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Discrete transverse superconducting modes in nanocylinders
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Spatial variation in the superconducting order parameter becomes significant when the system is confined at
dimensions well below the typical superconducting coherence length. Motivated by recent experimental suc-
cess in growing single-crystal metallic nanorods, we study quantum confinement effects on superconductivity
in a cylindrical nanowire in the clean limit. For large diameters, where the transverse level spacing is smaller
than the superconducting order parameter, the usual approximations of Ginzburg-Landau theory are recovered.
However, under external magnetic field the order parameter develops a spatial variation much stronger than
that predicted by Ginzburg-Landau theory, and gapless superconductivity is obtained above a certain field
strength. At small diameters, the discrete nature of the transverse modes produces significant spatial variations
in the order parameter with increased average magnitude and multiple shoulders in the magnetic response.
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[. INTRODUCTION systems, working from microscopic theories. We specifically
aim to investigate the often-overlooked spatial structures of
Recent developments in nanofabrication techniques allowhe superconducting order parameter in the confined direc-
access to new physical regimes where various intrinsic orddion by directly solving the Bogoliubov—de Gennes equation
parameters interact with a tuneable confining environmentand comparing with other theories.
Such order parameters cover an array of diverse physical For the last few decades, work on one-dimensional super-
systems, such as ferromagnktguantum doté, molecular  conductivity has mostly focused on fluctuation effééi&
electronics’ photonic crystal$, superconductors;” etc. These treatments assume featureless transverse supercon-
Quantum-confined superconductivity is particularly interest-ducting modes within superconducting nanowires and in-
ing for its macroscopic quantum nature; its well-understoodstead concentrate on the physics of phase slips iraxied
microscopic mechanism can also serve as a platform fodirection. Here we complement these previous approaches
studies of other many-body nanoscopic quantum confineby considering the effects dfansversequantum confine-
ment effects. ment on the spatial variation of superconducting order pa-
Since the advent of BCS theory, a great deal has beerameter, with consequences for the quasiparticle excitation
understood in both the microscopic and phenomenologicapectrum and the magnetic response.
aspects of superconductivity for conventional phonon-
mediated pairing systems. Theories have been immediately Il. FORMALISM

applied with grea}osuccgss to small supercondutfoos We consider a superconducting cylinder with a radius
various geometr§:'® Particularly useful has been the phe- smaller than the penetration depth but much larger than
nomenological Ginzburg-Landau theory, which describes suthe atomic scale, so that we can describe the system with a

perconductivity directly in terms of the superconducting or-continuum basis. The Bogoliubov—de GenrfB&IG) equa-
der parameters without appealing to an underlying electroniggons are

basis.
Partly due to its enormous success, however, the Ho A u _E u (1)
Ginzburg-Landau theory has sometimes been applied beyond A _HB vl ol

its strict regime of validity, especially in systems of small ] ] o

size. Part of the justification for this has been that experimenhereA is the order parameter ad} is the Hamiltonian for
tal samples have often been disordered or polycrystalline, ifl€ctrons
which case confinement effects are less pronounced than 1 e \2

they are for single crystals. Well-established dirty-limit theo- Ho=-—= (— ihV - ‘A) ~pu—pgo-H. (2)

ries for small superconductors with strong disottiate- 2m ¢

scribe fascinating physics, such as gapless superconductivitjerem’ is the band electron masa, is the chemical poten-
down to nanometer scales. In the clean limit of microscopiaial, ug is the Bohr magnetony is the Pauli spin matrix, and
BCS theory, where the mean free pdtlis longer than the H is the external magnetic fieltH, and its complex conju-
coherence lengtl, (£>¢), the superconducting behavior gateH, act on the time-reversed electrons in Cooper pairs.
of small samples is very different from that in the dirty limit The statdu,v] represents the amplitudes of the pair of elec-
(€ < £&).1°12 Recent experimental techniques for producingtrons which interact with each other via the pairing interac-
high quality single crystallinenanostructures through elec- tion parametrized by the superconducting order parandeter
trodeposition into extended nanopdrfedemands a reexami- For an axial magnetic fieltl =HZ, the vector potential in the
nation of the phenomenology of superconductivity in suchCoulomb gauge is
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1 R R
A= Er|-| 0, (3) Amjjr = f Dmi(DA(r) s (Nrdr, (10)
0

where @ is a unit vector along the azimuthal direction. We R
assume that_ the radius of the na_norod is sufficient_ly l_)elow r2m.”, :f ¢mj(r)r2¢mj/(r)rdr. (11)
the penetration depth that screening of the magnetic field ’ 0

