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Spatial variation in the superconducting order parameter becomes significant when the system is confined at
dimensions well below the typical superconducting coherence length. Motivated by recent experimental suc-
cess in growing single-crystal metallic nanorods, we study quantum confinement effects on superconductivity
in a cylindrical nanowire in the clean limit. For large diameters, where the transverse level spacing is smaller
than the superconducting order parameter, the usual approximations of Ginzburg-Landau theory are recovered.
However, under external magnetic field the order parameter develops a spatial variation much stronger than
that predicted by Ginzburg-Landau theory, and gapless superconductivity is obtained above a certain field
strength. At small diameters, the discrete nature of the transverse modes produces significant spatial variations
in the order parameter with increased average magnitude and multiple shoulders in the magnetic response.
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I. INTRODUCTION

Recent developments in nanofabrication techniques allow
access to new physical regimes where various intrinsic order
parameters interact with a tuneable confining environment.
Such order parameters cover an array of diverse physical
systems, such as ferromagnets,1 quantum dots,2 molecular
electronics,3 photonic crystals,4 superconductors,5–7 etc.
Quantum-confined superconductivity is particularly interest-
ing for its macroscopic quantum nature; its well-understood
microscopic mechanism can also serve as a platform for
studies of other many-body nanoscopic quantum confine-
ment effects.

Since the advent of BCS theory, a great deal has been
understood in both the microscopic and phenomenological
aspects of superconductivity for conventional phonon-
mediated pairing systems. Theories have been immediately
applied with great success to small superconductors7,8 of
various geometry.9,10 Particularly useful has been the phe-
nomenological Ginzburg-Landau theory, which describes su-
perconductivity directly in terms of the superconducting or-
der parameters without appealing to an underlying electronic
basis.

Partly due to its enormous success, however, the
Ginzburg-Landau theory has sometimes been applied beyond
its strict regime of validity, especially in systems of small
size. Part of the justification for this has been that experimen-
tal samples have often been disordered or polycrystalline, in
which case confinement effects are less pronounced than
they are for single crystals. Well-established dirty-limit theo-
ries for small superconductors with strong disorder11 de-
scribe fascinating physics, such as gapless superconductivity,
down to nanometer scales. In the clean limit of microscopic
BCS theory, where the mean free path, is longer than the
coherence lengthj0 s,@j0d, the superconducting behavior
of small samples is very different from that in the dirty limit
s,!j0d.10,12 Recent experimental techniques for producing
high quality single crystallinenanostructures through elec-
trodeposition into extended nanopores13 demands a reexami-
nation of the phenomenology of superconductivity in such

systems, working from microscopic theories. We specifically
aim to investigate the often-overlooked spatial structures of
the superconducting order parameter in the confined direc-
tion by directly solving the Bogoliubov–de Gennes equation
and comparing with other theories.

For the last few decades, work on one-dimensional super-
conductivity has mostly focused on fluctuation effects.14,15

These treatments assume featureless transverse supercon-
ducting modes within superconducting nanowires and in-
stead concentrate on the physics of phase slips in theaxial
direction. Here we complement these previous approaches
by considering the effects oftransversequantum confine-
ment on the spatial variation of superconducting order pa-
rameter, with consequences for the quasiparticle excitation
spectrum and the magnetic response.

II. FORMALISM

We consider a superconducting cylinder with a radiusR
smaller than the penetration depthl, but much larger than
the atomic scale, so that we can describe the system with a
continuum basis. The Bogoliubov–de Gennes(BdG) equa-
tions are

FH0 D

D* − H0
* GFu

v
G = EFu

v
G , s1d

whereD is the order parameter andH0 is the Hamiltonian for
electrons

H0 =
1

2m* S− i" ¹ −
e

c
AD2

− m − mB s ·H . s2d

Herem* is the band electron mass,m is the chemical poten-
tial, mB is the Bohr magneton,s is the Pauli spin matrix, and
H is the external magnetic field.H0 and its complex conju-
gateH0

