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Maximum density rule for bulk terminations of quasicrystals
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Bravais’ rule, of wide validity for crystals, states that their surfaces correspond to the densest planes of atoms
in the bulk. Comparing a theoretical model of icosahedral Al-Pd-Mn with experimental results on sputter-
annealed surfaces, we find that this correspondence breaks down, i.e., the surfaces parallel to the densest planes
in the model are not necessarily the most stable bulk terminations. The correspondence is restored by recog-
nizing that there is a contribution to the surface not just from a single geometrical plane but from a layer of
stacked atoms, possibly containing more than one plane. We find that not only does the stability of high-
symmetry surfaces match the density of the corresponding layerlike bulk terminations but the exact spacings
between surface terraces can be determined and the typical area of the terraces can be estimated by a simple
analysis of the density of layers predicted by the bulk geometric model.
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[. INTRODUCTION quently, for quasicrystals we propose modifying the rule to
use densities of thin layers of bulk planes instead of densities
The tribological properties of the surfaces of quasicrys-Of single bulk planes. This is suggested by the fact that,
tals, such as low coefficient of friction, have motivated manywhereas the distances between neighboring high-density
studies of the clean surfaces of these materials, see Ref.%a”es in the bulk of anég_rglolnary crystal aglfll-5—2-0 A, in
and cited therein. These studies have led to significan ueagi?:?;gteatlréctk?: Igisr?;ndces arje\/lo(g—lzl %hgsBelggjsg ?r?erzarladius
Progress in the p_ast few years, es_peC|aIIy n th_e case of th%f an Al atom is 1.18 ARef. 12 and the bulk terminations
aluminum-based |cos:':1h_edr:f}l quasicrystals. Their sur_faces a(gt least the fivefold onesare rich in aluminunt® we con-
shown to be perfect “slices” of the bulk structure, with ex- gjger a thin layer of 2—3 planes of stacked atoms as a single
actly measured step heights. However, there has not beent@mination. We estimate by inspection of i-AIPdMn that the
full understanding ofvhichbulk planes might be expected to distances between the atomic centers of neighboring planes,
be seen as surface terminations. if they are to be regarded as in the same thin layer, must be
A rule with wide validity for crystals, first suggested by less than somé,,,,in a range 0.53—-0.86 A, but significantly
Bravai€ and later refined by otherss that “the largest fac- less than 0.86 A. We show that the observed surface structure
ets have the densest packing of atorfisidually interpreted  of i-AIPdMn is consistent with this modified rule. Measure-
as meaning that, by and large, the most stable surfaces amgents of the fivefold surfaces of i-AlICuFe are also consistent
those parallel to the densest atomic planes in the bulk. Pravith this new rule. Preliminary investigations of a scanning
dictions for icosahedral quasicrystals have been calctflatedunneling microscopySTM) image of a decagonal plane of
with a modification of this rule that uses average densities oflecagonal Al-Cu-Co; based on Burkov's modéf, indicate
planes orthogonal to the rotational symmetry axes. Here wihat dense atomic layers, rather than dense planes, are rel-
investigate the original Bravais rule using single planes irfvant for decagonal quasicrystals as wRll.
the context of the bulk model of Boudaed al.” for icosahe-
dral (Al-Pd-Mn) [(i-AlPdMn)] and notice that the rule does
not hold in this form, since thdensest planeare orthogonal
to the twofold axes but it has been obsefR/éitat themost We first present experimental evidence on the stability
stable surfacesre orthogonal to the fivefold axes. Conse-and texture of sputter-annealed surfaces of i-AIPdMn derived

Il. EXPERIMENTAL EVIDENCE ON THE STABILITY OF
SURFACES OF ICOSAHEDRAL Al-Pd-Mn
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FIG. 1. STM image of a fivefold surface of i-AlPdMn, size
1750x 1750 nnf. Large scale terraces appear.

