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The thermal properties of-plutonium are studied in terms of the elementary electronic structure, and
contrasted to those of aluminum. In both metals the thermal expansion can be understood as from the pressure
of the gas of phonons, a negative expansion in the case of plutonium because of negative Gruneisen constants
for some transverse modes. Thermal expansion in aluminum is found positive, in agreement with experiments.
This phonon gas also has a bulk modulus, negative for plutonium, which dominates the observed negative
temperature dependence of the bulk modulus for plutonium, with a smaller negative contribution arising from
the thermal expansiofin contrast to contraction for pure plutoniyof the alloys on which it is measured. For
aluminum, the phonon-gas contribution is negligible and thermal expansion causes the bulk modulus to de-
crease with temperature, as in experiments. The Debye-Waller temperature, another measure of rigidity, con-
tains a small positive contribution to the temperature dependence from thermal expansion in plutonium and a
negative contribution in aluminum. There is also a much larger negative contribution to the temperature
dependence of the Debye-Waller temperature in fiotlaccordance with experiments for plutoniparising
from anharmonicity of some transverse modes. The nearest-neighbor, central-force interactions used here
inevitably lead to sizable errors in some elastic constants, and replacement of Brillouin-zone averages by
averages along thel00] and[111] directions is very guestionable for some properties. However, the simpli-
fication is major and the results appear to reveal which contributions are important.
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. INTRODUCTION B 1zf(1 _Zf/14) ﬁ2(649f)5 2 )
Vild) =-¢ > o + U7 - U;
Plutonium is probably the most complex metallic element, ) 10
followed by cerium and iron, because of the intermediate o B (3.9879) P
strength of the electron correlations. The possibility of un- " emdt2

derstanding plutonium has been greatly enhanced by the re- -

cent deterr%irp:ation of the vibratior?spec);rum by Waing);I.l ei'he first leHm comes fr_om a partial filling of trf_eband, and
using inelastic x-ray scattering, and by the confirming resul'ﬁ)he seconq is a repulsion from overlap of.ne|ghboring—
deduced from a phonon density of states from inelastic ne _'|tals. It ‘_N'” be helpful as we treat plutonium to also' con-
tron scattering by McQueeney al? We interpreted these by sider a _S|r_nple_ metal, a'“”_“”“_m’ agalt¥ 3 and for which
using an earlier simple description of the electronic’ =9 ehmmatln_g the CQnmbUt'On of E((_Z).

structuré* based upon a Friedel model of the densityfof The qalcula_tmn of vibration spectra In terms of such po-
states,n;(s)=14/W;, an empty-core pseudopotential treat- tentials is gtralghtforward.and was carried out in Ref. 5 For
ment of the threesd electrons per atom, and inclusion of nearest-ne|ght_)or Interactions the.onlly parameters which en-
correlations through a generalization of an exact result for %ered are the first and second denvatlyeS/(Jj),. the sum Of.
two-level, two-electron problefThis description leadéto =95+ (1) and((g), at the observg()j spacing Vgh'Ch we specify
two-body, central-force interactioné(d)=V;(d)+V(d) be- i terms ofV'=dyV/ad andV®=d, #V/id?, evaluated at

tween atoms. One contribution comes from the free-electroH1e nea_rest_—ne|ghbor d|standed0.. Th.|s g|ves,_for e.xamp'e’
for longitudinal modes propagating in[&400] direction

theory as
#20f = (HAIMADE? sird(kd/\8), (3)
where E@ =8V +8V@ plays the role of a spring constant
)= 7%¢? cosht «kr e and #72/Md?=1.623x10°%eV for Puss and 18.76
Vie(d) = d ' (1) %10 eV for Al The form is convenient since we shall be

working with phonon energies.
The question of values for the parameters arises immedi-

ately. There are in fact many ways in which they can be
HereZ=3 is the valence of afirshell metalx is the Fermi-  obtained. For aluminum, values Qfwere given in Ref. 3p.
Thomas screening parameter depending only upon the fred53) of 0.61 A, obtained by fitting the pseudopotential form
electron density, and, is the empty-core pseudopotential factors to full calculations, a value of 1.01 A by adjusting the
core radius. Thef-shell contribution is(Ref. 5, following  value appearing in a total energy for the metalcluding
Ref. 3, p. 620 some volume-dependent energies not discussed teree
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FIG. 1. To the left is the spectrum for aluminumh,=2.86 A, obtained for nearest-neighbor interactions from @&y. The circles at
symmetry points are experimental values from Ref. 6. To the right is the corresponding spectrum for plutgrid/275 A. Experimental
points are from Ref. 1T; modes are polarized in [@1-1] direction; T, modes in §100] direction.

minimum at the observed atomic spacing, and a value oT;[110] mode amplitudes are introduced, showing up as
0.23 A to obtain the observed bulk modulus in terms of theimaginary frequencies. We shall see in the following section
interactions in Eq(1). This spread arises from the intrinsic that this instability would almost be removed by the inclu-
approximate nature of the pseudopotential perturbatiosion of second-neighbor interactions. Aside from this
theory, from use of the approximate local empty-core form,anomaly, the spectra of aluminum and plutonium are surpris-
and from the approximations used to calculate the propertjngly alike. We noted in Ref. 5 that in the observed spectrum
fit, as well as the local-density approximation to the electronfor plutonium, the slopes of thie and T spectra along100]
electron interaction. The spread ip is large because the are almost identical, which can never be reproduced in our
properties are rather insensitive to its value, in contrast to th@earest-neighbor spectrum if the valueskadre as different
sensitivity of properties to the-state radius;¢. One radiusis  as they are. This is because E8) applies to both curves.
not more accurate than another, so it is appropriate to fit to &he second-neighbor couplings discussed in the next section
property such as that under discussion, and use that value #® not help and this remains a shortcoming of our descrip-
describe the entire area. tion.

