
Theory of the thermal properties of d-plutonium

Walter A. Harrison
Department of Applied Physics, Stanford University, Stanford, California 94305-4045, USA

and Los Alamos National Laboratory, T1, Los Alamos, New Mexico 87545, USA
(Received 6 January 2004; published 29 June 2004)

The thermal properties ofd-plutonium are studied in terms of the elementary electronic structure, and
contrasted to those of aluminum. In both metals the thermal expansion can be understood as from the pressure
of the gas of phonons, a negative expansion in the case of plutonium because of negative Grüneisen constants
for some transverse modes. Thermal expansion in aluminum is found positive, in agreement with experiments.
This phonon gas also has a bulk modulus, negative for plutonium, which dominates the observed negative
temperature dependence of the bulk modulus for plutonium, with a smaller negative contribution arising from
the thermal expansion(in contrast to contraction for pure plutonium) of the alloys on which it is measured. For
aluminum, the phonon-gas contribution is negligible and thermal expansion causes the bulk modulus to de-
crease with temperature, as in experiments. The Debye-Waller temperature, another measure of rigidity, con-
tains a small positive contribution to the temperature dependence from thermal expansion in plutonium and a
negative contribution in aluminum. There is also a much larger negative contribution to the temperature
dependence of the Debye-Waller temperature in both(in accordance with experiments for plutonium) arising
from anharmonicity of some transverse modes. The nearest-neighbor, central-force interactions used here
inevitably lead to sizable errors in some elastic constants, and replacement of Brillouin-zone averages by
averages along thef100g and f111g directions is very questionable for some properties. However, the simpli-
fication is major and the results appear to reveal which contributions are important.
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I. INTRODUCTION

Plutonium is probably the most complex metallic element,
followed by cerium and iron, because of the intermediate
strength of the electron correlations. The possibility of un-
derstanding plutonium has been greatly enhanced by the re-
cent determination of the vibration spectrum by Wonget al.1

using inelastic x-ray scattering, and by the confirming results
deduced from a phonon density of states from inelastic neu-
tron scattering by McQueeneyet al.2 We interpreted these by
using an earlier simple description of the electronic
structure3,4 based upon a Friedel model of the density off
states,nfs«d=14/Wf, an empty-core pseudopotential treat-
ment of the threesd electrons per atom, and inclusion of
correlations through a generalization of an exact result for a
two-level, two-electron problem.5 This description leads3,5 to
two-body, central-force interactionsVsdd=Vfesdd+Vfsdd be-
tween atoms. One contribution comes from the free-electron
theory as

Vfesdd =
Z2e2 cosh2 krce

−kd

d
. s1d

HereZ=3 is the valence of anf-shell metal,k is the Fermi-
Thomas screening parameter depending only upon the free-
electron density, andrc is the empty-core pseudopotential
core radius. Thef-shell contribution is(Ref. 5, following
Ref. 3, p. 620)

Vfsdd = −
1

6

Zfs1 − Zf/14d
2

FÎS"2s6.49r fd5

md7 D2

+ Uf
2 − UfG

+ Zf
"2s3.98r fd10

6md12 . s2d

The first term comes from a partial filling of thef band, and
the second is a repulsion from overlap of neighboringf or-
bitals. It will be helpful as we treat plutonium to also con-
sider a simple metal, aluminum, againZ=3 and for which
r f =0, eliminating the contribution of Eq.(2).

The calculation of vibration spectra in terms of such po-
tentials is straightforward and was carried out in Ref. 5. For
nearest-neighbor interactions the only parameters which en-
tered are the first and second derivatives ofVsdd, the sum of
Eqs.(1) and (2), at the observed spacing, which we specify
in terms ofVs1d=d0]V/]d andVs2d=d0

2 ]2V/]d2, evaluated at
the nearest-neighbor distanced=d0. This gives, for example,
for longitudinal modes propagating in af100g direction

"2vk
2 = s"2/Md2dEs2d sin2skd/Î8d, s3d

whereEs2d=8Vs1d+8Vs2d plays the role of a spring constant
and "2/Md2=1.623310−6 eV for Pu238 and 18.76
310−6 eV for Al. The form is convenient since we shall be
working with phonon energies.

The question of values for the parameters arises immedi-
ately. There are in fact many ways in which they can be
obtained. For aluminum, values ofrc were given in Ref. 3(p.
453) of 0.61 Å, obtained by fitting the pseudopotential form
factors to full calculations, a value of 1.01 Å by adjusting the
value appearing in a total energy for the metal(including
some volume-dependent energies not discussed here) to be
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minimum at the observed atomic spacing, and a value of
0.23 Å to obtain the observed bulk modulus in terms of the
interactions in Eq.(1). This spread arises from the intrinsic
approximate nature of the pseudopotential perturbation
theory, from use of the approximate local empty-core form,
and from the approximations used to calculate the property
fit, as well as the local-density approximation to the electron-
electron interaction. The spread inrc is large because the
properties are rather insensitive to its value, in contrast to the
sensitivity of properties to thef-state radius,r f. One radius is
not more accurate than another, so it is appropriate to fit to a
property such as that under discussion, and use that value to
describe the entire area.

Thus for discussing the vibration spectrum of aluminum
we could choose therc=0.23 Å fit to the bulk modulus,
which would assure that the speed of longitudinal sound was
essentially correct, but we found that this gave peak frequen-
cies at the zone face some 40% too small, exactly because
the forms vk=v0 sinskd/Î8d, which follow from nearest-
neighbor interactions, are not accurate. We choose to pick
rc=0.41 Å, which gives the spectrum for aluminum shown
in Fig. 1(a). These peak frequencies are in approximate ac-
cordance with experiments, but some slopes atk=0 are nec-
essarily too large. The calculation of the spectrum itself, car-
ried out in Ref. 5 and leading to formulas we shall give, is
straightforward and only made intricate by the presence of a
nonzerod0]V/]d.