FIG. 3. () STM image of a twofold terrace-stepped surface of
i-AIPdMn, size 500500 nnf. Small scale terraces and depres-
sions appearb) Flattened image covering only three terraces and

. two steps, size 160160 nn?. (c) Height profile along the line in
(Fig. 1) reveal Iae[ge scale _terrademat are stable after (a) with step heights. Note the large terraces with heights 0.62 nm
Ref. 6. We showedthat the intervals between terraces OMand 0.95 nm on which are superimposed smaller terraces with

the fivefold Surfaces- of i-AlPdMn -matCh a Fibonacci heights 0.24 nm and 0.36 nrd) LEED pattern at 50 eV.

sequence of planes in the mod& with S=4.08 A and

L=75=6.60 A, where r=(1+5)/2. In Refs. 1 and separation between the planes is given as 0.48 A in the bulk,
13 it was found that the fivefold bulk terminations of Which contracts to a separation of 0.38 A at the real

3
i-AlIPdMn consist of two close atomic planes. In Ref. 1 the Surface’ _
According to Ref. 6 both twofold and threefold surfaces

facet i.e., they are less stable.

Terraces are also seen on the twofold surfaces of
i-AlIPdMn, but they are not so pronounced as those on five-
fold and threefold surfaces. The twofold terraces are broken
up by holes and lumps which can be interpreted as fragments
of intermediate, less stable terraces; see Figs. 2 &ad 3
3(c). The heights of the large terraces and depths of the holes
have been measured, see Figs) and 3c).

The threefold surfaces of i-AIPdMn show clear medium
scale terraces with only few flat holes and lumps; see Fig. 4.

Also the sizes of the facets of the equilibrium shape of
grown-in voids in Fig. 1a) of Ref. 17 indicate that for
i-AlIPdMn the fivefold surfaces are the most stable, followed
by twofold and threefold surfaces.

Further evidence that the traditional Bravais rule is broken
for quasicrystals comes from the high-resolution STM image
of a particularly clear and stable fivefold surface of
i-AlIPdMn in Fig. 4 of Ref. 18. The Al atoms in the single
terminating plane are clearly distinguished and can be
counted. It is easy to estimate the resulting atomic density of
the plane. It is smaller than the maximal density of fivefold
planes in the modeM, which is 0.086 A 2; see Table II.

from STM and low-energy electron diffractichEED) mea-
surements.
Our STM images of the fivefold surfaces of i-AlPdMn

FIG. 2. STM image of a twofold surface of i-AIPdMn, size IIl. BRAVAIS’ RULE FOR QUASICRYSTALS
2000% 2000 nn?. Terraces appear, but not in a clear sequence on a

large scale. At the scale of the image the picture looks rather like a We explain the experimental evidence cited above in
landscape with mesas and flat depressions. terms of the particular geometric mot&t° M of the qua-
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which is orthogonal ta, in [5, (see Ref. 9 and, in particular,
Fig. 12 in Ref. }. It turns out that the atomic density func-
tion p(z)) of planes orthogonal to a given axg, which is

an erratic discrete function on the physical space zxiss a
continuous functioiwhich we also designate(z, )] on the
coding space axig, and can be graphed as in Figs. 6, 7, 9,
and 10. Hence the atomic densities of terminations are most
conveniently calculated and visualizedlin .

To specify scale in the modeM we use standard dis-
FIG. 4. Two STM images of a threefold surface of i-AlPdMn, tances, denoted b), 2, and®@ along the fivefold, two-
each 80800 nntf. These images overlap, with a common part fold, and threefold axes, respectively, which are related by

that can be easily recognized. There are clear terraces of mediu®)/\3=®)/\/r+2=@/2[=1/J2(7+2)], where 7=(1
area(smaller than in the fivefold cageFlat depressions and lumps \/5)/2. The standard distances are used both in the observ-
appear on the terraces. able spaceli; and in the coding spacg, . The standard

] ) ] 19,20 distance®) (= 1/\/5) in I is set to be 4.561 A for i-AlPdMn
sicrystals i-AlIPdMn(Refs. 7 and 1Pand i-AICuFe."“"The  gnd 4.465 A for i-AlCuUFe.