Thus for discussing the vibration spectrum of aluminum  As we proceed to the thermal properties, we will also
we could choose the.=0.23 A fit to the bulk modulus, need higher derivativesy=dodV/dd, evaluated at the
which would assure that the speed of longitudinal sound wagearest-neighbor distance. It is these higher derivatives
essentially correct, but we found that this gave peak frequenwhich lead to the extraordinary differences in the two metals.
cies at the zone face some 40% too small, exactly becausge have noted that when we take derivatives of the total
the forms wy=wy sin(kd/y8), which follow from nearest- energy with respect td, the factors in the phonon energy
neighbor interactions, are not accurate. We choose to pickuch as sitkd/y8) do not vary sincekd simply indexes the
r=0.41 A, which gives the spectrum for aluminum shownstate in question, witkdN/(27,2) an integer betweenN/ 2
in Fig. 1(a). These peak frequencies are in approximate acand N/2 for N planes of atoms. In evaluating the higher
cordance with experiments, but some slopek=a@ are nec-  derivatives another complication arises in that we will be
essarily too large. The calculation of the spectrum itself, carcalculating the shift in the phonon frequency as the total
ried out in Ref. 5 and leading to formulas we shall give, isyolume changes. Thus the derivative of the Fermi-Thomas
straightforward and only made intricate by the presence of @creening  parameter, k=(4e’kem/ 7h2)Y2  with ke
nonzerodydV/ ad. =(3Z\27)Y3/d, enters. ThusV? is obtained holdingx

For plutonium, Z;=5, U;=4.61 eV, 1;=0.58 A, andr; fixed in the derivatives, antt®® would come from another
=0.69 A (from Ref. 3, p. 605 and for the delta phase the gerjyative holdings fixed, but if we included the variation of
equilibrium spacing isly=3.275 Ars was fit to bandwidths . iy the last derivative we would write it 28", If the
from band calculations and, was obtained by including yariation of x were included in the last two derivatives, we
volume-dependent terms and adjustingso that the mini- \\ouid write it as V@' The derivatives aty=3.275 A,
mum energy came at the observed spacing. We found in Refyhich enter our calculations for plutonium, based upon Egs.
5 that these values led to instability of ti111] (transverse (1) and(2) with r.=0.75 A andr;=0.556 A, are given in eV
modes with wave number in[d11] direction) and T,[110] by
modes, but that the; and r, could be readjustedr,
=0.67 A,r;=0.40 A in Ref. § to give a fit to the experimen- VY =-2.28
tal spectrum comparable to that for aluminum. We have since\/2 = 13.99 yv®@1=10.2

found that this failed, for example, to give the observed . _ 3t _ 3t _ Plutonium
negative thermal expansion @plutonium. We shall pro- V==59.6 V¥I=-306 V¥'=-19.2
ceed with valuesr.=0.75 A andr;=0.556 A, adjusted to V¥ =-256 VT = — 454,
give that negative expansion correctly. The resulting vibra- (4)

tion spectrum, shown in Fig.(h), did not allow the stability
we sought, but a lowering of energy as long-wavelengthiThe VY and V@ led to the dispersion curves in Fig(hi.
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The derivatives atl;=2.86 A for aluminum, based upon screening constant do not enter so the bulk modulus is a little
Eq. (1) with r,=0.41 A, are given in eV by different from that which would be obtained from modifying
the total volume. Nearest-neighbor interactions lead to the

vl=-1.66 full set of elastic constant&nergy per atom, or energy per
v@=11.66 V@T=8.45 , volume if divided by the atomic volume
v@®=-84.0 V@®T=-66.2 V®TT=-499 Aluminum
. . . Ci1= V(l) + V(Z),
V@ =623 VOTT= 432,
(5 Cip=— %V(l) + %V(z),

The VP andV®? led to the curves given in Fig.(). B AD) L Tr?)
The V¥ andV®'T for plutonium in Eq.(4) are anomalous Cag= 5V + 5V, (6)

relative to that for aluminum, but by examining the indi- The three values for plutonium are 11.72, 12.73, and 3.61 eV
vidual contributions, all of which grow with, we saw that per atom, respectively. (1 eV per atom=0.0645

the f-bonding term, varying approximately as -t/ when 10%%rgs/cn for 2 8 Pu) The second-neighbor contribu-
the Coulomb repulsiottJs is much larger thatV;, became 4 s to ¢y is V@(2nd=0.95 eV/atom, tocy, it is
dominant over the free-electron term just at the fourth de-_V(1>(2n0):0_10 eV/atom, and toc, it is 2V(2nd
rivative. The large negative values will make important dif- '
ferences in the properties.

