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The relaxation function theory of doped two-dimensionalS=1/2 Heisenberg antiferromagnetic(AF) sys-
tems in the paramagnetic state is presented taking into account the hole subsystem as well as both the electron
and AF correlations. The expression for fourth frequency moment of relaxation shape function is derived
within the t-J model. The presentation obeys rotational symmetry of the spin correlation functions and is valid
for all wave vectors through the Brillouin zone. The spin diffusion contribution to relaxation rates is evaluated
and is shown to play a significant role in carrier free and doped antiferromagnet in agreement with exact
diagonalization calculations. At low temperatures the main contribution to the nuclear spin-lattice relaxation
rate,63s1/T1d, of plane63Cu arises from the AF fluctuations, and17s1/T1d, of plane17O, has the contributions
from the wave vectors in the vicinity ofsp ,pd and smallq,0. It is shown that the theory is able to explain
the main features of experimental data on temperature and doping dependence of63s1/T1d in the paramagnetic
state of both carrier free La2CuO4 and doped La2−xSrxCuO4 compounds.
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I. INTRODUCTION

The spin dynamics in doped two-dimensionalS=1/2
Heisenberg antiferromagnetic(2DHAF) systems remains the
one of the intriguing problems of condensed matter in con-
nection with physics of layered copper High Temperature
Superconductors(HTSC).1 The effect of doped holes in two-
dimensional(2D) antiferromagnetic(AF) background was
studied in many papers.2 The Hohenberg-Mermin-Wagner
theorem states the absence of long range order in low-
dimensional isotropic Heisenberg systems at any finite tem-
perature due to fluctuations, making the order short-ranged.
The temperature dependence of correlation length in two-
dimensional Heisenberg model was first described by
Chakravarty, Halperin, and Nelson(CHN) by a quantum
nonlinears model3 in accord with neutron scattering(NS)
experiments4 in carrier free La2CuO4. A significant advance
was achieved in understanding the 2D Heisenberg systems at
low temperatures due to the improved further results of CHN
in the renormalized classical regime.5,6 Since then the tem-
perature dependence of correlation length has been studied,
e.g., by isotropic wave theory7 and by quantum consideration
of skyrmions.8

Nuclear Quadrupole Resonance(NQR) and Nuclear Mag-
netic Resonance(NMR) methods are very powerful in study-
ing the low energy excitations of HTSC.1 Chakravarty and
Orbach9 developed a theory of magnetic relaxation phenom-
ena in 2DHAF based on the quantum nonlinears model of
CHN in the critical region of fluctuations. However, they
considered only the contribution that arises from the wave
vectors in the vicinity of AF wave vectorsp ,pd. Despite the
fact that contribution from the wave vectorsq,0 does not
dominate in the plane copper spin-lattice relaxation rate at
low temperatures and was not accounted for in the analysis,10

the contribution from spin diffusion plays an important role
in HTSC, especially in the plane oxygen relaxation rate as
measured by NMR, since the AF fluctuating contribution is
filtered out by the oxygen form factor.

The Nearly Antiferromagnetic Fermi Liquid(NAFL)
model of Millis, Monien, and Pines11 reconciled the puzzling
observation of non-Korringa temperature dependence of the
copper nuclear spin-lattice relaxation rate and Korringa tem-
perature dependence of the oxygen and yttrium nuclear spin-
lattice relaxation rates in optimally doped YBa2Cu3O7 by
postulating both the localized Cu2+ magnetic moments and
free oxygen holes. The NAFL model gave the relation be-
tween the AF correlation length and the relaxation rates and
was applied in a wide temperature and doping range.12 How-
ever, this theory has some disadvantages, connected mainly
with the phenomenological character of the NAFL descrip-
tion, since the temperature and doping dependence of corre-
lation length was postulated or, at best, taken from a com-
parison with experiment.

As a consequence, it is tempting to consider the 2DHAF
systems doped by charge carriers microscopically and the
difficulties rise on. The numerically exact methods study the
relatively small clusters and in addition, these methods are
hardly applicable if we need to obtain the dynamic quanti-
ties. In the absence of exact solution it is necessary to find a
reliable approach that will describe the physical quantities
with convincing accuracy. This is intriguing especially since
the observation of drastic change of various physical quanti-
ties with doping and emergence of “stripe” physics in doped
HTSC and related compounds.

The t-J model became very popular since it was pointed
by Anderson13 as a perspective model to describe the elec-
tronic properties of layered HTSC cuprates. The present
theory is developed for paramagnetic state using a Mori-
Zwanzig projection operator procedure,14,15with a three-pole
approximation for the relaxation function.16 The merits of the
theory were demonstrated16 by comparison with experiments
in antiferromagnets in a wide temperature range down to
temperatures close to Neel temperatureTN. The advantage of
the present formulation is that it allows to take into account
not only the AF correlation effects in relaxation rates, but
also the contribution from spin diffusion. The presentation of
the t-J model in terms of Hubbard operators is known to
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obey the rotational symmetry of the spin correlation func-
tions and automatically guarantees the exclusion of double
occupancy. The form of static susceptibility will be used
from microscopic theory17 as obtained beyond the Random
Phase Approximation(RPA) and naturally takes into account
the contribution from the hole subsystem. The dynamic
structure factor is a quantity directly measured in various
experiments, e.g., by magnetic neutron scattering. The ad-
vantages of expressing the dynamic structure factor in terms
of relaxation function were shown by Mori and Kawasaki.18

Until present the Mori-Zwanzig projection operator proce-
dure was applied in connection with HTSC only to a carrier
free 2DS=1/2 AF system19 with a three-pole approximation
for the relaxation function16 and the correlation length was
used from the results of CHN.3 It should be emphasized that
the method developed in the present work for calculations of
dynamic structure factor and nuclear spin-lattice relaxation
rates is similar, however, the approach is different from the
calculations with the approximations for dynamic spin
susceptibilities.1,11,17,20–22

The paper is organized as follows: In Sec. II, the basic
relations are presented for the relaxation function with a
three pole approximation in a continued fraction representa-
tion of the Laplace transform and the static spin susceptibil-
ity. Section III shows the evaluation of the second and the
fourth frequency moments of relaxation shape function
within the t-J model. Section IV presents the results of cal-
culations, comparison with experiment, other theories and
discussion. Section V is the conclusion.

II. BASIC RELATIONS

We employ thet-J Hamiltonian written in terms of the
Hubbard operators:

Ht-J = Ht + HJ = o
i,j ,s

tijXi
s0Xj

0s + Jo
i. j

sSiSj − 1
4ninjd . s1d

Here,Si are spin-1/2 operators at the lattice sitesi, andXi
s0

are the Hubbard operators that create an electron with spins
at site i. The hopping integraltij describes the motion of
electrons causing a change in their spins. In this paper,tij
= t refers to hopping between nearest neighbors andJ is the
nearest-neighbor antiferromagnetic(AF) coupling constant.
The spin and density operators are defined as follows:

Si
s = Xi

ss̃, Si
z = 1

2o
s

sXi
ss, s2d

ni = o
s

Xi
ss, ss = − s̃d, s3d

with the standard normalizationXi
00+Xi

+++Xi
−−=1. Without

loss of generality, we measure all energies from the “center
of gravity” of the band.

A. Mori-Zwanzig projection operator procedure and a three
pole approximation for the dynamic relaxation function

In the present formulation we will follow Mori.14 The
time evolution of a dynamical variableSk

zstd, say, is given by

Ṡk
zstd ;

dSk
zstd
dt

= iLSk
zstd. s4d

In general,L is the Liouville operator, and in our, quantal
case, iLSk

zstd is the corresponding commutator with the
Hamiltonian(1). The projection of the vectorSk

zstd onto the
Sk

z ;Sk
zst=0d axis is given by

P0Sk
zstd = Rsk,td ·Sk

z , s5d

and defines the linear projection Hermitian operatorP0. One
may separateSk

zstd into the projective and vertical compo-
nents with respect to theSk

z axis:

Sk
zstd = Rsk,td ·Sk

z + s1 −P0dSk
zstd, s6d

where

Rsk,td ; sSk
zstd,sS−k

z d*d · sSk
z,sS−k

z d*d−1, s7d

is the relaxation function in the inner-product bracket nota-
tion:

sSk
zstd,sS−k

z d*d ; kBTE
0

1/kBT

d%kexps%HdSk
zstd

3exps− %HdsS−k
z d*l, s8d

where the angular brackets denote the thermal average.
For future evaluations, it is convenient to introduce a set

of quantitiesf0std, f1std ,¯ , f jstd ,¯ defined by equations

f jstd ; expsiL jtdf j ; expsiL jtdiL j f j−1,s j ù 1d, s9d

where f0std;Sk
zstd, Lj ;s1−P j−1dLj−1,sL0=Ld, and

D j
2 ; sf j, f j

*d · sf j−1, f j−1
* d−1. s10d

The sethf jj forms an orthogonal set. The larger number off j

is used, the finer description ofSk
zstd is obtained. The last

quantity from this setfn, affected by evolution operator
expsiLntd, resulting in fnstd, was called the “nth order ran-
dom force,”14 acting on the variableSk

zstd and is responsible
for fluctuation from its average motion.

