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The generalized stacking faults of Al, Pd, Pt, Ir, and Rh are investigated by a parametrized tight-binding
potential. The stacking-fault energies(SFEs) are calculated to be in good agreement with experimental data,
except for Al. More important, it is found that the SFE of Pt may be reduced by 14% by atom relaxation while
the effect of atom relaxation on the SFEs of Al, Pd, Ir, and Rh are small. Thus, it is concluded that the effect
of atom relaxation on SFE should be important, especially for an alloy system where radii difference between
two constituting elements is large.
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I. INTRODUCTION

The atom interaction potential is very important for simu-
lating atom-scale microscopic structure and microscopic dy-
namic process in materials science. A pair potential model
fails to simulate some basic properties of metal materials,
such as surface, vacancy, elastic constants,1 phase transition,2

etc. A many-body potential model, based on the embedded-
atom method,1,2 has resolved the problems met by a pair
potential model. However, a more rigorous challenge is
found when the embedded-atom method is used to calculate
stacking-fault energy(SFE). In a recent work, Zimmermanet
al.3 calculated generalized stacking-fault(GSF) energies of
Al, Ni, and Cu by the embedded-atom method. They found
that, as compared to experimental data, the SFEs and un-
stable SFEs were underestimated in most cases.(The un-
stable SFE refers to the lowest energy barrier encountered
when one half of a crystal slips along the other one.3) At the
same time Mehlet al.4,5 developed a tight-binding(TB) po-
tential to study SFE and unstable SFE of fcc metals. They
made a comparison among the results by themselves,ab ini-
tio calculations, embedded-atom method calculations, and
experimental data. They found that the results by themselves
were in good agreement with theab initio calculations or
experimental data. This is impressive, since their tight-
binding potential only fits toab initio total energy and band
structures of cubic metals. They also found that comparable
accuracy with the embedded-atom method can be achieved
only by fitting to the stacking-fault energy.4,5 The tight-
binding potential of Mehlet al.4,5 reveals the promise to
describe this type of issue. In their calculations, however,
atom relaxation was not considered, except for the cases of
unstable SFE of Au and Ir. In the works of Zimmermanet
al.,3 there were also no discussions about the relaxed GSF
structures, although the effect of atom relaxation on GSF
energies was considered.

The energy and structure of generalized stacking fault
have strong effect on mechanical properties of materials.5–8

Although they are closely related to the dynamic properties
of dislocations, to our knowledge, little is known about the
structure properties of GSF when atom-scale relaxation is

considered. On the other hand, the effect of atom relaxation
on SFE has been considered negligible without good reason.

In this work, we study the GSF structural properties of Al,
Pd, Pt, Ir, and Rh using the TB potential4 combined with a
simulated annealing method.9 In the following, a general
theory and method about the TB potential are given first,
then in Sec. III, the numerical results and discussions are
presented, and finally, the conclusions are given.

II. THEORY AND METHOD

The tight-binding potential of Mehlet al.4 and a simulated
annealing method9 are used to relax the GSF structures of Al,
Pd, Pt, Ir, and Rh. The potential model is developed from
density-functional theory(DFT).10 In the DFT, the total en-
ergy of a system ofN atoms can be written as

Efnsr dg = o
i

fsm − eidei + Ffnsr dg, s1d

where the first term is the band-structure energy. In a self-
consistent calculation the eigenvaluesei and charge density
nsr d are determined self-consistently via the Kohn-Sham
equations,10 m is the chemical potential,fsm−eid is the Fermi
function, and the sum is over all electronic states of the sys-
tem. The functionFfnsr dg contains the remaining part of the
DFT total energy: the ion-ion interaction energy, the parts of
the Hartree and exchange-correlations not included in the
eigenvalue sums, and the corrections for double counting in
the eigenvalue sums. In an earlier TB model the electronic
band-structure energy was determined from a parametrized
Hamiltonian, and the remaining functionFfnsr dg was param-
etrized by a pair potential method. Based on the fact that the
DFT allows an arbitrary shift in the potential without
changes of total energy, Mehlet al.4 developed an alternative
TB method. By the shift Mehlet al.4 transformed Eq.(1) into