For plutonium, Zf =5, Uf =4.61 eV, r f =0.58 Å, and rc
=0.69 Å (from Ref. 3, p. 605), and for the delta phase the
equilibrium spacing isd0=3.275 Å.r f was fit to bandwidths
from band calculations andrc was obtained by including
volume-dependent terms and adjustingrc so that the mini-
mum energy came at the observed spacing. We found in Ref.
5 that these values led to instability of theTf111g (transverse
modes with wave number in af111g direction) andT1f110g
modes, but that ther f and rc could be readjusted(rc
=0.67 Å,r f =0.40 Å in Ref. 5) to give a fit to the experimen-
tal spectrum comparable to that for aluminum. We have since
found that this failed, for example, to give the observed
negative thermal expansion ofd-plutonium. We shall pro-
ceed with values,rc=0.75 Å andr f =0.556 Å, adjusted to
give that negative expansion correctly. The resulting vibra-
tion spectrum, shown in Fig. 1(b), did not allow the stability
we sought, but a lowering of energy as long-wavelength

T1f110g mode amplitudes are introduced, showing up as
imaginary frequencies. We shall see in the following section
that this instability would almost be removed by the inclu-
sion of second-neighbor interactions. Aside from this
anomaly, the spectra of aluminum and plutonium are surpris-
ingly alike. We noted in Ref. 5 that in the observed spectrum
for plutonium, the slopes of theL andT spectra alongf100g
are almost identical, which can never be reproduced in our
nearest-neighbor spectrum if the values atX are as different
as they are. This is because Eq.(3) applies to both curves.
The second-neighbor couplings discussed in the next section
do not help and this remains a shortcoming of our descrip-
tion.

As we proceed to the thermal properties, we will also
need higher derivatives,Vsid=d0]

iV/]di, evaluated at the
nearest-neighbor distance. It is these higher derivatives
which lead to the extraordinary differences in the two metals.
We have noted5 that when we take derivatives of the total
energy with respect tod, the factors in the phonon energy
such as sinskd/Î8d do not vary sincekd simply indexes the
state in question, withkdN/ s2pÎ2d an integer between −N/2
and N/2 for N planes of atoms. In evaluating the higher
derivatives another complication arises in that we will be
calculating the shift in the phonon frequency as the total
volume changes. Thus the derivative of the Fermi-Thomas
screening parameter, k=s4e2kFm/p"2d1/2 with kF

=s3ZÎ2p2d1/3/d, enters. Thus,Vs2d is obtained holdingk
fixed in the derivatives, andVs3d would come from another
derivative holdingk fixed, but if we included the variation of
k in the last derivative we would write it asVs3d†. If the
variation ofk were included in the last two derivatives, we
would write it as Vs3d††. The derivatives atd0=3.275 Å,
which enter our calculations for plutonium, based upon Eqs.
(1) and(2) with rc=0.75 Å andr f =0.556 Å, are given in eV
by

Vs1d = − 2.28

Vs2d = 13.99 Vs2d† = 10.2

Vs3d = − 59.6 Vs3d† = − 39.6 Vs3d†† = − 19.2

Vs4d = − 256 Vs4d†† = − 454.

Plutonium

s4d

The Vs1d andVs2d led to the dispersion curves in Fig. 1(b).

FIG. 1. To the left is the spectrum for aluminum,d0=2.86 Å, obtained for nearest-neighbor interactions from Eq.(1). The circles at
symmetry points are experimental values from Ref. 6. To the right is the corresponding spectrum for plutonium,d0=3.275 Å. Experimental
points are from Ref. 1.T1 modes are polarized in a[01-1] direction;T2 modes in af100g direction.
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The derivatives atd0=2.86 Å for aluminum, based upon
Eq. (1) with rc=0.41 Å, are given in eV by

Vs1d = − 1.66

Vs2d = 11.66 Vs2d† = 8.45

Vs3d = − 84.0 Vs3d† = − 66.2 Vs3d†† = − 49.9

Vs4d = 623 Vs4d†† = 432.

Aluminum

s5d

The Vs1d andVs2d led to the curves given in Fig. 1(a).
TheVs4d andVs4d†† for plutonium in Eq.(4) are anomalous

relative to that for aluminum, but by examining the indi-
vidual contributions, all of which grow withi, we saw that
the f-bonding term, varying approximately as −1/d14 when
the Coulomb repulsionUf is much larger thatWf, became
dominant over the free-electron term just at the fourth de-
rivative. The large negative values will make important dif-
ferences in the properties.

This approximate first-principles description has an ad-
vantage, even with the adjustment of the two parametersrc
and r f, over the much closer Born-von Kármán fourth-
nearest-neighbor fit, in giving these higherVsid. With the ad-
ditional Vsid we may obtain the Grüneisen constant for each
mode and thus the thermal expansion and other properties.
The same properties could be obtained, presumably more
accurately, by repeating the calculation of the spectrum using
Dynamical Mean-Field(DMF) Theory, as was done by Dai
et al.,7 but at different volumes. It could also be done by
incorporating the correctionWf /ÎsWf

2+Uf
2d,0.29 for

d-plutonium(whereWf is the f-band width andUf the Cou-
lomb repulsion) in a traditional local density theory, as sug-
gested in Ref. 4. That would be desirable, but the results are
much easier to understand, and hopefully quite similar, in the
simpler theory we use here. Further, we give the formulas,
and the parameters in Sec. VII, which allow all of the esti-
mates to be made also for other actinides.