due to demagnetization is negligible. In a cylindrical coordi-

nate systent, become® The transverse modémdexed withmj) are decoupled from

the longitudinal mode@ndexed withk) and the gap equation

W[ # 19 1 F P\ 1. 9 is simplified.
=T o\ G2 v ar T r2e2 a2 +§'ﬁ“’czg l'I'h*ezBdG equations Eq(l) now become(with Ip;s
1 =s5m rm;jj’):
2.2
+=m wir?- u- ugoH (4) 1 1
k k k
8 K%jk—a(m+ 1)ﬁwc Umj+z; nglm;jjrumj,"'Am;jjrvmj,
j
1/ 9 1.
=K%+ 5<i&—0— Uz>ﬁwc+ g™m @i, (5) = Ul (12)

whereK?O is the kinetic energy in zero external figlabsorb-

ing the chemical potentinphnd w,=eH/m’c is the cyclotron
frequency. With the typical separation of variables, the elec- 1
tron pair for the basis in Eql) consists of time-reversed + {_ 2 oK LA K ]: k ok
electrons in stateémjk]) and (-mj-k|) with m the azi- ]2 4w°|m'“ Oy + AUy | = Emomj- - (13)
muthal quantum number i@™? andk the z wave vector in

k2 We explicitly write down the BAG equations by expand- Note that the Zeeman terndém+ 1)%w, have the same sign

1
|:_ Kg’ljk_ 5(m+ 1)ﬁwc]vlr(m

ing u(r) andu(r) in terms of the eigenfunctions & as for uﬁqj andv‘ﬁnj since they represent the amplitudes for time-
im0 ke reversed states. The order paraméign) is self-consistently
uﬁqj(r) — ulr(njquj(r)?,r_za (6) expressed by the typical gap equation
N2m N .
A(r) =V [1 = 26(Efy Julyy(Nomi(1)”, (14)
. . mjk
. ‘ e|m¢9 eIkZ
Umi(r) = vmj¢mj(r)ET, (7)  where the summation range for the eigenstates is over kinetic

energiesKﬂ1jk within a window[-wp, wp] of width twice the
with L the length of the cylinder. We apply a boundary con-Debye frequencywp. We use generic parameter values suit-
dition able for conventional superconductors withat a few K.A
. atT=0 converges at large diameters as will be shown and we

ur=v(r=0 with |r[=R, (8 use the converged valug,=3.9 K as the bulk limit through-
so that the wave function vanishes outside the cylinder. Thi§ut this paperm’ is set to the free electron masep
relation only imposes the condition that there are no elec=100 K, andu=10 000 K. As shown below, The Fermi ve-
trons outside the cylinder and does not make any assumpPcity is then vg=0.55x10° cm/sec and the coherence
tions on the coarse-grained superconducting order paranength &=%Ave/ mAg~350 nm in the bulk. Results are plot-
eters as usua"y treated in Ginzburg_Landau théoTy'e ted in dimensionless units in this paper. Although we have

radial term chosen a particular set of parameters, we expect that our
— conclusion will hold qualitatively for conventional loW;
_ V2 amif 9 superconductors.
bri(r) = Rdne1(am) m ' ©) As the diameteiD(=2R) shrinks, the transverse kinetic

energy becomes very sensitive to the boundary condi8pn
whereJy, is the mth order Bessel function andl,; is its jth Defir?izg a variation gf radiusR 6K°/K°=—25R/yR. Wg(hg

z%ro. Tzhe (3pe2rat02|K° zis diagonal with matrix elemgnts small uncertainty in radiusR=1 A R=10 nm, for example,
Kinj=h"/2m (g /R°+K%). - The deG equation requires 50 02, ~200 K, which is comparable to the Debye
evaluation of matrix elements foir) and A(r). We will  grequency. We incorporate the effects of variations in the
consider only the case of order parameters with zero nefjre diameter as a noise in the kinetic energy

angular momentum and zero net momentum along teds, o

namely,m+m’' =0 andk+k’'=0 in the producm'ﬁnjvfé,j, for Kiik = Kinjic* Smik R
order parameteA(r). A paired state with finite ngangulay
momentum has higher kinetic energy than the stationary sowhere sy is a random number uniformly distributed in
lution, and is therefore disfavorédWith this choice of or- [-1,1] and we set’)R<5 A. Due to the time reversal sym-
der parameter, we can compute the matrix elementdfor  metry of static scattering at the boundasy,=s_mj-« Here,

andr? as we have partly taken into account the radial variations via

OR, (15
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energy levels, leaving the basis functions and the boundary  A/A
condition unchanged. We have sampled equi-spacet-
menta in the half Brillouin zong0, 7] with 200—500 points,
depending on the level of convergence required. Note that
experimental nanowire samples to date have a significant
variation in diameter along their length, but this variation is

