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Spin dynamics in lightly doped La&a,_,Sr,CuO,: Relaxation function within the t-J model
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The relaxation function theory of doped two-dimensioBall/2 Heisenberg antiferromagnetie\F) sys-
tems in the paramagnetic state is presented taking into account the hole subsystem as well as both the electron
and AF correlations. The expression for fourth frequency moment of relaxation shape function is derived
within thet-J model. The presentation obeys rotational symmetry of the spin correlation functions and is valid
for all wave vectors through the Brillouin zone. The spin diffusion contribution to relaxation rates is evaluated
and is shown to play a significant role in carrier free and doped antiferromagnet in agreement with exact
diagonalization calculations. At low temperatures the main contribution to the nuclear spin-lattice relaxation
rate,83(1/T,), of plane®3Cu arises from the AF fluctuations, ahti1/T,), of planel’O, has the contributions
from the wave vectors in the vicinity dfr, ) and smallg~ 0. It is shown that the theory is able to explain
the main features of experimental data on temperature and doping dependé&#dé T in the paramagnetic
state of both carrier free L&uGO, and doped L, Sr,CuQ, compounds.
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I. INTRODUCTION The Nearly Antiferromagnetic Fermi LiquidNAFL)
model of Millis, Monien, and Piné$reconciled the puzzling
The spin dynamics in doped two-dimensior®k1/2  observation of non-Korringa temperature dependence of the
Heisenberg antiferromagneii2DHAF) systems remains the Ccopper nuclear spin-lattice relaxation rate and Korringa tem-
one of the intriguing problems of condensed matter in conPerature dependence of the oxygen and yttrium nuclear spin-
nection with physics of layered copper High Temperaturdattice relaxation rates in optimally doped YR&ax0; by
SuperconductoréHTSC).! The effect of doped holes in two- Postulating both the localized €umagnetic moments and
dimensional(2D) antiferromagnetioq/AF) background was free oxygen holes. The NAFL model gave the relation be-

studied in many papefsThe Hohenberg-Mermin-Wagner tween the AF correlation length and the relaxation rates and
theorem states the_absence of long range order in lows5 3PRICEES e BMPETRLEE AN COPING RO L
dimensional isotropic Heisenberg systems at any finite tem-= ith the phenomenological character of the NAFL descrip-

perature due to fluctuations, making the order short-range ion, since the temperature and doping dependence of corre-

T_he temperature. dependence of correla_tion Iength in tWOI'ation length was postulated or, at best, taken from a com-
dimensional Heisenberg model was first described bBbarison with experiment ' '

Chakravarty, Halperin, and Nelsof€HN) by a quantum As a consequence, it is tempting to consider the 2DHAF
nonlinearo modef in accord with neutron scatterindVS)  systems doped by charge carriers microscopically and the
experiment$in carrier free LaCu0,. A significant advance ifficulties rise on. The numerically exact methods study the
was achieved in understanding the 2D Heisenberg systems gd|atively small clusters and in addition, these methods are
low temperatures due to the improved further results of CHN‘]arcﬂy app|icab|e if we need to obtain the dynamic quanti-
in the renormalized classical regirh€ Since then the tem- ties. In the absence of exact solution it is necessary to find a
perature dependence of correlation length has been studie@liable approach that will describe the physical quantities
e.g., by isotropic wave theofyand by quantum consideration with convincing accuracy. This is intriguing especially since
of skyrmions? the observation of drastic change of various physical quanti-
Nuclear Quadrupole Resonan@®QR) and Nuclear Mag- ties with doping and emergence of “stripe” physics in doped
netic ResonanceNMR) methods are very powerful in study- HTSC and related compounds.
ing the low energy excitations of HTSCChakravarty and The t-J model became very popular since it was pointed
OrbacH developed a theory of magnetic relaxation phenomby Andersof? as a perspective model to describe the elec-
ena in 2DHAF based on the quantum nonlineamodel of  tronic properties of layered HTSC cuprates. The present
CHN in the critical region of fluctuations. However, they theory is developed for paramagnetic state using a Mori-
considered only the contribution that arises from the wavezwanzig projection operator procedufet>with a three-pole
vectors in the vicinity of AF wave vectder, 7). Despite the  approximation for the relaxation functidfThe merits of the
fact that contribution from the wave vectogs-0 does not theory were demonstratétby comparison with experiments
dominate in the plane copper spin-lattice relaxation rate ain antiferromagnets in a wide temperature range down to
low temperatures and was not accounted for in the anaiysis,temperatures close to Neel temperaflige The advantage of
the contribution from spin diffusion plays an important role the present formulation is that it allows to take into account
in HTSC, especially in the plane oxygen relaxation rate asiot only the AF correlation effects in relaxation rates, but
measured by NMR, since the AF fluctuating contribution isalso the contribution from spin diffusion. The presentation of
filtered out by the oxygen form factor. the t-J model in terms of Hubbard operators is known to
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obey the rotational symmetry of the spin correlation func- . dSi(n .
tions and automatically guarantees the exclusion of double S(n = Tdr ILS (7). (4)

. Ly . T
occupancy. The form of static susceptibility will be used
from microscopic theory/ as obtained beyond the Random In general,L is the Liouville operator, and in our, quantal
Phase Approximatio@RPA) and naturally takes into account case,iLS;(7) is the corresponding commutator with the
the contribution from the hole subsystem. The dynamicHamiltonian(1). The projection of the vectds;(7) onto the
structure factor is a quantity directly measured in varioussissi(T:o) axis is given by
experiments, e.g., by magnetic neutron scattering. The ad-
vantages of expressing the dynamic structure factor in terms PoS(1) =RK,7) - §, (5
of relaxation function were shown by Mori and Kawas#ki.
Until present the Mori-Zwanzig projection operator proce-
dure was applied in connection with HTSC only to a carrier
free 2DS=1/2 AF systen® with a three-pole approximation
for the relaxation functiolf and the correlation length was S(1)=RK,7 - S+ (1 -PySi(7), (6)
used from the results of CHRIIt should be emphasized that
the method developed in the present work for calculations ovhere
dynamic structure factor and nuclear spin-lattice relaxation — . -1
rates is similar, however, the approach is different from the Rlk,7) = (S, (S4) - (S (S0 @
calculations with the approximations for dynamic spinis the relaxation function in the inner-product bracket nota-

and defines the linear projection Hermitian operdgrOne
may separate&(7) into the projective and vertical compo-
nents with respect to thg axis:

susceptibilitieg,11:17,20-22 tion:
The paper is organized as follows: In Sec. I, the basic 1kgT
relations are presented for the relaxation function with a (S(n,(S)) = kBTj do(exp(eH)Si(7)
three pole approximation in a continued fraction representa- 0
tion of the Laplace transform and the static spin susceptibil- exp- oH)(S)"), ®)

ity. Section Il shows the evaluation of the second and the
fourth frequency moments of relaxation shape functionwhere the angular brackets denote the thermal average.
within the t-J model. Section IV presents the results of cal-  For future evaluations, it is convenient to introduce a set
culations, comparison with experiment, other theories anaf quantitiesfy(7), f1(7),---,f;(7),- -+ defined by equations

discussion. Section V is the conclusion. f,(n) = expliL, Af, = expliL i T, = 1), )
Il. BASIC RELATIONS wherefqy(7) =S(7), Lj=(1-Pj-))Lj-1,(Lo=L), and

We employ thet-J Hamiltonian written in terms of the A= () - (Fiop. )™ (10)

Hubbard operators: The set{f;} forms an orthogonal set. The larger numbef;of

Ho=H+Hy= S tiniUOXJQ”+JE (SSJ _ %ninj)_ (1) is use_d, the fine_r description &(7) is obtaingd. The last
o i>] quantity from this setf,, affected by evolution operator

exp(iL,7), resulting inf,(7), was called the rith order ran-

dom force,* acting on the variabl&(7) and is responsible

for fluctuation from its average motion.