Efnsr dg = o
i

fsm8 − ei8dei8. s2d

Such a tight-binding method may solve the total-energy
problem of Eq.(2), instead of Eq.(1), and does not need to
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use an additional term, such as a pair potential term.
Mehl et al.4 further simplified the problem by the two-

center Slater-Koster formulation11 with a nonorthogonal ba-
sis. Theoi fsm8−ei8dei8 consists of three terms: the on-site
term, the Hamiltonian term, and the overlap term. All the
three terms4 have been given an analytical formula and pa-
rametrized by Mehlet al. The on-site term represents the
energy required to place an electron in a specific orbital and
depends on the local environment. The Hamiltonian term
represents the matrix elements for electrons hopping from
one site to another, and the overlap term describes the mixing
between the nonorthogonal orbitals on neighbor sites. The
eigenvaluese8 can be determined once these terms are evalu-
ated for a given structure.

Finally, the potential parameters are determined by requir-
ing that tight-binding method to reproduce first-principles
total energies and electronic band structures of a real
system.4 This method has demonstrated the reliability in the
calculations of structural behavior, elastic constants, phonon
frequencies, vacancy formation energies, and surface ener-
gies of fcc metals.4,5 In this work, we use the TB potential to
study the stacking fault of Al, Pd, Pt, Ir, and Rh. The poten-
tial parameters of these metals are obtained from the web site
http://cst-www.nrl.navy.mil/bind/; the program used in this
work is the static version 111 from Mehl. Since the code
cannot be used to carry out calculations of atom relaxation.
We have revised it and added a simulated annealing code to
the program.

III. GENERALIZED STACKING-FAULT STRUCTURES
AND ENERGIES

We modelk112l slip on as111̄d slip plane for Al, Pd, Pt,
Ir, and Rh by constructing a supercell that consists of 12

close-packeds111̄d planes of atoms. One atom in each plane
is part of the supercell. The primitive vectors of the supercell
take the form5 of

a1 = 1
2a0yW + 1

2a0zW,

a2 = 1
2a0xW + 1

2a0zW,

a3 = S4 +
q

6
Da0xW + S4 +

q

6
Da0yW − S4 −

q

3
Da0zW, s3d

where a0 is the lattice constant,q represents the stacking-
fault variable, which is the displacement of atoms in the
boundary plane alongk112l direction. Whenq=0 the peri-
odic crystal is a perfect fcc system ofABCuABC, where u
denotes a “boundary plane.” Whenq=1, the atoms at the
interface are hcp ordered, i.e., the stacking at the interface is
ABCuBCA rather thanABCuABC. In this calculation the at-
oms in the three nearest atom layers to either side of the
boundary plane are allowed to relax along the direction of

k111̄l. We define the first interlayer spacing as the spacing
between two atom layers nearest to the boundary plane. The
two atom layers are located at either side of the boundary
plane. The second interlayer spacing is defined as the spacing

between the atom layers first and second nearest to the
boundary plane. The atoms in the two atom layers are lo-
cated on the same side of the boundary plane. Similar to the
definition of the second interlayer spacing, the third inter-
layer spacing is the spacing between the atom layers second
and third nearest to the boundary plane.

To set up simulated annealing, first, at an initial tempera-
ture of 50 K, the program is run for 1000 steps. Then, the
temperature is dropped to zero and the program is run for
another 1000 steps. It should be noted that the primitive vec-
tors of the supercell is determined byq. This means that once
q is given the shape and size of the cell cannot be changed
during the process of simulated annealing. However, in order
to eliminate the effect of a fixed height of the cell on the
simulated results, we modified the code so that the cell
heightsa3d may be changed by the same small amount along
xW, yW, and −zW, respectively.