* act on the time-reversed electrons in Cooper pairs.
The statefu,vg represents the amplitudes of the pair of elec-
trons which interact with each other via the pairing interac-
tion parametrized by the superconducting order parameterD.
For an axial magnetic fieldH =Hẑ, the vector potential in the
Coulomb gauge is
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1
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where û is a unit vector along the azimuthal direction. We
assume that the radius of the nanorod is sufficiently below
the penetration depthl that screening of the magnetic field
due to demagnetization is negligible. In a cylindrical coordi-
nate systemH0 becomes16
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8
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whereK0 is the kinetic energy in zero external field(absorb-
ing the chemical potential) andvc=eH/m*c is the cyclotron
frequency. With the typical separation of variables, the elec-
tron pair for the basis in Eq.(1) consists of time-reversed
electrons in statessmjk↑ d and s−mj−k↓ d with m the azi-
muthal quantum number ineimu and k the z wave vector in
eikz. We explicitly write down the BdG equations by expand-
ing usr d andvsr d in terms of the eigenfunctions ofK0 as

umj
k sr d = umj

k fmjsrd
eimu

Î2p

eikz

ÎL
, s6d

vmj
k sr d = vmj

k fmjsrd
eimu

Î2p

eikz

ÎL
, s7d

with L the length of the cylinder. We apply a boundary con-
dition

usr d = vsr d = 0 with ur u = R, s8d

so that the wave function vanishes outside the cylinder. This
relation only imposes the condition that there are no elec-
trons outside the cylinder and does not make any assump-
tions on the coarse-grained superconducting order param-
eters as usually treated in Ginzburg-Landau theory.8 The
radial term

fmjsrd =
Î2

RJm+1samjd
JmSamjr

R
D , s9d

whereJm is themth order Bessel function andamj is its j th
zero. The operatorK0 is diagonal with matrix elements
Kmjk

0 ="2/2m*samj
2 /R2+k2d. The BdG equation requires

evaluation of matrix elements forkr2l and Dsr d. We will
consider only the case of order parameters with zero net
angular momentum and zero net momentum along thez axis,

namely,m+m8=0 andk+k8=0 in the productumj
k vm8 j8

k8 for
order parameterDsr d. A paired state with finite net(angular)
momentum has higher kinetic energy than the stationary so-
lution, and is therefore disfavored.17 With this choice of or-
der parameter, we can compute the matrix elements forDsr d
and r2 as

Dm; j j 8 =E
0

R

fmjsrdDsrdfmj8srdrdr , s10d

rm; j j 8
2 =E

0

R

fmjsrdr2fmj8srdrdr . s11d

The transverse modes(indexed withmj) are decoupled from
the longitudinal modes(indexed withk) and the gap equation
is simplified.

The BdG equations Eq.(1) now become(with Im; j j 8
; 1

2m*rm; j j 8
2 ):
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Note that the Zeeman terms1
2sm+1d"vc have the same sign

for umj
k andvmj

k since they represent the amplitudes for time-
reversed states. The order parameterDsr d is self-consistently
expressed by the typical gap equation

Dsr d = Vo
mjk

f1 − 2fsEmj
k dgumj

k sr dvmj
k sr d* , s14d

where the summation range for the eigenstates is over kinetic
energiesKmjk

0 within a windowf−vD ,vDg of width twice the
Debye frequencyvD. We use generic parameter values suit-
able for conventional superconductors withTc at a few K.D
at T=0 converges at large diameters as will be shown and we
use the converged valueD0=3.9 K as the bulk limit through-
out this paper.m* is set to the free electron mass,vD
=100 K, andm=10 000 K. As shown below, The Fermi ve-
locity is then vF=0.553108 cm/sec and the coherence
length j0="vF /pD0,350 nm in the bulk. Results are plot-
ted in dimensionless units in this paper. Although we have
chosen a particular set of parameters, we expect that our
conclusion will hold qualitatively for conventional low-Tc
superconductors.

As the diameterDs;2Rd shrinks, the transverse kinetic
energy becomes very sensitive to the boundary condition(8).
Defining a variation of radiusdR, dK0/K0=−2dR/R. With a
small uncertainty in radiusdR=1 Å R=10 nm, for example,
dK0,0.02m,200 K, which is comparable to the Debye
frequency. We incorporate the effects of variations in the
wire diameter as a noise in the kinetic energy

Kmjk = Kmjk
0 + smjkUdK0

dR
UdR, s15d

where smjk is a random number uniformly distributed in
f−1,1g and we setdR&5 Å. Due to the time reversal sym-
metry of static scattering at the boundary,smjk=s−mj−k. Here,
we have partly taken into account the radial variations via
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energy levels, leaving the basis functions and the boundary
condition unchanged. We have sampled equi-spacedz mo-
menta in the half Brillouin zonef0,pg with 200–500 points,
depending on the level of convergence required. Note that
experimental nanowire samples to date have a significant
variation in diameter along their length, but this variation is
often slow on the length scale of the nanowire width; the
longest-wavelength variations could be subsumed into an
adiabatic treatment.