In terms of Laplace transform of the relaxation function,
RLsk ,td, one may construct a continued fraction representa-
tion for Rsk ,sd:

RLsk,sd =E
0

`

dte−stRsk,td

= 1/hs+ D1k
2 /fs+ D2k

2 /ss+ D3k
2 / ¯ dgj, s11d

whereD jk
2 are related to the frequency moments

kvk
nl =E

−`

`

dv vnFsk,vd =
1

in
FdnRsk,td

dtn G
t=0

s12d

of the relaxation shape function

Fsk,vd =
1

p
RefRLsk,ivdg =

1

2p
E

−`

`

dte−ivtRsk,td,

s13d

as
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D1k
2 = kvk

2l, D2k
2 =

kvk
4l

kvk
2l

− kvk
2l. s14d

Lovesey and Meserve16 truncated the relaxation function
(11) to third order. They argued that since thek dependence
of D2k is much weaker than that ofD1k, and using the ana-
lytical results23 for the sixth frequency momentkvk

6l, the
approximation ofD3k by a constant is a good approximation.
Thus, they suggested a three pole approximation for relax-
ation function,

Rsk,sd = 1/hs+ D1k
2 /fs+ D2k

2 /ss+ 1/tkdgj, s15d

with a cutoff characteristic time

tk = S 2

pD2k
2 D1/2

. s16d

For Fsk ,vd this is equivalent to

Fsk,vd =
tkD1k

2 D2k
2 /p

fvtksv2 − D1k
2 − D2k

2 dg2 + sv2 − D1k
2 d2 . s17d

Here one should note thatFsk ,vd is real, normalized to unity
e−`

` dvFsk ,vd=1 and even in bothk andv.
The dynamic structure factorSsk ,vd is related to the re-

laxation shape functionFsk ,vd through the fluctuation-
dissipation theorem

Ssk,vd =
2pvxskd

1 − exps− v/kBTd
Fsk,vd. s18d

The only undefined quantity in the present formulation is
the static spin susceptibilityxskd in (18). Until present this
method was used16 to describe the paramagnetic state prop-
erties of(anti)ferromagnets with the form of static suscepti-
bility, which was justified only at high temperatures(see also
Refs. 24 and 19). In the present work we will employ the
microscopic formula for static spin susceptibility17 that is
shown to work in the overall temperature range and properly
takes into account the hole subsystem.

B. Static spin susceptibility

From Ref. 17, the expression for static spin susceptibility
xskd is straightforward,

xskd =
4uc1u

Jg−sg+ + gkd
, s19d

and its structure is the same as in the isotropic spin-wave
theory.7 The meaning ofg+ is clear: it is related to the cor-
relation lengthj via the expression

j

a
=

1

2Îg+ − 1
, s20d

wherea is a lattice unit. For carrier free AF system the rela-
tion (20) was obtained from the exponential decay of the
spin–spin correlation function at large separations, whereas
at finite doping the same expression was derived from the
expansion ofxskd taken around the AF wave vectorQ, how-

ever, taking now into account the contribution from the hole
subsystem,17

c1 =
1

z
o

r

kSi
zSi+r

z l, c2 =
1

z2 − z
o

rÞr8

kSi
zSi+r−r8

z l, s21d

are the nearest and next-nearest neighbor spin correlation
functions, respectively, the indexr runs over nearest neigh-
bors, and

gk =
1

z
o

r

expsikrd =
1

2
scoskxa + coskyad, s22d

g−=4azuc1u, z=4 is the number of nearest neighbors for
square lattice. The parametersa and b were introduced in
the decoupling procedures for the higher-order Green’s
functions.25 The parametera preserves the important prop-
erty that spin operators obey the relationkSi

2l=3/4 which
should hold at all temperatures. The numerical values for the
temperature dependence ofj were determined in carrier free
La2CuO4 usingJ=0.12 eV and treatingb as the only adjust-
able parameter.17 The best fit to experimental data, which
were deduced from NS,4 was obtained withb=2.5. This
value will be kept fixed in the present calculations. The origi-
nal self-consistent theory of Kondo and Yamaji(KY ) (Ref.
25) with a=b=1.705 fails in explanation of the absolute
values ofj. Sinceb enters in the combinationbc2, the in-
crease of the values of next-nearest correlations causes the
extension of short-range AF order and hence the enhance-
ment of j together with the spin stiffness constantrS.

17 In
T→0 limit, for both the carrier free and doped case,c2 and
g− are related as,

g− = 4
3s1 + 12c2bd. s23d

The reliability of the theory has been demonstrated by com-
paring the numerical values forc1, c2 andxS;xsk =0d with
Monte Carlo, Exact Diagonalization calculations and other
theories.17

In the present calculations for small dopingd we will use
the expression for doping and temperature dependence ofj,
given by,17

j

a
=

JÎg−

kBT
exps2prS/kBTd. s24d

As discussed in Ref. 17,j diverges atT=0 even in doped
samples and this disagrees with experiment. This disagree-
ment appears, probably, due to the overestimation of the role
of AF correlations at low temperatures in the KY decoupling
procedure. To mimic the low temperature behavior of the
correlation length we will use the expression, as in Refs. 21
and 22, resulting ineffectivecorrelation lengthjeff, given by,

jeff
−1 = j0

−1 + j−1. s25d

Thus, the theory is able to explain the temperature and dop-
ing dependence of correlation length. The expression(25) is
different from the Keimeret al.26 empirical equation, where
j is given by the Hasenfratz-Niedermayer formula5 and
hence, there is no influence of the hole subsystem onj. In
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contrast, in the present theory,j is affected by doped holes.
Thus from now on we replacej by jeff.

C. Excitation spectrum

The band evolution with doping remains the controversial
topic. The usual parameter set in thet-J model ist=J/0.3.2

The electronic and AF spin–spin correlation functions reduce
the hoppings27 resulting ineffectivevalues. In the early pro-
posal of thet-J model by Anderson13,28 for description of
properties of layered copper HTSC compounds the phenom-
enological relation was settled for the bandwidth,dt. Fol-
lowing the idea of Zhang and Rice29 about copper–oxygen
singlets formation it was shown by Ereminet al.,30 that it is
possible to describe correctly the elementary excitations
spectrum in cuprates. This singlet correlated band is analo-
gous to upper Hubbard band with essential distinction—the
subband splitting is much smaller compared to Hubbard
model. Therefore it is possible to apply Hubbard formalism
without strict restriction ont andJ values in thet-J model.30

Taking into account the AF spin–spin correlations self-
consistently, resulting ineffectivehoppings, it was shown
that the band width varies linearly with doping in a wide
range from lightly doped to optimally doped compounds.21

To avoid confusion from approximations the simple expres-
sion for effectivehopping

teff = dJ/0.3, s26d

will be employed in the following evaluations to match the
insulator-metal transition. At high hole concentrationssd
,1d, where the correlation effects are negligible, Eq.(26)
gives, as it should, the value of band width for the noninter-
acting case.

Thus,Ek is given by

Ek = 2teffscoskxa + coskyad. s27d

This expression resembles well also the values of singlet-
correlated bandwidth<0.4 eV (see Ref. 30) in optimally
doped (d<0.15 per Cu site) layered copper HTSC as ob-
tained from Angle Resolved Photoemission Electron Spec-
troscopy(ARPES).31

III. EVALUATION OF EXPRESSIONS FOR FREQUENCY
MOMENTS

We now describe the procedure used to calculate the sec-
ond kvk

2l and fourthkvk
4l frequency moments ofFsk ,vd, by

calculating directly the corresponding commutators in

kvk
2l = ikfṠk

z,S−k
z gl/xskd, s28d

and

kvk
4l = ikfS̈k

z,Ṡ−k
z gl/xskd. s29d

The main effort necessary here is to obtain the expression for
kvk

4l. In this section we will start with evaluation of commu-
tators and calculation of the thermodynamic averages, then
introduce the decoupling procedures and, finally, present the
result for kvk

4l. The procedure will be tested by comparison

of our expression for spin part with the existing result.16 The
Xi

0s and Xi
s0 operators are fermions and obey the anticom-

mutation relations, whereas theSi
s and Xi

ss are bosoniclike
and obey the commutation relations. The terms with the op-
erators of different type are assumed to satisfy the commu-
tation relations. The commutators with the products of op-
erators were decomposed on terms that contain commutators
and(or) anticommutators depending on the type of operators.