In terms of Laplace transform of the relaxation function,
R-(k, ), one may construct a continued fraction representa-
tion for R(k,s):

Here,S; are spin-1/2 operators at the lattice si't;ezamdxi"0
are the Hubbard operators that create an electron withaspin
at sitei. The hopping integrat; describes the motion of
electrons causing a change in their spins. In this pager,
=t refers to hopping between nearest neighbors hisdthe
nearest-neighbor antiferromagneti&F) coupling constant.
The spin and density operators are defined as follows:

)} R-(k,s) = Jw dre SR(k, 7)
§=X" §=32 0X7, ) 0

= 1As+ A2 [[s+ A5 /(s+ A5 /)], (1)
n=> X7 (0=-3), 3) whereAjZk are related to the frequency moments

< n> — N d nF(k )— 1 w (12)
with the standard normalizatiod™+X"*+X-""=1. Without =) Te@TEEI T Ty

loss of generality, we measure all energies from the “center
of gravity” of the band. of the relaxation shape function

1 ; 1( w7
A. Mori-Zwanzig projection operator procedure and a three Fk,w) = ;RG[RL(ka)] = er dre"“"R(k,7),
pole approximation for the dynamic relaxation function o

In the present formulation we will follow Mofri* The (13

time evolution of a dynamical variab&(7), say, is given by as
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) 5 5 <w‘k‘ 5 ever, taking now into account the contribution from the hole
Al =(wp), A5 = @ — (). (14)  subsysterd’
Lovesey and Meserv@truncated the relaxation function c = 1 c,= 1 , 21
(12) to third order. They argued that since thelependence ' ZEP <SZSZ+”>’ 2T A- Zp%, <§§+p_p » (2

of Ay is much weaker than that &,,, and using the ana-

lytical resultg® for the sixth frequency momertwy), the — are the nearest a}nd next-nearest neighbor spin correlation

approximation ofA4, by a constant is a good approximation. functions, respectively, the indgxruns over nearest neigh-

Thus, they suggested a three pole approximation for relax20rs, and

ation function, 1 _ 1
Rk, = Ls+ A2 /[s+ Al /(s + 1n)T}, (15 %= z% explikp) = 5 (coska+coska),  (22)

with a cutoff characteristic time g_.=4aZlc;|, z=4 is the number of nearest neighbors for
o \172 square lattice. The parametaisand 8 were introduced in
i ( 2) (16) the decoupling procedures for the higher-order Green'’s
A functions?® The parameter preserves the important prop-

erty that spin operators obey the relati®|2>=3/4 which
should hold at all temperatures. The numerical values for the
TkAkagk/Tr temperature dependence &€ifvere determined in carrier free
[on(0? = A3, = A3 )P+ (0P = A2 )% (17 La,CuQ, usingJ=0.12 eV and treating as the only adjust-
able parametér. The best fit to experimental data, which
Here one should note thEtk , w) is real, normalized to unity were deduced from N$was obtained with3=2.5. This
=, dwF(k,w)=1 and even in botlk and w. value will be kept fixed in the present calculations. The origi-
The dynamic structure fact@k, ) is related to the re- nal self-consistent theory of Kondo and Yamg{iY) (Ref.
laxation shape functiorF(k,w) through the fluctuation- 25) with a«=8=1.705 fails in explanation of the absolute

For F(k,w) this is equivalent to

F(k,w)=

dissipation theorem values ofé. Since B enters in the combinatiopc,, the in-
crease of the values of next-nearest correlations causes the
Sk, ) = 2mwx(k) F(k, ) (18) extension of short-range AF order and hence the enhance-

?T1- exf— w/kgT)

The only undefined quantity in the present formulation is
the static spin susceptibility(k) in (18). Until present this
method was uséflto describe the paramagnetic state prop- g.= ‘5‘(1 +125,8). (23)
erties of (antijferromagnets with the form of static suscepti-
bility, which was justified only at high temperaturesee also  The reliability of the theory has been demonstrated by com-
Refs. 24 and 1P In the present work we will employ the Paring the numerical values fag, ¢, and ys= x(k=0) with
microscopic formula for static spin susceptibititythat is Monte Carlo, Exact Diagonalization calculations and other
shown to work in the overall temperature range and properl)l'fheOfiesl-7

ment of & together with the spin stiffness constant!’ In
T— 0 limit, for both the carrier free and doped casgand
g are related as,

takes into account the hole subsystem. In the present calculations for small dopiAgve will use
the expression for doping and temperature dependenég of
. - given by’
B. Static spin susceptibility
From Ref. 17, the expression for static spin susceptibility &_ g

x(k) is straightforward, a  keT exp2mpdkgT). (24)

A As discussed in Ref. 1% diverges afT=0 even in doped
xk) = Jg (9. + )’ (19 samples and this disagrees with experiment. This disagree-

. _ . . . . ment appears, probably, due to the overestimation of the role
and its structure is the same as in the isotropic spin-wavef AF correlations at low temperatures in the KY decoupling
theory! The meaning ofy. is clear: it is related to the cor- procedure. To mimic the low temperature behavior of the

relation lengthé via the expression correlation length we will use the expression, as in Refs. 21
£ 1 and 22, resulting ireffectivecorrelation lengtté.s, given by,
= (20) R
a 2Vg,-1 Eit=& +&. (25

wherea is a lattice unit. For carrier free AF system the rela- Thus, the theory is able to explain the temperature and dop-
tion (20) was obtained from the exponential decay of theing dependence of correlation length. The expres&ian is
spin—spin correlation function at large separations, whereadifferent from the Keimeet al2® empirical equation, where

at finite doping the same expression was derived from th& is given by the Hasenfratz-Niedermayer forntuland
expansion ofy(k) taken around the AF wave vect@, how-  hence, there is no influence of the hole subsysteng.dn
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contrast, in the present theowy,s affected by doped holes. of our expression for spin part with the existing res@ithe

Thus from now on we replacgé by &q. Xio" and Xi"0 operators are fermions and obey the anticom-
mutation relations, whereas tt& and X/ are bosoniclike
C. Excitation spectrum and obey the commutation relations. The terms with the op-

erators of different type are assumed to satisfy the commu-
Itation relations. The commutators with the products of op-
erators were decomposed on terms that contain commutators
%nc{or) anticommutators depending on the type of operators.

The band evolution with doping remains the controversial
topic. The usual parameter set in thd model ist=J/0.3?
The electronic and AF spin—spin correlation functions reduc
the hopping¥’ resulting ineffectivevalues. In the early pro-
posal of thet-J model by Andersot?22 for description of
properties of layered copper HTSC compounds the phenom- A. Evaluation of commutators
eno_logical r_elation was settled fqr the bandwidtd#t. Fol- In order to calculate the secorﬁd;ﬁ) and the fourtt(wﬁ)
lowing the idea of Zhang and Ri€eabout copper—oxygen
singlets formation it was shown by Eremén al,2 that it is
possible to describe correctly the elementary excitations [$,H1=13 ijg(sggr_ %’Sﬁ) (30)
spectrum in cuprates. This singlet correlated band is analo- i
gous to upper Hubbard band with essential distinction—the
subband splitting is much smaller compared to Hubbardd
model. Therefore it is possible to apply Hubbard formalism [, H,]= %E tmjo(Xﬁ)X?"— XJQ'OX%G'). (31)

],o

frequency moments we first evaluate the commutators

without strict restriction ort andJ values in thet-J model3°
Taking into account the AF spin—spin correlations self- S _
consistently, resulting ireffective hoppings, it was shown  The commutator of expression given by £g1) with the
that the band width varies linearly with doping in a wide hopping termH, in (1) is
range from lightly doped to optimally doped compougtis. L osOErutS 000D - <o
To avoid confusion from approximations the simple expres-L[SwHt,Hd = E tim0{ 3t EXEXTTXET + XoO(XP0+ X)X
sion for effectivehopping Lo
a0/,00 o Oc 00\ 00/0
tos = 6J/0.3, (26) + X0 + X7 Xy + XXX ]

a0/4,00 o Oo
will be employed in the following evaluations to match the = X7 X+ X)X } (32)
insulator-metal transition. At high hole concentratiofi® whereas the commutator of expression given by &)
~1), where the correlation effects are negligible, E26)  with the spin parH; of (1) is
gives, as it should, the value of band width for the noninter-

acting case. [[SmHal Hil = 52 3Qim = Jin) (S7S'S - SIS + ST
Thus, E, is given by ilo
Ex = 2ter(cosk,a+ cosk,a). (27) -SSS)+s ; Jimdm(2S' S - 'S
ILl,o
This expression resembles well also the values of singlet- 5 oy 5 5
correlated bandwidth=0.4 eV (see Ref. 3D in optimally “SHSHSSY - SIS+
doped(6=0.15 per Cu sitelayered copper HTSC as ob- _30325‘%)_ (33)
tained from Angle Resolved Photoemission Electron Spec- )
troscopy(ARPES.3! The rest commutators of this type are as follows:
Hil HI= 72 ol Jtim(XOXS = XX
Ill. EVALUATION OF EXPRESSIONS FOR FREQUENCY (LS Hal.H 4%0[ imbim(Xen XS~ § X X
MOMENTS