model is a supe_rpositi_o_n of _three icosa_hedral quasilatices o ordinary lattices the density of points in a plane de-
a, andb of atomic positions in the physical spae. These  hends only on the orientation of the plane, but the density of
are defined in the_ caption to Table I. As dgscrlbed in Ref. 1 plane section of the quasilatticgsa, andb is a product of
and references cited therein, there izading spacel, ,  two factors: themodule factof? that depends on the orienta-
containing threavindows W, W,, andW, (shown in Fig.  tjon of the plane(see row 8 in Table Il and cf. Table Il of

5, see also Fig. 8 of Ref. 1@nd a*-map(effected by chang-  Ref, 5 and thewindow factorthat is the area of the section
ing 7 to —1/7 everywher#) that takes each point of one of of the window by the+-mapped plane in coding space. We
the quasilattices into a point of the modl:- in the corre- 150 use the fact that each plane orthogonal to a threefold or
sponding window. Converselfalso under the *-map the  fivefold axis contains points of one quasilattigea, or b
module pOintS in the windows give rise to all the atomic on|y, but each plane 0rthogona| to a twofold axis may con-
positions ancdefinethe model M. The *-map is not con-  tain points of all three quasilattices, as shown in Table I.
tinuous: it maps a discrete unbounded quasilattice to a dense Row 9 of Table Il gives the maximum density of planes in
point set bounded by a window. It does, however, map lineshe main symmetry directions, and rows 10 and 11 the maxi-

and planes in physical spatgto lines and planes in coding mum density of terminationgdescribed beloyw As in the
spacell, and preserves orthogonality. It is also reversible

from K, to I;. The atomic positions on a given plafe
orthogonal to a chosen axg (fivefold, threefold, or two-
fold) alongz, belong to a given clads(=q, a, or b) arise
as the inverse images under thenap of the points oM ¢ in
the intersection of the windowv,, with the image plan®*,

TABLE I. The atomic positionx= %(nl, ...,Ng) in any five-
fold or threefold plane are all of the same class, but twofold planes
may contain atomic positions of all classes. A unit normal vector to
anifold plane (=5, 3, or 2 is denoted b)nh . The symbok stands
for an even integer and for an odd one. The scalar products are
given in the unitskz=Q®)/3, ks=®/\5, and k,=@/4, where
®/\T+2=0®/3=@/2=1/\2(r+2). We use a fivefold coordi-
nate system of six unit orthogonal basis vectors projected icosahe-
drally. (Some authors working with similar models use a threefold
coordinate system, Ref.)8.

Class criterion Class nix[xs]  nPxl[xs]  nfx[«,]

%(el ,,,,, es); o, et+er eter et+er FIG. 5. The windowsW,, W,, andW, are polyhedra in the
ixe=e cod@r_lg spscdﬂid. Thiy Qefinehtrﬁeorr;etlri(':vlmoﬁh of adtoLr?\/itc

1 i positions based on the icosahedtg) moduleM . The mode

2(€1, - - L) b otor oter efer  eccribes both i-AIPdMN and FAICUFa) W, with edge lengths
fzie' ¢ 71 ® and@®@ =2B)/\r+2. (b) W, is a triacontahedron of edge
2(01, - 06); a ot+er et+or eter length 7~ X®). (c) W, is obtained by taking the marked tetrahedra
: b

3Zi0;=o0 (A) away from the triacontahedron of edge leng(B). The tetra-
%(01, ... ,0¢); c etor otor eter hedronA has two mirror symmetry planes and edges of lengths
is.0=e 7 1®), 725, and®@. The windows fulfill the closeness condi-

tion.
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FIG. 6. Candidates for fivefold terminations of i-AIPdMn. The
curves graph the density of layers along a fivefold axis The
symbol(®) is the standard distance along a fivefold ax&.A pair
of parallelb anda planes, a distancé=0.30 A apart. Thé curve
is the density of atomic positions dnplanes and tha curve the
density ona planes, both functions of, . The solid curve is their
sum. (b) A pair of parallelq and b planes, a distancé=0.48 A
apart. They curve is the density of atomic positions giplanes and
theb curve the density ob planes, both functions af, . The solid
curve is their sum. Among the densest fivefold layers ardo)
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FIG. 7. If the windows in Fig. 5 are replaced by spheres of the
same volum&Boudard’s modelthere is no pronounced plateau in
the functionp(z,) for the densest fivefold terminations. Compare
the solid and dotted graphs.