A. Evaluation of commutators

In order to calculate the secondkvk
2l and the fourthkvk

4l
frequency moments we first evaluate the commutators

fSm
z ,HJg = 1

4o
j ,s

JmjssSm
sSj

s̃ − Sj
sSm

s̃d, s30d

and

fSm
z ,Htg = 1

2o
j ,s

tmjssXm
s0Xj

0s − Xj
s0Xm

0sd. s31d

The commutator of expression given by Eq.(31) with the
hopping termHt in (1) is

ffSm
z ,Htg,Htg = o

i,l,s
tlmsh 1

2tilfXm
s0Xl

s̃sXi
0s̃ + Xm

s0sXl
00 + Xl

ssdXi
0s

+ Xi
s0sXl

00 + Xl
ssdXm

0s+ Xi
s̃0Xl

ss̃Xm
0sg

− timXi
s0sXm

00 + Xm
ssdXl

0sj , s32d

whereas the commutator of expression given by Eq.(30)
with the spin partHJ of (1) is

ffSm
z ,HJg,HJg = 1

8 o
i,l,s

JilsJlm − JimdsSm
sSi

zSl
s̃ − Sm

sSi
s̃Sl

z + Si
zSl

sSm
s̃

− Si
sSl

zSm
s̃d + 1

8 o
i,l,s

JimJlms2Si
sSm

z Sl
s̃ − Si

sSm
s̃Sl

z

− Si
zSm

sSl
s̃ + Sm

z Sl
sSi

s̃ − Sm
sSl

zSi
s̃ + Sl

sSi
s̃Sm

z

− Sl
sSi

zSm
s̃d. s33d

The rest commutators of this type are as follows:

ffSm
z ,HJg,Htg = 1

4 o
i,l,s

sfJimtlmsXm
s0Xl

0s̃Si
s̃ − Si

sXm
s̃0Xl

0s

+ Si
sXl

s̃0Xm
0s − Xl

s0Xm
0s̃Si

s̃d

+ sJim − JlmdtilsSm
sXi

s̃0Xl
0s − Xi

s0Xl
0s̃Sm

s̃dg, s34d

and

ffSm
z ,Htg,HJg = 1

8 o
i,l,s

stimfJilsXm
s0Xi

0s̃Sl
s̃ − Xm

s0Xi
0sXl

s̃s̃

+ Xi
s̃0Sl

sXm
0s − Xi

s0Xl
s̃s̃Xm

0s + Xm
s0Sl

s̃Xi
0s̃

− Xm
s0Xl

s̃s̃Xi
0s + Sl

sXi
s̃0Xm

0s − Xl
s̃s̃Xi

s0Xm
0sd

− JlmsXm
s̃0Sl

sXi
0s − Xm

s0Xl
s̃s̃Xi

0s + Xi
s0Xm

0s̃Sl
s̃

− Xi
s0Xm

0sXl
s̃s̃ + Sl

sXm
s̃0Xi

0s − Xl
s̃s̃Xm

s0Xi
0s

+ Xi
s0Sl

s̃Xm
0s̃ − Xi

s0Xl
s̃s̃Xm

0sdg. s35d
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We conclude this subsection with the emphasis, that our Eqs.
(31)–(35) are still exact. We will restrict further ourselves
and take into account the correlations between the first and
the second neighbors only. The resulting form of calculated
commutators suggests the types of necessary thermodynamic
averages. The calculation of these thermodynamic averages
together with the decoupling procedures we need to employ
in order to estimate the values of higher spin, transfer ampli-
tude and density correlation functions will be presented in
the following subsections.

B. Thermodynamic averages

To calculate the thermodynamic averages, we use the re-
tarded Green’s functions formalism. The equation of motion
for a retarded Green’s functionkkAuBllv takes the form

vkkAuBllv = kfA,Bg+l + kkfA,HguBllv, s36d

wherek¯l denotes the thermal average. The standard rela-
tionship between correlation and Green’s function may be
written as

kBAl =
1

2pi
rdvfsvdkkAuBllv, s37d

where fsvd=fexpsv /kBTd+1g−1 is the Fermi function; the
contour encircles the real axis without enclosing any poles of
fsvd.

In general, Eq.(36) cannot be solved exactly and one
needs some sort of approximation. To evaluate the Green’s
function kkfA,Hg uBllv in Eq. (36), one uses a decoupling
scheme originally proposed by Roth32 for calculations on the
Hubbard model. It can be shown that Roth’s method is es-
sentially equivalent to the Mori-Zwanzig projection
technique33,34 and is strongly related to the moments method
as applied to the evaluation of the spectral density of the
Green’s functions.35,36 Roth’s method has been studied by
many authors,34,37,38 and became a general method to treat
approximately the quasiparticle spectrum of an interacting
system. The reliability of the method has been demonstrated
by comparison with the exact diagonalization results.38

Roth’s method32 implies that we seek a set of operators
An, which are believed to be the most relevant to describe the
one-particle excitations of the system of interest. Also, it is
assumed that, in some approximation, these operators obey
the relations32

fAn,Hg = o
m

KnmAm, s38d

where the parametersKnm are derived through a set of linear
equations

kffAn,Hg,Alg+l = o
m

KnmkfAm,Al
+g+l. s39d

Thus, it remains to define the operatorsAn. Because, in the
framework of thet-J model, the quasiparticles are described
by the Hubbard operatorsXk

0s, a set of operatorsAn contains
only one operatorA=Xk

0s. Hence, the matrixKnm is diagonal
and also contains one elementK=Ek

s, whereEk
s is the energy

of of an electron with wave vectork and spin projections.
Consequently, Eqs.(38) and (39) become

fXk
0s,Hg = Ek

sXk
0s, s40d

kffXk
0s,Hg,Xk

s0g+l = Ek
skfXk

0s,Xk
s0g+l. s41d

In the 2D t-J model, long-range order is absent at any finite
temperature and hence,Ek

s does not depend ons. Thus, we
can replaceEk

+ andEk
− by Ek.

For ours evaluations we need the thermal averages of the

following types: kXi
s0Xj

0sl and kXi
ssXj

s8s8l. The averages
(spin–spin correlation functions) of the typekSi

sSl
s̃l were de-

fined in the Sec. II B and the calculation procedure together
with the numerical values will be outlined in the Sec. IV.

First, one should note, that in the absence of long-range
order, kXi

s̃s̃l does not depend on the site index and hence,
according to Eq.(3), T0=kXi

s̃s̃l=kXi
ssl=s1−dd /2 and c0

=kSr
zSr

zl=1/4.
The transfer amplitude between the first neighborsT1

=pI1 is given by

T1 = pI1 = −
1

z
o

r

kXi
s0Xi+r

0s l s42d

and may be calculated using the spectral theorem

I1 = − o
k

gk

esEk−md/kBT + 1
; o

k
gk fk

h. s43d

The parameterI1 in Eq. (43) has been estimated in Ref. 21,

I1 <
4

p
s1 − e−pd̃d − 2d̃, d̃ =

d

1 + d
, s44d

with an accuracy of a few percent over the whole region ofd
from 0 to 1. Here one should note that for very smalld and
low temperatures,I1<2d.

The transfer amplitude between the second neighbors,

T2 =
1

zsz− 1d o
rÞr8

kXi
s0Xi+r−r8

0s l, s45d

is

T2 =
p

zsz− 1dok

16gk
2 − 4 coskxa coskya − 4

esEk−md/kBT + 1

; −
p

zsz− 1dok
s16gk

2 − 4 coskxa coskya − 4dfk
h.

s46d

For p we have

p =
1 + d

2
, s47d

whered is the number ofextraholes, due to doping, per one
plane Cu2+. The chemical potentialm is related tod by
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d =
p

N
o
k

fk
h, s48d

where fk
h=fexps−Ek +md /kBT+1g−1 is the Fermi function of

holes.
To obtain the thermodynamic averages of the type

kXi
ssXi+r

s8s8l it is convenient to make the following definitions:

l = ls̃s̃ =
1

z
o

r

kXi
s̃s̃Xi+r

s̃s̃ l, s49d

and

lss8 =
1

z
o

r

kXi
ssXi+r

s8s8l. s50d

To obtainl andlss̃ we use the two Green’s functions21

Gk
s1dsvd =

1

z
o

r

kkXk
0s̃uXi

s̃0Xi+r
s̃s̃ llv, s51d

Gk
s2dsvd =

1

z
o

r

kkXk
0s̃uXi

s̃0Xi+r
ss llv. s52d

Note that in the paramagnetic state,lss=ls̃s̃ andlss̃=ls̃s.
According to Eqs.(36) and (40), the equation of motion

for Gk
s1dsvd andGk

s2dsvd can be written as

sv − EkdGk
s1dsvd =

eikri

ÎN
s1 − p − ls̃s + pIgkd, s53d

sv − EkdGk
s2dsvd =

eikri

ÎN
s1 − p − ls̃s̃d. s54d

According to Eq.(37):

ls̃s̃ =
1

2pi
o
k

e−ikri

ÎN
rdvfsvdGk

s1dsvd, s55d

ls̃s =
1

2pi
o
k

e−ikri

ÎN
rdvfsvdGk

s2dsvd. s56d

Consequently, Eqs.(53) and (54) lead to a system of linear
equations forls̃s̃ andls̃s with the trivial solution

l = ls̃s̃ = s1 − pd2 −
p3

2p − 1
I2, s57d

lss̃ = s1 − p − ld
1 − d

1 + d
= s1 − pd2 +

s1 − pdp2

2p − 1
I2. s58d

C. Decoupling procedures

We now describe the decoupling procedures for the ther-
modynamic averages performed in spirit of Hubbard and
Jain39 and Kondo and Yamaji.25