70\00 00y 00 o
. + STXI Xm = XXy ST)
We now describe the procedure used to calculate the sec-

ond{w?) and fourth(w;’) frequency moments d¥(k ,w), by + (Jim = I (SIXTOXP = X7OXPSD)], - (34)
calculating directly the corresponding commutators in and
() = (IS Sk, (28 [[S,HH;]= 5 ot 3 (XS - XXX
ilo
and i,

X X+ X
XX+ X XHH)

- I OGO X X OHES

(0 = IS S DIx(K). (29)

The main effort necessary here is to obtain the expression for
<wf<‘). In this section we will start with evaluation of commu-

tators and calculation of the thermodynamic averages, then — XOOXOIXTT + STXIOKOT — X770
introduce the decoupling procedures and, finally, present the OBle  woluEEul
result for(w}). The procedure will be tested by comparison + X7 X = XTXT7X) ] (39

214525-4



SPIN DYNAMICS IN LIGHTLY DOPED... PHYSICAL REVIEW B 69, 214525(2004)

We conclude this subsection with the emphasis, that our Eqef of an electron with wave vectde and spin projectior.
(3D)—35) are still exact. We will restrict further ourselves Consequently, Eq$38) and(39) become
and take into account the correlations between the first and

the second neighbors only. The resulting form of calculated [Xe”, H] = EgXY7, (40)
commutators suggests the types of necessary thermodynamic
averages. The calculation of these thermodynamic averages ([IX29, H], X0,y = EZ(X07, XI01,). (41)

together with the decoupling procedures we need to employ _ N
in order to estimate the values of higher spin, transfer ampliin the 2Dt-J model, long-range order is absent at any finite
tude and density correlation functions will be presented irtemperature and hencgy does not depend oa. Thus, we

the following subsections. can replaceE, andE, by E,.
For ours evaluations we need the thermal averages of the
B. Thermodynamic averages following types: <Xi"OXJQ"> and (X7°X7 ?). The averages

To calculate the thermodynamic averages, we use the réSPin—Spin correlation functionsf the type(S’sy) were de-
tarded Green’s functions formalism. The equation of motionfin€d in the Sec. I B and the calculation procedure together

for a retarded Green’s functioffA|B)),, takes the form with the numerical values will be outlined in the Sec. IV.
¢ First, one should note, that in the absence of long-range
o({A|B)),, = ([A,Bl,) + {[AH]|B)),, (36) order, (X’”) does not depend on the site index and hence,

where(---) denotes the thermal average. The standard reldccording to Eq.(3), To=(X7")=(x"")=(1-9)/2 and ¢

tionship between correlation and Green’s function may be:<sf$=1/4' ) ) )
written as The transfer amplitude between the first neighb®ys

=pl, is given by
(BA) = > §dof () (AB)),, @7

Ty=ply=- > 3 O, (@2
where f(w)=[explw/kgT)+ 1] is the Fermi function; the g
contour encircles the real axis without enclosing any poles oand may be calculated using the spectral theorem
f(w).

In general, Eq.(36) cannot be solved exactly and one ,=-3 Yk = . fh
needs some sort of approximation. To evaluate the Green's 1 Bkl 41 < YTk
function (({A,H]|B)),, in Eqg. (36), one uses a decoupling
scheme originally proposed by Réttor calculations on the The parametel, in Eq. (43) has been estimated in Ref. 21,
Hubbard model. It can be shown that Roth’s method is es-
sentiqlly equival_ent to the Mori-Zwanzig projection I, ~ ﬂ(l —e‘”;) -25 6= i (44)
techniqué®3*and is strongly related to the moments method T 1+6

as applied to the evaluation of the spectral density of the . .
Green's functiond53 Roth's method has been studied by with an accuracy of a few percent over the whole regio@ of

many authord*%7.38and became a general method to treatfrom 0 to 1. Here one should note that for very sm@&idnd

: ; : : . low temperatured,; = 26.
approximately the quasiparticle spectrum of an mteractlnd i .
system. The reliability of the method has been demonstrated 1€ transfer amplitude between the second neighbors,

(43
k

by comparison with the exact diagonalization restfts. 1
Roth's methoé? implies that we seek a set of operators T,= > <x;’°x?+‘j) _p,), (45)
A,,, which are believed to be the most relevant to describe the Az-1)

one-particle excitations of the system of interest. Also, it is,
assumed that, in some approximation, these operators ob&y
the relation®

I,= P_¥ 16y} - 4 coska cosk,a-4
[AnH]= 2 KA, (38) 2z-1)% eBmlkeT 4 1

m
wherg the parameters,,, are derived through a set of linear =- z(zri 1)2 (1692 — 4 cosk,a cos ka- 4)fh.
equations k

. (46)
([[ALHLAL) = 2 Kol [An AL (39)

m For p we have
Thus, it remains to define the operat@s Because, in the 1+6
framework of thet-J model, the quasiparticles are described p=— (47)

by the Hubbard operato%*{z”, a set of operatorA,, contains 2
only one operatoA:Xﬁ"’. Hence, the matriX,,, is diagonal  whered is the number oéxtraholes, due to doping, per one

and also contains one elemédtE7, whereEy is the energy  plane C@*. The chemical potentigk is related tos by
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(48)

p h
==>fh

where fl'=[exp(-E, +u)/kgT+1]™* is the Fermi function of
holes.

To obtaln the thermodynamic averages of the type

<X‘T”X|+p ) it is convenient to make the following definitions:
N= g5 = 2<><“’x|+,, (49)
and
Noor = E<><‘"’><.‘1,:’ : (50)

To obtain\ and\; we use the two Green’s functiots

Gll(w) == E (XIXTOXET)
P

(51)

G2(w) = 2 (UXIXTOXTTNY .
P

(52

Note that in the paramagnetic stalg, =Mz and\ 5=\z,
According to Eqs(36) and(40), the equation of motion
for G"(w) and G\”(w) can be written as

|krI

(0 -E)GP(w) = _<1 P—Nso*+PI%), (53
eikri
(0-E)GP(w) = "=(1-p-Ag5). (54)
VN
According to Eq.(37):
—|kr
= —E N © —$dwf(w)GM(w), (55)
—|kr
Ngy = i.E © N sﬁdwf(w)G(z)(w) (56)

27 K

Consequently, Eqg53) and (54) lead to a system of linear

equations fomz; and\;,, with the trivial solution
3

=12 P 2
)\_)\O'(T (1 p) 2p_1|1 (57)
PN S SPRRP € ol o] "
)\00'_(1 p )\)1+5_(1 p) + 2p_1 | . (58)

C. Decoupling procedures

We now describe the decoupling procedures for the th
modynamic averages performed in spirit of Hubbard an

Jair*® and Kondo and Yamafi? o
The averages of the type*X}"X7°X?”) are decoupled

PHYSICAL REVIEW B 69, 214525(2004

XXX — LX),

The four-spin correlation functions are approximated, as
usually, by products of two-spin correlation functidfs,
however, multiplied now with the decoupling parameter
Thus we employ the decoupling procedures

(59

(ST — USTINSIS)). (60)
and
(SSSS) — LSS, (61)
for i#r andm# j, whereas
(FIHS) — 2c(ShS)- (62)

The averages with the products of operatdf8x%” be-
tween the neargstext-nearestneighbors with(1-X7")(1

—X}”"') are decoupled as follows:
XL =X)L = X))
— (XOXONL = XGT =X+ XTTXT ), (63)

and so on.
The averages with spin and Hubbard operators are decou-
pled as follows:

(XX — (XN, (64)
and with spin and density operators:
XSS — XU (65)

The averagesxi‘"’xjf””’) between the second neighboring
operators are decoupled simply by

(XX ) = (XTNXs ), (66)

because an inspection of Eq5.7) and (58) shows that the
values of averages of these type between the first neighbors
differ only slightly from (X7*)(X{;7). Therefore, the averages
between second neighbors in &qs) are thought of as in-
dependent. In addition, because the averdgé%Xj””’) be-
tween the first, in contrast to next-nearest, neighbors, are
calculated exactly, the averages |i{<>é;”x;"x;"”’> are de-
coupled in a way to avoid, where possible, the averages of
the type as given in Eq66).