III. RESULTS

The density of states of a nanorod can be expressed as the
sum of one-dimensional densities of statesN1sEd displaced
by transverse energy eigenvaluesEa,

NsEd = o
a

N1sE − Ead. s16d

Quantized transverse levels strongly affect the density of
states. Transverse modes are spaced with an average level
spacingdE=1/N2 with N2 the two-dimensional density of
statesN2=spR2dsm* /p"2d. Since N2 is independent of the
chemical potential, the qualitative results do not depend on
the particular position of the chemical potential. More details
will be discussed in Sec. III B. However,N1sE−Ead has a
van Hove singularity atE=Ea and therefore small changes in
the chemical potential can produce quantitatively different
results. Confinement effects become strong when the level
spacingdE is comparable toD, i.e.,

R&Î "2

m*D
. s17d

This condition becomesD /j0&0.1 with our parameters(and
D=3.8 K). Due to the singularities inNsEd, solutions of the
BdG equation are quite sensitive to model parameters for
D /j0&0.1, even including moderate smearing fromdR.

A. Large diameters

Superconductivity under confinement has been well stud-
ied for samples in the limit ofdE!D and D!l.7,12,18 For
cylindrical samples with specular boundary conditions, we
can explicitly solve Eq.(14) in the clean limit as a function
of external magnetic field along the axis

lnsD/D0d = − S1 +
1

2a2Dlnfa + Îa2 − 1g

+
3

2
Î1 − a−2, for a . 1

= 0, for a , 1, s18d

wherea=h/D, h=evFRH/2c, andD0 is the order parameter
in bulk without external field. Strässler and Wyder12 have
obtained a result similar to the above equation for spherical
systems and we essentially follow the same derivation for
cylindrical systems in Appendix A. In this solution, we make
a major assumption by ignoring the spatial variation of the
order parameter, i.e.,Dsr d=D. In carrying out an analytic

calculation from Eq.(14), we make further approximations
that the position and momentum in Eq.(14) commute and
that the terms quadratic in the field1

4m*vc
2Imjk in Eq. (13) are

negligible. When compared with a numerical solution of the
full BdG equations, the above approximations seem reason-
able in the largeD regime for zero external magnetic field
(until D /j0&0.57 for our parameter values).

This clean-limit solution has a field dependence quite dif-
ferent from the standard Ginzburg-Landau prediction. In-
stead of gradually decaying from the zero-field order param-
eter D0 to zero,D stays constant up toH1=2cD0/evFR and
then drops to zero at the critical fieldHc (see solid line in
Fig. 1)

Hc =
1

2
exps3/2dH1 = 0.454

F0

j0R
, s19d

with the flux quantumF0=hc/2e and the coherence length
j0="vF /pD0. The critical field depends inversely on the di-
ameter, since orbital motions of electron in small samples are
less influenced by magnetic field.Hj in Fig. 1 is defined as
H1 for R=j0, i.e, Hj=2cD0/evFj0.

We have solved the BdG equations under two different
conditions: first with the constraint of a spatially uniform
order parameter and then with the constraint relaxed. The
quantitative results and their overall line shapes(in Fig. 1)
are in good agreement with the analytic formula(18). First
comparing the analytic result with the uniform-D calculation,
we find that the invariant order parameter up toH=H1 is
well reproduced. The numericalD deviates downward from
the analytical formula at higher values ofH, resulting in
smaller critical fieldHc. We attribute the discrepancy to un-

FIG. 1. Averaged superconducting order parameter in a cylin-
drical sample of large diametersD=200 nm,D /j0=0.57d with axial
external magnetic fields. Normalized order parameter to the zero
field value D /D0 is plotted as a function of dimensionless field
HR/ sHjj0d with Hj=2cD0/ sevFj0d. Overall agreement of the ana-
lytic formula (18) and the numerical results are good. The solution
of the Bogoliubov–de Gennes(BdG) equation in the clean limit
remains constant untilH1=2cD0/evFR. The full solution of the
BdG equation(solid circles) has larger order parameters near the
critical field than those constrained to a spatially uniformD (open
circle), due to spatial adjustments of the superconducting wave
function.
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derestimation of the external field in the analytic solution due
to ignoring theA2 term. Further discussion is given at the
end of this subsection.

An important qualitative deviation of the full BdG solu-
tion from the uniform-D results comes at high fields nearHc.
The critical field for the full BdG solution(solid circles in
Fig. 1) extends to high fields, withD decaying much slower
than the usual square-root drop19 of the uniform-D solution.
It is clear that this phenomenon must originate from the
transverse spatial variation of the order parameter, which we
will discuss below in more detail.