tions (fivefold, twofold, and threefold of the geometric
model M. In each of these directions the three shortest in-
terplanar distances s(m,I) occur in the ratioss:m:l
=1:7:7%; see rows 2—4 of Table Il. For the main symmetry
directions we have examined the density graphs in coding
spacell, of all single atomic planes and of all atomic layers
containing two neighboring planes with the separatiénhs
listed in Table Il. Let us decide that layers of widih
=0.86, 0.92, 1.48 or 1.56 A cannot be regarded as thin
layers forming a single termination. This is equivalent to
defining a thin layer to be of thicknesgssignificantly smaller
than 0.86 A. We consider such thin layers as candidates for

TABLE Il. M data of i-AlIPdMn. Row 1: shortest interatomic
distances parallel to the axismin. IA distance. Rows 2—4: three
shortest interplanar separations orthogonal to the(@Ridistances
Rows 5-7: other interplanar separations of neighboring planes.
Row 8: Dg module factor. Row 9: maximum absolute atomic den-
sity of planes. Row 10: maximum absolute atomic density of lay-
erlike terminations. Row 11: maximum relative atomic density of

pairs of planes a distance 0.48 A apart. The support of the plateau gfyerlike terminations. The corresponding data for i-AICuFe can be

the solid curve of 0.48 Ad,b) layers defines the terminations and

obtained by setting the standard len@hto 4.465 A.

is the coding window of the Fibonacci sequence of terraces of ter-

minations on fivefold surfaces. The height of the plateau is the

density of fivefold terminations. The density graph of 0.78 A layers
has a lower maximum than the graph of 0.48 A layers, and is noMin. IA distance
shown here. The 1.56 A layer is also not shown, as we do not

consider it a “thin layer.” For i-AlCuFe, the graphs are the same |P distancess
with slightly changed spacings; see Table II.

model of Boudardet al. with spherical window$® used in  IP distancest=mm
Ref. 6, there are twofold planes denser than the densest fivé? distance:
fold or threefold planes even though experimental evidencéP distance:l
indicates that the fivefold sputter-annealed surfaces are tHe distance: 2
most stablé. Dy module factor
In the light of this, and the fact that fivefold terminations Densest plane&bs)
are observed to consist of a pair of neighboring planes, Weensest layergabs)

fivefold twofold threefold
RG) O] R©)
2.82 A 2.96 A 257 A
3@I(r+2) T 3@I2 4313
0.30 A 0.57 A 0.20 A
IP distancesm= rs 0.48 A 0.92 A 0.33 A
0.78 A 1.48 A 0.53 A
0.65 A
0.86 A
1.56 A
15 1/4 1/3
0.086A 2 0.101A? 0.066A?
0.133A°2 0.101 A2 0.066 A2
1 0.76 0.50

propose a modification to the Bravais rule to take into acpensest layergrel.)

count close neighboring planes in the main symmetry direc
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the bulk terminations. We calculate the densitiessdadyers '@O@) VOO OO OO (O® (O @
orthogonal to a given symmetry axis (taking the density of \’.. (.\< ‘8..( L0 \.’( ‘(. 00 :.( . ..(
a thin layer to be the sum of the densities of the atomic, @ @) @ \ \ O |
planes within if. To do the calculation it is necessary to pass D\.(.\ .,..\.. .\( (.\ ..... o 0 ..Q‘. ..l
to the cpdmg spacé, in order to find the window factor. ,.(\.‘( \.(.( \.‘( 0000 0 ‘.(.( 00
But coding space also has the great advantage thabthe ..m 0l L0 l,.0. 0 ) )