II. SECOND-NEIGHBOR INTERACTIONS

We are using a description with only nearest-neighbor in-
teractions, and indeed the interactions arising from thef
electrons drop so rapidly that second neighbors at 4.63 Å are
negligible, but one might ask about the free-electron term,
Eq. (1). It may be directly evaluated forrc=0.75 Å for plu-
tonium at the second-neighbor spacing asVs4.63 Åd
=0.019 eV, and contributes −0.10 eV to aVs1d(2nd)
=d0

2us1/dd]V/]dud=Î2d0
, for second neighbors and 0.95 eV to

a Vs2d(2nd). Including these would add a second set of pa-
rameters, such as Eqs.(4) and (5), and a second set of con-
tributions for each property we compute; and the use of
Fermi-Thomas screening, rather than full quantum screening,
is questionable at such distances in any case. In order to
simplify the theory we drop these contributions, but we may
check for any property how big they are. In particular, for the
elastic constants, we found in Ref. 5 thatc11=sVs1d

+Vs2dd /V0, with V0=d0
3/Î2 the atomic volume.(The elastic

constants, incidentally, were calculated from the speed of
sound and thus at constant volume; the derivatives of the

screening constant do not enter so the bulk modulus is a little
different from that which would be obtained from modifying
the total volume.) Nearest-neighbor interactions lead to the
full set of elastic constants(energy per atom, or energy per
volume if divided by the atomic volume)

c11 = Vs1d + Vs2d,

c12 = − 5
2Vs1d + 1

2Vs2d,

c44 = 3
2Vs1d + 1

2Vs2d. s6d

The three values for plutonium are 11.72, 12.73, and 3.61 eV
per atom, respectively. (1 eV per atom=0.0645
31012ergs/cm3 for 2 d Pu.) The second-neighbor contribu-
tions to c11 is Vs2ds2ndd=0.95 eV/atom, to c12 it is
−Vs1ds2ndd=0.10 eV/atom, and toc44 it is 2Vs1ds2ndd
=−0.19 eV/atom, small enough to neglect.[These, again,
were obtained from the speed of sound. Other approaches
can changec11 and c12, but leavesc11−c12d /2 the same.]
Further, they increase the difference betweenc11 and c44,
which were very nearly equal in experiment, but very differ-
ent from two-body, central-force interactions.

On the other hand, the instability we saw for the
T1f110g mode corresponds to a small negative shear con-
stant, sc11−c12d /2=1/4f7Vs1d+Vs2dg u2/d3=−0.03231012

ergs/cm3, and the second neighbors contribute positively to
this shear constant, a value12fVs1ds2ndd+Vs2ds2nddgÎ2/d0

3

=0.02731012 ergs/cm3, nearly sufficient to stabilize the lat-
tice. This may be the only place where the second neighbors
make an important difference and we proceed with nearest
neighbors. This will mean that we cannot use the modes
propagating in thef110g direction in averaging over the Bril-
louin zone, but this will also considerably simplify the cal-
culations since we will find that properties such as the Grü-
neisen constant are independent of wave numbers in the
f100g and f111g directions, but they would vary with wave
numbers along thef110g direction.

III. AVERAGES OVER THE BRILLOUIN ZONE

In all of the properties we now explore we shall require
averages of the frequency, or other functions of wave num-
bers, over the Brillouin zone. In principle we could redo the
calculation which led to Eq.(3) for arbitrary wavenumbers
and perform such averages. In view of the very considerable
inaccuracies for the modes we have considered, that would
not seem justified. The results will be much easier to write
down and interpret if we reduce them to averages along sym-
metry lines, restricting them tof100g and f111g lines as in-
dicated at the close of the last section. Many of these more
accurate averages have been calculated for aluminum,8 and
it may be useful to test our simplified averaging for alumi-
num against the more complete studies.

We focus on averages over the Brillouin zone,kvk
nl, with

n=1 and 2, entering in this study, withk giving the wave
number of the mode and also containing an index designat-
ing the three modes at that wave number. The average is
obtained by dividing the Brillouin zone into pyramidal seg-
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ments of equal volume centered on each of the6+8=14
symmetry lines, for each first averaging along the symmetry
line. Since for each branch of the spectrumvk is propor-
tional to some sinsksd, and weighting by the cross section of
the pyramid, k"vkl becomese0,p/2 sin x x2dx/e0,p/2x

2 dx
=24sp−2d /p3=0.8836 times the peak value,
fs"2/Md2dEs2dg1/2, for that branch[obtainable using Eq.(3)
and, as we shall see, the denominators of Eq.(10)]. The
average over the Brillouin zone becomes 6/42 times this
average for theLf100g branch, plus 12/42 times the average
for the Tf100g branch, plus 8/42 times the average for the
Lf111g branch, plus 16/42 times the average for theTf111g
branch. This yields 21.1 meV for aluminum[approximately
what one would guess from Fig. 1(a)] and approximately
equal to the8 25.3 meV obtained from numerical integrations
over the entire Brillouin zone for a spectrum accurately fit to
the measured spectrum.