This approximate first-principles description has an ad
vantage, even with the adjustment of the two parameters

and r¢, over the much closer Born-von Karman fourth- . . . "
; A ) A which were very nearly equal in experiment, but very differ-
nearest-neighbor fit, in giving these high&r. With the ad- ; )
ent from two-body, central-force interactions.

ditional V! we may obtain the Grlineisen constant for each On the other hand, the instability we saw for the

mode and thus the thermal expansion and other propertie.?.[llo] mode corresponds to a small negative shear con-
The same properties could be obtained, presumably more!

tant, (C;1—Cp)/2=1/47VV+V?]|2/d3=-0.032x 10*?

accurately, by repeating the calculation of the spectrum usin _ . "
Dynamical Mean-FieldDMF) Theory, as was done by Dai grgs/crﬁ, and the second neighbors contribute positively to

et al,” but at different volumes. It could also be done by this shear constant, a valuﬁv(l).(zlnaj+V<2>(2n@]\f§/d8
incorporating the correctionW,/ #(\/\I]?+U$)~O.29 for =0.027x 102 ergs/cm, nearly sufficient to stabilize the lat-
s-plutonium (whereW, is the f-band width andJ; the Cou- tice. This may be the _only place where the second_ neighbors
lomb repulsion in a traditional local density theory, as sug- ma_lkﬁban |m1E)|fl)_rtanFI|d|ﬁerenc§ and we proceed W'rt]h nea(;est
gested in Ref. 4. That would be desirable, but the results arg®'gnoors. 1his wilt mean t at_we Ca”f?"t use the modes
much easier to understand, and hopefully quite similar, in th&"0Pagating in th¢110] direction in averaging over the Bril-

simpler theory we use here. Further, we give the formulas,oum zone, but this will also considerably simplify the cal-

and the parameters in Sec. VII, which allow all of the estj-culations since we will find that properties such as the Gri-
mates to be made also for othér actinides. neisen constant are independent of wave numbers in the

[100] and[111] directions, but they would vary with wave
numbers along thgl10] direction.

=-0.19 eV/atom, small enough to negleEthese, again,
were obtained from the speed of sound. Other approaches
‘can changec;; and c;,, but leave(c;;—¢;5)/2 the samg.
Further, they increase the difference betwegn and c,,,

Il. SECOND-NEIGHBOR INTERACTIONS

We are using a description with only nearest-neighbor in- lll. AVERAGES OVER THE BRILLOUIN ZONE

teractions, and indeed the interactions arising from the In all of the properties we now explore we shall require
electrons drop so rapidly that second neighbors at 4.63 A argverages of the frequency, or other functions of wave num-
negligible, but one might ask about the free-electron termpers, over the Brillouin zone. In principle we could redo the
Eq. (1). It may be directly evaluated far,=0.75 A for plu-  calculation which led to Eq(3) for arbitrary wavenumbers
tonium at the second-neighbor spacing ®4.63 A)  and perform such averages. In view of the very considerable
=0.019 eV, and contributes -0.10 eV to ¥®(2nd) inaccuracies for the modes we have considered, that would
:dé (1/d)(9V/(9d|d=\s§do, for second neighbors and 0.95 eV to not seem justified. The results will be much easier to write
a V@(2nd). Including these would add a second set of pa-down and interpret if we reduce them to averages along sym-
rameters, such as Eggl) and(5), and a second set of con- metry lines, restricting them tpl00] and[111] lines as in-
tributions for each property we compute; and the use oflicated at the close of the last section. Many of these more
Fermi-Thomas screening, rather than full quantum screeningiccurate averages have been calculated for alumifiamgl

is questionable at such distances in any case. In order i may be useful to test our simplified averaging for alumi-
simplify the theory we drop these contributions, but we maynum against the more complete studies.

check for any property how big they are. In particular, for the  We focus on averages over the Brillouin zokey), with
elastic constants, we found in Ref. 5 thai;=(VY  n=1 and 2, entering in this study, witk giving the wave
+V@)/Qy, with Qp=d3/ V2 the atomic volume(The elastic number of the mode and also containing an index designat-
constants, incidentally, were calculated from the speed oihg the three modes at that wave number. The average is
sound and thus at constant volume; the derivatives of thebtained by dividing the Brillouin zone into pyramidal seg-
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ments of equal volume centered on each of €8=14 from #w,/dQ% Due to the anisotropy of the system, there
symmetry lines, for each first averaging along the symmetryill even be contributions to the shear constant from the
line. Since for each branch of the spectrusp is propor- phonon gas, and at one point we thought that this might
tional to some sitks), and weighting by the cross section of remove the instability of thd;[110] modes shown in Fig.
the pyramid, (iw,) becomes [ ., Sinx X2dx/ [ x> dx  1(b). It did not, which caused us to look at second neighbors
=24(m-2)/ 7m3=0.8836 times the peak value, in the preceding section. We return in the following sections
[(R2/Md?)E@]Y2, for that branchobtainable using Eq3)  to these further properties of the phonon gas.
and, as we shall see, the denominators of @@)]. The The n that enters in all cases, ig=1/[exp (fiw,/KgT)
average over the Brillouin zone becomes 6/42 times this 1], and we sum over alll8 modes for theN atoms so the
average for th&[100] branch, plus 12/42 times the averageresult can be written in terms of the volume per atdmg,
for the T[100] branch, plus 8/42 times the average for the=d*/\2, as
L[111] branch, plus 16/42 times the aver for 11
bganc]h.b Ta;ﬂg yuflclijss 216/1 mtevei‘irtaleuswiﬁu?ag;?pz)xrgéate]ly x = = < St > =~ SeT
what one would guess from Fig(a] and approximately Q  BQg )\ 2 tanh(fawy/2kgT) BQ,
equal to thé 25.3 meV obtained from numerical integrations The expectation valud), indicates an average over all
over the entire Brillouin zone for a spectrum accurately fit tomodes. The final expression obtains at high temperatures
the measured spectrum. , _ where the hyperbolic tangent approactias/(2kgT). The