D. Final result for {(w?) and (wy)

The expression for the second momérni) is straightfor-
ward. Calculating the commutator with the expressions given

erby (30) and(31) with §, taking the thermal average and the
d:ouner transform, the result is

<wk> =~ (8Jc; — 4terpl) (1 — yi)/ x(K). (67)

resulting in products of transfer amplitudes and the decou- We now proceed with calculating the commutators for

pling parametet,

(wpy. Taking the commutators with the expressions given by
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Egs.(32—35) with Egs.(30) and(31) we obtain the expres- we arrive to expression that contains various types of sums
sion for(wﬁ). The expression was then approximated usingover lattice sites. The corresponding types of sums over lat-
the decoupling procedures for thermal averages as was dgee sites are presented in Appendix A. Utilizing these sums
scribed in the previous section. Taking the Fourier transfornwe obtain

(wp) =~ {128]3[02(1 - 3’2k)(§02(7k - %) - tco)+eci(F - Swm+ 3f) + 50102(173 - Duc+ 1777’5)
+{S3(3 - By + 297+ 2 cosk,a coska— 297) | + 16pl,t3g] ¢1(3 - 297 - cosk,a cosk,a)
+ {To(7 = 12y + 59) + 521 = 4y + 390) + (5+ N)(= 2 + 9y — 39 — £ coskea cosk,a) | + 16e2ply[ co(— 2
+ 3y = 292) +¢)(167F — 35)% + 25y — 3 — £ cosk.a cosk,a) + o~ B+ Ry - 12) + 2159(y — 1)
+ 16tgﬁ3[cl(z§17k - %) + %Scl(?’?’& - 4757k + 271 + T2(711T0 + %T(ZJ - }\)(Zﬁ’zk -3+ + (%V_(l -Tp) - To+ )\TO)(')’k -1
+ l%scz(zyzk - %W + %) + ClTo(%YE - %w + %) + Csz(lTl)’zk - 1757k + %) + CzTo(‘ 29+ %w - 3) + f(pll)z(‘ 4yp + 6%
+ 171‘}’k - cosk,a coskya - %’) + T202(167§ - 219 - %’yk + 175) + ToTz(ZJ’ﬁ - %’w + 3) + Tzco(‘ 5y + g)’k + %)
+{T3(= 29+ 6%~ Tne+ D k). 68

To insure the accuracy of the calculations we compare théength at T=0 and gives information on the topology of
result for spin parH; with that reported in the literatuf€.  holes. At present, two types of doping dependencies are un-
One should note thdS.,,n;]=0. Thus, the commutat@B0)  der debate in the literature. The fiftis the localization of
does not depend on the density-density temm; in (1).  holes close to the randomly distributed®Sions givesé&,
Moreover, the commutator of spin operat&sappearing in  =a/yx. The other one is the formation of dynamic domain
(30) with the density operators; is zero alsofS7,nj]=0.  walls. In this cas&,=a/nx, wheren is the average distance
This enables us to compare the reg6B) for spin part with ~ between the holes along the domain walls in lattice uifs,
the results for carrier free 2DHAF. As it was already men-usually called “stripes.”
tioned, we restrict ourselves and take into account the corre- The best fit ofé to experimental dat8 yields &=a/nx,
lations between the first and the next-nearest neighbors onlyheren=1.3 for samples witix=<0.02 andn=2 for samples

For the second momer\mﬁ) the result(67) is evidently ~ With x>0.02, see Fig. 1. These results are in agreement with
correct. To compare the results fas?) we need some addi- the the conclusion of Borsat al** for Lay_Sr,CuO, com-
tional effort. The corresponding expressions and the procg20unds withx=0.02 and with the analysis of Carregaal.
dure will be described in Appendix B. The expression, a>" the basis of dynamical scaliigThe presence of stripes
shown in(68), with t.=0 and with the decoupling parameter With n=2 as found also by Tranquads al. in x=1/8
¢ settled to unity/=1 is the same, as given in Ref. 16 and compound'

may be compared using the integré&simg over the Bril- The fit with the relationa/nx in ¢, may be obtained by
louin zone(see Appendix B comparing the experimental data in the low temperature re-

IV. COMPARISON WITH EXPERIMENT TABLE I. The calculated af — 0 values of AF spin—spin cor-

AND DISCUSSION relation functionc; between the first neighbors, tlge parameter

and the spin stiffness constapg as a function of La,Sr,CuO,
doping x together with the values of decoupling paramefeas
extracted from comparison witffCu NQR spin-lattice relaxation
rate measurements.

The results of the calculations are summarized in Table |
The value ofextraholes, due to doping, per one plane’Gu
8, can be identified with the Sr contertin La, ,Sr,CuQ,.
The AF spin—spin correlation functiortg and c,, the spin
stiffness constanps and the parametey_ were calculated

using the expressions and the procedure as described in Ref “ - 2mps/J ¢
17 (see also Ref. 21in the T— 0 limit, since we will employ 0 -0.115215 4.1448 0.38 1.8
them in a temperature rande<1000 K=0.7 J, where ex- 12 ~0.11474 4.137 0.37 18
perimental data exist and according to the calculations theig ,, -0.11391 4117 0.365
values have a weak temperature dependence. ' ’ ' '
0.024 —-0.11333 4.102 0.36 1.6
A. Temperature and doping dependence of antiferromagnetic .03 -0.11238 4.080 0.355 15
correlation length 0.035 -0.11152 4.060 035  ~13
The AF correlation length, its doping and temperature deg g4 -0.11057 4.037 0.345 11

pendence is given by E@25). &, is the value of correlation
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0.06
0.05¢
0.04}

relation g{)lznx/a gives good agreement: 0.0069for x
=0.02 withn=1.3, and 0.016 A! for x=0.03, and 0.021 A

for x=0.04 withn=2. The valuen=1.3 for x=0.02 fits the
values of correlation length as obtained from experimental
data better in contrast to that with=2. This result is espe-
cially evident when one tries to compare the valueg_gfat
high temperatures. The high quality of the fit is in agreement
with previous studies and seems to confirm the microsegre-
gation, however, with different values of average distance
between the holes along the domain walls. It is tempting to
speculate that the change in the average distanitem n
~1.3 forx=x, andn=2 for x> x. appears at the value of Sr

0 1(')0 2(')0 3(')0 400 5(')0 600 content when the Néel order is completely suppres3gd

— 0 atx=x,=0.02 as discussed, consequently, for example,
Temperature (K) in Refs. 41 and 45. _
Having established the temperature and doping depen-
FIG. 1. The inverse correlation leng#y versus temperature dence of correlation length we now proceed with calcula-
fitted (solid lines to the experimental data as obtained from neutrontions of the nuclear spin-lattice relaxation rate.
scattering experiments. For carrier free,CaQy: filled circles from

Ref. 4(the fitted data asterisks from Ref. 44 and open circles from B. Spin-diffusion constant
Ref. 26. for doped La,Sr,CuQ,: squares forx=0.02, down tri- o ) i
angles forx=0.03, and up triangles for=0.04 from Ref. 26. The spin-diffusion is described by thék,w)=(0,0)