The average of 1/s"vkd2 is 3e0,p/2 dx x2/sin2 x/
e0,p/2x

2 dx=1.686 times the reciprocal of the peak value
squared,fs"2/Md2dEs2dg−1, for that branch. Evaluating the
weighted averages of the branches givesk1/s"vkd2l=6.42
3103/eV2. It is in considerably poorer accordance with the8

2.493103/eV2 obtained from numerical integrations over
the entire Brillouin zone. This is partially from inaccuracies
of our spectrum but much more from an inaccuracy of this
moment calculation where a major contribution, 5.10 of the
6.42, came from theTf111g branches. Note that the value of
1/s"vkd2 for Tf111g is weighted by 16/42, as above, since
we are averaging over 42 branches. If we had included also
the 36f110g modes, there would have been more larger con-
tributions, but we would have divided them by 78. We can
expect errors on the scale of a factor of 2 in averages involv-
ing 1/s"vkd2, but they will be good enough to tell us which
terms are important, and going beyond that average would be
a major undertaking.

If we seek a representative value of the phonon energy as
k1/s"vkd2l−1/2=12.5 meV, we see that it is much less than
k"vkl=21.1 meV because of its heavy weighting of low fre-
quencies. One must be careful in using Debye temperatures
QD, or Debye energieskBQD which attempt to give represen-
tative phonon energies.

IV. THERMAL EXPANSION

Thermal expansion arises because the energysnk
+1/2d"vk in a mode, in thenkth excited state) varies with
volume V, giving a contribution to a pressure ofsnk
+1/2d"]vk /]V. Summing this over all the modes for a
given volume gives the total pressure, which when divided
by the bulk modulusB, gives the negative of the dilatation,
dV /V=−SkB−1snk +1/2d"]vk /]V=Sksnk +1/2d"vk gk /
BV, wheregk is the mode-Grüneisen constant,

gk = − sV/vkd ] vk/] V, s7d

for each mode. It may be helpful to think of this pressure as
arising from a “phonon gas” since the second derivative of
the energy of this gas with respect to volume will give a
thermal contribution to the(adiabatic) bulk modulus arising

from ]2vk /dV2. Due to the anisotropy of the system, there
will even be contributions to the shear constant from the
phonon gas, and at one point we thought that this might
remove the instability of theT1f110g modes shown in Fig.
1(b). It did not, which caused us to look at second neighbors
in the preceding section. We return in the following sections
to these further properties of the phonon gas.

The nk that enters in all cases, isnk =1/fexp s"vk /kBTd
−1g, and we sum over all 3N modes for theN atoms so the
result can be written in terms of the volume per atom,V0
=d3/Î2, as

dV

V
=

1

BV0
K 3"vkgk

2 tanhs"vk/2kBTdL <
3kBT

BV0
kgkl. s8d

The expectation valuekl, indicates an average over all
modes. The final expression obtains at high temperatures
where the hyperbolic tangent approaches"v / s2kBTd. The
linear expansiondd/d is one-third of thisdV /V, and taking
the derivative with respect to temperature at high tempera-
ture, gives the linear thermal expansion coefficient,

aTE =
kBkgkl
BV0

. s9d

Obtaining the Grüneisen constant from Eq.(7)
is quite direct. For theLf100g mode we take the deriva-
tive with respect tod of both sides of Eq.(3) (first
writing out Es1d in terms of ]V/]d and d2V/]d2) to
obtain 2"vk ]"vk /]d=8s"2/Mdsin2 skd/Î8d] s1/d]V/]d
+]2V/]d2d /]d=8s"2/Md3dsin2skd/Î8ds−Vs1d+Vs2d†+Vs3d†d,
noting as we indicated that sin2skd/Î8d does not vary in the
derivative, but that in the derivative for the change in volume
the screening constant changes, so a † appears. Noting that
V] /]V=1/3 d] /]d we obtain for Lf100g and the other
modes

gLf100g = −
1

6

− 8Vs1d + 8Vs2d† + 8Vs3d†

8Vs1d + 8Vs2d ,

gTf100g = −
1

6

− 12Vs1d + 12Vs2d† + 4Vs3d†

12Vs1d + 4Vs2d ,

gLf111g = −
1

6

− 4Vs1d + 4Vs2d† + 8Vs3d†

4Vs1d + 8Vs2d ,

gTf111g = −
1

6

− 10Vs1d + 10Vs2d† + 2Vs3d†

10Vs1d + 2Vs2d . s10d

Note that in each case the expression in the denominator is
Es2d so formulas for the frequencies in each mode(given in
Ref. 5) can be obtained from the denominators and compari-
son with Eq.(3), using the sinskd/Î6d for the sine factor in
the case off111g.

Using values ford-Pu from Eq. (4) we obtain gLf100g
=0.38,gTf100g=0.05,gLf111g=0.43, andgTf111g=−1.49, apply-
ing to each entire symmetry line. The weighted average over
symmetry lines is kgl=s6gLf100g+12gTf100g+8gLf111g
+16gTf111gd /42=−0.42. The negative sign came entirely from
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the Tf111g branch. Substituting this in Eq.(9), using the
experimental bulk modulus9 of B=0.28931012 ergs/cm3,
yieldsaTE=−8.1310−6/K, close to the experimental value9

of about −7.7310−6/K because, as we indicated, we ad-
justedrc and r f not only to fit the vibration spectrum but to
give the appropriate negative thermal expansion. The use of
our inaccurate bulk modulus predicted in the next section,
B=0.80031012 ergs/cm3, yields aTE=−2.9310−6/K.

We may note in passing that the corresponding evaluation
of k"vkl, as described in Sec. III, gives 6.42310−3 eV for
plutonium, or a Debye temperature ofQD=k"vkl /kB=75 K.
Also, the kgk"vkl which enters the low-temperaturedd/d
[obtainable from the first form in Eq.(8)] is 0.171
310−3 eV, positive in contrast to the negativekgklkhvkl
=−2.70310−3 eV because the only negativegk in kgk"vkl
is weighted by such low frequencies.