The average of Ifw)® is 3[oqp dx XIS xI jinear expansiond/d is one-third of thissQ/Q, and taking
Jon2¢ dx=1.686 times the reciprocal of the peak valuethe derivative with respect to temperature at high tempera-

squared,[(#?/Md?)E@]™, for that branch. Evaluating the tyre, gives the linear thermal expansion coefficient,
weighted averages of the branches give#(fiw,)?)=6.42

X 10%/eV2. It is in considerably poorer accordance with&he e = kB(Yk)_ 9)
2.49x 10°/eV? obtained from numerical integrations over BQ,
the entire Brillouin zone. This is partially from inaccuracies

of our spectrum but much more from an inaccuracy of this. Obtaining the Gruneisen constant from Eq7)
P : . I y Is quite direct. For theL[100] mode we take the deriva-
moment calculation where a major contribution, 5.10 of the

6.42, came from th&[111] branches. Note that the value of \tliv\ﬁinWitT)u:esl’E[()gCtintogrg; b;th&vsliggsar?; 'jﬁv(/:’(;) dz(firts(;c
1/(hwy)? for T[111] is weighted by 16/42, as above, since obtair? Fion Ifian ] 9d=8(#2/M)sir?. (kd/ \@)a(l/da\;/ad
we are averaging over 42 branches. If we had included als K K 5 ‘

the 36[110Q] m%dgs, there would have been more larger COﬂ_Qﬁf\//&d%/ﬁd;S(ﬁZ/Md3)sm2(!<d/vg_)(—v<1>+v(2)T+V<3>.T),
tributions, but we would have divided them by 78. We cannOtIng as we indicated that Siid/ \8) does not vary in the

expect errors on the scale of a factor of 2 in averages involvderivative, but that in the derivative for the change in volume

ing 1/(hiw,)2, but they will be good enough to tell us which the screening constant changes, so a T appears. Noting that

terms are important, and going beyond that average would b%&/(m:lls do/od we obtain for L[100] and the other

a major undertaking. modes

- (8

If we seek a representative value of the phonon energy as 1-8vY 4+ gyt 4 gyt
(1/(hw)?)Y?=12.5 meV, we see that it is much less than N9 =" ¢ av® 1 gy ,
(hwy)=21.1 meV because of its heavy weighting of low fre-
quencies. One must be careful in using Debye temperatures 1-12VD 4 1/@T 4 gyt
®p, or Debye energielss®p which attempt to give represen- Y1100 =~ 5 1ND 1 42 ,

tative phonon energies.

1- 4V + 4T 4 gyT

IV. THERMAL EXPANSION L Vi ey ,

Thermal expansion arises because the ene(gy
+1/2hwy in @ mode, in thenth excited statevaries with 1-10v® + 10v@1 4 2y3T
volume ), giving a contribution to a pressure dfy Mg =Ty 10v® + 2y ' (10
+1/2hdw /0. Summing this over all the modes for a
given volume gives the total pressure, which when dividedNote that in each case the expression in the denominator is
by the bulk modulusB, gives the negative of the dilatation, E? so formulas for the frequencies in each madaven in

80/ Q0=-3,B U n+1/2hdw ] 00=3, (N +1/2hwy i/ Ref. 5 can be obtained from the ql_enominators and compari-
B(), wherey, is the mode-Griineisen constant, son with Eq.(3), using the sitkd/\6) for the sine factor in
the case of111].
Y=~ () d oo, ) Using values fors-Pu from Eq.(4) we obtain v [1oq

for each mode. It may be helpful to think of this pressure as=0-38,¥11109=0.05,¥[111=0.43, andy;111=-1.49, apply-
arising from a “phonon gas” since the second derivative ofng to each entire symmetry line. The weighted average over
the energy of this gas with respect to volume will give asymmetry lines is () =(6yi 109+ 12¥1100% 8¥i 1111
thermal contribution to theadiabatig bulk modulus arising  +16y;11)/42=-0.42. The negative sign came entirely from
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the T[111] branch. Substituting this in Eq9), using the X 10° ergsAcm® K) over the temperature range 50—300 K.
experimental bulk moduldsof B=0.289x 10'2 ergs/crd,  The experiments are done with alloys, since pure plutonium
yields arg=-8.1x 10°5/K, close to the experimental valde is stable only in the narrow range of 592—-724 K. The alloys
of about -7.7< 10%/K because, as we indicated, we ad- at this lower temperature range show a positive thermal ex-
justedr, andr; not only to fit the vibration spectrum but to pansion of aboutrrg=+9x 10"°/K (Ref. 9, Fig. 3, in con-
give the appropriate negative thermal expansion. The use ¢fast to the negative expansion of pure plutonium discussed
our inaccurate bulk modulus predicted in the next section!" the preceding section.