The averages of the typekXi
s0Xl

0sXm
s̃0Xj

0s̃l are decoupled
resulting in products of transfer amplitudes and the decou-
pling parameterz,

kXi
s0Xl

0sXm
s̃0Xj

0s̃l → zkXi
s0Xl

0slkXm
s̃0Xj

0s̃l. s59d

The four-spin correlation functions are approximated, as
usually, by products of two-spin correlation functions,16

however, multiplied now with the decoupling parameterz.
Thus, we employ the decoupling procedures

kSi
sSr

s̃Sm
sSj

s̃l → zkSi
sSr

s̃lkSm
sSj

s̃l, s60d

and

kSi
zSr

zSm
sSj

s̃l → zkSi
zSr

zlkSm
sSj

s̃l, s61d

for i Þ r andmÞ j , whereas

kSr
sSr

s̃Sm
sSj

s̃l → 2c0kSm
sSj

s̃l. s62d

The averages with the products of operatorsXi
s0Xr

0s be-
tween the nearest(next-nearest) neighbors withs1−Xm

s̃s̃ds1
−Xj

s8s8d are decoupled as follows:

kXi
s0Xr

0ss1 − Xm
s̃s̃ds1 − Xj

s8s8dl

→ kXi
s0Xr

0slk1 − Xm
s̃s̃ − Xj

s8s8 + Xm
s̃s̃Xj

s8s8l, s63d

and so on.
The averages with spin and Hubbard operators are decou-

pled as follows:

kXi
s0Xj

0sSl
s̃Sr

sl → kXi
s0Xj

0slkSl
s̃Sr

sl, s64d

and with spin and density operators:

kXi
ssSm

s̃Sr
sl → kXi

sslkSm
s̃Sr

sl. s65d

The averageskXi
ssXj

s8s8l between the second neighboring
operators are decoupled simply by

kXi
ssXi+2

s8s8l → kXi
sslkXi+2

s8s8l, s66d

because an inspection of Eqs.(57) and (58) shows that the
values of averages of these type between the first neighbors
differ only slightly from kXi

sslkXi+r
ss l. Therefore, the averages

between second neighbors in Eq.(66) are thought of as in-

dependent. In addition, because the averageskXi
ssXj

s8s8l be-
tween the first, in contrast to next-nearest, neighbors, are

calculated exactly, the averages likekXr
ssXm

ssXj
s8s8l are de-

coupled in a way to avoid, where possible, the averages of
the type as given in Eq.(66).

D. Final result for Švk
2
‹ and Švk

4
‹

The expression for the second momentkvk
2l is straightfor-

ward. Calculating the commutator with the expressions given
by (30) and(31) with Sr

z, taking the thermal average and the
Fourier transform, the result is

kvk
2l = − s8Jc1 − 4teffpI1ds1 − gkd/xskd. s67d

We now proceed with calculating the commutators for
kvk

4l. Taking the commutators with the expressions given by
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Eqs.(32)–(35) with Eqs.(30) and(31) we obtain the expres-
sion for kvk

4l. The expression was then approximated using
the decoupling procedures for thermal averages as was de-
scribed in the previous section. Taking the Fourier transform

we arrive to expression that contains various types of sums
over lattice sites. The corresponding types of sums over lat-
tice sites are presented in Appendix A. Utilizing these sums
we obtain

kvk
4l . − h128J3fc2s1 − gk

2dszc2sgk − 3
4d − 1

4c0d+ c0c1s 7
4 − 5

2gk + 3
4gk

2d + zc1c2s 13
4 − 15

2 gk + 17
4 gk

2d
+ zc1

2s 3
2 − 43

8 gk + 21
4 gk

2 + 5
8 coskxa coskya − 2gk

3dg + 16pI1teff
3 fc1s3 − 2gk

2 − coskxa coskyad

+ zT2s7 − 12gk + 5gk
2d + 1−d

2 s1 − 4gk + 3gk
2d + sd + lds− 9

2 + 9gk − 3gk
2 − 3

2 coskxa coskyadg + 16teffJ
2pI1fc0s− 39

8

+ 31
4 gk − 23

8 gk
2d + c1s16gk

3 − 35gk
2 + 25gk − 9

2 − 3
2 coskxa coskyad + c2s− 85

8 + 93
4 gk − 101

8 gk
2d + 9

16
1−d
2 sgk − 1dg

+ 16teff
2 Jfc1s 3

4gk − 3
4d + 1+d

2 c1s6gk
2 − 45

4 gk + 21
4 d + T2s 1

4T0 + 3
4T0

2 − lds2gk
2 − 3gk + 1d + s 3

4l+−s1 − T0d − T0
2 + lT0dsgk − 1d

+ 1+d
2 c2s2gk

2 − 9
2gk + 5

2d + c1T0s 9
4gk

2 − 5
2gk + 1

4d + c1T2s 11
4 gk

2 − 15
2 gk + 19

4 d + c2T0s− 2gk
2 + 9

2gk − 5
2d + zspI1d2s− 4gk

3 + 6gk
2

+ 11
4 gk − coskxa coskya − 15

4 d + T2c2s16gk
3 − 21gk

2 − 5
2gk + 15

2 d + T0T2s2gk
2 − 9

2gk + 5
2d + T2c0s− 5gk

2 + 9
2gk + 1

2d
+ zT2

2s− 2gk
3 + 6gk

2 − 19
4 gk + 3

4dgj/xskd. s68d

To insure the accuracy of the calculations we compare the
result for spin partHJ with that reported in the literature.16

One should note thatfSm
z ,nig=0. Thus, the commutator(30)

does not depend on the density-density termninj in (1).
Moreover, the commutator of spin operatorsSm

s appearing in
(30) with the density operatorsni is zero also:fSm

s ,nig=0.
This enables us to compare the result(68) for spin part with
the results for carrier free 2DHAF. As it was already men-
tioned, we restrict ourselves and take into account the corre-
lations between the first and the next-nearest neighbors only.

For the second momentkvk
2l the result(67) is evidently

correct. To compare the results forkvk
4l we need some addi-

tional effort. The corresponding expressions and the proce-
dure will be described in Appendix B. The expression, as
shown in(68), with teff=0 and with the decoupling parameter
z settled to unityz=1 is the same, as given in Ref. 16 and
may be compared using the integrals(sums) over the Bril-
louin zone(see Appendix B).

IV. COMPARISON WITH EXPERIMENT
AND DISCUSSION

The results of the calculations are summarized in Table I.
The value ofextraholes, due to doping, per one plane Cu2+,
d, can be identified with the Sr contentx in La2−xSrxCuO4.
The AF spin–spin correlation functionsc1 and c2, the spin
stiffness constantrS and the parameterg− were calculated
using the expressions and the procedure as described in Ref.
17 (see also Ref. 21) in theT→0 limit, since we will employ
them in a temperature rangeT,1000 K.0.7 J, where ex-
perimental data exist and according to the calculations their
values have a weak temperature dependence.

A. Temperature and doping dependence of antiferromagnetic
correlation length

The AF correlation length, its doping and temperature de-
pendence is given by Eq.(25). j0 is the value of correlation

length at T=0 and gives information on the topology of
holes. At present, two types of doping dependencies are un-
der debate in the literature. The first,40 is the localization of
holes close to the randomly distributed Sr2+ ions givesj0
=a/Îx. The other one is the formation of dynamic domain
walls. In this casej0=a/nx, wheren is the average distance
between the holes along the domain walls in lattice units,41,42

usually called “stripes.”
The best fit ofjeff to experimental data26 yields j0=a/nx,

wheren=1.3 for samples withx&0.02 andn=2 for samples
with x.0.02, see Fig. 1. These results are in agreement with
the the conclusion of Borsaet al.41 for La2−xSrxCuO4 com-
pounds withx&0.02 and with the analysis of Carrettaet al.
on the basis of dynamical scaling.43 The presence of stripes
with n=2 was found also by Tranquadaet al. in x.1/8
compound.42

The fit with the relationa/nx in j0 may be obtained by
comparing the experimental data in the low temperature re-

TABLE I. The calculated atT→0 values of AF spin–spin cor-
relation functionc1 between the first neighbors, theg− parameter
and the spin stiffness constantrS as a function of La2−xSrxCuO4

doping x together with the values of decoupling parameterz as
extracted from comparison with63Cu NQR spin-lattice relaxation
rate measurements.