It is also possible to calculate the full temperature depen-
dence, as opposed to the high-temperature limit, ofdd by
evaluating the expectation value in Eq.(8) by integrating
over wave numbers[using Eq.(3) or its counterpart] for each
branch and taking the weighted average over branches. It
yields addsTd, which is nearly horizontal(but with a slightly
positive ]ddsTd /]T at T=0, and then at 20 or 30 K turns
down to approach a linear curve described by the linear co-
efficient given above. The experimental curves from Ref. 9,
in contrast, suggest a positive peak at some 400 K then turn-
ing over to the negative linear coefficient in the range of
stability, 592–794 K, discussed here. There are uncertainties
of a few thousandths of an angstrom(Lawson, private com-
munication) due to specimen position, which may be at least
partly responsible for the discrepancy.

We may note that a zero-temperature shift in the lattice
distance, which arises from the pressure due to zero-point
fluctuations, depends upon the isotopic mass as 1/ÎM, and
therefore causes a difference in the zero-temperature spacing
for different isotopes. However, the total shift is onlydd
=kgk"vkld/ s2BV0d=6.2310−5 Å (evaluated as above), so
the difference between Pu239 and Pu242 is only dd=5
310−7 Å. There has been discussion of an experimental dif-
ference (Lawson, private communication) considerably
larger than this.

The behavior of aluminum is quite different. Thegk for
the four branches are quite close, and positive, at 0.94, 0.90,
0.98, and 0.78, respectively, and the weighted average of
kgkl=0.865 yields(again using the experimentalB) a ther-
mal expansion coefficient of +10.0310−6/K, positive, and
in very rough agreement with the experimental 25
310−6/K. The fuller calculation based upon Eq.(8) again
gives addsTd, which starts out horizontal at low temperature
and bends to the linear positive slope, for aluminum at 100
or 200 K.

V. TEMPERATURE DEPENDENCE OF THE BULK
MODULUS

Lawsonet al.9 have also noted that the bulk modulus of
plutonium(and its alloys), as well as the Debye temperature,
decreases rapidly with temperature,dB/dT=−150

3106 ergs/scm3 Kd over the temperature range 50–300 K.
The experiments are done with alloys, since pure plutonium
is stable only in the narrow range of 592–724 K. The alloys
at this lower temperature range show a positive thermal ex-
pansion of aboutaTE= +9310−6/K (Ref. 9, Fig. 2), in con-
trast to the negative expansion of pure plutonium discussed
in the preceding section.

In discussing this temperature dependence, there are two
contributions to the bulk modulus which we must consider.
The first arises from the dependence of the bulk modulus(at
T=0 ) on the lattice constant combined with the temperature
dependence of the lattice constant. The second arises from
the thermal energy of the phonon gas,kBT in each mode at
high T, and the second derivative of that energy with respect
to volume(holding the excitation quantum number for each
mode constant as in calculating the pressure).

For the first contribution, we need the dependence of the
bulk modulus on spacingsd/Bd]B/]d, with B=sc11
+2c12d /3. We gave forms for the elastic constants in Sec. II,
leading to B=f−4

3Vs1d+ 2
3Vs2dg /V0=0.50 eV/Å3=0.80

31012 ergs/cm3, higher than the experimental value of
0.2931012 ergs/cm3. Taking the derivative with respect to
spacing as for Eq.(10) leads to

d

B

] B

] d
=

4Vs1d − 2Vs2d† − Vs2d + Vs3d†

− 2Vs1d + Vs2d = − 4.48 s11d

for plutonium from the parameters of Eq.(4). The negative
sign is the same as in most materials, corresponding here to
a positive Grüneisen constant for the bulk modulus of pluto-
nium because it is dominated by longitudinal modes. Using
the experimentalB and aTE= +9310−6/K (for the alloys
tested, Ref. 9) gives a negative contribution to]B/]T
=−4.48BaTE=−123106 ergs/cm3 K, a contribution of the
same sign, but a factor of 12 smaller than the observed
]B/]T.

The same analysis for aluminum yieldsB=0.97
31012 ergs/cm3, compared to the experimental 0.72
31012 ergs/cm3, sd/Bd]B/]d=−6.77 from Eq.(11), to be
compared with an experimental −12.9 obtained from the
pressure dependence of the bulk modulus.10 This −6.77, with
the experimental aTE andB, gives a contribution to]B/]T of
−1223106 ergs/cm3 K or [−2323106 ergs/cm3 K using
the experimentalsd/Bd]B/]d=−12.9] to be compared with
the experimental10 ]B/]T=−1753106 ergs/cm3 K. All es-
timates are comparable to the experiments for aluminum.

The second contribution to]B/]T requires a sum over all
modes ofsV2/"vkd]2"vk /]V2. The evaluation is a little in-
tricate; first, writing this in terms of the derivatives ofs"vkd2

with respect tod. Then, for a mode(in the [100] or [111]
directions) for which s"vkd2=s"2/MdfA1V

s1d+A2V
s2dgsin2ks,

we may evaluatesV2/"vkd]2"vk /]V2 in terms of the con-
stantsA1 andA2, obtaining

V2

"vk

]2vk

] V2

=
2A1V

s1d − 2A1V
s2d† + A1V

s3d††/2 − A2V
s3d† + A2V

s4d††/2

9sA1V
s1d + A2V

s2dd

− H− A1V
s1d + A1V

s2d† + A2V
s3d†

6fA1V
s1d + A2V

s2dg J2

. s12d

THEORY OF THE THERMAL PROPERTIES OFd-PLUTONIUM PHYSICAL REVIEW B 69, 224109(2004)