_ mode. The spin-diffusion plays an important role in an anti-
gion. Indeed, the doping relatica yx fits with the neutron  ferromagnet and makes a pronounced contribution to the re-
scattering data poorly than the nx does, keeping in mind laxation rates. The spin-diffusion constdhtis given by®
the value of plane lattice constaat3.79 A. For example,
for x=0.02 one hasty'=1x/3.79=0.037 A;! whereas the D=li 1 im< |7 (wp)® 69
expenmental value is 0.005—-0.007"AThe inability to fit kILTg)’ITk F(k,0) kmkz 2 <w‘k1> ) (69)
the 1/x relation within the NS dafd is clear also for larger
values of doping;* %\x/3 79=0.046 A® for x=0.03 and For smallg, Af, , tends to zero as
{ \x/3.79=0.053 A® for x=0.04 differs strongly from - 22 _

0.013 to 0.02 A and 0.02 to 0.026 Al, consequently, as Nigo=~ (G + qa) (2)ey ~ ey Pl)lxs, (70
obtained by NSRef. 26 (see Fig. 1. On the other hand, the WhereasAquO:(wqﬁo>/<wqﬂo> remains finite,

2qu ={1285 §c,(¢co — ) —5LC1Co + 5CoCy — 2LC2 | + 16plytee(3c, + 3¢To - 359)
+ 166d%l1(5C2~ 500~ 5375) + 160G~ 355701~ s T3 To+ §To =) = 2(AA(1 = To) = T3+ A To)
1+6

C2 > 1%01‘ 56 To— §C2To - 1—36§(p|1)2 +3C,T, - gTzcz + g‘lgTzTo + 1§T2Co - %Hg]}/{z\](‘q —tesPly}.  (71)

The values oD for carrier free AF system may be com- Jaklic® at high temperatures, assuming that the doping de-
pared with the results of other theories. The infinite temperapendence oD remains the same. Indeed, Fig. 2 shows re-
ture result is the same as in Ref. 19, nam8yT—«~)  markable agreement.
=1\2mJa?=0.3133a. This value is close to that obtained
by Morita?” D=0.43)a® and D=15\57Ja?=0.3963a” in
Refs. 23, 48, and 49. The calculated valueDsf2.46)a° at
T—0 (with =1) is larger compared to that obtained in Ref. Now, since the nuclear spin-lattice relaxation rate is de-
19, D=1.63a&%. The value ofD=2.66)a%2 (with (=1.8) is  termined by the dynamic structure fact8(q,w) we first
compatible withD ~3Ja? obtained afT=900 K in Ref. 48. consider its temperature, frequency, and wave vector depen-
In general,D weakly changes with doping and when one dence. First, we note that for all temperatures the relaxation
vary £. Figure 2 shows the doping dependencédbr two  shape functionF(q,») as well asS(q,w) give the elastic
cases, withy=1 and whery is obtained from the best fit to peak atg=0 andw=0. This is clear from Eq(17) since both
NQR data. The calculated doping dependencéah the <w2> and<w4>~ 2 for small g. We now turn to the case of
T—0 limit may be compared with the results of Bonca andﬁnlte but smaII NMR/NQR frequencies.

C. Dynamic structure factor

214525-8
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3 _. 8 ;
Py u| ] 0§ O g9 3 44
3 La, SrCuO, 7)) 0
~— — D{x)=D{(1-7x /10); Bonca,Jaklic Zo
S 1t O { from fit 8’1_ _2] “AF, x=O ] :
* 0 &= =1 N T=1000K. 0
oL . | | . ) - 3
0 0.010.020.030.04  Logkaim -5 -5
doping, X Log, o(k,a/m)

FIG. 4. Log-scale mesh of the calculated dynamic structure fac-
r Skk,w,) for carrier free antiferromagnet at=1000 K with
simple decoupling=1. The cross on the vertical axis marks the
maximum ofJSk, w;) atk=qq.

FIG. 2. The calculated doping dependence of the spin dil"fusion[O
constantD in the T— 0 limit with the fixed decoupling parameter
{=1 (squarepand with as obtained from the best fit to NQR data
(circles. The solid line is the result of Bonca and JakiiRef. 50
for doping dependence dd in the high temperature limit. The

asterisk marks the value of the spin diffusion constaum the limit Aiq = ququ, (73
of high temperature¥ — .
see Eqs(17), (18), (70), and(71). Thus,S(q,w) has a sharp
The relaxation shape functidf(k , w) with small w, com- peak atq:
pared to temperature scale of the system, relatefkow) kgTx
as qulw) = BTsv (74)

and theS(k, w) value atQ=(7/a,w/a) is given by
Sk, w ~ 0) = 2akg Tx(K)F(K, ). (72) 2
2k Tx(Q) 70A
~ 2B AAX/RT2Q
SQw) = 5%, (75)
AlQ
The relation given in Eq(74) is in agreement with the result
of Makivi¢ and Jarrefit on frequency dependence of the

We now explore the form o8k, ) and obtain two peaks:
one atg~0 and the other aQ=(w/a,w/a). The S(q, w)
value at smally is large when they values are such that

4 —4
Log,.(k a/m) -5 -5 kya/n 00 k aln
100y Log, ,(k a/m) X
FIG. 5. Semilog-scale mesh of the calculated dynamic structure

FIG. 3. Log-scale mesh of the calculated dynamic structure facfactor Sk, w.) for carrier free antiferromagnet at=500 K with the
tor Sk,w,) for carrier free antiferromagnet afi=500 K with decoupling parametet=1.8. The region of smalf values (q
simple decouplingf=1. The cross on the vertical axis marks the <qg) for which log;,{JSk, w)]< -3 is not shown. The cross on the
maximum ofJSk, w.) at k=q,. vertical axis marks the maximum d8k,w.) atk=qq.
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) . -~
5 _5
Log, ,(k a/T)

kya In 00 K aln Log, 0(kya/n)
X

FIG. 6. Semilog-scale mesh of the calculated dynamic structure FIG. 8. Log-scale mesh of the calculated dynamic structure fac-
factor S(k, w) for carrier free antiferromagnet &t=1000 K with  tor Sk, @) for x=0.04 hole content af=1000 K with simple de-
the decoupling parametgr=1.8. The region of smalj values(q coupling{=1. The cross on the vertical axis marks the maximum of
<) for which log;fJSk,w)]< -3 is not shown. The cross on the JSK,wc) atk=qo.
vertical axis marks the maximum dS8k, w.) atk=qq.

Using Eq.(76) (or, equivalently, from Eq(73)) one may
dynamic structure factor at small values of wave vectors agasy estimate the value gf which is given by
extracted from combination of the Maximum Entropy 2
Method and Quantum Monte Carlo calculations. This result Go = «/D. 77
agrees also with the basic relations known in the literatureFor typical value of the measuring frequencyy
From general physical grounds, namely, linear response-1 mK, gja=~ 7 X 10™* and weakly changes when one vary
theor_y, hydrodynamics, _and fluctuation—dissipation t_heoremdoping and the decoupling pafameféqu:qu:(l/\52)%)-
the diffusive spin dynamlCS gives the form of dynamlC struc- For Sma”q<q0 with finite w the relaxation Shape func-

ture factop? tion F(g,w) and the dynamic structure fact&q,w) ap-
2xs wDg? proaches zeroS(qy,>q—0,w)—0.
S(g~ 0,0~ 0) = X — Nt Thus, the contribution to the nuclear relaxation rates from
1-exf-wlkgT)  ”+(Dq") g around 0 has no peculiarities singeis finite, but small,

(76)  compared to any values of the variabléwe use J

for smallq and . =0.12 eV(1393 K)). Figures 3—-10 show the calculated dy-

By

SO ]
O
N
AN
R

§ ~. 3

Log, .(k a/n -5 -5
9;o(k, a/m) Log, (k a/n)

Log, 0(kxaz/n)

FIG. 7. Log-scale mesh of the calculated dynamic structure fac- FIG. 9. Log-scale mesh of the calculated dynamic structure fac-
tor Sk, w.) for x=0.04 hole content at=500 K with simple de-  tor Sk, wg) for x=0.035 hole content ak/J=0.1(T=140 K) with
couplingZ=1. The cross on the vertical axis marks the maximum ofsimple decouplingf=1. The cross on the vertical axis marks the
JSk,w) atk=qg. maximum ofJSk, wp) atk=qg.
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|

7 F(k)? S(k,00)/J

Log, [J S (k.o )]