B=0.800x 102 ergs/cn, yields a7g=—2.9% 10°/K. In discussing this temperature dependence, there are two
We may note in pass’ing that the corresponding evaluatio ontributions to the bulk modulus which we must consider.
of (iw,), as described in Sec. Ill, gives 6.42073 eV for he first arises from the dependence of the bulk mod(dus

K T=0) on the lattice constant combined with the temperature
plutonium, or a Debyg temperature ©h=(f.w)/ k=75 K. depe)ndence of the lattice constant. The second arFi)ses from
Also, the (yfiwy) which enters the low-temperatudd/d  the thermal energy of the phonon g&gT in each mode at
[obtainable from the first form in Eq(8)] is 0.171  highT, and the second derivative of that energy with respect
X 1073 eV, positive in contrast to the negativei)(hwy)  to volume(holding the excitation quantum number for each
=-2.70x 1072 eV because the only negativg in {(y/fw,)  Mode constant as in calculating the pressure
is weighted by such low frequencies. For the first contribution, we need the dependence of the

It is also possible to calculate the full temperature depenbulk modulus on spacing(d/B)dB/dd, with B=(cyy
dence' as Opposed to the high-tempera‘[ure ||m|t50bf0y +2C12)/3. We gave forms for the elastic constants in Sec. ”,
evaluating the expectation value in E@) by integrating leading to  B=[-3V@W+2v2]/0,=0.50 eV/£=0.80
over wave numbergusing Eq(3) or its counterpaitfor each X 10'? ergs/cmd, higher than the experimental value of
branch and taking the weighted average over branches. ®:29X 10'” ergs/cni. Taking the derivative with respect to
yields asd(T), which is nearly horizontalbut with a slightly ~ SPacing as for Eq10) leads to
positive 95d(T)/JT at T=0, and then at 20 or 30 K turns doB 4V —2y@1T _ (2 4\t
down to approach a linear curve described by the linear co- Bad oy 1@ =-4.48 (11
efficient given above. The experimental curves from Ref. 9,
in contrast, suggest a positive peak at some 400 K then turrior plutonium from the parameters of E@). The negative
ing over to the negative linear coefficient in the range ofsign is the same as in most materials, corresponding here to
stability, 592—794 K, discussed here. There are uncertaintie3 Positive Griineisen constant for the bulk modulus of pluto-
of a few thousandths of an angstrgirawson, private com-  Nium because it is dominated by Iongltudmal modes. Using
munication due to specimen position, which may be at Ieasttzgteeé(p‘gg?eg%?v :sndaaﬁe:g;'g\;; 1(cTo r/1 :?ib(s:(t)i:)r:h?@glllgyrs
partly responsible for the discrepancy. ’ : L

We may note that a zero-temperature shift in the lattice- ~4-4Bare=-12X %OG ergs#crﬁ K, a l;:ontﬂbu'uohn of the
distance, which arises from the pressure due to zero-poi T;I_ sign, but a factor of 12 smaller than the observed
fluctuations, depends upon the isotopic mass asvil /and .

. : . The same analysis for aluminum yield8=0.97
therefore causes a difference in the zero-temperature Spac'@Qlolzergs/crﬁ compared to the experimental 0.72

for different isotopes. However, the total shift is ondg X 10" ergs/cm, (d/B)dB/ad=-6.77 from Eq.(11), to be
=(nhw)d/ (2BLo)=6.2X 10°A (evaluated as aboyeso  .ompared with an experimental —12.9 obtained from the
the difference between B4 and Pys, is only 6d=5  pressure dependence of the bulk moddfiihis —6.77, with
x 1077 A. There has been discussion of an experimental difthe experimentalg andB, gives a contribution téB/JT of
ference (Lawson, private communicatipnconsiderably -122x 10f ergs/cm K or [-232%x10° ergs/cni K using
larger than this. the experimentald/B) dB/dd=-12.9 to be compared with

The behavior of aluminum is quite different. Thg for  the experimental® gB/9T=-175%x 1(P ergs/cmi K. All es-
the four branches are quite close, and positive, at 0.94, 0.9@imates are comparable to the experiments for aluminum.
0.98, and 0.78, respectively, and the weighted average of The second contribution tB/JT requires a sum over all
(%»=0.865 yields(again using the experimentBl) a ther-  modes 0of(Q?/fwy) Phawy/ 9Q2. The evaluation is a little in-
mal expansion coefficient of +10:010°%/K, positive, and tricate; first, writing this in terms of the derivatives @wy)?
in very rough agreement with the experimental 25with respect tod. Then, for a moddin the [100] or [111]
X 10°%/K. The fuller calculation based upon E(B) again  directiong for which (fw,)?=(#2/M)[A VY +A V@ ]sirks,
gives asd(T), which starts out horizontal at low temperature we may evaluatéQ?/%wy)#hw/ 902 in terms of the con-
and bends to the linear positive slope, for aluminum at 10GtantsA,; andA,, obtaining

or 200 K.
@ 7o,
ﬁwk J Qz
~ 2A1V(1) - 2Alv(2)T + Alv(S)TT/Z - sz(S)T + sz(4)TT/2

V. TEMPERATURE DEPENDENCE OF THE BULK

MODULUS
(A VY + A V)
Lawsonet al® have also noted that the bulk modulus of X o3t ) 2
plutonium(and its alloy3, as well as the Debye temperature, AV AVETE AV (12)
decreases rapidly with temperaturedB/dT=-150 6[A VY + A VP
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In fact, the magnitude o¥“'" is so much greater than the polarized alond010] (as well as thel[010] polarized along
other V' that the numerator in the first term is essentially[100]) shifted by 1-3.78% Using just these six cube