x c1 g− 2prS/J z

0 −0.115215 4.1448 0.38 1.8

0.012 −0.11474 4.137 0.37 1.8

0.02 −0.11391 4.117 0.365 ¯

0.024 −0.11333 4.102 0.36 1.6

0.03 −0.11238 4.080 0.355 1.5

0.035 −0.11152 4.060 0.35 ,1.3

0.04 −0.11057 4.037 0.345 1.1
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gion. Indeed, the doping relationa/Îx fits with the neutron
scattering data poorly than thea/nx does, keeping in mind
the value of plane lattice constanta=3.79 Å. For example,
for x=0.02 one hasj0

−1=Îx/3.79=0.037 Å,−1 whereas the
experimental value is 0.005–0.007 Å.−1 The inability to fit
the 1/Îx relation within the NS data26 is clear also for larger
values of doping:j0

−1=Îx/3.79=0.046 Å−1 for x=0.03 and
j0

−1=Îx/3.79=0.053 Å−1 for x=0.04 differs strongly from
0.013 to 0.02 Å−1 and 0.02 to 0.026 Å,−1, consequently, as
obtained by NS(Ref. 26) (see Fig. 1). On the other hand, the

relation j0
−1=nx/a gives good agreement: 0.0069 Å−1 for x

=0.02 withn=1.3, and 0.016 Å−1 for x=0.03, and 0.021 Å−1

for x=0.04 with n=2. The valuen=1.3 for x=0.02 fits the
values of correlation length as obtained from experimental
data better in contrast to that withn=2. This result is espe-
cially evident when one tries to compare the values ofjeff

−1 at
high temperatures. The high quality of the fit is in agreement
with previous studies and seems to confirm the microsegre-
gation, however, with different values of average distance
between the holes along the domain walls. It is tempting to
speculate that the change in the average distancen from n
<1.3 for x&xc andn=2 for x.xc appears at the value of Sr
content when the Néel order is completely suppressed(TN
→0 atx=xc.0.02) as discussed, consequently, for example,
in Refs. 41 and 45.

Having established the temperature and doping depen-
dence of correlation length we now proceed with calcula-
tions of the nuclear spin-lattice relaxation rate.

B. Spin-diffusion constant

The spin-diffusion is described by thesk ,vd=s0,0d
mode. The spin-diffusion plays an important role in an anti-
ferromagnet and makes a pronounced contribution to the re-
laxation rates. The spin-diffusion constantD is given by46

D = lim
k→0

1

pk2Fsk,0d
= lim

k→0

1

k2Îp

2

kvk
2l3

kvk
4l

. s69d

For smallq, D1q→0
2 tends to zero as

D1q→0
2 = − sqx

2a2 + qy
2a2ds2Jc1 − teff pI1d/xS, s70d

whereasD2q→0
2 .kvq→0

4 l / kvq→0
2 l remains finite,

D2q→0
2 = h128J3f 1

8c2szc2 − c0d−1
4zc1c2 + 1

4c0c1 − 3
32zc1

2g + 16pI1teff
3 s 3

2c1 + 1
2zT2 − 1

2
1−d
2 d

+ 16teffJ
2pI1s 1

2c2 − 1
2c0 − 9

64
1−d
2 d + 16teff

2 Jf− 3
16

1+d
2 c1 − 1

4T2s 1
4T0 + 3

4T0
2 − ld − 1

4s 3
4l+−s1 − T0d − T0

2 + lT0d
+ 1

8c2
1+d
2 − 3

16c1−
1
2c1T0 − 1

8c2T0 − 3
16zspI1d2 + 1

2c1T2 − 7
8T2c2 + 1

8T2T0 + 11
8 T2c0 − 5

16zT2
2gj / h2Jc1 − teffpI1j. s71d

The values ofD for carrier free AF system may be com-
pared with the results of other theories. The infinite tempera-
ture result is the same as in Ref. 19, namelyDsT→`d
= 1

8
Î2pJa2=0.3133Ja2. This value is close to that obtained

by Morita,47 D=0.43Ja2 and D= 1
10

Î5pJa2=0.3963Ja2 in
Refs. 23, 48, and 49. The calculated value ofD=2.46Ja2 at
T→0 (with z=1) is larger compared to that obtained in Ref.
19, D=1.63Ja2. The value ofD=2.66Ja2 (with z=1.8) is
compatible withD<3Ja2 obtained atT=900 K in Ref. 48.
In general,D weakly changes with doping and when one
vary z. Figure 2 shows the doping dependence ofD for two
cases, withz=1 and whenz is obtained from the best fit to
NQR data. The calculated doping dependence ofD in the
T→0 limit may be compared with the results of Bonca and

Jaklic50 at high temperatures, assuming that the doping de-
pendence ofD remains the same. Indeed, Fig. 2 shows re-
markable agreement.

C. Dynamic structure factor

Now, since the nuclear spin-lattice relaxation rate is de-
termined by the dynamic structure factorSsq ,vd we first
consider its temperature, frequency, and wave vector depen-
dence. First, we note that for all temperatures the relaxation
shape functionFsq ,vd as well asSsq ,vd give the elastic
peak atq=0 andv=0. This is clear from Eq.(17) since both
kvq

2l and kvq
4l,q2 for small q. We now turn to the case of

finite but small NMR/NQR frequencies.

FIG. 1. The inverse correlation lengthjeff versus temperature
fitted (solid lines) to the experimental data as obtained from neutron
scattering experiments. For carrier free La2CuO4: filled circles from
Ref. 4(the fitted data), asterisks from Ref. 44 and open circles from
Ref. 26. for doped La2−xSrxCuO4: squares forx=0.02, down tri-
angles forx=0.03, and up triangles forx=0.04 from Ref. 26.
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The relaxation shape functionFsk ,vd with smallv, com-
pared to temperature scale of the system, related toSsk ,vd
as

Ssk,v , 0d = 2pkBTxskdFsk,vd. s72d

We now explore the form ofSsk ,vd and obtain two peaks:
one atq,0 and the other atQ=sp /a,p /ad. The Ssq ,vd
value at smallq is large when theq values are such that

D1q
2 . vtqD2q

2 , s73d

see Eqs.(17), (18), (70), and(71). Thus,Ssq ,vd has a sharp
peak atq0:

Ssq0,vd =
kBTxS

v
, s74d

and theSsk ,vd value atQ=sp /a,p /ad is given by

SsQ,vd .
2kBTxsQdtQD2Q

2

D1Q
2 . s75d

The relation given in Eq.(74) is in agreement with the result
of Makivić and Jarrell51 on frequency dependence of the

FIG. 2. The calculated doping dependence of the spin diffusion
constantD in the T→0 limit with the fixed decoupling parameter
z=1 (squares) and withz as obtained from the best fit to NQR data
(circles). The solid line is the result of Bonca and Jaklic(Ref. 50)
for doping dependence ofD in the high temperature limit. The
asterisk marks the value of the spin diffusion constantD in the limit
of high temperaturesT→`.

FIG. 3. Log-scale mesh of the calculated dynamic structure fac-
tor Ssk ,vcd for carrier free antiferromagnet atT=500 K with
simple decouplingz=1. The cross on the vertical axis marks the
maximum ofJSsk ,vcd at k =q0.

FIG. 4. Log-scale mesh of the calculated dynamic structure fac-
tor Ssk ,vcd for carrier free antiferromagnet atT=1000 K with
simple decouplingz=1. The cross on the vertical axis marks the
maximum ofJSsk ,vcd at k =q0.

FIG. 5. Semilog-scale mesh of the calculated dynamic structure
factorSsk ,vcd for carrier free antiferromagnet atT=500 K with the
decoupling parameterz=1.8. The region of smallq values sq
!q0d for which log10fJSsk ,vdg,−3 is not shown. The cross on the
vertical axis marks the maximum ofJSsk ,vcd at k =q0.
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dynamic structure factor at small values of wave vectors as
extracted from combination of the Maximum Entropy
Method and Quantum Monte Carlo calculations. This result
agrees also with the basic relations known in the literature.
From general physical grounds, namely, linear response
theory, hydrodynamics, and fluctuation-dissipation theorem,
the diffusive spin dynamics gives the form of dynamic struc-
ture factor52

Ssq , 0,v , 0d .
2xS

1 − exps− v/kBTd
3

vDq2

v2 + sDq2d2 ,

s76d

for small q andv.

Using Eq.(76) (or, equivalently, from Eq.(73)) one may
easy estimate the value ofq0 which is given by

q0
2 . v/D. s77d

For typical value of the measuring frequency,v
<1 mK, q0a<p310−4 and weakly changes when one vary
doping and the decoupling parameterzsq0x=q0y=s1/Î2dq0d.

For smallq!q0 with finite v the relaxation shape func-
tion Fsq ,vd and the dynamic structure factorSsq ,vd ap-
proaches zero:Ssq0@q→0,vd→0.