0.5
k aln=k aln
X y

kx a/n kya/n

FIG. 12. Semilog-scale plot of the quantiffF(k)°S(k,w)/J

FIG. 10. Semilog-scale mesh of the calculated dynamic strucversus k along the diagonal of the Brillouin zonék,=k,).
ture factor S(k,wg) for x=0.035 hole content afl/J=0.2T YR (k)2S(k, wo)/J is given for x=0.035 atT/J=0.1(T=140K,
=280 K). The region of smallq values (q<qp) for which  |ower curvg and T/J=0.2(T=280 K, upper curvewith the de-
l0g1o(JSk,w)) <=3 is not shown. The cross on the vertical axis coupling parameter=1.3. 83F(k)2S(k ,w)/J is given for carrier
marks the maximum ofSk, wg) atk=qgq. free AF (x=0) at T=500 K (lower curve at smallk) and T
=1000 K (upper curve at smak) with the decoupling parameter
{=1.8. The dotted lines ar&F(qg)?S(qo, ®)qa/ (0.51k?) for k> qq.
The lower and wupper crosses mark the values of
53F (00)?S(g, wc) /J at T=500 K andT=1000 K, respectively.

namic structure factor for different values of doping, tem-

perature and decoupling parametef with w.=2m

X 33 MHz (=1.365x 1077 eV) and with wy=27x52 MHz

(=2.15x 1077 eV) for x=0.035. .
(T = -2 “F(k)*Sk,w), (78)

k
D. Nuclear spin-lattice relaxation
wherew is the measuring NMR/NQR frequenc¥; (k) is the

The nuclear spin-lattice relaxation ratél/T,) is given wave vector dependent hyperfine form fagt6f

by

YF(K)2=2C%(1 + ), (79)
for planar'’O and
83F (k)%= (A + 4%B)?, (80)

for 63Cu sites.A,, and B are the Cu on-site and transferred
hyperfine couplings, respectively. The quantization axis of
the electric field gradient coincides with the crystal agis
which is perpendicular to Cuplanes defined by andb.

For C in Eq. (79), we adopted the formul&?=¢(C+C?),
whereC; andC, are the plane oxygen hyperfine couplings
for two axis perpendicular to, and that includes the factér

10— - 3 = = o to account(1/T;) as measured by NMR. The values of
10 10 10 10 10 10 hyperfine couplings were taken as followsh,,=3.7
k aln X 1077 eV, for transferred hyperfine couplir the relation
X

B=(1+2.75x) X 3.8x 107 eV is used to match the weak
: . _ 7

FIG. 11. Log-scale plot of the quantifiF(k)°S(k ,w)/J versus Changes with Sr dopirtg and C=2.8x 10" eV in accord .
k. (k,=0). The solid lines from down until upt’F(k)2S(k , )/ with the values as extracted from NMR data and used in
J is given for x=0035 at T/J=0.1 (T=140K) and CAlculations of relaxation radg: 18434548535
T/J=0.2T=280 K) with the decoupling parameterr=1.3, The 1’0 and®3*Cu nuclear relaxation rates are essentially
83F(k)2S(k ,w)/J is given for carrier free AF aix=0) at T  determined by the corresponding form factors given by Egs.
=500 K and T=1000 K with the decoupling parametg=1.8. (79 ?nd (80). Figures 11 and 12 show the quantity
The dotted lines ar&F(qo)2S(qo, w)k2/(0.5Jq2) for ke<qo and  “F(k)“S(k,w) in a log-scale plot versuk, (k,=0) and a
*F(qo)?S(qo, w)q3/ (0.53k?) for k> qp. semilog-scale plot along the diagonal of the Brillouin zone.
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200

Txs

Chakravart¥1 lTl)Diff — E qu

q~0

(81)

is divergent. While usually, this logarithmic divergence of
(1/Ty)pi was argued to cut ofP*8since in a real systems
the mechanism destroying the diffusion should be taken into
—~ 100; "B'%‘E‘B' "gg—- ] account. In La,Sr,CuQ, the combination of three-
dimensional effects, finite length scale and the presence of
disorder in Cu@ planes may suppress the effect of spin dif-
fusion on spin-lattice relaxation rates. For example, using
exact diagonalization technique in the high temperature re-
s gion, it was argued that strong local perturbation induced by
POO 200 300 oxygen defects limit the spin-diffusidif.Despite of consid-
erable effort, the appropriate account of these effects is still
T (K) unavailable because of lack of any exact analytical result.
In the present theory the meaning @f is clear: it is the
FIG. 13. The calculated temperature and doping dependence dRlue ofk at which the maximum irs(k , w) occurs and for
the plane oxygen nuclear spin-lattice relaxation féte/T,) (ines ~ smallw it may be treated as the cut off in the integration for
and the experimental data for £aSr,CuQ, as measured by NMR calculation of the contribution from spin diffusiaisee Eq.
with x=0.025(triangley andx=0.035(squaresfrom Ref. 57. The  (81) and Ref. 10. Forg<qq the integration oveq should be
experimental points have been rearranged d#/1393 K. The re-  taken over the factoﬁqzlqg_ One should note, that in the
sults of calculations withw=27X52 MHz(9 T) are given forx  present theory the form of the calculated dynamic structure
=0.035¢=1.3 by the solid line and fox=0.028{=1.6) by the  factor S(k,w) comesnot from, e.g., disordemut rather than
dashed line. The result of the calculation wittr2wx81.4 MHz — from the relaxation function and is imgreementvith linear
for X:?-7035§:1-3) coincides with the dashed line. The contribu- ragnonse theory, hydrodynamics, and fluctuation-dissipation
tion to ~(1/T,) from the wave vectors in the vicinity dfr/a, 7/a)  thagrem and this result does not depend on the order of the
for x=0.035 with{=1 is shown by the upper dotted line and by the pole approximation in the relaxation function theory.

lower dotted line with;=1.3. ExpandingS(q, w) aroundq, we obtain,
a 2 2

The calculations show the &7 wave vector dependence of (T piss = %ﬁ'am/\’ (82)
Sk,w) for k>q, and thek? dependence oB(k,w) for
k <qo. The form of*F(k)?S(k,w) gives the peaks aj, and  where A depends on frequency througly. A simple and
k =(m/a,m/a). Thus, two types of contributions dominate in rough estimate gives
the nuclear spin-lattice relaxation rates. 2

Here one sphould note, that the theory contains the decou- A~ In(1/gp) ~ In(constx J/w). 83
pling procedures for correlation functions and the decouplingrhis result explains the reason why the oxyg€fl/T,)
parameter has been introduced. In general, despite the comrelaxation rate as measured by NMR remains unchanged at
plicated structure o{wb, ¢ allows us to regulate the contri- 9 T (wg=27Xx52 MH2) and 14.1 T(wy=27X81.4 MH2
butions withk = (7/a, m/a) to the spin-lattice relaxation rate within the experimental accuraéy. One should note
1/T,. The larger{, the smaller is the contribution frotk  that » is much less thanJ=1.8x10® MHz, hence

T) (s7")

J/ (VT

=(mla,mla) to 1/T;. In(J/52 MH2)/In(3/81.4 MH2 = 1.03. Indeed, a sophisti-
The contribution to 1T, from g around O has no pecu- cated calculation givesA(33 MHz)=2.52, A(52 MH2)
liarities because the measuring frequencyinge (wv.~27  =2.44, and\(81.4 MH2=2.37 and its value changes on less