0 | gapped gapless

06 [

often slow on the length scale of the nanowire width; the [ H.=2cA/(ev,Ey) °\6\\ _
longest-wavelength variations could be subsumed into an 04 L o ‘ ]
adiabatic treatment. | [~ Ginzburg-Landau ]
— BCS semi-classical
0.2 - |0 BdG with constant A .
Il. RESULTS | |® full BdG .
M 1 M OAAA o
The density of states of a nanorod can be expressed as the 0 0 1 5 T3
sum of one-dimensional densities of stadgE) displaced HR/(HJ;O)

by transverse energy eigenvalues
FIG. 1. Averaged superconducting order parameter in a cylin-
N(E) = E Ny(E-E,). (16) drical sample of large diameté®d =200 nm P/ &,=0.57) with axial
@ external magnetic fields. Normalized order parameter to the zero
Quantized transverse levels strongly affect the density ofield value A/A, is plotted as a function of dimensionless field
states. Transverse modes are spaced with an average leV#t/ (H¢€o) with H.=2cAo/(evey). Overall agreement of the ana-
spacing SE=1/N, with N, the two-dimensional density of lytic formula(_18) and the numerical results_, are good. The sc_)lu_tion
StateSsz(sz)(m*/ﬂ.hz)_ SinceN, is independent of the of th(_e Bogollubov—de_ Genne®dG) equation in the _clean limit
chemical potential, the qualitative results do not depend oINS constant untiHy=2cAo/eveR. The full solution of the

the particular position of the chemical potential. More detaiIsc:tiaﬂﬁ;'C:Ir:(as:lt'ﬁo‘:;cl:?n:t?;rl]aergfé gfg;ﬁ;{;fﬁ;ﬂ;ggg; the
will be discussed in Sec. Il B. HoweveN,(E-E,) has a

. . . circle), due to spatial adjustments of the superconducting wave
van Hove singularity aE=E, and therefore small changes in ¢ i-n

the chemical potential can produce quantitatively different

results. Confinement effects become strong when the level lculation f Ea(14 ke furth L
spacingsE is comparable ta, i.e., calculation from Eq(14), we make further approximations

that the position and momentum in EG.4) commute and
#h? that the terms quadratic in the fieidn*wglmjk in Eq.(13) are
R= mA” (17) negligible. When compared with a numerical solution of the
full BAG equations, the above approximations seem reason-
This condition becomeB/§,<0.1 with our parameter@nd  able in the largeD regime for zero external magnetic field
A=3.8 K). Due to the singularities ilN(E), solutions of the  (until D/&,<0.57 for our parameter values
BdG equation are quite sensitive to model parameters for This clean-limit solution has a field dependence quite dif-

D/&,=0.1, even including moderate smearing fréR. ferent from the standard Ginzburg-Landau prediction. In-
stead of gradually decaying from the zero-field order param-
A. Large diameters eter Ay to zero,A stays constant up tbl;=2cA,/evgR and

- . then drops to zero at the critical field, (see solid line in
Superconductivity under confinement has been well studl-_-ig 1) P e (

ied for samples in the limit oBE<A and D <\.”1218For
cylindrical samples with specular boundary conditions, we
can explicitly solve Eq(14) in the clean limit as a function

1 D
He= exp(3/2)H1:O.454§—%, (19)
of external magnetic field along the axis °

2

with the flux quantumd,=hc/2e and the coherence length
&o=hvel mAq. The critical field depends inversely on the di-
ameter, since orbital motions of electron in small samples are
less influenced by magnetic fieltl, in Fig. 1 is defined as
2T fora>1 H, for R=&y, i.e, H;=2cAq/evpéy.