layers, which in physical spadg are distributed along the gt 28 Sec 0000 000 0. 0 00 ¢
N 1 . . 00 00 0000 00000 00 00
entire infinite length of they-axis with neighboring layers g " O @ O @ O C. @0 C 0. 0 (. @
having widely different densities, are-mapped to a finite ’\..( ‘ \.m.. .( ( J \.( \..(\..(\.( @ ....(:(.( "%‘
interyal ofz, =7 .in 5, , and that Within this ir.@erval the /SO 0" (0 00 O O 00 O O O
density of layers is a smooth function of positign(z, ), l~< \..(.\< \8<:’( ’..( 8(\..(.( u( ..( ’( (...( (l
wh|ch can be _graphed. The maximum of thl_s graph deter-,.( o 020 . 0200°% . 0% 02
mines the maximum possible density of #ayer in the bulk. 0 000_.0_0000_0 o0 00
For a given axig|, we compare the graphs of all possilsle el OO0 ‘.‘ O O ,.( 0 O C @

. ; . N SR S I1LE S 5 1 5 S N Y
layers and choose the one with the highest maximum. If 59 @@ _@ © 00 0 00 0 © 00 ¢
maximum density rule is valid, then the terminations or- ' 0O 0 00 0 0 0 0 00 O ( \‘(.‘
thogonal to the axis should be the densestayers for this \..( ‘(.\( ‘..’( ".. ’( " " (. ..(.( (...( (.( o (
value of 8. If the density graph for thi$ has a plateadg.e., O @ :< y OOOOO O OO (O ..(...

\( )
a region of almost constant maximum denkitye width of ,.’.( 4 .8.’ (.\.g. .’.”.’..(.\
(

; . B )
the supportWV, of the plateau will determine the sequence of -.@ @ 0@ 0 0 00 00 000 0 00
bulk terminations and hence the sequence of terraces that