X33 MHz(=1.58 mK in ®Cu NQR and wy=2m than 1% when one vary and doping withinx<0.04. In
X52 MHz(=2.5 mK) in YO NMR measurements but view of the result that the spin diffusion contribution is 70%,
small, compared to any values of the variable® takeJ  the relative shift of the measuréd1/T,) will be ~2%, that
=0.12 eM1393 K)). The calculations also show that lies within the experimental errgsee Fig. 13
“F(k)?S(k,,w) has a broad local minimum ag,, which val- The Y7(1/T,) relaxation rate has a contribution due anti-
ues are given byﬁm+q§mz w2l al. ferromagnetic correlations between copper spins, however,
A direct numerical integration ovec is difficult, because for wave vectors only in the vicinity o =(w/a,m/a) be-
“F(k)?S(k ,w) has an extremely sharp peak at very smygll  cause the form factor’F(k) filters out the contributions with
This requires an unattainably large number of points in nuQ=(w/a,w/a). This filter causes also the minor sensitivity
merical integration over Brillouin zone. to the decoupling parametétr The value of{=1.3 for x
We first estimate the value of contribution toTi/from  =0.035(see Table )l is a plausible guess. This contribution
small g because Figs. 11 and 12 show that the pronouncedias calculated by direct summation ouerin the region
contribution to relaxation rates should come from excitationsk > gy,
with g~ 0. In the formulation of Ref. 10, the diffusive con-  Figure 13 shows the calculatédO relaxation rate in the
tribution, sector of lightly damped spin waves at low temperatures. It is
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12 : fortuitous because of the following reason. In the present
® x=0 theory, the contribution to relaxation rate from smalde-
10} O x=0012 pends on spin diffusion constabt as,
° v x =0.024
° X x=0.03 1
8t Ox=004 ] (1T pigs ~ Bln(constx D/w). (84)
o In the T— 0 limit the spin diffusion constanD has to di-
verge for both carrier free and lightly doped Lgr,CuO,
4} since both Heisenberg and] models have nonzero spin
stiffness®® On the other hand, in the quantum critical region,
ol ps<T<J (note that in the present theopg=0.06]~=80 K
and weakly decreases with light dopj)nghe spin-diffusion
constant scales a3~ TY?¢ (see Ref. ® For lightly doped

x=0.03 systems one may expect this scaling to be valid also,
but with finite correlation length fof = pg (see Fig. 1 This
T (K) justifies the validity of the present formulation and the pro-
priety of the results obtained fdinite doping and low tem-
FIG. 14. Temperature and doping dependence of the plane coperatures.
per nuclear spin-lattice relaxation rat(1/T,)=2W (solid lineg It is worth mentioning the results of calculations by
fitted to the experimental data for i_aSrXCuQ; with x=0, X Chakravartyet a|.9,59,60 of relaxation rates for |_ﬂ:uo4 on
=0.012,x=0.024, anck=0.03 from Ref. 45 and with=0.04 from  yarious nuclei. The results of CHN gave the temperature
Ref. 58. The va!ues of the fitting pargme_geﬂtre shown in the Taple dependence of correlation length with the two-loop correc-
::i'f-frh? d?tted_“”e shows the contribution 8(1/Ty) from spin 5 jn perfect agreement with experiment. The calculated
iffusion for x=0. plane copper relaxation raf&(1/T;) within the CHN theory

seen thatl’O relaxation rate has a weak frequency depeniS i agreement with experimeffthowever, for plane oxy-

dence. The good agreement of calculatigasen without gen the results gf calculatipns do.es not reproduce the values
adjusting the parametef) with experiment shows, that in of the measured’(1/T,) for insulating SsCuO,Cl, (see Ref. _
case the mechanism destroying the diffusion is present iR/)- Moreover, the agreement between theory and experi-
La,_,SK,CuQ,, whether it is caused by the three-dimensionalMent becomes worse when the two-loop correction has been
effects, finite length scale or the presence of disorder ifiaken into accourft® A possible reason of this inconsistency
CuO, planes, it seems that it affects the spin-lattice relax!S th.e missed contribution from' spin diffusfrand the elec-
ation rates only little through the contribution from spin dif- ronic structure of SCuG,Cl, with pockets centered around
fusion. (m/2,7m/2) as observed by LaRosat al8* Thus, for

A fair agreement between experiment and calculateCUQ.Cl> one has to take into account the hoppings be-

17(1/T,) for lightly doped La_,Sr,CuO, may be thought as tween the next nearest and next-next nearest neighbors that
are beyond our present consideration.

12 » . We now discuss the temperature and doping dependence
® ® x=0 of plane copper nuclear spin-lattice relaxation 23X /T,).
O x=0.012 : . ; :
10} Figure 14 shows the fitteff(1/T,) to experimental data in
Z ifg'g? lightly doped La_,Sr,CuQ;,. It is seen that the agreement is

good for temperaturef<J/2. For temperature§>J/2 the

‘Tw 8 O x=004 agreement is less satisfactory. This is a bit puzzling but could
o 6 be due to better account of tievalues in the low tempera-
~ ture region (T<J/2) compared toT=J and the pre-

; exponential factor~1/T in (24) and in the spin-wave
a\ 4 theory/ which is an artifact of the mean-field approach. For

& carrier free LaCuQ, and atT=1000 K (T=0.7J), ¢~5a.
' Obviously, the value of correlation length as extracted in
the limit of large separatioA$satisfies the inequalitg?/a?

0 >1. At temperaturesT<J the behavior of¥1/T,) is
400 600 800 1000  smooth: the slope of the curve decreases with increaBing
T (K) At high temperaturest®(1/T,) is expected to have a mini-

mum atT=J and to be dominated by spin diffusion at

FIG. 15. Recalculated plane copper nuclear spin-lattice relax=: 1he validity of Eq.(24) does not allow to calculate T{

ation rate®3(1/T,)=2W with fixed =1 is shown by solid lines &t T>J. Similar temperature dependence Bf1/T,) was

from up until down with increased doping. The dotted line showsfound in Ref. 19. It was found that the saturationP#fl/T,)
the contribution to®3(1/T,) from spin diffusion forx=0.04 with¢ ~ at T~J/2 is “primarily due to a competition from the spin
=1. The notation is the same as in Fig. 14. diffusion over the critical slowing down.” The present work
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shows that the overwhelming contribution arises from stronghown that the theory is able to explain the main features of
short-range antiferromagnetic correlations between copperxperimental data on temperature and doping dependence of
spins and at low temperatures the contribution from spircopper nuclear spin-lattice relaxation rate in both carrier free

diffusion to 63(1/T,) is small(see Fig. 14 La,CuQ, and doped Lga,Sr,Cu0, compounds.
One may wonder about the results of calculations if we
avoid fitting 83(1/T,). Figure 15 shows the results of calcu- ACKNOWLEDGMENTS

lations for®3(1/T,) with fixed decoupling parametei=1. It ) ) o

is seen, that the theory is able to reproduce the main features !t IS @ pleasure to thank Dr. A.Yu. Zavidonov for bringing

of doping and temperature dependencé3t/T,), however, my mte_rest to the present study_, Professor M:V. Ere_mln for

in poor agreement with respect to the numerical values. dlscu_53|_on§, and _Profe.ssor_A. Rigamonti for d|$cu53|ons and
It is interesting to compare the results of the calculation‘J,mSF."tallty n qua University, where part of this work was

for carrier free AF system with other theories. After the semi—camed out. Th's. work was supported n part by INTAS

nal work? Chakravarty and Orbaélpredicted the decrease 01-0654 and joint US CRDF - RF Minobr Grant No.

of 8%(1/T,) with increasing temperature at low temperaturesYl'P'()?'lg'

as 53(1/T,) ~ T%2 exp(2mpg/ ks T). After passing through a

wide minimum atT~J/2 the calculated®(1/T,) increases APPENDIX A

with T at high temperatures where the system is recognized \sarious types of sums over lattice sites utilized for calcu-

using the 1N expansion method on th¥-component non- The G; andD;; symbols refer to hoppingandor) exchange

Iﬁignear sigma model an apparent formula was obtained fof pepyeen the first neighbors, wherells and Q refer to

63(1/T1) in the QC regiorf. However, the behavior of spin—spin correlation functionsandor) transfer amplitudes
(1/T,) was found to be nearly independent on temperaturey gt the appropriate positions; is the delta function. The

SX1/Ty) ~ (T/3)°9%8 The calculations with thermally excited syms forM andQ were calculated for up to=|j—i[th neigh-

skyrmions by Belov and Kochela®showed thaf(1/T;)  pors(n=2),

has also the nonmonotonic temperature dependence with the

slight increase aT>0.67J. In the present theory the calcu- ¥ = (cosk.a + cosk,a)/2,

lated value of contribution t6%(1/T,) relaxation rate from

spin diffusion atT=1000 K is 550 s! in perfect agreement

with 300—-600 s* as estimated by Sokat al*® using the

exact diagonalization technique. However, their estimate was

based on the presence of disorder in Gyplanes.