2 We have solved the BdG equations under two different
(18) conditions: first with the constraint of a spatially uniform

order parameter and then with the constraint relaxed. The

wherea=h/A, h=evgRH/2c, and A is the order parameter quantitative results and their overall line shagiesFig. 1)
in bulk without external field. Strassler and Wytfehave are in good agreement with the analytic formqla). First
obtained a result similar to the above equation for sphericatomparing the analytic result with the unifortnealculation,
systems and we essentially follow the same derivation fowe find that the invariant order parameter upHeH; is
cylindrical systems in Appendix A. In this solution, we make well reproduced. The numerical deviates downward from
a major assumption by ignoring the spatial variation of thethe analytical formula at higher values #f, resulting in
order parameter, i.eA(r)=A. In carrying out an analytic smaller critical fieldH.. We attribute the discrepancy to un-

1 —
In(A/Ag) = - (1 + —2)|n[a+ Va? - 1]
2a

=0, fora<1,
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FIG. 3. Spatial variation of order parametgrin the large di-
ameter limit(D/&=0.57. For external fields of &H<H,, A re-

FIG. 2. Density of states as a function of external field. The p5ins flat. As the field increases frokty, A drops with a knee
superconductor becomes gaplesbiatH; (dashed lingin the clean  \hich progresses towards=0.

limit well before the critical fieldH., due to the coupling of orbital
angular momenta to external field. The external fields in the plotare At zero field, the order parameter is nearly constant over
from HR/(H:£)=0 (thick line) to 1.83 with equal intervals be- the cylinder(see Fig. 3, except for small oscillations and a
tween the curves. Gibb's phenomenon at=R. The rapid oscillations have a
wavelength proportional to b£ and an amplitude that di-
derestimation of the external field in the analytic solution dueminishes for larger diameters. Therefore we expect that these
to ignoring theA? term. Further discussion is given at the oscillations will be averaged out on larger length scales; they
end of this subsection. are not important for large-diameter systems. In such a re-
An important qualitative deviation of the full BdG solu- gime, we correctly reproduce the boundary condition com-
tion from the uniformA results comes at high fields nedg. monly used in the literature, namely, a vanishing normal de-
The critical field for the full BAG solutior{solid circles in  rivatives of the superconducting order parameter at the
Fig. 1) extends to high fields, with decaying much slower surface. The order parameter does not change HistiH,.
than the usual square-root df8pf the uniformA solution.  As H exceedsH;, some quasiparticle energies are pushed
It is clear that this phenomenon must originate from thebelow zero in Eq(20) and contributions from these excited
transverse spatial variation of the order parameter, which wquasiparticle states reduce the order parameter i1y by
will discuss below in more detail. changing the signs of their contributions in the statistics fac-
Although the average order parameter remains constarnor 1—2f(EﬁU-). In addition to an overall reduction af(r)
for 0O<H<H, (left to the dashed line in Fig.)lthe density under external fieldA(r) also changes slope, with a distinct
of states reveals a closing of the excitation gap at the figld knee that moves towards=0 with increasing fieldsee ar-
(dashed curve in Fig.)2where the spectral weight at the rows in Fig. 3. At a radiusr, the angular momentum is of
chemical potential becomes finite. The density of states imrderm'rur and the order parameter begins to be suppressed
the gapped region continues to increase udtiH.. In the  when A~m'verH/2c or r~2cA/evgH. This simple argu-
clean limit, the electron trajectories are not perturbed by imment should be taken with caution, since the semiclassical
purity scattering and their angular momentlmcouples to  approximation of treating position and momentum as com-
the external field as(e/2mc)L -H. This coupling gives the mutable in Eq.(14) becomes worse when there is a strong
term —%mﬁwc in Eq.(13) and contributes to the quasiparticle spatial variatiort* At larger radiusr, the energy difference
excitation energ;Eﬁﬂ, between the angular momertaith ma ~m'rvg) in an elec-
tron pair exceeds the pairing energy and therefore the pair

kK _ [0 2. n2a L becomes depaired.
Emj = VK" + A%+ S(M+ Dho. (20 We emphasize that the pronounced radial dependence of

order parameter is related to the coupling of orbital angular
These angular momentum contributions dominate over spimomentum to the external field, rather than the term
contributions and the excitation spectrum goes gapless wheé‘m*wgr2 in Eg. (5), which makes the superconducting order
A~ (e/2m'c)({L -H)~ eveRH/2c. In contrast, when impurity parameter more massive. To compare these two contribu-
scattering dominates, the electron trajectories are disruptdibns, we consider the Ginzburg-Landau theory with an order
and the quasiparticle energy is no longer in the form of Eqparameter of zero total angular momentum, as is usual in the
(20). In this limit, the quasiparticle energy suffers significant literature® (see Appendix B The order parameter couples
level broadening and experiences shifts only from the spirio the external field only throug%m*wgr2 and does not have
Zeeman term$&? Therefore, away from the clean limit the any information about the angular momenta of constituent
density of states retains the form of a conventional gappeélectrons in Cooper pairs. The spatial dependenca (of
superconductor? arising from the term(2e/4c)?A? turns out to be much
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FIG. 4. The order parametér as a function of the radius at
small diameteD/&,=0.057(sR=2 A). The spatial variation oA is
much stronger than for the large diameter wires of Fig. 3.