appear on the surface. FIG. 8. A fivefold terminatior(rich in Al) consisting of a ¢,b)
Comparing terminations orthogonal to different direc- layer of two atomic planes 0.48 A apart. The atoms are represented
tions, we expect the more stable surfaces to correspond to tt§ balls, the size of Al atoms. The black balls are those in the
denser terminations, i.e., to the density function with thesurfaceq plane and the white balls those in theplane, 0.48 A
higher maximum. To test this we plot in coding spatethe below t_he surface. Compare the_ dlgtance bgtween the planes in a
density graphe(z, ) of s-layers, determine the terminations layer with the shortest interatomic distances in row 1 of Table II.
of our model M in the fivefold, twofold, and threefold di-
rections, and compare them with the experimental data. Figure 7 shows that there is not such a clearly defined
Thez, axis in each of the graphs in Figs. 6, 7, 9, and 10plateau as in Fig. ®) when the windows of the model/
is a fivefold, twofold, and threefold axis in coding spacef A (Fig. 5 are replaced by the spheres of the same volumes
layer, specified in physical spaé¢g by the point where its used by Boudard(and there called “atomic surfaces”
topmost plane meets the axis, is represented by the *-map  As the (,b) layers (modeled in Fig. 8 there are also
of this point onz, . The ordinate in the graph is the relative (b,q) layers in /M whose density graph is the mirror image
density of the layer with respect to the densest fivefold terof Fig. 6(b) and codes another Fibonacci sequence of equally
mination in Fig. @b). dense layers. Thesé Q) layers arenot seen as surface ter-
Comparing the density graphs of fivefold layers in Figs.minations. The planes observed on the surface can be iden-
6(a) and 6b) we conclude that indeed, as anticipated in Refstified as typeqg by the presencén some terraces of a surface
1 and 13, the densest fivefold layers of thickness signifiFibonacci sequengeof a local configuration called a
cantly less than 1.56 A are pairs of planes 0.48 A apart as ifring.” * This preference ofd,b) layers to become the ter-
Fig. 6b). This agrees with experimental evidertdé Figure  minations can perhaps be understood from the densities of
6(b) graphs the atomic densip(z, ) of (q,b) pairs of planes the parallel planes next above and below the layers: above a
as a function of position along a fivefold axis in coding (q,b) layer there is a low-density plane and below a high-
spacely, . Itis close to its maximum along a clear plateau of density plane; for the mirror-imagé(q) layer the neighbor-
width about{ 27%/(7+ 2)] . The interval of this platea(a  ing planes are mirrored too.
“window” W) codes a Fibonacci sequence along a fivefold The densest twofold layers are single planes, seen by
axis z in I of short(S) and long(L) intervals:S=(27/(r  comparing the graphs in Figs(ed and 9b). In Fig. 9b) we
+2)) ®=4.08 A (® is 4.561 A for i-AlPdMn and L can identify a not very sharply defined plateau of width
=7S=6.60 A, in agreement with Ref. 9 and references citedabout(2)/2 that defines the twofold terminations. A window
there. A slightly longer interval codes a decorated Fibonaccof this width on a twofold axis inki;, encodes a Fibonacci
sequenckthat includes steps of height 'S=2.52 A too,  sequence of terminations along a twofold axistipfwith S
detected in Ref. 24. =(7%/2) @=0.63 nm, L=7S=1.02 nm. These intervals
On the fivefold surfaces of i-AlCuFe only short sequencesare close to the steps between terra@$62 nm and 0.95
of up to 6 terraces have been detectedhey seem nm) in Fig. 3c). Increasing the width of the window by a
Fibonacci-like, but with some defects. The step heights aréactor 7> would include less dense planes to reduce the
S=4.0 A andL=6.2 A, in reasonable agreement with our lengths of intervals in the Fibonacci sequencerby, mak-
predicted valuesS=[27/(7+2)] ®=3.99 A (® is 4.465 ing them 0.24 nm and 0.38 nm corresponding to the mea-
A for i-AlCuFe) andL=7S=6.46 A. sured depths 0.24 nm and 0.36 nm of the depressions in the
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1.2 , FIG. 10. Graph of the density ofb(qg,a) triples of threefold
(b) planes(in [, orthogonal to a threefold axis ) of i-AlIPdMn with
L g+bra — | spacingsb plane, 0.20 Ag plane, 0.33 Aa plane. The symbaB)
is the standard distance iii, along the threefold axis(®
=3 ®)/\7+2. The plateau in the graph of the combined density
% 0.8 N defines the terminations, its height giving their density. The density
5 graph of 0.65 A layergnot shown has a very low maximum. We
E 0.6 - do not consider the 0.86 A layer a “thin layer.” For i-AICuFe, the
% graphs are the same with slightly changed spacings; see Table II.
E — — . . . . .
0.4 : age of Fig. 10. A height profile along a line, with step
heights, like that for the twofold surface in Figc3, has not
0.2 W=(%)@ 7 been determined for the threefold surface.
W The relative maximum densities of the fivefold, twofold,
0 , TmETEE O ,_2fold and threefold terminations can be read off from the graphs
1 0 1=(12)7°® z, 2

shown in Figs. &), 9(b) and 10, and we list them in row 11
of Table Il. They are in the order fivefold, twofold, and three-
fold. Row 10 of Table Il gives the absolute maximum den-
sities of fivefold, twofold, and threefold terminations for the
model M of i-AlIPdMn. The corresponding data for
i-AlCuFe can be obtained by setting the standard lei@th
to 4.465 A.

FIG. 9. Candidates for twofold terminations of i-AIPdMn. The
curves graph the density of layers along a twofold azis, The
symbol @ is the standard distance along a twofold ax®),
=2 (®/\7+2. (a) A pair of the parallel planes, each containing
andg-atomic positions, a distance 0.57 A apdh). A single plane
containingb-, g-, and a-atomic positions. The curve itb) has its
maximum marginally higher than in the curve(®, so the densest
twofold layers are single planes, which contain atomic positions of
typesq, b, anda. We do not consider the 0.92 A or 1.48 A layersas ~ We expect that, with our modified definition of termina-
“thin layers.” For i-AlCuFe, the graphs are the same with slightly tion as a thin layer of stacked atoms and not just a single
changed spacings; see Table II. atomic plane, the Bravais rule that the densest bulk termina-

tions correspond to the most stable surfaces may be widely
big terraces in Fig. &). These depressions can therefore beapplicable to quasicrystals. A significant feature of this ap-
interpreted as less dense, hence lower probability, terracggoach is that measurable properties of coding space predict
coexisting with the denser, high probability terraces and givobservable properties of physical surfaces. The shape of the
ing them a rougher character. density graph of a layer in coding space determifieshe