Although the average order parameter remains constant
for 0,H,H1 (left to the dashed line in Fig. 1), the density
of states reveals a closing of the excitation gap at the fieldH1
(dashed curve in Fig. 2), where the spectral weight at the
chemical potential becomes finite. The density of states in
the gapped region continues to increase untilH=Hc. In the
clean limit, the electron trajectories are not perturbed by im-
purity scattering and their angular momentumL couples to
the external field as −se/2m*cdL ·H. This coupling gives the
term −1

2m"vc in Eq. (13) and contributes to the quasiparticle
excitation energyEmj

k ,

Emj
k = ÎKmjk

0 2 + D2 +
1

2
sm+ 1d"vc. s20d

These angular momentum contributions dominate over spin
contributions and the excitation spectrum goes gapless when
D,se/2m*cdkL ·Hl,evFRH/2c. In contrast, when impurity
scattering dominates, the electron trajectories are disrupted
and the quasiparticle energy is no longer in the form of Eq.
(20). In this limit, the quasiparticle energy suffers significant
level broadening and experiences shifts only from the spin
Zeeman terms.20 Therefore, away from the clean limit the
density of states retains the form of a conventional gapped
superconductor.12

At zero field, the order parameter is nearly constant over
the cylinder(see Fig. 3), except for small oscillations and a
Gibb’s phenomenon atr =R. The rapid oscillations have a
wavelength proportional to 1/vF and an amplitude that di-
minishes for larger diameters. Therefore we expect that these
oscillations will be averaged out on larger length scales; they
are not important for large-diameter systems. In such a re-
gime, we correctly reproduce the boundary condition com-
monly used in the literature, namely, a vanishing normal de-
rivatives of the superconducting order parameter at the
surface. The order parameter does not change untilH=H1.
As H exceedsH1, some quasiparticle energies are pushed
below zero in Eq.(20) and contributions from these excited
quasiparticle states reduce the order parameter in Eq.(14) by
changing the signs of their contributions in the statistics fac-
tor 1−2fsEmj

k d. In addition to an overall reduction ofDsr d
under external field,Dsr d also changes slope, with a distinct
knee that moves towardsr =0 with increasing field(see ar-
rows in Fig. 3). At a radiusr, the angular momentum is of
orderm*rvF and the order parameter begins to be suppressed
when D,m*vFrH /2c or r ,2cD /evFH. This simple argu-
ment should be taken with caution, since the semiclassical
approximation of treating position and momentum as com-
mutable in Eq.(14) becomes worse when there is a strong
spatial variation.21 At larger radiusr, the energy difference
between the angular momenta(with m",m*rvF) in an elec-
tron pair exceeds the pairing energy and therefore the pair
becomes depaired.

We emphasize that the pronounced radial dependence of
order parameter is related to the coupling of orbital angular
momentum to the external field, rather than the term
1
8m*vc

2r2 in Eq. (5), which makes the superconducting order
parameter more massive. To compare these two contribu-
tions, we consider the Ginzburg-Landau theory with an order
parameter of zero total angular momentum, as is usual in the
literature7,8 (see Appendix B). The order parameter couples
to the external field only through18m*vc

2r2 and does not have
any information about the angular momenta of constituent
electrons in Cooper pairs. The spatial dependence ofDsrd
arising from the terms2e/"cd2A2 turns out to be much

FIG. 2. Density of states as a function of external field. The
superconductor becomes gapless atH=H1 (dashed line) in the clean
limit well before the critical fieldHc, due to the coupling of orbital
angular momenta to external field. The external fields in the plot are
from HR/ sHjj0d=0 (thick line) to 1.83 with equal intervals be-
tween the curves.

FIG. 3. Spatial variation of order parameterD in the large di-
ameter limitsD /j0=0.57d. For external fields of 0,H,H1, D re-
mains flat. As the field increases fromH1, D drops with a knee
which progresses towardsr =0.
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weaker than the angular momentum coupling in the BdG
treatment. The resulting critical field Eq.(B5) is almost iden-
tical to the angular momentum depairing result(19), as both
are derived in detail in Appendix B.