Thus, the contribution to the nuclear relaxation rates from
q around 0 has no peculiarities sincev is finite, but small,
compared to any values of the variables(we use J
=0.12 eVs1393 Kd). Figures 3–10 show the calculated dy-

FIG. 6. Semilog-scale mesh of the calculated dynamic structure
factor Ssk ,vcd for carrier free antiferromagnet atT=1000 K with
the decoupling parameterz=1.8. The region of smallq valuessq
!q0d for which log10fJSsk ,vdg,−3 is not shown. The cross on the
vertical axis marks the maximum ofJSsk ,vcd at k =q0.

FIG. 7. Log-scale mesh of the calculated dynamic structure fac-
tor Ssk ,vcd for x=0.04 hole content atT=500 K with simple de-
couplingz=1. The cross on the vertical axis marks the maximum of
JSsk ,vcd at k =q0.

FIG. 8. Log-scale mesh of the calculated dynamic structure fac-
tor Ssk ,vcd for x=0.04 hole content atT=1000 K with simple de-
couplingz=1. The cross on the vertical axis marks the maximum of
JSsk ,vcd at k =q0.

FIG. 9. Log-scale mesh of the calculated dynamic structure fac-
tor Ssk ,v0d for x=0.035 hole content atT/J=0.1sT.140 Kd with
simple decouplingz=1. The cross on the vertical axis marks the
maximum ofJSsk ,v0d at k =q0.
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namic structure factor for different values of doping, tem-
perature and decoupling parameterz with vc=2p
333 MHz s=1.365310−7 eVd and with v0=2p352 MHz
s=2.15310−7 eVd for x=0.035.

D. Nuclear spin-lattice relaxation

The nuclear spin-lattice relaxation rateas1/T1d is given
by

as1/T1d =
1

p
o
k

aFskd2Ssk,vd, s78d

wherev is the measuring NMR/NQR frequency,aFskd is the
wave vector dependent hyperfine form factor53,54

17Fskd2 = 2C2s1 + gkd, s79d

for planar17O and

63Fskd2 = sAab + 4gkBd2, s80d

for 63Cu sites.Aab andB are the Cu on-site and transferred
hyperfine couplings, respectively. The quantization axis of
the electric field gradient coincides with the crystal axisc
which is perpendicular to CuO2 planes defined bya and b.
For C in Eq. (79), we adopted the formulaC2= 1

6sCi
2+C'

2 d,
whereCi and C' are the plane oxygen hyperfine couplings
for two axis perpendicular toc, and that includes the factor1

3
to account17s1/T1d as measured by NMR. The values of
hyperfine couplings were taken as follows:Aab=3.7
310−7 eV, for transferred hyperfine couplingB the relation
B=s1+2.75xd33.8310−7 eV is used to match the weak
changes with Sr doping55 and C=2.8310−7 eV in accord
with the values as extracted from NMR data and used in
calculations of relaxation rates.1,11,19,43,45,48,53–56

The 17O and63Cu nuclear relaxation rates are essentially
determined by the corresponding form factors given by Eqs.
(79) and (80). Figures 11 and 12 show the quantity
aFskd2Ssk ,vd in a log-scale plot versuskx sky=0d and a
semilog-scale plot along the diagonal of the Brillouin zone.

FIG. 10. Semilog-scale mesh of the calculated dynamic struc-
ture factor Ssk ,v0d for x=0.035 hole content atT/J=0.2sT
.280 Kd. The region of smallq values sq!q0d for which
log10sJSsk ,vdd,−3 is not shown. The cross on the vertical axis
marks the maximum ofJSsk ,v0d at k =q0.

FIG. 11. Log-scale plot of the quantityaFskd2Ssk ,vd /J versus
kx sky=0d. The solid lines from down until up:17Fskd2Ssk ,v0d /
J is given for x=0.035 at T/J=0.1 sT.140 Kd and
T/J=0.2sT.280 Kd with the decoupling parameterz=1.3,
63Fskd2Ssk ,vcd /J is given for carrier free AF atsx=0d at T
=500 K and T=1000 K with the decoupling parameterz=1.8.
The dotted lines areaFsq0d2Ssq0,vdkx

2/ s0.5Jq0
2d for kx,q0 and

aFsq0d2Ssq0,vdq0
2/ s0.5Jkx

2d for kx.q0.

FIG. 12. Semilog-scale plot of the quantityaFskd2Ssk ,vd /J
versus k along the diagonal of the Brillouin zoneskx=kyd.
17Fskd2Ssk ,v0d /J is given for x=0.035 at T/J=0.1 sT.140 K,
lower curve) and T/J=0.2 sT.280 K, upper curve) with the de-
coupling parameterz=1.3. 63Fskd2Ssk ,vcd /J is given for carrier
free AF sx=0d at T=500 K (lower curve at smallk) and T
=1000 K (upper curve at smallk) with the decoupling parameter
z=1.8. The dotted lines areaFsq0d2Ssq0,vdq0

2/ s0.5Jk2d for k .q0.
The lower and upper crosses mark the values of
63Fsq0d2Ssq0,vcd /J at T=500 K andT=1000 K, respectively.
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The calculations show the 1/k2 wave vector dependence of
Ssk ,vd for k .q0 and thek2 dependence ofSsk ,vd for
k ,q0. The form ofaFskd2Ssk ,vd gives the peaks atq0 and
k .sp /a,p /ad. Thus, two types of contributions dominate in
the nuclear spin-lattice relaxation rates.

Here one should note, that the theory contains the decou-
pling procedures for correlation functions and the decoupling
parameterz has been introduced. In general, despite the com-
plicated structure ofkvk

4l, z allows us to regulate the contri-
butions withk .sp /a,p /ad to the spin-lattice relaxation rate
1/T1. The largerz, the smaller is the contribution fromk
.sp /a,p /ad to 1/T1.

The contribution to 1/T1 from q around 0 has no pecu-
liarities because the measuring frequency isfinite (vc<2p
333 MHzs=1.58 mKd in 63Cu NQR and v0<2p
352 MHzs=2.5 mKd in 17O NMR measurements), but
small, compared to any values of the variables(we takeJ
=0.12 eVs1393 Kd). The calculations also show that
aFskd2Ssk ,vd has a broad local minimum atqm which val-
ues are given byqxm

2 +qym
2 <p2/a2.

A direct numerical integration overk is difficult, because
aFskd2Ssk ,vd has an extremely sharp peak at very smallq0.
This requires an unattainably large number of points in nu-
merical integration over Brillouin zone.

We first estimate the value of contribution to 1/T1 from
small q because Figs. 11 and 12 show that the pronounced
contribution to relaxation rates should come from excitations
with q,0. In the formulation of Ref. 10, the diffusive con-
tribution,

Chakravartys1/T1dDiff , o
q,0

TxS

Dq2 s81d

is divergent. While usually, this logarithmic divergence of
s1/T1dDiff was argued to cut off,10,48 since in a real systems
the mechanism destroying the diffusion should be taken into
account. In La2−xSrxCuO4 the combination of three-
dimensional effects, finite length scale and the presence of
disorder in CuO2 planes may suppress the effect of spin dif-
fusion on spin-lattice relaxation rates. For example, using
exact diagonalization technique in the high temperature re-
gion, it was argued that strong local perturbation induced by
oxygen defects limit the spin-diffusion.48 Despite of consid-
erable effort, the appropriate account of these effects is still
unavailable because of lack of any exact analytical result.

In the present theory the meaning ofq0 is clear: it is the
value ofk at which the maximum inSsk ,vd occurs and for
smallv it may be treated as the cut off in the integration for
calculation of the contribution from spin diffusion(see Eq.
(81) and Ref. 10). Forq!q0 the integration overq should be
taken over the factor,q2/q0

2. One should note, that in the
present theory the form of the calculated dynamic structure
factorSsk ,vd comesnot from, e.g., disorder, but rather than
from the relaxation function and is inagreementwith linear
response theory, hydrodynamics, and fluctuation-dissipation
theorem and this result does not depend on the order of the
pole approximation in the relaxation function theory.

ExpandingSsq ,vd aroundq0 we obtain,

as1/T1dDiff =
aFs0d2kBTa2xS

p"D
L, s82d

where L depends on frequency throughq0. A simple and
rough estimate gives

L , lns1/q0
2d , lnsconst3 J/vd. s83d

This result explains the reason why the oxygen17s1/T1d
relaxation rate as measured by NMR remains unchanged at
9 T sv0=2p352 MHzd and 14.1 Tsv0=2p381.4 MHzd
within the experimental accuracy.57 One should note
that v is much less than J=1.83108 MHz, hence
lnsJ/52 MHzd / lnsJ/81.4 MHzd<1.03. Indeed, a sophisti-
cated calculation givesLs33 MHzd=2.52, Ls52 MHzd
=2.44, andLs81.4 MHzd=2.37 and its value changes on less
than 1% when one varyz and doping withinx&0.04. In
view of the result that the spin diffusion contribution is 70%,
the relative shift of the measured17s1/T1d will be <2%, that
lies within the experimental error(see Fig. 13).