1 .
- 2 5im5mr5err2j Grj Mrjelk.(Rm_Rr) =4M 1DZG'

ijimr

1 E 5mr5|rG|jDr2j Mlj g RRd) = 16M 1DZGv
ijlmr
V. CONCLUSION :

The theory for relaxation function in the two-dimensional 1 ik-(RyRy) — 263
t-J model in the paramagnetic state is presented taking into 2, 8 GimGm G My My €™ = 36MTG
account the hole subsystem as well as both the electron and
antiferromagnetic correlations. The presentation obeys rota- 1
tional symmetry of the spin correlation functions and is valid = GGG M, M; ¢ RrR) = 36MIG®,
for all wave vectors through the Brillouin zone. The fit of ijimr
effective correlation lengtht, to experimental data is in
agreement with the microsegregation hypothesis, where the 1
effect of doped holes affects the value of correlation length at
T—0 as,&=1/nx, wheren is the average distance between
the holes along the domain walls. The best fit yiehdsl.3 1
for samples withk=0.02 andn=2 for samples withx>0.02. = s s A3 iK-(Rpy=Ry) — 3
The expression for fourth frequency moment of relaxation Nij,zmr inidhe OmCrmeMime® MG
shape function is derived within theJ model. The spin
diffusion contribution to relaxation rates is evaluated and is
shown to play a significant role in carrier free and doped
antiferromagnet in agreement with exact diagonalization cal-
culations. The convergence of contribution from spin diffu-
sion to spin-lattice relaxation rates is preserved by linear re- 1
sponse theory and hydrodynamics. At low temperatures the N > Sim%im

ijlmr

2 6ijiIGImerMImMireik‘(Rm_Rr) = 36M§GS7’ka

ijlmr

1 ; _
N2 OrdmDiGyM ek fm ™) = 16M,D%Goy,
ijimr

D7GriMe* R0 = 16M DG 5,

nuclear spin-lattice relaxation raté3(1/T,), of plane ®3Cu Himr

has the main contribution from the AF wave vecter, ), 1

and the”(l/TQ, of plar.1e.17'O, has the contributions from the =3 8 6mDEGM, &% RriR) = 16M,D%G,
wave vectors in the vicinity of, ) and smallg~0. It is ijimr
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1 ; _
N 2 5mj5llDIZmer'\/lmrelk.(Rm Re) = 16M1D26'yk1

ijimr 1ij|2mr é"rGierrGrjMirI\/lml'eik.(Rm_Rr)
1 _ = 16M,(3M, + M) G,
NmEmr 8 GGGy MM e R R0 = 64M2G3y, , . o 2
Ni%r 8iGijGimGyj MjjM € R R0) = 36M2G3y, ,

1 i _
N E ‘SIrGirGimGrj '\/limMrjelk.(le R = 64M§GS’)/&!

ijlmr

1 2 5ij|mGimerMirMlmeik'(Rm_Rr)
I\Iijlmr
ﬁi%r 3GijGinGrMimM ;€' Rn~R0 = 64MIGy;, = 16M,G3(3M, + M) %,
! i 2 %E é\|rGirGimGrjMir'vlmjeik'(Rm'Rr)
Nijlzmr 3 GimGm|Grj I\/limMrjelk'(Rm_R’) = 64MlG3'y2k, ijimr

= MZ2G3(12 + 16y + 8 cosk,a cosk,a),
1 ; _
N 90 GryDfjQnyeFr) = 4D?G(3Q; + Qo) 1

1 )
ijimr = E (silemejGr]_erMmjék-(Rm—R,)
Nijlmr
1 — =M3G3(12 + 16)% + 8 cosk,a cosk,a),
2 G GyDf Qe Y = 4D°G(3Q, + Q. ' S
ijlmr
1 ; _
1 N Y 8G;i GG MMy €t R R
. ijlmr

= 516, G, G MM, €K RnR) = 16M,G3(3M, + M),

o mr2Ir SPir Srj V1ij Vi 1 2 0 — 16M163(M2(4)/§— 1)+ MO),
1 . 1 .
N E erImerGrj MijIrelk.(Rm_Rr) = 463(3M2 + MO)Z'qu NE ajGiiGimGrj Mijirelk (RiRy)

ijimr ijlmr

1 = BAM3G ¥ + 4(MG + BMoM, — TM3)G
N > 8;GimGinyG MM R0
e 1 2 5ijImGimerMilMmreik.(Rm_Rr)
= 4G%(3M + Mo)(M5(49% - 1) + M), Nijimr
=16M,(3M, + M) G2y,
1 i _
N > 8;D};DimGy; QM € (R R
ijlmr

l i —
NE 5ifG|rG‘errj'\/Ilm'\/lrjli"k'(Rm Ry)
= 64Q2M ZDZG’YE + 4(QOM0 + 3Q0M2 + 3MOQ2 imr
-™ 2Q2)G37k.

=16M;(3M, + M) G2y,

1 . . Cc.n. ik-(Ry~Rp)
N 2 8 8:DmGyiDy; Qmjelk-(Rm‘Rr) = 4D2G(3Q2 + Qo) Yi» E Oir 6 DmiGri Dyj Q@ m
ijimr

ijimr

1
N

=4D’G(Qy(4% ~ 1 +Qo),
1 .
- GG C.M M. akRyR)
Nijlzmr ﬁJGquJGrJMImMFJe mer APPENDIX B
= 16M4(3M, + M) G392 In this appendix the relations to compare the result for
K frequency moments oF(k,w) in carrier free 2DHAF are
1 _ given.
= GGGy M;; Mgk RR) = 4(3M, + M()?G?, For the second and fourth moments the result'fvas
Nijlmr ( )
8J(1 -
(@R 2pHAF= =~ 2 Y9S(Q), (B1)
1 ik-(R-R,) 23 x(KN a
N > SmiGiGimGmMimM; € RmR) = 4(3M, + M) 2G,
ijlmr

and
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(wi)2pHAF =~ %E S(p)S(@)F(k,p,a), (B2 zq: YaYeq = 16(5 + 3 coskea coska+ %),
X P

where
F(k,p,a) = %= 2774~ 10%7 — 477 + ¥372)
+ % @Y Yq + 3978 ~ 2% Yo Ya + 5% Ve~ Yo ¥s
« , pra =P Krpra T E T T > %4 cosg,a cosgya= 5 coska coskya,
* YYat 5 YaYeeg t Yerp¥a t 2%¥eq q
- 2'yp'y:|f—q = Yk+p Yk—qYk+p—q- (B3)

Using the relation between correlation functions in momen-
tum and site representation:

3 _9 _1
2 YaYeqT si¥k 2 Y4 COSQ,@ COSQaA= g,
q q

_ 1
> YVirpYhoq Yerp-q = 16 Yo
p.g

_ _ ik-(Ri-Ry) _ 9
S(k) <SﬂZ<SEk> i % 5 (§§)e ! E 757k+P7k—q'yk+p—q = 256 7k>
= P
= Co+ 4Cy ¥y + 4C,(49f — cosk,a cosk,a- 1),
(B4) >, COSP@ COS PyaYyep Yeoq Verp-q = 33V
p.d

performing the summation ovéde andq in (B2) and using

the necessary types of integralsumg over the Brillouin

zone as given below, we obtain the same expression, as > 7;237’37’k+p7k—q7k+p—q

shown in(68), with tes=0 and settling to unity the decou- P

pling parameter/=1. The mtegrgls(sums) were calculated = %%(YE + ?ﬂk cosk,a coskja + ‘1‘—27k),

analytically and checked numerically,

Ya = (cosq.a+ cosqya)/2, E COospya cos pyays] Yi+p Yk—q Yk+p—q
P.q

_ 3%
512

E)fp:O, EYq)’E—qZO, Eafg:O,
q p

p (2 cosk,a coska+1),

2 YT 2%=h 2%
P p q > cosp,a cos Pya COS Q@ COS Oy a%Yi+p Yk—q Yk+p—q

p.q
— 3 —
% ”p COSp,a cospa=0o, % YaYea =0, = & coska coskyay.
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