224109-5



In fact, the magnitude ofVs4d†† is so much greater than the
other Vsid that the numerator in the first term is essentially
A2V

s4d††/2, andVs2d is so much larger thanVs1d that the de-
nominator is essentially 9A2V

s2d, so the first term may be
taken as 1

18Vs4d††/Vs2d=−1.80 for all modes. Similarly, the
largest term in the second term of Eq.(12) is
−fVs3d†/6Vs2dg2=−0.22. This same constant total value of
−2.02 applies to all modes with wave numbers along the two
sets of symmetry lines([100] and[111]), and we may take it
to be the average for all modes. Then, noting that the exci-
tation number for each mode at high temperatures is
kBT/"vk, the contribution to the bulk modulus is a sum over
the modes ofskBT/"vkdV ]2"vk /]V2=−2.02kBT/V. There
are three modes per atomic volumeV0 so the contribution to
]B/]T is 332.02kB/V0=−33.73106 ergs/cm3 K. This is
much larger than the contribution of −123106 ergs/cm3 K
obtained from the thermal expansion of plutonium alloys,
leading to a total]B/]T=−463106 ergs/cm3 K, consider-
ably smaller than the experimental −1503106 ergs/
scm3 Kd. The sign is correct and perhaps the magnitude is
close enough that the origin may be the correct one, recalling
that even our estimate of the low-temperature bulk modulus
was in error by a factor of 2.8. The thermal contribution to
the bulk modulus is seen here to be dominated by the second
derivative of the phonon-gas energy with respect to volume.
Lawsonet al.9 noted that the variation of the bulk modulus
with temperature is quite independent of the alloy concentra-
tion. The dominance of the phonon-gas term explains how
this can be so although the thermal expansion coefficient
changes sign with very small alloy concentrations.

Repeating the analysis of the phonon-gas term for alumi-
num, Eq.(12) yields +1.16 rather than −2.02, and a contri-
bution to ]B/]T of 29.23106 ergs/cm3 K. This is of the
opposite sign of our prediction of the contribution from
change in volume, but in this case is much smaller, within
the scatter of our estimates of the contribution from thermal
expansion. This is the anticipated behavior for metals, a de-
crease inB due to thermal expansion, but in the case of
plutonium, with negative expansion, it is dominated by the
phonon-gas contribution.

There are analogous contributions to the elastic constant
sc11−c12d /2 due to the shift in phonon frequencies under
strain. The calculation is particularly intricate because we
introduce a small strain,e, and then phonon amplitudesu,
and must calculate the change in energy including the terms
e2u2, which are of fourth order in the displacements. A con-
venient strain is to expand the lattice in thez direction by a
factor 1+e while contracting it in the two lateral directions
by 1/s1+ed1/2, so that the volume is rigorously conserved.
With this shear the modes are no longer purely longitudinal
and transverse, except for propagation in the ±f100gg,
±f010g, and ±f001g directions, and one would need to solve
for the modes at every wavenumber. For these six simple
directions it is again sufficient to evaluate the frequency for
the zone-boundary mode. We treated these, finding the
Lf001g frequencies shifted by a factor 1−3.09e2, the two
Tf001g frequencies by 1+1.28e2, theLf100g andLf010g fre-
quencies by 1−1.15e2, the Tf100g and Tf010g polarized
along the[001] frequencies by 1−5.83e2, and theTf100g

polarized along[010] (as well as theTf010g polarized along
[100]) shifted by 1−3.72e2. Using just these six cube
directions gives the average frequency shift askdvk /vkl
=−2.44e2, and a negative contribution to12sc11−c12d due to
the thermal phonons(with a value of −6.9kBT/d3=−0.008
31012 ergs/cm3 at room temperature). This still leaves the
second-neighbor contribution and the corresponding calcula-
tion gavekdvk /vkl=−0.033e2, a much smaller contribution,
but still negative. It would have been very interesting if the
phonon gas had led to a positive contribution to the elastic
constant. It would mean that the structure, and the phonon
spectrum, could be stabilized self-consistently by the phonon
gas itself. It appears not to be the case in plutonium or alu-
minum, but might be in some other metal.

VI. THE DEBYE-WALLER FACTOR

Lawsonet al.,9 indicated that there is a temperature de-
pendence of another measure of lattice rigidity, rather than
the bulk modulus, obtained from the Debye-Waller factor
from neutron diffraction. The property which is measured
is the intensity of the Bragg reflection of neutrons from
the lattice, reduced by the Debye-Waller factor11

expf−ksq ·dr d2lg, whereq is the wavenumber of the diffrac-
tion anddr is the displacement of each atom from its equi-
librium position. In order to treat it, we write the displace-
ment of each atom in terms of the normal coordinatesuk
(k is the wave number of the normal coordinate but again
includes an index for the three polarizations for each wave
number) such that the displacement of theith atom is given
by

dr i = Î1/NSkuk expsik · r id, s13d

with N the number of atoms present(e.g., Ref. 11, p. 407ff).
In terms of these normal coordinates, we may obtain
the ksq ·dr d2l for one atom by writing out sq ·dr d2

=s1/Ndokk8q ·ukq ·uk8expsisk +k8d ·r id, averaging overi so
that only the terms withk8=−k and of the same polarization
contribute, leading to

sq · ] r d2 =
1

3N
q2Skuku−k , s14d

with the 1
3 coming from the angular average of the compo-

nent alongq and the sum is over all 3N normal coordinates
This expression does not depend upon the displacements be-
ing small. Note that the squared displacement of one atom is
obtained from an average,s1/3Ndq2ok, of uku−k over all
normal coordinates.