The 17s1/T1d relaxation rate has a contribution due anti-
ferromagnetic correlations between copper spins, however,
for wave vectors only in the vicinity ofQ=sp /a,p /ad be-
cause the form factor17Fskd filters out the contributions with
Q=sp /a,p /ad. This filter causes also the minor sensitivity
to the decoupling parameterz. The value ofz=1.3 for x
=0.035 (see Table I) is a plausible guess. This contribution
was calculated by direct summation overk in the region
k .qm.

Figure 13 shows the calculated17O relaxation rate in the
sector of lightly damped spin waves at low temperatures. It is

FIG. 13. The calculated temperature and doping dependence of
the plane oxygen nuclear spin-lattice relaxation rate17s1/T1d (lines)
and the experimental data for La2−xSrxCuO4 as measured by NMR
with x=0.025(triangles) andx=0.035(squares) from Ref. 57. The
experimental points have been rearranged withJ=1393 K. The re-
sults of calculations withv=2p352 MHzs9 Td are given forx
=0.035sz=1.3d by the solid line and forx=0.025sz=1.6d by the
dashed line. The result of the calculation withv=2p381.4 MHz
for x=0.035sz=1.3d coincides with the dashed line. The contribu-
tion to 17s1/T1d from the wave vectors in the vicinity ofsp /a,p /ad
for x=0.035 withz=1 is shown by the upper dotted line and by the
lower dotted line withz=1.3.
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seen that17O relaxation rate has a weak frequency depen-
dence. The good agreement of calculations(even without
adjusting the parameterz) with experiment shows, that in
case the mechanism destroying the diffusion is present in
La2−xSrxCuO4, whether it is caused by the three-dimensional
effects, finite length scale or the presence of disorder in
CuO2 planes, it seems that it affects the spin-lattice relax-
ation rates only little through the contribution from spin dif-
fusion.

A fair agreement between experiment and calculated
17s1/T1d for lightly doped La2−xSrxCuO4 may be thought as

fortuitous because of the following reason. In the present
theory, the contribution to relaxation rate from smallq de-
pends on spin diffusion constantD as,

s1/T1dDiff ,
1

D
lnsconst3 D/vd. s84d

In the T→0 limit the spin diffusion constantD has to di-
verge for both carrier free and lightly doped La2−xSrxCuO4
since both Heisenberg andt-J models have nonzero spin
stiffness.50 On the other hand, in the quantum critical region,
rS,T,J (note that in the present theoryrS.0.06J<80 K
and weakly decreases with light doping), the spin-diffusion
constant scales asD,T1/2j (see Ref. 3). For lightly doped
x<0.03 systems one may expect this scaling to be valid also,
but with finite correlation length forTùrS (see Fig. 1). This
justifies the validity of the present formulation and the pro-
priety of the results obtained forfinite doping and low tem-
peratures.

It is worth mentioning the results of calculations by
Chakravartyet al.9,59,60 of relaxation rates for La2CuO4 on
various nuclei. The results of CHN gave the temperature
dependence of correlation length with the two-loop correc-
tions in perfect agreement with experiment. The calculated
plane copper relaxation rate63s1/T1d within the CHN theory
is in agreement with experiment,58 however, for plane oxy-
gen the results of calculations does not reproduce the values
of the measured17s1/T1d for insulating Sr2CuO2Cl2 (see Ref.
57). Moreover, the agreement between theory and experi-
ment becomes worse when the two-loop correction has been
taken into account.60 A possible reason of this inconsistency
is the missed contribution from spin diffusion60 and the elec-
tronic structure of Sr2CuO2Cl2 with pockets centered around
sp /2 ,p /2d as observed by LaRosaet al.61 Thus, for
Sr2CuO2Cl2 one has to take into account the hoppings be-
tween the next nearest and next-next nearest neighbors that
are beyond our present consideration.

We now discuss the temperature and doping dependence
of plane copper nuclear spin-lattice relaxation rate63s1/T1d.
Figure 14 shows the fitted63s1/T1d to experimental data in
lightly doped La2−xSrxCuO4. It is seen that the agreement is
good for temperaturesT&J/2. For temperaturesT.J/2 the
agreement is less satisfactory. This is a bit puzzling but could
be due to better account of thej values in the low tempera-
ture region sT,J/2d compared to T<J and the pre-
exponential factor,1/T in (24) and in the spin-wave
theory,7 which is an artifact of the mean-field approach. For
carrier free La2CuO4 and atT=1000 K sT.0.7Jd, j<5a.
Obviously, the value of correlation lengthj, as extracted in
the limit of large separations17 satisfies the inequalityj2/a2

@1. At temperaturesT,J the behavior of 63s1/T1d is
smooth: the slope of the curve decreases with increasingT.
At high temperatures,63s1/T1d is expected to have a mini-
mum at T<J and to be dominated by spin diffusion atT
ùJ. The validity of Eq.(24) does not allow to calculate 1/T1
at T.J. Similar temperature dependence of63s1/T1d was
found in Ref. 19. It was found that the saturation of63s1/T1d
at T,J/2 is “primarily due to a competition from the spin
diffusion over the critical slowing down.” The present work

FIG. 14. Temperature and doping dependence of the plane cop-
per nuclear spin-lattice relaxation rate63s1/T1d=2W (solid lines)
fitted to the experimental data for La2−xSrxCuO4 with x=0, x
=0.012,x=0.024, andx=0.03 from Ref. 45 and withx=0.04 from
Ref. 58. The values of the fitting parameterz are shown in the Table
I. The dotted line shows the contribution to63s1/T1d from spin
diffusion for x=0.

FIG. 15. Recalculated plane copper nuclear spin-lattice relax-
ation rate63s1/T1d=2W with fixed z=1 is shown by solid lines
from up until down with increased doping. The dotted line shows
the contribution to63s1/T1d from spin diffusion forx=0.04 withz
=1. The notation is the same as in Fig. 14.
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shows that the overwhelming contribution arises from strong
short-range antiferromagnetic correlations between copper
spins and at low temperatures the contribution from spin
diffusion to 63s1/T1d is small (see Fig. 14).

One may wonder about the results of calculations if we
avoid fitting 63s1/T1d. Figure 15 shows the results of calcu-
lations for 63s1/T1d with fixed decoupling parameterz=1. It
is seen, that the theory is able to reproduce the main features
of doping and temperature dependence of63s1/T1d, however,
in poor agreement with respect to the numerical values.

It is interesting to compare the results of the calculations
for carrier free AF system with other theories. After the semi-
nal work,3 Chakravarty and Orbach9 predicted the decrease
of 63s1/T1d with increasing temperature at low temperatures
as 63s1/T1d,T3/2 exps2prS/kBTd. After passing through a
wide minimum atT,J/2 the calculated63s1/T1d increases
with T at high temperatures where the system is recognized
to be in the quantum critical(QC) region. On the other hand,
using the 1/N expansion method on theN-component non-
linear sigma model an apparent formula was obtained for
63s1/T1d in the QC region.6 However, the behavior of
63s1/T1d was found to be nearly independent on temperature:
63s1/T1d,sT/Jd0.028. The calculations with thermally excited
skyrmions by Belov and Kochelaev62 showed that63s1/T1d
has also the nonmonotonic temperature dependence with the
slight increase atT.0.67J. In the present theory the calcu-
lated value of contribution to63s1/T1d relaxation rate from
spin diffusion atT=1000 K is 550 s−1 in perfect agreement
with 300–600 s−1 as estimated by Sokolet al.48 using the
exact diagonalization technique. However, their estimate was
based on the presence of disorder in CuO2 planes.

V. CONCLUSION

The theory for relaxation function in the two-dimensional
t-J model in the paramagnetic state is presented taking into
account the hole subsystem as well as both the electron and
antiferromagnetic correlations. The presentation obeys rota-
tional symmetry of the spin correlation functions and is valid
for all wave vectors through the Brillouin zone. The fit of
effective correlation lengthjeff to experimental data is in
agreement with the microsegregation hypothesis, where the
effect of doped holes affects the value of correlation length at
T→0 as,j0=1/nx, wheren is the average distance between
the holes along the domain walls. The best fit yieldsn=1.3
for samples withx&0.02 andn=2 for samples withx.0.02.
The expression for fourth frequency moment of relaxation
shape function is derived within thet-J model. The spin
diffusion contribution to relaxation rates is evaluated and is
shown to play a significant role in carrier free and doped
antiferromagnet in agreement with exact diagonalization cal-
culations. The convergence of contribution from spin diffu-
sion to spin-lattice relaxation rates is preserved by linear re-
sponse theory and hydrodynamics. At low temperatures the
nuclear spin-lattice relaxation rate,63s1/T1d, of plane 63Cu
has the main contribution from the AF wave vectorsp ,pd,
and the17s1/T1d, of plane17O, has the contributions from the
wave vectors in the vicinity ofsp ,pd and smallq,0. It is

shown that the theory is able to explain the main features of
experimental data on temperature and doping dependence of
copper nuclear spin-lattice relaxation rate in both carrier free
La2CuO4 and doped La2−xSrxCuO4 compounds.
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APPENDIX A

Various types of sums over lattice sites utilized for calcu-
lation of frequency momentskvk

2l andkvk
4l in the t-J model.