The tight-binding method is very efficient computation-
ally. A large number ofk points, 4808 in the irreducible part
of the Brillouin zone of Eq.(3) have been used to ensure
convergence. It is equivalent to using a mesh of 1202k
points in the irreducible Brillouin zone of a fcc lattice. The
total energy is determined by summing the eigenvalues with
a weight of Fermi distribution over the first Brillouin zone of
the lattice. We calculated SFEs and unstable SFEs for metals
Al, Pd, Pt, Ir, and Rh. The relaxed SFEs and relaxed unstable
SFEs, together with the results from the first-principles cal-
culations and experiments are listed in Table I. From the
table, it is seen that for SFEs of Pd, Pt, and Ir, a good agree-
ment is found among our numerical results, experimental
data, ab initio calculations. For SFE of Rh, although our
numerical result is close to first-principles calculations, it is
only about a half of experimental value in magnitude. In our
calculations the SFE of Al is also found to be about a half of
both experimental data and first-principles calculations. For
unstable SFEs the present relaxed results are found to be in
agreement with first-principles calculations for Al, and it is
slightly larger than first-principles calculations for Pd.12 In
general, as shown in Table I, the present numerical results
about the SFEs and unstable SFEs are comparable well with
ab initio calculations and experiments for these metals. How-
ever, it is somewhat different from the results given by Mehl
et al.5 The difference, maybe, comes from the size effect of
unit cell. In the calculations by Mehlet al. the supercell
consists of nine atom layers while in the present calculations
the cell consists of 12 atom layers.

The variations of the GSF energy versus stacking-fault
variableq and interlayer spacing versusq are also calculated.

TABLE I. SFE and unstable SFE for Al, Pd, Pt, Ir, and Rh.

EnergysmJ m−2d Al Pd Pt Ir Rh

SFE (this work) 78 220 330 524 364

(Expt.)b 166 180 322 480 750

(Ab initio)b 150a 161, 225 393 534 308, 320

Unstable SFE(this work) 178 374 422 637 606

aRef. 12
bRef. 16
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The results of Al and Pt are shown in Figs. 1 and 2, respec-
tively. Since metals Pd, Ir, and Rh have the similar curve
shape to Al, the results are not shown here. Figure 1(a) is the
curves of unrelaxed and relaxed GSF energy versus displace-
mentq for metal Al, and Fig. 1(b) for Pt. From the figures it
is seen that the two curves have skewed sinusoidal shape.
This is in agreement with the predictions by Frenkel,13

Mackenzie,14 and Rice.15 In the present numerical calcula-
tions such a curve shape is also detected for Pd, Ir, and Rh.
The present results are also in agreement with first-principles
calculations,3 where the GSF energy curves of Al, Cu, Ni,
and Pd were found to have the skewed sinusoidal shape. But,
the GSF energy curve shape of Al(Ref. 3) from the
embedded-atom method is different from first-principles re-
sults.

It is interesting to note the peak position of the GSF en-
ergy curve. The peak corresponds to the unstable SFE. For
the unrelaxed GSF energy curves of Al, Pd, Pt, and Ir, the
peaks are found to locate atq=0.54, 0.56, 0.57, 0.54, and
0.55, respectively. For the corresponding relaxed GSF energy
curves, the peaks are atq=0.57, 0.58, 0.6, 0.57, 0.58, respec-
tively. [The results of Al and Pt are shown in Figs. 1(a) and
1(b).] All of the qs corresponding to the peaks are larger than
0.5. Previous first-principles calculations by Hartford12 gave
theq value of 0.5 for Cu, 0.6 for Al, Pd, and Ni in a relaxed
case. In an unrelaxed case Hartford12 gave the values of 0.6
for Pd and Al. In addition, the calculations by van
Schilfgaarde3 gave theq value greater than 0.5 for Ni. Hence
in first-principles calculations except for Cu, the values ofqs
corresponding to the peaks on the GSF energy curve are
larger than 0.5. This is in agreement with the present TB

calculations. It is different from geometrical considerations,
where the peak on GSF energy curve is atq=1/2 exactly.3