One can show from the density graphslin that the relative stability of the surfacéby the height of its maxi-
densest threefold layers arb,{,a) and @,q,b) triples of  mum) and(2) the texture of the surfag@y the breadth of its
planes with distances 0.20 A between thendq planes and  maximum). If the maximum of the function has the form of
0.33 A between the anda planes. The graph of the densi- a flat plateau, as for the fivefold and threefold layers in Figs.
ties of the p,q,a) layers as a function of position in coding 6(b) and 10, then the surfaces have a pronounced terracelike
space is shown in Fig. 10 and has a wide plateaulike areeharacter, as in Figs. 1 and 4. The terraces correspond to bulk
around its maximum. This is in qualitative agreement withlayers of almost equal density and for that reason are equally
the medium scale terraces that spread over an area of abquiobable as surfaces and are of almost equal size. On the
1000x 1000 nnt on the threefold surface shown in Fig. 4. other hand, the sharper peak for the twofold layers in Fig.
Unlike the fivefold case, parts of this plateau correspond t®(b) determines the more fragmented appearance of the two-
singleb planes org planes, where the densities of the otherfold surface seen in Figs. 2 and 3. Terraces of distinctly
planes drop to zero. As theb(q,a) layers there are also different areas correspond to bulk layers of different densi-
(a,q,b) layers inM whose density graph is the mirror im- ties that are not equally probable: on relatively lafgeore

IV. CONCLUSIONS
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probable terraces smallefless probableterraces appear as broad layer consisting of aq(b) layer and a 0,q) layer,

holes. each with=0.48 A. So such a broad layer contains four
Measurements of the fivefold surfaces of i-AlCuFe alsoplanes with spacingsy plane, 0.48 Ab plane, 1.56 Ab

support our modified density rule, and we expect it to applyplane, 0.48 Ag plane. It can be showifi that the density

to all icosahedral quasicrystals. There are preliminary indigraph of such a configuration also supports the appearance of

cations that a related rule applies to decagonaP Fibonacci sequence of terraces on the fi\_/efo_ld surfaces of

quasicrystald® but in the case of d-AlCuCo the candidate for I-FAIPdMn. In fact most @,b) thin layer terminations occur

a termination is a “broad layer{see Sec. Yrather than a Within such @,b,b,q) broad layer termination¥. Similarly,

thin layer of the kind described in Sec. IIl. we may replace a single dense twofold atomic plane by a
layer of four atomic plané§ with spacingsabq plane, 1.48
V. FUTURE DIRECTIONS A, bq plane, 0.92 Apq plane, 1.48 Aabq plane. For these

broad layer twofold terminations the peak becomes a per-

Afeature of the surface of i-AIPdMn not accounted for by fectly flat plateau, and the appearance of the small terraces
our layer analysis is that not all types of maximally densewithin the big ones must be explained by the comparatively
layers appear as surfaces: for exampteb] layers are seen larger distances between the atomic planes in a terminating
in fivefold surfaces but equally densb,@) layers are not. layer®
One possibility is that the densities of the planes above and On the experimental evidence to date, in the case of
below the layer may influence whether it appears as a sui-AIPdMn, it is not possible to say whether thin layer or
face. If one chose to define a termination incorporating théoroad layer terminations best model the physical surfites,
neighboring planes too, one could introduce a broad layer asut both share the feature that densities of layers of more
a bundle of high-density thin layers. This is done in Ref. 16.than one atomic plane are used to determine the positions of
For example, a fivefold termination can be considered to be ¢he bulk terminations.
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