We made an intricate derivation of the thermal averages
over all modes, including anharmonic terms, but the result is
much more easily obtained by considering a single normal
coordinate and then generalizing the result as an average
over all. The notation will best match if we consider
the coordinate corresponding to the highest-frequency
longitudinal mode in the[100] direction, with alternate at-
oms having displacements ±u in opposite directions on alter-
nate planes, or relativex displacements of 2u between neigh-
boring planes. Then we evaluate the change in energy per
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atom by summing the interaction energies between
atoms in neighboring planes and write the result as
an expansion Esud=Es1dsu/dd+ 1

2Es2dsu/dd2+ 1
3!E

s3dsu/dd3

+ 1
4!E

s4dsu/dd4+. . .. When we sum over neighbors the odd
terms sum to zero for the mode and we obtain as before for
the second-order termEs2d=8Vs1d+8Vs2d. We return later to
the fourth-order term. We could use thisEs2d to obtain the
normal-mode frequency for this mode by equating the poten-
tial energy per atom1

2Es2dsu/dd2 to the kinetic energy per
atom 1

2Mvk
2u2 leading to the value given in Eq.(3) [for the

sinskd/Î8d=1 for this mode].
For high temperatures we could proceed by letting the

potential energy in each mode equal1
2kBT, but it will gener-

alize to the nonharmonic case, in which we keep the fourth-
order term, if we note that the probability at high tempera-
tures of a particular value ofu with potential energyEsud is
proportional to expf−Esud /kBTg, with Esud= 1

2Es2dsu/dd2 in
the harmonic case. Then the expectation value, in thermal
equilibrium, ofu2 becomes

ku2l =
E expf− Esud/kBTgu2du

E expf− Esud/kBTgdu

= d2
E expf− Es2dsu/dd2/2kBTgsu/dd2dsu/dd

E expf− Es2dsu/dd2/2kBTgdsu/dd

= d2kBT/Es2d = kBT/Mvk
2. s15d

The final form remains correct for any mode, and as in Eq.
(14) it ends up being averaged over modes as

ksq · dr d2l/sq2d2d = kuku−kl/3d2 = s"2kBT/Md2dk1/s"vkd2l,

s16d

where again the expectation valuek1/s"vkd2l
=s1/3Ndok1/s"vkd2, an average over all modes, is to be
distinguished from the expectation values such asku2l in Eq.
(15), which are thermal averages.

One may associate a Debye-Waller temperatureQDW with
this expression(Lawsonet al.12), but it is a different average
from the kBQD=k"vkl which we evaluated near the end of
Sec. IV. By comparing Eqs.(1) and (3) of Ref. 12 with the
final form in Eq.(16) here, we see that thisQDW is defined
by

3/skBQDWd2 = k1/s"vkd2l. s17d

This is one of the averages obtained for aluminum in Sec. III.
For plutonium it leads toQDW=Î3/fkBk1/s"vkd2l1/2g=67 K,
half the experimental value ofQDW=117 K, extrapolated to
pured-Pu from the data for alloys given by Lawsonet al.12

We saw in Sec. III that our average over the Brillouin zone,
k1/s"vkd2l, for aluminum was more than a factor of 2 too

large, corresponding to a comparable underestimate ofQDW,
so this is not a serious discrepancy for plutonium.

Lawsonet al.12 have also given the temperature depen-
dence of this Debye-Waller temperature as]QDW/
]T,−0.043. As for the bulk modulus, there is a con-
tribution due to thermal expansion. The volume depen-
dence of 1/skBQDWd2 is described by a constant
sV /kBQDWd] skBQDWd /]V=−kgk /vk

2l / k1/vk
2l=1.24, with

kgk /vk
2l evaluated as in Sec. III. This is the opposite sign and

of similar magnitude to thesV /Bd]B/]V=1/3sd/Bd]B/]d
=−1.49 obtained for plutonium from Eq.(11). These
two measures of rigidity have the opposite dependence
on volume, just as the sign varied among thegk for dif-
ferent modes. This gives a contribution to the tempera-
ture dependence of ]QDW/]T=]QDW/]V3]V /]T
=s−kg /vk

2l / k1/vk
2ld33aTEQDW. Using again the experi-

mental value for the alloys tested(Ref. 9) of aTE
=9310−6 K and QDW=67 K this gives]QDW/]T=0.0022.
This is of opposite sign and very much smaller than the
experimental ]QDW/]T,−0.043. Such a discrepancy is
what suggested the invarlike effect to Lawsonet al.9 We
consider here an alternative origin, arising from the lack of
harmonicity of each mode, deviations of the potential energy
of each mode fromu2.

We return to the first form in Eq.(15) with 1
2Es2dsu/dd2

replaced by 1
2Es2dsu/dd2+ 1

4!E
s4dsu/dd4. The calculation of

Es4d for each branch is carried out as in Sec. V, expanding the
changedd in spacing for each neighbor to the fourth order in
the difference, 2u, in relative displacement of the planes for
the highest-frequency mode, and then carrying out a Taylor
expansion of the potential energy to the fourth order indd.
The Es2d’s are the same as the denominators in Eq.(10), as
we found for theLf100g mode after Eq.(3). TheEs4d’s for the
four branches are

Es4dsLf100gd = 16f9Vs1d − 9Vs2d + 6Vs3d + Vs4dg = − 12 230 eV,

Es4dsTf100gd = 8f− 3Vs1d + 3Vs2d + 6Vs3d + Vs4dg = − 4550 eV,

Es4dsLf111gd = 16f7Vs1d − 7Vs2d + 4Vs3d + 4/3Vs4dg

= − 10 200 eV,

Es4dsTf111gd = − 30Vs1d + 30Vs2d + 36Vs3d + 2Vs4d

= − 2177 eV, s18d

with numerical values for plutonium obtained using Eq.(4).
The four values ofEs2d, obtained from the denominators in
Eq. (10) using Eq.(4) for plutonium, are 93.8, 28.6, 102.9,
and 5.12 eV, respectively.