TheGij andDij symbols refer to hoppingt and(or) exchange
J between the first neighbors, whereasM and Q refer to
spin–spin correlation functionsc and(or) transfer amplitudes
T at the appropriate positions.di j is the delta function. The
sums forM andQ were calculated for up ton= u j − i uth neigh-
bors sn=2d,

gk ; scoskxa + coskyad/2,

1

N
o
i jlmr

dimdmrdlrDrj
2 GrjMrje

ik·sRm−Rrd = 4M1D
2G,

1

N
o
i jlmr

dmrdirGljDrj
2 Mlje

ik·sRm−Rrd = 16M1D
2G,

1

N
o
i jlmr

dirGlmGmrGrjMljMmre
ik·sRm−Rrd = 36M1

2G3gk ,

1

N
o
i jlmr

dmrGilGlrGrjMlrMije
ik·sRm−Rrd = 36M1

2G3,

1

N
o
i jlmr

dmjGilGlmGmrMlmMire
ik·sRm−Rrd = 36M1

2G3gk ,

1

N
o
i jlmr

dmjdlrdimGmr
3 Mmre

ik·sRm−Rrd = 4M1G
3gk ,

1

N
o
i jlmr

dirdlmDmr
2 GrjMrje

ik·sRm−Rrd = 16M1D
2Ggk ,

1

N
o
i jlmr

dimdlmDmj
2 GrjMrje

ik·sRm−Rrd = 16M1D
2Ggk

2,

1

N
o
i jlmr

dirdmrDlr
2GrjMrje

ik·sRm−Rrd = 16M1D
2G,
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1

N
o
i jlmr

dmjdilDlm
2 GmrMmre

ik·sRm−Rrd = 16M1D
2Ggk ,

1

N
o
i jlmr

dirGlmGmrGrjMrjMlmeik·sRm−Rrd = 64M1
2G3gk ,

1

N
o
i jlmr

dlrGirGimGrjMimMrje
ik·sRm−Rrd = 64M1

2G3gk
2,

1

N
o
i jlmr

dl jGijGimGrjMimMrje
ik·sRm−Rrd = 64M1

2G3gk
3,

1

N
o
i jlmr

dl jGimGmjGrjMimMrje
ik·sRm−Rrd = 64M1

2G3gk
2,

1

N
o
i jlmr

dl jdirGmrDrj
2 Qmje

ik·sRm−Rrd = 4D2Gs3Q2 + Q0dgk ,

1

N
o
i jlmr

dmrdi jGljDrj
2 Qlre

ik·sRm−Rrd = 4D2Gs3Q2 + Q0d,

1

N
o
i jlmr

dmrGlrGirGrjMijMlre
ik·sRm−Rrd = 16M1G

3s3M2 + M0d,

1

N
o
i jlmr

dirGlmGmrGrjMmjMlre
ik·sRm−Rrd = 4G3s3M2 + M0d2gk ,

1

N
o
i jlmr

di jGlmGmjGrjMmrMlje
ik·sRm−Rrd

= 4G3s3M2 + M0dsM2s4gk
2 − 1d + M0d,

1

N
o
i jlmr

di jDljDlmGrjQmjMlre
ik·sRm−Rrd

= 64Q2M2D
2Ggk

3 + 4sQ0M0 + 3Q0M2 + 3M0Q2

− 7M2Q2dG3gk ,

1

N
o
i jlmr

dl jdirDmrGrjDrjQmje
ik·sRm−Rrd = 4D2Gs3Q2 + Q0dgk ,

1

N
o
i jlmr

dl jGijGmjGrjMimMrje
ik·sRm−Rrd

= 16M1s3M2 + M0dG3gk
2,

1

N
o
i jlmr

dmrGilGlrGrjMirMlje
ik·sRm−Rrd = 4s3M2 + M0d2G3,

1

N
o
i jlmr

dmjGilGlmGmrMimMlre
ik·sRm−Rrd = 4s3M2 + M0d2G3gk ,

1

N
o
i jlmr

dlrGirGmrGrjMirMmje
ik·sRm−Rrd

= 16M1s3M2 + M0dG3gk ,

1

N
o
i jlmr

dl jGijGimGrjMijMmre
ik·sRm−Rrd = 36M1

2G3gk ,

1

N
o
i jlmr

dmjGlmGimGmrMirMlmeik·sRm−Rrd

= 16M1G
3s3M2 + M0dgk ,

1

N
o
i jlmr

dlrGirGimGrjMirMmje
ik·sRm−Rrd

= M1
2G3s12 + 16gk

2 + 8 coskxa coskyad,

1

N
o
i jlmr

di jGlmGmjGrjMlrMmje
ik·sRm−Rrd

= M1
2G3s12 + 16gk

2 + 8 coskxa coskyad,

1

N
o
i jlmr

dl jGijGmjGrjMijMmre
ik·sRm−Rrd

= 16M1G
3sM2s4gk

2 − 1d + M0d,

1

N
o
i jlmr

dl jGijGimGrjMmjMire
ik·sRm−Rrd

= 64M2
2G3gk

3 + 4sM0
2 + 6M0M2 − 7M2

2dG3gk ,

1

N
o
i jlmr

dmjGlmGimGmrMilMmre
ik·sRm−Rrd

= 16M1s3M2 + M0dG3gk ,

1

N
o
i jlmr

dirGlrGmrGrjMlmMrje
ik·sRm−Rrd

= 16M1s3M2 + M0dG3gk ,

1

N
o
i jlmr

dlrdi jDmjGrjDrjQmre
ik·sRm−Rrd

= 4D2GsQ2s4gk
2 − 1d + Q0d,

APPENDIX B

In this appendix the relations to compare the result for
frequency moments ofFsk ,vd in carrier free 2DHAF are
given.

For the second and fourth moments the result was16

kvk
2l2DHAF = −

8Js1 − gkd
xskdN o

q
gqSsqd, sB1d

and
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kvk
4l2DHAF = −

128J3

xskdN2o
pq

SspdSsqdFsk,p,qd, sB2d

where

Fsk,p,qd . gks− 2gpgq − 10gpgq
2 − 4gpgq

3 + gp
2gq

2d

+ gk
2s4gpgq + 3gpgq

2d − 2gk
3gpgq + 5gpgq

2 − gp
2gq

2

+ gpgq
3 + 5gpgqgk−q

2 + gk+p
2 gq

2 + 2gpgk−q
2

− 2gpgk−q
3 − gk+pgk−qgk+p−q. sB3d

Using the relation between correlation functions in momen-
tum and site representation:

Sskd ; kSk
zS−k

z l = o
ui−j uø2

kSi
zSj

zleik·sRi−R jd

= c0 + 4c1gk + 4c2s4gk
2 − coskxa coskya − 1d,

sB4d

performing the summation overk and q in (B2) and using
the necessary types of integrals(sums) over the Brillouin
zone as given below, we obtain the same expression, as
shown in (68), with teff=0 and settling to unity the decou-
pling parameterz=1. The integrals(sums) were calculated
analytically and checked numerically,

gq ; scosqxa + cosqyad/2,

o
p

gp = 0, o
q

gqgk−q
2 = 0, o

p
gp

3 = 0,

o
p

gp
4 = 9

64, o
p

gp
2 = 1

4 , o
q

gk−q
2 = 1

4 ,

o
p

gp cospxa cospya = 0, o
q

gq
3gk−q

2 = 0,

o
q

gq
2gk−q

2 = 1
16s 3

4 + 1
2 coskxa coskya + gk

2d ,

o
q

gqgk−q
3 = 9

64gk, o
q

gq
2 cosqxa cosqya = 1

8 ,

o
q

gk−q
2 cosqxa cosqya = 1

8 coskxa coskya,

o
p,q

gk+pgk−qgk+p−q = 1
16gk ,

o
p,q

gp
2gk+pgk−qgk+p−q = 9

256gk ,

o
p,q

cospxa cospyagk+pgk−qgk+p−q = 1
32gk ,

o
p,q

gp
2gq

2gk+pgk−qgk+p−q

= 1
256sgk

3 + 5
4gk coskxa coskya + 45

16gkd ,

o
p,q

cospxa cospyagq
2gk+pgk−qgk+p−q

=
3gk

512
s2 coskxa coskya + 1d,

o
p,q

cospxa cospya cosqxa cosqyagk+pgk−qgk+p−q

= 1
64 coskxa coskyagk .
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