From Figs. 1(a) and 2(a) we also find that for Al the effect
of atom relaxation on unstable SFE is larger than on SFE,
i.e., the unstable SFE is reduced more than the SFE by atom
relaxation. The conclusion is also true for Pd, Ir, and Rh. But
for Pt, from Figs. 1(b) and 2(b), it is seen that the effect of
atom relaxation on the SFE and the unstable SFE is almost
the same. From the present numerical results it is seen that,
with atom relaxation, the SFE is reduced by 1%, 7%, 14%,
3%, and 3%, while the unstable SFE is reduced by 7%, 17%,
14%, 23%, and 22% for Al, Pd, Pt, Ir, and Rh, respectively.
In previous calculations for Ag and Au, it was also found that
the SFEs were reduced by 1% and 6%, and the unstable
SFEs were reduced over 10% and 20%, respectively, due to
atom relaxation.17 Thus, the effect of atom relaxation on SFE
is far smaller than that on unstable SFE for Al, Pd, Ir, Rh, as
well as Au and Ag, whereas the effect is large on both SFE
and unstable SFE for metal Pt. This is an interesting result.
In early calculations for SFEs, atomic relaxation was often
neglected because the effect of atom relaxation on SFE was
considered negligible. From present numerical calculations,
it is seen that for most metals the effect of the relaxation on
SFE is found to be small, while for Pt, this effect is very
obvious on both SFE and unstable SFE. Thus, in order to
calculate accurately SFE and unstable SFE, it is necessary to
consider the effect of atom relaxation on SFE and unstable
SFE, especially for an alloy system where the radii differ-
ence between two constituting elements is large.

Figure 2(a) shows the changes of atom layer spacings in
Al due to atom relaxation. It can be seen that for Al the first

FIG. 2. The changes of interlayer spacings as a function of
parameterq in Eq. (3): (a) for Al and (b) for Pt.

FIG. 1. GSF energy as a function of parameterq in Eq. (3): (a)
for Al and (b) for Pt. The lines are guides for the eyes.
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interlayer spacing has the largest change and contracts within
the whole range ofq considered, while the third interlayer
spacing expands. The second interlayer spacing expands ini-
tially and then contracts. The largest relaxation occurs at the
place of unstable SFE. The first interlayer spacing has the
largest relaxation. For Pd, Ir, and Rh, similar tendencies are
also observed. In previous calculations by the authors for Au
and Ag similar conclusions have also been drawn17. How-
ever, it is a different situation for metal Pt. From Fig. 2(b) it
can be seen that in Pt the first and third interlayer spacings
change similarly to those in Al, Pd, Ir, Rh, Au, and Ag, while
the second interlayer spacing contracts in the whole range of
q considered. Unlike in metals Al, Pd, Ir, Rh, Au, and Ag, a
large relaxation also occurs at the place of SFE in Pt for the
three spacings. This corresponds to an obvious decrease in
SFE of Pt due to atom relaxation. In addition, from the
present numerical results it is also found that for metals Al,
Pd, Pt, Rh, and Ir in the site of stacking faultsq=1d the
interface structure is hcp-like. The calculatedc/a values are
1.624, 1.630, 1.622, 1.628, and 1.621, respectively. They
are smaller than the ideal value of 1.633. These results are
helpful for further testing of the accuracy of the potential
model.

IV. CONCLUSIONS

We use the TB potential of Mehlet al. to study the GSF of
Al, Pd, Pt, Ir, and Rh. The potential predicts the properties of

the GSF very well. First, the calculated SFEs for Pd, Pt, Ir,
and Rh are in agreement with experimental values and first-
principles calculations although for Al the value is about a
half of experimental value. The predictions for skewed sinu-
soidal shape of the GSF energy versus displacement variable
q agree with the theoretical results by Freckle, Mackle, and
Rice andab initio calculations.3 The site of unstable SFEs of
Al, Pd, Pt, Ir, and Rh is found to be larger than the ideal
value ofq=1/2 from geometrical considerations. This prop-
erty is in agreement with first-principles calculations.3 More
importantly, it is observed that although the effect of atom
relaxation on SFE is small for metals Al, Pd, Ir, and Rh, the
atom relaxation leads to a large change of SFE in Pt. Thus, it
is concluded that in order to calculate accurately SFE and
unstable SFE, it is necessary to consider atom relaxation,
especially for an alloy system where the radii difference be-
tween two constituting elements is large.
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