weaker than the angular momentum coupling in the BdG FIG. 5. Schematic two-dimensional p_hgse space with zero axial
treatment. The resulting critical field E(B5) is almost iden- wave vec.tor(kz:O). Transverse modes within the shell of thickness
tical to the angular momentum depairing rega®), as both Sk, contribute s*trongly to the order parameter. The area of the sh_ell
. . . . 27k 6k, ~4mm wp does not depend on the choice of Fermi
are derived in detail in Appendix B. energy.
It is interesting to note that although the orbital coupling '
and theA2-coupling produce very close critical fieldsee  spatial modulations, particularly nea=0. Although these
Egs.(19) and(B5)] in the absence of the other, they do not modulations also appear for large diametésee Fig. 3,
act additively when both are present. When fkfeterm is  their relative importance grows in the smaller diameter
included on top of the orbital coupling, its effect becomeswires. This spatial structure arises from the small number of
significantly smaller than in EqB5) because the orbital ef- transverse modes within the energy windpwop, wp]. As
fect produces fast-decaying(r)|* nearH=H,. For example, can be seen from Eq&l4) and(A3), the energy levels close
the curve labeled wittHR/(H£,)=2.16 in Fig. 3 hadA(r  to the Fermi energy contribute strongly to the order param-
=R)|?/|A(r=0)]?>~1/7. Since theA’~H*? term couples eterA. Since the density of states is peaked at the transverse
most strongly at large, the actualA(r)?¢(r)|?> coupling is  energy levelssee Eq.(16)], the resulting order parameter
much smaller than the Ginzburg-Landau theory. For in-has larger amplitude for the states W'ﬁﬁazm-IZm*Rzz;L,
stance, a reduction of the effectivé coupling by half re- k,~0 and displays the spatial characteristics of those trans-
sults in the reduction of the order parameter byverse modes. As illustrated in Fig. 5, the states within the
V1/(1+0.5~=82% in terms of the Ginzburg-Landau theory k-space shell of area7gok, ~47m wp contribute most
when the both couplings are naively added, which nearlystrongly to the order parameter. Although we have used
matches the discrepancy in Fig. 1 between Bd@) (thin  sharp energy cutoffs aip, they are not expected to impose a

line) and the constank (open circles results. significant quantitative change because the weight factor in
_ the gap equation,w,~A/2\e2+A? [see Eq(A2)], is small
B. Small diameters near the cutoff. The ratio ofi,wv, for ,=0 t0 &,=wp IS
When the diameter shrinks sufficiently that the transversepproximatelywp/A = 25.
level spacingsSE exceed the order paramet&y the density The shape of the order parameter is determined by which

of states on the energy scale dfbecomes spiky and spatial states happen to fall into thespace shell. For instance, if
structure arising from the transverse modes begins to shogtates of(m=0) are absent in the shell, then the amplitude
up in the radial dependence 4fr). Since the level spacing A(r=0) is depleted, since only the Bessel functionsJgf

of the transverse modes is inversely proportional to the efhave nonvanishing values et 0. We caution that the order
fective masg SE=#2/m'R?), the effect of the discrete levels parameter is not necessarily zera a0, since there are also

will be strong for systems of small effective mass or low states(mjk) with finite k. As the diameter decreases, the
transition temperature. Figure 4 shows the spatial variatiotransverse states become more sparse in the energy shell and
of the order parameter in this regime. A close examinatiorthe spatial structure becomes more pronounced. In contrast,
reveals two characteristic length scalesAifr). The shorter large-diameter wires have many contributiignj,k=0)

length scalg(with rapid oscillations more apparent at large states and the spatial variation averages out.

radiug is given in terms of the Fermi velocity, i.eAr Averaged order parametess at zero magnetic field are
~2mh/m'vg. As the Fermi velocity(or the carrier densily  plotted as a function of diameter in Fig. 6. The temperature is
grows, A(r) oscillates more rapidly. fixed at 0.2 K and 3 different radial smearingéR

Apart from the structures corresponding to the Fermi=0,2,5 A areused. The filled circles are solutions for full
wavelength, there are more interesting and slowly varying3dG equations and the open circles impose the constraint of
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) ] FIG. 7. The order parametéras a function of the external field
FIG. 6. Average order parametetsas a function of diameter o 4 cmall diameteb/ &,=0.057-0.08§D =20—30 nm,6R=2 A).
for different radius smearingéR. Filled circles are the full BdG 4 gisplays several shoulders as the field increases and then vanishes
solution while empty circles represent the constrained case whergy oty unlike the large diameter case of Fig. 1. This structure
spatial variation ofA is disallowed. Confinement effects appear at yefiects the discrete nature of the transverse modes. The sudden

D/é~0.1, i.e., when the transverse energy level spadlgA. A ¢ \off of A at the critical field is due to an absence of small angular
converges to about 4 K as the diameter increases, regardléss of omentum transverse states near the chemical potential. The
In the full solution,A increasesslightly asD/&, drops below about  4oshed line is Eq18).

