. These intervals
are close to the steps between terraces~0.62 nm and 0.95
nm! in Fig. 3~c!. Increasing the width of the window by
factor t2 would include less dense planes to reduce
lengths of intervals in the Fibonacci sequence byt22, mak-
ing them 0.24 nm and 0.38 nm corresponding to the m
sured depths 0.24 nm and 0.36 nm of the depressions in

FIG. 8. A fivefold termination~rich in Al! consisting of a (q,b)
layer of two atomic planes 0.48 Å apart. The atoms are represe
as balls, the size of Al atoms. The black balls are those in
surfaceq plane and the white balls those in theb plane, 0.48 Å
below the surface. Compare the distance between the planes
layer with the shortest interatomic distances in row 1 of Table I
1-5
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Z. PAPADOPOLOSet al. PHYSICAL REVIEW B 69, 224201 ~2004!
big terraces in Fig. 3~c!. These depressions can therefore
interpreted as less dense, hence lower probability, terr
coexisting with the denser, high probability terraces and g
ing them a rougher character.

One can show from the density graphs inE' that the
densest threefold layers are (b,q,a) and (a,q,b) triples of
planes with distances 0.20 Å between theb andq planes and
0.33 Å between theq anda planes. The graph of the dens
ties of the (b,q,a) layers as a function of position in codin
space is shown in Fig. 10 and has a wide plateaulike a
around its maximum. This is in qualitative agreement w
the medium scale terraces that spread over an area of a
100031000 nm2 on the threefold surface shown in Fig.
Unlike the fivefold case, parts of this plateau correspond
singleb planes orq planes, where the densities of the oth
planes drop to zero. As the (b,q,a) layers there are also
(a,q,b) layers inM whose density graph is the mirror im

FIG. 9. Candidates for twofold terminations of i-AlPdMn. Th
curves graph the density of layers along a twofold axis,z' . The
symbol b is the standard distance along a twofold axis,b
52 e/At12. ~a! A pair of the parallel planes, each containingb-
andq-atomic positions, a distance 0.57 Å apart.~b! A single plane
containingb-, q-, anda-atomic positions. The curve in~b! has its
maximum marginally higher than in the curve in~a!, so the denses
twofold layers are single planes, which contain atomic positions
typesq, b, anda. We do not consider the 0.92 Å or 1.48 Å layers
‘‘thin layers.’’ For i-AlCuFe, the graphs are the same with sligh
changed spacings; see Table II.
22420
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age of Fig. 10. A height profile along a line, with ste
heights, like that for the twofold surface in Fig 3~c!, has not
been determined for the threefold surface.

The relative maximum densities of the fivefold, twofol
and threefold terminations can be read off from the gra
shown in Figs. 6~b!, 9~b! and 10, and we list them in row 11
of Table II. They are in the order fivefold, twofold, and thre
fold. Row 10 of Table II gives the absolute maximum de
sities of fivefold, twofold, and threefold terminations for th
model M of i-AlPdMn. The corresponding data fo
i-AlCuFe can be obtained by setting the standard lengthe
to 4.465 Å.

IV. CONCLUSIONS

We expect that, with our modified definition of termina
tion as a thin layer of stacked atoms and not just a sin
atomic plane, the Bravais rule that the densest bulk term
tions correspond to the most stable surfaces may be wi
applicable to quasicrystals. A significant feature of this a
proach is that measurable properties of coding space pre
observable properties of physical surfaces. The shape o
density graph of a layer in coding space determines~1! the
relative stability of the surface~by the height of its maxi-
mum! and~2! the texture of the surface~by the breadth of its
maximum!. If the maximum of the function has the form o
a flat plateau, as for the fivefold and threefold layers in Fi
6~b! and 10, then the surfaces have a pronounced terrace
character, as in Figs. 1 and 4. The terraces correspond to
layers of almost equal density and for that reason are equ
probable as surfaces and are of almost equal size. On
other hand, the sharper peak for the twofold layers in F
9~b! determines the more fragmented appearance of the
fold surface seen in Figs. 2 and 3. Terraces of distinc
different areas correspond to bulk layers of different den
ties that are not equally probable: on relatively large~more

f

FIG. 10. Graph of the density of (b,q,a) triples of threefold
planes~in E' orthogonal to a threefold axisz') of i-AlPdMn with
spacings:b plane, 0.20 Å,q plane, 0.33 Å,a plane. The symbolc
is the standard distance inE' along the threefold axis,c
5A3 e/At12. The plateau in the graph of the combined dens
defines the terminations, its height giving their density. The den
graph of 0.65 Å layers~not shown! has a very low maximum. We
do not consider the 0.86 Å layer a ‘‘thin layer.’’ For i-AlCuFe, th
graphs are the same with slightly changed spacings; see Table
1-6
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probable! terraces smaller~less probable! terraces appear a
holes.

Measurements of the fivefold surfaces of i-AlCuFe a
support our modified density rule, and we expect it to ap
to all icosahedral quasicrystals. There are preliminary in
cations that a related rule applies to decago
quasicrystals,16 but in the case of d-AlCuCo the candidate f
a termination is a ‘‘broad layer’’~see Sec. V! rather than a
thin layer of the kind described in Sec. III.

V. FUTURE DIRECTIONS

A feature of the surface of i-AlPdMn not accounted for
our layer analysis is that not all types of maximally den
layers appear as surfaces: for example, (q,b) layers are seen
in fivefold surfaces but equally dense (b,q) layers are not.
One possibility is that the densities of the planes above
below the layer may influence whether it appears as a
face. If one chose to define a termination incorporating
neighboring planes too, one could introduce a broad laye
a bundle of high-density thin layers. This is done in Ref. 1
For example, a fivefold termination can be considered to b
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