ANWTT/2, andV? is so much larger thak'™ that the de- directions gives the average frequency shift (@8 / wy)

nominator is essentially V2, so the first term may be =-2.442 and a negative contribution ‘%’(011—012) due to

taken as35V'@1"/V®=-1.80 for all modes. Similarly, the o thermal phonongwith a value of —6.85T/d®=-0.008
largest term in the second term of EQ12) s  iy2ergs/cd at room temperatuse This still leaves the

_\y®)t (2)12= _ H
[V /GV.] =-0.22. This same constant total value of second-neighbor contribution and the corresponding calcula-
—-2.02 applies to all modes with wave numbers along the twqion gave(Sw,/ w)=-0.0332, a much smaller contribution,

sets of symmetry line§100] and[111]), and we may take it ) . ; o
to be the average for all modes. Then, noting that the excipm still negative. It would haye_ been very interesting i th?
honon gas had led to a positive contribution to the elastic

tation number for each mode at high temperatures 'Lonstant. It would mean that the structure, and the phonon

keT/%wy, the contribution to the bulk modulus is a sum over o .
the modes ofksT/7iw)Q Phayl d02=-2.0%T/ Q). There spectrum, could be stabilized self-consistently by the phonon
B K k s X gas itself. It appears not to be the case in plutonium or alu-

are three modes per atomic volufig so the contribution to : . .

BIIT is 3% 2.0%Ka/ Qy=—33.7< 10° ergs/cr K. This is  Minum. but might be in some other metal.
much larger than the contribution of —¥210° ergs/cni K
obtained from the thermal expansion of plutonium alloys, VI. THE DEBYE-WALLER FACTOR

leading to a totaldB/ JT=-46X 10° ergs/cni K, consider- Lawsonet al.? indicated that there is a temperature de-
ably smaller than the experimental -18QC°ergs/ pendence of another measure of lattice rigidity, rather than
(cm® K). The sign is correct and perhaps the magnitude ighe bulk modulus, obtained from the Debye-Waller factor
close enough that the origin may be the correct one, recallingom neutron diffraction. The property which is measured
that even our estimate of the low-temperature bulk modulusgs the intensity of the Bragg reflection of neutrons from
was in error by a factor of 2.8. The thermal contribution tothe |attice, reduced by the Debye-Waller faétor
the bulk modulus is seen here to be dominated by the secongkg —((q- 6r)2)], whereq is the wavenumber of the diffrac-
derivative of the phonon-gas energy with respect to volumetion and o is the displacement of each atom from its equi-
Lawsonet al® noted that the variation of the bulk modulus jinrium position. In order to treat it, we write the displace-
with temperature is quite independent of the alloy concentragent of each atom in terms of the normal coordinaigs
tion. The dominance of the phonon-gas term explains howy s the wave number of the normal coordinate but again
this can be so although the thermal expansion coefficienhcjydes an index for the three polarizations for each wave

changes sign with very small alloy concentrations. ‘numbey such that the displacement of tite atom is given
Repeating the analysis of the phonon-gas term for alumip,

num, Eq.(12) yields +1.16 rather than —2.02, and a contri- _
bution to dB/JT of 29.2x 10° ergs/cmi K. This is of the Sy = VIINZ Uy explik - 1)), (13

opposite sign of our prediction of the contribution from .
change in volume, but in this case is much smaller, WithinW'th N the number of atoms prese(m;g., Ref. 11, p. 407 .
|n terms of these normal coordinates, we may obtain

the scatter of our estimates of the contribution from thermath 2 f : b o £(Q- 502
expansion. This is the anticipated behavior for metals, a de- e {(g-or)°) for one a om, y writing - ou (q-. )
crease inB due to thermal expansion, but in the case of—(1/N)Zucq-Ucd U expli(k+k’)-rj), averaging ovef so

plutonium, with negative expansion, it is dominated by thethat only the terms wittk’=—k and of the same polarization

phonon-gas contribution. contribute, leading to
There are analogous contributions to the elastic constant 1
(c11—c12)/2 due to the shift in phonon frequencies under (q-9r)?=——0S Uy, (14)

strain. The calculation is particularly intricate because we 3N

introduce a small straing, and then phonon amplitudes  with the 3 coming from the angular average of the compo-
and must calculate the change in energy including the termgent alongg and the sum is over allN8 normal coordinates
e, which are of fourth order in the displacements. A con-This expression does not depend upon the displacements be-
venient strain is to expand the lattice in thelirection by a  jng small. Note that the squared displacement of one atom is
factor 1+e while contracting it in the two lateral directions gptained from an averagél/3N)g2,, of uu_, over all

by 1/(1+e)'2, so that the volume is rigorously conserved. normal coordinates.