0.1. Compared to the constafwtbehavior, this enhanced order pa-

rameter takes advantage of the spatial variation in the BdG solutior]sion_ The spatial variation of the order parametefrom
confinement effects may also contribute to this trend.

a constantA. Regardless oBR and the spatial constraint, The order parametek versus magnetic field plotted in
A/A, converges to 1 at large diameter.fluctuates consid-  Fig. 7 shows shoulders that also reflect the discrete nature of
erably as the diameter decreases, with more scatter fahe transverse modes. The overall shape of the curves is
smaller radius smearing. These variations arise from theimilar to that for large diametersee Fig. 1 A remains
sharp van Hove singularities in the density of states at transzonstant until the depairing field, in Eq. (A3) becomes
verse eigenvalues. Interestingly, the full BAG order paramcomparable taA. As the field increases further, distinctive
eter is consistently larger than the constansolution. The  shoulders appear. As shown in E&3), until the condition
gap equation, Eq14) or (A3), becomes particularly simple |2 +A2<g, s satisfied for any noninteracting statethe
for a constantA at T=0, thermal factor 1-2 does not change, so the gap equation

” yields the same\. At large diameters, the number of de-
1 =f ° M, with pp(w) = > 8le, - w), (21) paired states Witmsi-i-_A2>_eha increases g_radually andl
V Jo Ve?+A2 « therefore varies steadily with the external fi¢ld However,

at small diameters, the density of states has peaked structures

whereeg,, is the noninteracting eigenvalgabsorbing chemi- with van Hove singularities separated by an energy spacing
cal potentia). Although the density of statgs,(w) at diam-  of #2/m'R?. Since only a few transverse energy peaks are
eterD has fluctuations due to discrete transverse energy levavailable in the energy window, the van Hove singularities
els, it averages to the bulk limit. Therefore, statisticallyis  have a stronger influence on the order parameter. Therefore
expected to fluctuate about the bulk valg The particular  kinks begin to appear in the field dependenceAofAs D
line shape of the curvg®f empty circle$in Fig. 6 is due to  grows, these discrete structures smooth out, as in Fig. 1.
limited diameter sampling and the fine-tuning of model pa- TheR dependence of the critical field, is shown in Fig.
rameters. As the calculation @R=0.5 nm indicates, stron- 8. Electron orbits in more tightly confined spaces are less
ger broadening suppresses the fluctuation of the order pararmfluenced by magnetic field, because of the smaller depair-
eter which will converge tad\y down to smallD. When the ing contribution(e/#c) [dl-A in the phase of wave function.
condition of the uniformA is relaxed,A has the freedom to The filled circles are BAG solutions withR=2 A and the
peak in regions with a higher density of electronic statesdashed line is the semiclassidal.e., 1/R) solution of the
thereby increasing the condensation energy. For &l BCS equation Eq(19). The inset magnifies the small diam-
shown here, the enhanced order parameter is most evidegter regime. The BdG solution follows the R trends well
for D/ & smaller than about 0.1, the diameter regime wherelown to abouD/&,~0.02. AsD gets smallerH, fluctuates
the transverse level spacing becomes comparable tor  substantially, but follows the overall R/behavior surpris-
D/&, of 0.05-0.1, the enhancement is roughly 10—20%ingly well. One of our findings is that the prediction of the
This is consistent with larger, in small samples, as is often Ginzburg-Landau theory agrees remarkably well with the
observed in thin film§?-24This tendency has been attributed microscopic solution of the BCS equation, down to small
to softening of surface phonons in samples of small dimeneiametersD < &,). This conclusion may change with an in-
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20T T (€/&>1). For the critical fieldH; where the excitation spec-
| E e\ 1] trum first becomes gaplessH;/Hd¢-0=0.954 while
. 150 N 1 H1/H¢¢=-.=0.389. Therefore, the clean limit remains gapless
150r 1 100k o Ne 17 for a wide part of the magnetic field range compared to only
HC/H& le s * \'@.3. ] 4.6% of the dirty limit. While the onset of the order param-
100l ". 50_- * R eter suppression and the disappearance of the excitation gap
. ) I T T happen simultaneously in the clean limit, the closing of the
" 0 0.05 01 excitation gap in the dirty limit happens only when the su-
50l @ .\\ —- Eq. (19) i perconducting order is already suppressed significantly.
L ® BdG (5R=0.2 nm) Electrodeposition into nanoporous membranes such as
0\.\.\"__‘__ 1 polycarbonate or anodic alumitfacan yield single-crystal
0 L 4, oy o e e metallic nanowires from several different superconducting
0 0.1 0.2 0.3 0.4 05 metals(tin, lead, etg. Such systems may be able to access
D/§0 the clean limit in which the phase information of definite