It is interesting to note that although the orbital coupling
and theA2-coupling produce very close critical fields[see
Eqs.(19) and (B5)] in the absence of the other, they do not
act additively when both are present. When theA2 term is
included on top of the orbital coupling, its effect becomes
significantly smaller than in Eq.(B5) because the orbital ef-
fect produces fast-decayinguDsrdu2 nearH=Hc. For example,
the curve labeled withHR/ sHjj0d=2.16 in Fig. 3 hasuDsr
=Rdu2/ uDsr =0du2<1/7. Since theA2,H2r2 term couples
most strongly at larger, the actualAsrd2ucsrdu2 coupling is
much smaller than the Ginzburg-Landau theory. For in-
stance, a reduction of the effectiveA2 coupling by half re-
sults in the reduction of the order parameter by
Î1/s1+0.5d<82% in terms of the Ginzburg-Landau theory
when the both couplings are naively added, which nearly
matches the discrepancy in Fig. 1 between Eq.(18) (thin
line) and the constant-D (open circles) results.

B. Small diameters

When the diameter shrinks sufficiently that the transverse
level spacingsdE exceed the order parameterD, the density
of states on the energy scale ofD becomes spiky and spatial
structure arising from the transverse modes begins to show
up in the radial dependence ofDsr d. Since the level spacing
of the transverse modes is inversely proportional to the ef-
fective masssdE="2/m*R2d, the effect of the discrete levels
will be strong for systems of small effective mass or low
transition temperature. Figure 4 shows the spatial variation
of the order parameter in this regime. A close examination
reveals two characteristic length scales inDsr d. The shorter
length scale(with rapid oscillations more apparent at large
radius) is given in terms of the Fermi velocity, i.e.,Dr
,2p" /m*vF. As the Fermi velocity(or the carrier density)
grows,Dsr d oscillates more rapidly.

Apart from the structures corresponding to the Fermi
wavelength, there are more interesting and slowly varying

spatial modulations, particularly nearr =0. Although these
modulations also appear for large diameters(see Fig. 3),
their relative importance grows in the smaller diameter
wires. This spatial structure arises from the small number of
transverse modes within the energy windowf−vD ,vDg. As
can be seen from Eqs.(14) and(A3), the energy levels close
to the Fermi energy contribute strongly to the order param-
eterD. Since the density of states is peaked at the transverse
energy levels[see Eq.(16)], the resulting order parameter
has larger amplitude for the states with"2amj

2 /2m*R2<m,
kz<0 and displays the spatial characteristics of those trans-
verse modes. As illustrated in Fig. 5, the states within the
k-space shell of area 2pkFdk',4pm*vD contribute most
strongly to the order parameter. Although we have used
sharp energy cutoffs atvD, they are not expected to impose a
significant quantitative change because the weight factor in
the gap equationuava<D /2Î«a

2 +D2 [see Eq.(A2)], is small
near the cutoff. The ratio ofuava for «a=0 to «a=vD is
approximatelyvD /D<25.

The shape of the order parameter is determined by which
states happen to fall into thek-space shell. For instance, if
states ofsm=0d are absent in the shell, then the amplitude
Dsr .0d is depleted, since only the Bessel functions ofJ0j

have nonvanishing values atr =0. We caution that the order
parameter is not necessarily zero atr =0, since there are also
statessmjkd with finite k. As the diameter decreases, the
transverse states become more sparse in the energy shell and
the spatial structure becomes more pronounced. In contrast,
large-diameter wires have many contributingsmj,k=0d
states and the spatial variation averages out.

Averaged order parametersD at zero magnetic field are
plotted as a function of diameter in Fig. 6. The temperature is
fixed at 0.2 K and 3 different radial smearingsdR
=0,2,5 Å areused. The filled circles are solutions for full
BdG equations and the open circles impose the constraint of

FIG. 4. The order parameterD as a function of the radius at
small diameterD /j0=0.057sdR=2 Åd. The spatial variation ofD is
much stronger than for the large diameter wires of Fig. 3.

FIG. 5. Schematic two-dimensional phase space with zero axial
wave vectorskz=0d. Transverse modes within the shell of thickness
dk' contribute strongly to the order parameter. The area of the shell
2pkFdk',4pm*vD does not depend on the choice of Fermi
energy.
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a constantD. Regardless ofdR and the spatial constraint,
D /D0 converges to 1 at large diameter.D fluctuates consid-
erably as the diameter decreases, with more scatter for
smaller radius smearing. These variations arise from the
sharp van Hove singularities in the density of states at trans-
verse eigenvalues. Interestingly, the full BdG order param-
eter is consistently larger than the constantD solution. The
gap equation, Eq.(14) or (A3), becomes particularly simple
for a constantD at T=0,