We may expand the exps− 1
4!E

s4dsu/dd4/kBTd,s1− 1
4!E

s4d

3su/dd4/kBTd in both integrals now in Eq.(15) and change
variables tox, with x2= 1

2Es2dsu/dd2/ skBTd to obtain
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ku2l =
2kBTd2

Es2d 3

E exps− x2d x2h1 − fEs4dkBT/6Es2d2gx4jdx

E exps− x2dh1 − fEs4dkBT/6Es2d2gx4jdx

=
2kBTd2

Es2d
1/4 −s15/16dfEs4dkBT/6Es2d2g
1/2 −s3/8dfEs4dkBT/6Es2d2g

<
2kBTd2

Es2d S1 −
Es4dkBT

2Es2d2 D . s19d

This again is for the highest frequency mode for each branch
and, as in the final form of Eq.(15) for modes of smaller
wave number, theu2 becomesuku−k sin2 ks (with s=d/Î8
for [100] modes) which leads to the form

kuku−kl =K kBT

Mvk
2S1 −

Es4dkBT

2Es2d2 DL s20d

for each branch, with the leading factor averaging to
1.686d2kBT/Es2d for that branch. The factors of sin2 ks can-
celed in the ratioEs4d /Es2d2 in the final factor. The net effect
is to multiply the 1/s"vkd2=1.686Md2/ f"2Es2dg for each
branch appearing in Eqs.(16) and (17) by 1
−Es4dkBT/ f2Es2d2g for that branch.

There are then two terms in the expression for
3/skBQDWd2. The first, which comes from the harmonic ap-
proximation, is proportional to an average of 1/Es2d and the
second, which arises from anharmonicity, to an average of
Es4dkBT/Es2d3. The value forEs2d [given after Eq.(18)] is so
small for the transverse[111] mode that with a 1/Es2d3 it
almost completely dominates the second term, although mul-
tiplied by 16/42 because it appears in 16 of the 42 branches
included in the average, and although the correspondingEs4d

from Eq. (18) is the smallest. Thus the expression forQDW
can be taken as

3

fkBQDWsTdg2 =
3

fkBQDWs0dg2 −
163 1.686Md2Es4dkBT

423 2"2Es2d3 ,

s21d

with Es2d and Es4d for the Tf111g mode. Again usingQDW

=67 K, this leads to a contribution of]QDW/]T
=0.054sMd2/"2dskBQDWd3Es4d /Es2d3=−0.11, even more
negative than the experimental −0.043 given by Lawsonet
al.,12 and completely dominating the term from thermal ex-
pansion. However, the same fact that the average is domi-
nated by a single term, which simplified Eq.(21), also led us
to overestimatek1/vk

2l by a factor of 2.6 in Sec. III. To go
beyond this is a major undertaking, so we conclude simply
that it is not difficult to understand the large negative
]QDW/]T in plutonium and that it comes from a source com-
pletely different from that which causes the large negative
]B/]T.

Applying the same formulas to aluminum gives aQDW
=251 K and −kgk /vk

2l / k1/vk
2l=−0.081, which with the ex-

perimental thermal expansion gives a contribution to
]QDW/]T=s−kg /vk

2l / k1/vk
2ld33aTEQDW=−0.0152. The

contribution from anharmonicity is ]QDW/]T
=0.054sMd2/"2dskBQDWd3Es4d /Es2d3=−0.13, from an Es2d

=6.7 eV andEs4d=−1382 eV. Even in aluminum the tem-
perature dependence of the Debye-Waller factor, in contrast
to that of the bulk modulus, seems to be dominated by an-
harmonicity of the[111] transverse modes, rather than the
softening of the modes(especially theTf111g modes) due to
thermal expansion. This could be tested by measuring the
change in the Debye-Waller factor under pressure. We would
expect sV /QDWd]QDW/]V=−kgk /vk

2l / k1/vk
2l=−0.081, a

factor of 10 smaller than a value which would be inferred
from the variation due to thermal expansion.

VII. APPLICATION TO OTHER ACTINIDES

All of the formulas here are applicable to other trivalent
metals and actinides(which is why they were included), but
different values for the parameters are appropriate. We list in
Table I the values for the other actinides and other trivalent
metals. It may well be appropriate to adjust these in accor-
dance with some property for each of these elements, as we
did for plutonium, but then all other properties can be di-
rectly and simply predicted.
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TABLE I. Parameters for other trivalent metals from Ref. 3, for
simple metals from p. 453 and for the actinides from p. 605.r0 is
the atomic sphere radius, related to the spacingd in fcc crystals by
d3/Î2=4pr0

3/3.

Zf r0 sÅd rc sÅd r f sÅd Uf seVd

Al 0 1.58 0.23

Ga 0 1.67 0.31

In 0 1.84 0.46

Ac 0 2.10 0.85 1.11 3.00

Th 1 1.99 0.88 0.87 3.20

Pa 2 1.80 0.79 0.70 3.35

U 3 1.69 0.74 0.64 4.09

Np 4 1.66 0.71 0.60 3.90

Pusdd 5 1.81 0.69 0.58 4.61

Am 6 1.91 0.76 0.58 4.96

Cm 7 2.03 0.82 0.61 5.10
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