angular momentum states is conserved and orbital-derived
FIG. 8. The critical field vs rod diameter. The critical fie level shifts under magnetic field become substantial. Since

varies inversely proportional to the diameRrThe solutions of the the effects of discrete levels begin to appear when the level
full BAG equation follow the general trend of EQL9), which was ~ SPacing becomes comparable to the order parante{see
obtained from the BCS equation under the constraint of a spatialfFd- (17)], systems of smallek will exhibit stronger confine-
constant order parameter. The full BdG solution satisfies ttie 1/ ment effects at a given wire diameter. Systems with small
prediction down to fairly small diameters, far smaller than coher-Pand massn' will have similarly strong confinement effects.
ence length, although they fluctuate strongly about the relatign The nature of confined superconductivity in single-
crystalline metallic nanorods could perhaps be verified most

clusion of strong interaction effects, such as increasing Colg€arly by the gapless spectrum that appears at magnetic
lomb interaction in strong confinement at small diameters. f'e"é's s_maller than the critical field. _The small qua_3|part|cle
Finally, we mention that temperature dependence of th&Xcitation energy here could result in very interesting phys-
order parameter does not show significant deviation from th&S, €.9., I speC|f|c'heat measurements at tempe.ratures below
BCS result€5 The relationA/ksT,=1.764 holds to high ac- T, under external field. Gapless superconductivity under an

curacy for a wide range of diameters at zero external field, £Xternal field could also enhance phase-slip rates as reflected
in the electrical resistivity. Due to the low quasiparticle ex-

citation energies, thermal or quantum fluctuations will over-

come the condensation energy more easily. Gapless excita-
We have studied the dynamics of the transverse degrees 86ns for normal electrons could contribute to a finite residual

freedom in superconducting nanowires. As the confinemeriesistance in the presence of strong scattering at the confin-

dimension shrinks and the level spacing becomes compang surface.

rable to the order parameté, the discrete nature of the

transverse modes shows up in a spatial variatioA.dh the ACKNOWLEDGMENTS

clean limit, electronic angular momenta are conserved and

couple strongly to magnetic field to shift the quasiparticle We thank M. Tian, M. Chan, and Y. Liu for very helpful

energy levels. This effect shows up as distinct shoulders inliscussions. We acknowledge support from the National Sci-

the response to an external field. In a confinement scale conence Foundation Grant No. DMR-0213623 and the David

parable to or larger than the superconducting coherencend Lucile Packard Foundation.

length, superconducting wave functions satisfy the usual

boundary condition for normal derivativ@j/dn=0 for Su-  AppENDIX A: SEMICLASSICAL SOLUTION FOR ORDER

perconqluctlng order parametgr Under zero magnetic field, PARAMETER A IN CYLINDER

¢ remains constant throughout the sample, except for small

IV. CONCLUSIONS

and rapid oscillations. With finite external fielg,adjusts to We derive the analytic solution to the gap equati@n)
the vector potential with much stronger spatial variationswith the constraint of a uniform order parameterThe rel-
than predicted in Ginzburg-Landau theory. evant regime is when the cylinder is large enough that the

Our results are relevant to clean-limit samples with inclu-transverse level spacing is much smaller thaand the ex-
sion of level broadening effects introduced by uncertaintiegernal field is not too close to the critical value. Similar re-
in diameter. It is useful to compare the results with the dirty-sults have been derived for spherical systems using a Green
limit theories”81216Although detailed mechanisms for both function techniqué? With the assumption of a constant
limits are different, both systems display gapless behavioione approximateg ,p]=0, treatingr andp as independent
The critical fields for the disappearance of order parametergariables. We ignore the Zeeman term from spig -H in
H. behave quite differently for the two limits. In the dirty Eg. (2), since it is negligible in the regime of interest. The
limit'2 (€/&,< 1), H, becomes very largébefore the spin- term quadratic in the fieldg?A2/2m’c?, is also dropped, as
Zeeman depairing effect dominat®s with H.(€) discussed below. Under these conditions, the noninteracting
~HcV&/ €>H, with H, given in Eq.(19) for the clean limit ~ Hamiltonian becomesl,=¢, - €, wheree, =3m v?-u and
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(A1)