1

V
=E

0

vD rDsvddv

Îv2 + D2
, with rDsvd = o

a

ds«a − vd, s21d

where«a is the noninteracting eigenvalue(absorbing chemi-
cal potential). Although the density of statesrDsvd at diam-
eterD has fluctuations due to discrete transverse energy lev-
els, it averages to the bulk limit. Therefore, statistically,D is
expected to fluctuate about the bulk valueD0. The particular
line shape of the curves(of empty circles) in Fig. 6 is due to
limited diameter sampling and the fine-tuning of model pa-
rameters. As the calculation ofdR=0.5 nm indicates, stron-
ger broadening suppresses the fluctuation of the order param-
eter which will converge toD0 down to smallD. When the
condition of the uniformD is relaxed,D has the freedom to
peak in regions with a higher density of electronic states,
thereby increasing the condensation energy. For alldR
shown here, the enhanced order parameter is most evident
for D /j0 smaller than about 0.1, the diameter regime where
the transverse level spacing becomes comparable toD. For
D /j0 of 0.05–0.1, the enhancement is roughly 10–20%.
This is consistent with largerTc in small samples, as is often
observed in thin films.22–24This tendency has been attributed
to softening of surface phonons in samples of small dimen-

sion. The spatial variation of the order parameterD from
confinement effects may also contribute to this trend.

The order parameterD versus magnetic field plotted in
Fig. 7 shows shoulders that also reflect the discrete nature of
the transverse modes. The overall shape of the curves is
similar to that for large diameters(see Fig. 1). D remains
constant until the depairing fieldeh in Eq. (A3) becomes
comparable toD. As the field increases further, distinctive
shoulders appear. As shown in Eq.(A3), until the condition
Î«a

2 +D2,eha is satisfied for any noninteracting statea, the
thermal factor 1−2f does not change, so the gap equation
yields the sameD. At large diameters, the number of de-
paired states withÎ«a

2 +D2.eha increases gradually andD
therefore varies steadily with the external fieldH. However,
at small diameters, the density of states has peaked structures
with van Hove singularities separated by an energy spacing
of "2/m*R2. Since only a few transverse energy peaks are
available in the energy window, the van Hove singularities
have a stronger influence on the order parameter. Therefore
kinks begin to appear in the field dependence ofD. As D
grows, these discrete structures smooth out, as in Fig. 1.

TheR dependence of the critical fieldHc is shown in Fig.
8. Electron orbits in more tightly confined spaces are less
influenced by magnetic field, because of the smaller depair-
ing contributionse/"cdedl ·A in the phase of wave function.
The filled circles are BdG solutions withdR=2 Å and the
dashed line is the semiclassical( i.e., 1 /R) solution of the
BCS equation Eq.(19). The inset magnifies the small diam-
eter regime. The BdG solution follows the 1/R trends well
down to aboutD /j0,0.02. AsD gets smaller,Hc fluctuates
substantially, but follows the overall 1 /R behavior surpris-
ingly well. One of our findings is that the prediction of the
Ginzburg-Landau theory agrees remarkably well with the
microscopic solution of the BCS equation, down to small
diameterssD!j0d. This conclusion may change with an in-

FIG. 6. Average order parametersD as a function of diameter
for different radius smearingsdR. Filled circles are the full BdG
solution while empty circles represent the constrained case where
spatial variation ofD is disallowed. Confinement effects appear at
D /j0,0.1, i.e., when the transverse energy level spacingdE<D. D
converges to about 4 K as the diameter increases, regardless ofdR.
In the full solution,D increasesslightly asD /j0 drops below about
0.1. Compared to the constant-D behavior, this enhanced order pa-
rameter takes advantage of the spatial variation in the BdG solution.

FIG. 7. The order parameterD as a function of the external field
at a small diameterD /j0=0.057−0.086(D=20–30 nm,dR=2 Å).
D displays several shoulders as the field increases and then vanishes
abruptly, unlike the large diameter case of Fig. 1. This structure
reflects the discrete nature of the transverse modes. The sudden
cutoff of D at the critical field is due to an absence of small angular
momentum transverse states near the chemical potential. The
dashed line is Eq.(18).
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clusion of strong interaction effects, such as increasing Cou-
lomb interaction in strong confinement at small diameters.

Finally, we mention that temperature dependence of the
order parameter does not show significant deviation from the
BCS results.25 The relationD /kBTc=1.764 holds to high ac-
curacy for a wide range of diameters at zero external field.