With this shear the modes are no longer purely longitudinal \ve made an intricate derivation of the thermal averages
and transverse, except for propagation in thelGfll,  over all modes, including anharmonic terms, but the result is
+[010], and #001] directions, and one would need to solve much more easily obtained by considering a single normal
for the modes at every wavenumber. For these six simpleoordinate and then generalizing the result as an average
directions it is again sufficient to evaluate the frequency forover all. The notation will best match if we consider
the zone-boundary mode. We treated these, finding théhe coordinate corresponding to the highest-frequency
L[001] frequencies shifted by a factor 1-3é89the two  [ongitudinal mode in thg100] direction, with alternate at-
T[001] frequencies by 1+1.28, theL[100] andL[010] fre-  oms having displacementsiin opposite directions on alter-
quencies by 1-1.15, the T[100] and T[010] polarized nate planes, or relativedisplacements of 2between neigh-
along the[001] frequencies by 1-5.88, and theT[100]  boring planes. Then we evaluate the change in energy per
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atom by summing the interaction energies betweerarge, corresponding to a comparable underestimaéQf,
atoms in neighboring planes and write the result asso this is not a serious discrepancy for plutonium.
an expansion E(u)=E®(u/d)+3E?(u/d)?+5E®(u/d)® Lawsonet al'? have also given the temperature depen-
++E@(u/d)*+.... When we sum over neighbors the odd dence of this Debye-Waller temperature a#py,/
terms sum to zero for the mode and we obtain as before fof1 ~~0.043. As for the bulk modulus, there is a con-
the second-order terre@=8v® +8v@. \We return later to tribution due to thermal expansion. The volume depen-
the fourth-order term. We could use tHE&? to obtain the dence of 1(kg®py)® is described by a constant
normal-mode frequency for this mode by equating the potentQ/Ks®pw) d(keOpw)/ dQ=~(y/ wi)/(1/wg)=1.24,  with
tial energy per atonf;E(z)(u/d)z to the kinetic energy per (% o}y evaluated as in Sec. Ill. This is the opposite sign and
atom ;Mw?2u? leading to the value given in E@3) [for the ~ of similar magnitude to the2/B)JB/3(=1/3(d/B)dB/4d
sin(kd/v8)=1 for this modé. =-1.49 obtained for plutonium from Eq(11l). These
For high temperatures we could proceed by letting théwo measures of rigidity have the opposite dependence
potential energy in each mode eqd#kT, but it will gener- N volume, just as the sign varied among thefor dif-
alize to the nonharmonic case, in which we keep the fourthferent modes. This gives a contribution to the tempera-
order term, if we note that the probability at high tempera-ture  dependence  of d®pw/dT=0dOpw/ LXK IT
tures of a particular value af with potential energye(u) is = (—{¥/ 09 /{1/w)) X 3areOpy. Using again the experi-
proportional to exp-E(u)/kgT], with E(u):%E@(u/d)Z in mental value for the alloys testedRef. 9 of ag

the harmonic case. Then the expectation value, in thermai 2> 10° K and Op,=67 K this givesi®py/JT=0.0022.
equilibrium, of u? becomes This is of opposite sign and very much smaller than the

experimental d0p,,/JT~-0.043. Such a discrepancy is
what suggested the invarlike effect to Lawsenal® We
fexp[— E(u)/kgT]u?du consider here an alternative origin, arising from the lack of
harmonicity of eachzmode, deviations of the potential energy
of each mode fronu“.
fexp{— E(W/kgT]du We return to the first form in Eq:15) with E@(u/d)?
replaced by3E@(u/d)?+5;E®(u/d)*. The calculation of
J exd— E?(u/d)¥2ksT](u/d)2d(u/d) E“ for each branch is carried out as in Sec. V, expanding the
changedd in spacing for each neighbor to the fourth order in
the difference, @, in relative displacement of the planes for
J exi{ - E®(u/d)%/2ksT]d(u/d) the highest-frequency mode, and then carrying out a Taylor
expansion of the potential energy to the fourth ordesin
= kg T/E@ = kg T/IM . (15  The E@'s are the same as the denominators in @), as

we found for the [100] mode after Eq(3). TheE“’s for the
The final form remains correct for any mode, and as in Edfour branches are

(14) it ends up being averaged over modes as

(u?) =

=d?

(g - )P = (U U 302 = (h2Kkg TIMAD)(1/(Fran)?), E@(L[100]) = 169V - 9v@ + 6V + V9] = - 12 230 eV,
(16)

where again the expectation value(1l/(fw,)? E@(T7100]) = 8[- 3V!Y + 3V@ + 6V1¥ + V] = - 4550 eV,
=(1/3N)=,1/(hwy)? an average over all modes, is to be
distinguished from the expectation values suckugsin Eq.
(15), which are thermal averages. E@(L[111]) = 17V = 7V + 4V + 4/3v¥]

One may associate a Debye-Waller tempera@g with = —10200 eV
this expressioriLawsonet al?), but it is a different average '
from the kg®@p=(fw,) which we evaluated near the end of
Sec. IV. By comparing Eqg1) and(3) of Ref. 12 with the
final form ?/n Eq.?lB) r?ereq,S(wc)a see(tgat thi®p,y is defined E@(T[111]) = - 30v™ + 30v? + 36V + 2
by =-2177 eV, (18)

3/(kg®pw)? = (Ll(fray)?). 17
(ke®pu)” = (L)) A7 with numerical values for plutonium obtained using E4).