Solving the BdG equatiofil) for a constant\, one obtains

A
E.=\Ve2+A%2-¢, anduv, = ————. A2
Kk = V&g €nh kUk ZN’W ( )

With these approximationsy vy is independent of the field
H. The gap equation can be written as

1-2f(Vel +A%-g,)
2V/8k + AZ

1=V
k

(A3)

PHYSICAL REVIEW B9, 214526(2004)

2 A2

+\Vws + A 1 —

1 :NOV{In(%> - (1 +F>In[a+ Va2 - 1]
o

+Evl—a (A7)

3 #}
Substracting Eq(A6) from Eq. (A7) and usingwp>Ag, we
obtain Eq.(18). The order parametek becomes gapless as
one or both of the states in the time-reversed pairs in Eqg.
(A2) are pushed out of the Debye frequency. The external
field influencesT, by the statistical factor, not directly
through the field dependency in the noninteracting density of
states, as can be inferred from EA45). The density of states
over the interaction window of the Debye frequency remains
nearly the same due to a balance between the outflux and the
influx of noninteracting energy levels shifted by the external

The effect of the magnetic field is reflected only in the fig|q.

Fermi-Dirac functionf. To evaluate the angular momentum

summation, we writeg,=(e/2m'c)L -H=(e/2¢c)(r Xv)-H
=(e/2c)(H Xr)-v. Now, with a fixedr andH and an isotro-
pic distribution ofv, e,=(evg/2c)rH cos¢ with the angle

APPENDIX B: GINZBURG-LANDAU THEORY

Here we consider only a stationary superconducting order

©=/(HXr,v) and|v|=vg. The summation on the right- parameter(L,=0,k,=0) where the Ginzburg-Landau func-

hand side of the gap equation E#&3) becomes

J“’D g NfRzmrr do, 1-2f (Ad)
—w e 0 7TR2 4 2\"82+A2,

D

whereNy is the density of states ar@l, the solid angle fow.
If €A?/2m’c? is much smaller than the integral limitp, it

can be absorbed in the chemical potential with little change

in the integralfde. The gap equation becomes
wp 1 1

1:N0Vf dsf duuf d
0 0 -1

with u=r/R, u=cos¢ and h=(evg/2c)RH. For H=0, we
have

1-2f(Ve?+ A2
1= Novf dsf duuf g LA A0

Vet + A2

1-2f(Ve?+ A - huu)
Iu‘ \;”8 + AZ

(A5)

wp + wd + AS) (A6)

=NV In
0 ( A,

Sincef=0 for ve?+A?>huu in the T=0 limit, we can per-
form the integral in Eq(A5)

wp 1 1 f(+/ 2+A2—hu
J dsf duuf RSl 2
0 0 -1 Ve + A?

1
T2

<1+ 1 )In[ + —1]—§ 1-
2 o ya 4\/ a y

for a=h/A>1, and 0 fora<1. For a>1, Eq. (A5) be-
comes

tional for the order parametef reads

2
F:—a|1//|2+§|1//|4+ (V—ii—iA)zﬂ (B1)
_H_E[_|f|2+ﬂ+ ) (V Im0w0r9>f 2}
8w 2 *¢ h '
(B2)

H, is the bulk critical field, y=uof(|ggl°=alB), o,
=eH/mqc, my is free electron mass, arglis the coherence
length. The Coulomb gauge is used for the vector potential

A=1/2rH 6. For radiusR much smaller than the penetration
depth, the screening of external fields is negligible, as as-
sumed in the main text. With constaftwe obtain the aver-
age free energy after integration over the cylindrical nanow-

ire
F—H_f23 |:_1+E<M)2:|f2+1'f4 (B3)
" 8w 2\ & 2 |

We have also numerically minimized the free energy with a
spatially varyingf, but the spatial variation was far less sig-
nificant (about 1% of the average order parameter ROE
=0.5 than that of the Bogoliubov-de Gennes results dis-
cussed in the text. Therefore, the following approximate
value for the critical field is quite accurate. Minimizing Eq.
(B3) overf gives

1 R 211/2
e e
For vanishingf, the critical field is
2o ®
°'\_5_R0=04505?2’ (B5)
o

with ®,=hc/2e.
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