IV. CONCLUSIONS

We have studied the dynamics of the transverse degrees of
freedom in superconducting nanowires. As the confinement
dimension shrinks and the level spacing becomes compa-
rable to the order parameterD, the discrete nature of the
transverse modes shows up in a spatial variation ofD. In the
clean limit, electronic angular momenta are conserved and
couple strongly to magnetic field to shift the quasiparticle
energy levels. This effect shows up as distinct shoulders in
the response to an external field. In a confinement scale com-
parable to or larger than the superconducting coherence
length, superconducting wave functions satisfy the usual
boundary condition for normal derivative]c /]n=0 for su-
perconducting order parameterc. Under zero magnetic field,
c remains constant throughout the sample, except for small
and rapid oscillations. With finite external field,c adjusts to
the vector potential with much stronger spatial variations
than predicted in Ginzburg-Landau theory.

Our results are relevant to clean-limit samples with inclu-
sion of level broadening effects introduced by uncertainties
in diameter. It is useful to compare the results with the dirty-
limit theories.7,8,12,16Although detailed mechanisms for both
limits are different, both systems display gapless behavior.
The critical fields for the disappearance of order parameters
Hc behave quite differently for the two limits. In the dirty
limit 12 (ø /j0!1), Hc becomes very large(before the spin-
Zeeman depairing effect dominates20), with Hcsød
,Hc

Îj0/ø@Hc with Hc given in Eq.(19) for the clean limit

sø /j0@1d. For the critical fieldH1 where the excitation spec-
trum first becomes gapless,H1/Hcuø=0=0.954 while
H1/Hcuø=`=0.389. Therefore, the clean limit remains gapless
for a wide part of the magnetic field range compared to only
4.6% of the dirty limit. While the onset of the order param-
eter suppression and the disappearance of the excitation gap
happen simultaneously in the clean limit, the closing of the
excitation gap in the dirty limit happens only when the su-
perconducting order is already suppressed significantly.

Electrodeposition into nanoporous membranes such as
polycarbonate or anodic alumina13 can yield single-crystal
metallic nanowires from several different superconducting
metals(tin, lead, etc.). Such systems may be able to access
the clean limit in which the phase information of definite
angular momentum states is conserved and orbital-derived
level shifts under magnetic field become substantial. Since
the effects of discrete levels begin to appear when the level
spacing becomes comparable to the order parameterD [see
Eq. (17)], systems of smallerD will exhibit stronger confine-
ment effects at a given wire diameter. Systems with small
band massm* will have similarly strong confinement effects.

The nature of confined superconductivity in single-
crystalline metallic nanorods could perhaps be verified most
clearly by the gapless spectrum that appears at magnetic
fields smaller than the critical field. The small quasiparticle
excitation energy here could result in very interesting phys-
ics, e.g., in specific heat measurements at temperatures below
Tc under external field. Gapless superconductivity under an
external field could also enhance phase-slip rates as reflected
in the electrical resistivity. Due to the low quasiparticle ex-
citation energies, thermal or quantum fluctuations will over-
come the condensation energy more easily. Gapless excita-
tions for normal electrons could contribute to a finite residual
resistance in the presence of strong scattering at the confin-
ing surface.
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APPENDIX A: SEMICLASSICAL SOLUTION FOR ORDER
PARAMETER D IN CYLINDER

We derive the analytic solution to the gap equation(14)
with the constraint of a uniform order parameterD. The rel-
evant regime is when the cylinder is large enough that the
transverse level spacing is much smaller thanD and the ex-
ternal field is not too close to the critical value. Similar re-
sults have been derived for spherical systems using a Green
function technique.12 With the assumption of a constantD,
one approximatesfr ,pg<0, treatingr andp as independent
variables. We ignore the Zeeman term from spinsmBs ·H in
Eq. (2), since it is negligible in the regime of interest. The
term quadratic in the field,e2A2/2m*c2, is also dropped, as
discussed below. Under these conditions, the noninteracting
Hamiltonian becomesH0=«k −eh, where«k = 1

2m*v2−m and

FIG. 8. The critical field vs rod diameter. The critical fieldHc

varies inversely proportional to the diameterD. The solutions of the
full BdG equation follow the general trend of Eq.(19), which was
obtained from the BCS equation under the constraint of a spatially
constant order parameter. The full BdG solution satisfies the 1/R
prediction down to fairly small diameters, far smaller than coher-
ence length, although they fluctuate strongly about the relation(19).
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eh =
e