This is one of the averages obtained for aluminum in Sec. Il1IThe four values oE', obtained from the denominators in
For plutonium it leads t(@DW:V@/[kB<]_/(ﬁwk)2>l/2]:67 K, Eq. (10) using Eq.(4) _for plutonium, are 93.8, 28.6, 102.9,
half the experimental value @p,,=117 K, extrapolated to a"d 5.12 eV, respectively. . .

pure 5-Pu from the data for alloys given by Lawsen al12 We may expand the ekpE®(u/d)*/ksT)~(1-5E@
We saw in Sec. Il that our average over the Brillouin zone, X (u/d)*/kgT) in both integrals now in Eq15) and change
(1/(hwy)?), for aluminum was more than a factor of 2 too variables tox, with XZ:%E(Z)(u/d)Z/(kBT) to obtain
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TABLE |. Parameters for other trivalent metals from Ref. 3, for
o TP f exp(— %) x¥{1 - [E¥ksT/6E@?]x* dx simple metals from p. 453 and for the actinides from p. 6@5s
<u2> i =) the a_tomic sphere radius, related to the spadimg fcc crystals by
d®/\2=4mr3/3.

E®@

J exp(— x?){1 - [E¥kgT/6E?2|x*}dx

2k TeP 1/4 - (15/16[E“kgT/6E??] Z @ @ n® U

T E@  1/2 -(3/8)[EWksT/6E?2] Al 0 1.58 0.23

Ga 0 1.67 0.31

~ 2kBTd2< - EkaT) (199 I 0 1.84 0.46
E? 2E@? )" Ac 0 210 0.85 1.11 3.00
This again is for the highest frequency mode for each branchh 1 1.99 0.88 0.87 3.20
and, as in the final form of Eq15) for modes of smaller Pa 2 1.80 0.79 0.70 3.35
wave number, ther? becomesu,u_, sir? ks (with s=d/\8 U 3 1.69 0.74 0.64 4.09
for [100] modes which leads to the form Np 4 1.66 0.71 0.60 3.90
keT [ E@kgT PU&) 5 1.81 0.69 0.58 4.61
(Ui = W(l - W) (200 Am 6 1.91 0.76 0.58 4.96
K Cm 7 2.03 0.82 0.61 5.10

for each branch, with the leading factor averaging to
1.6861%kgT/E®@ for that branch. The factors of Siks can-
celed in the ratic€®/E®?2 in the final factor. The net effect  Applying the same formulas to aluminum gives®ay,
is to multiply the 1{fiw)?=1.688Md?/[#’E?] for each =251 K and 4y /w?)/(1/wZ)=-0.081, which with the ex-
branch appearing in Egs.(16) and (17) by 1  perimental thermal expansion gives a contribution to
~EWkgT/[2E@?] for that branch. IOpw! IT=(~(yl w2) (1] w})) X 3a7e@py=-0.0152.  The
There are then two terms in the expression forcontribution from anharmonicity is  9Opw/JT
3/(kg®pw)?. The first, which comes from the harmonic ap- =0.054Md?/#2)(kg®pw)3EW/E@3=-0.13, from an E?
proximation, is proportional to an average ofEl? and the =g.7 eV andE®=-1382 eV. Even in aluminum the tem-
second, which arises from anharmonicity, to an average herature dependence of the Debye-Waller factor, in contrast
E@WkgT/E@3. The value forE® [given after Eq(18)] is S0 o that of the bulk modulus, seems to be dominated by an-
small for the transversgl1l] mode that with a 1?2 it harmonicity of the[111] transverse modes, rather than the
almost completely dominates the second term, although mukopftening of the modegespecially thel[111] modes due to
tiplied by 16/42 because it appears in 16 of the 42 branchegermal expansion. This could be tested by measuring the
included in the average, and although the corresporififig  change in the Debye-Waller factor under pressure. We would
from Eq. (18) is the smallest. Thus the expression €y expect (Q/Opy) IOpw! =~y ] 02)/{1]w?)=-0.081, a
can be taken as factor of 10 smaller than a value which would be inferred
3 3 16X 1.686MId2EWksT from the variation due to thermal expansion.

[keOow(M  [keOpw(0)]2  42x 24%E@3

(21
L) @ _ , ) All of the formulas here are applicable to other trivalent
with E'® and E*™ for the T[111] mode. Again USin®@pw  metals and actinidesvhich is why they were includedbut
=67 K, thz's ) leads tg 2 gosntnbutlon ofd®pw/dT  gitferent values for the parameters are appropriate. We list in
=0.054Md*/7:%) (ke@pw) E( J/E@3=-0.11, ~ €ven more  Taple | the values for the other actinides and other trivalent
negative than the experimental —0.043 given by Lawebn metals. It may well be appropriate to adjust these in accor-
al.,'? and completely dominating the term from thermal ex-dance with some property for each of these elements, as we

pansion. However, the same fact that the average is domitid for plutonium, but then all other properties can be di-
nated by a single term, which simplified E@1), also led us  rectly and simply predicted.

to overestimatdl/w@ by a factor of 2.6 in Sec. Ill. To go

beyor_wd_this is a_m_ajor undertaking, so we conclude sin_1p|y ACKNOWLEDGMENTS

that it is not difficult to understand the large negative
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VII. APPLICATION TO OTHER ACTINIDES
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