2m*c
L ·H . sA1d

Solving the BdG equation(1) for a constantD, one obtains

Ek = Î«k
2 + D2 − eh andukvk =

D

2Î«k
2 + D2

. sA2d

With these approximations,ukvk is independent of the field
H. The gap equation can be written as

1 = Vo
k

1 − 2fsÎ«k
2 + D2 − ehd

2Î«k
2 + D2

. sA3d

The effect of the magnetic field is reflected only in the
Fermi-Dirac functionf. To evaluate the angular momentum
summation, we writeeh=se/2m*cdL ·H =se/2cdsr 3vd ·H
=se/2cdsH 3 r d ·v. Now, with a fixedr andH and an isotro-
pic distribution of v, eh=sevF /2cdrH cosw with the angle
w= / sH 3 r ,vd and uvu<vF. The summation on the right-
hand side of the gap equation Eq.(A3) becomes

E
−vD

vD

d«N0E
0

R 2pdr r

pR2 E dVv

4p

1 − 2f

2Î«2 + D2
, sA4d

whereN0 is the density of states andVv the solid angle forv.
If e2A2/2m*c2 is much smaller than the integral limitvD, it
can be absorbed in the chemical potential with little change
in the integraled«. The gap equation becomes

1 = N0VE
0

vD

d«E
0

1

du uE
−1

1

dm
1 − 2fsÎ«2 + D2 − humd

Î«2 + D2
,

sA5d

with u=r /R, m=cosw and h=sevF /2cdRH. For H=0, we
have

1 = N0VE
0

vD

d«E
0

1

du uE
−1

1

dm
1 − 2fsÎ«2 + D0

2d
Î«2 + D0

2

= N0V lnSvD + ÎvD
2 + D0

2

D0
D . sA6d

Since f =0 for Î«2+D2.hum in the T=0 limit, we can per-
form the integral in Eq.(A5)

E
0

vD

d«E
0

1

du uE
−1

1

dm
fsÎ«2 + D2 − humd

Î«2 + D2

=
1

2
S1 +

1

2a2Dlnfa + Îa2 − 1g −
3

4
Î1 − a−2,

for a=h/D.1, and 0 fora,1. For a.1, Eq. (A5) be-
comes

1 = N0VHlnSvD + ÎvD
2 + D2

D
D − S1 +

1

2a2Dlnfa + Îa2 − 1g

+
3

2
Î1 − a−2J . sA7d

Substracting Eq.(A6) from Eq. (A7) and usingvD@D0, we
obtain Eq.(18). The order parameterD becomes gapless as
one or both of the states in the time-reversed pairs in Eq.
(A2) are pushed out of the Debye frequency. The external
field influencesTc by the statistical factor, not directly
through the field dependency in the noninteracting density of
states, as can be inferred from Eq.(A5). The density of states
over the interaction window of the Debye frequency remains
nearly the same due to a balance between the outflux and the
influx of noninteracting energy levels shifted by the external
field.

APPENDIX B: GINZBURG-LANDAU THEORY

Here we consider only a stationary superconducting order
parametersLz=0,kz=0d where the Ginzburg-Landau func-
tional for the order parameterc reads

F = − aucu2 +
b

2
ucu4 + US¹− i

2e

"c
ADc U2

sB1d

=
Hc

2

8p
F− uf u2 +

uf u4

2
+ j2US¹−

im0vcr û

"
D fU2G .

sB2d

Hc is the bulk critical field, c=c0fsuc0u2=a /bd, vc

=eH/m0c, m0 is free electron mass, andj is the coherence
length. The Coulomb gauge is used for the vector potential

A =1/2rH û. For radiusR much smaller than the penetration
depth, the screening of external fields is negligible, as as-
sumed in the main text. With constantf, we obtain the aver-
age free energy after integration over the cylindrical nanow-
ire

F =
Hc

2

8p
HF− 1 +

1

2
Sm0vcRj

"
D2G f2 +

1

2
f4J . sB3d

We have also numerically minimized the free energy with a
spatially varyingf, but the spatial variation was far less sig-
nificant (about 1% of the average order parameter forR/j
=0.5) than that of the Bogoliubov-de Gennes results dis-
cussed in the text. Therefore, the following approximate
value for the critical field is quite accurate. Minimizing Eq.
(B3) over f gives

f = F1 −
1

2
Sm0vcRj

"
D2G1/2

. sB4d

For vanishingf, the critical field is

Hc =
Î2

p

F0

jR
= 0.450

F0

jR
, sB5d

with F0=hc/2e.
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