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By use of the slave-boson mean-field approach, we have studied the electron-dopedt-t8-t9-J model in the
antiferromagnetic(AF) state. It is found that at low doping the Fermi surface(FS) pockets appear around
s±p ,0d ands0, ±pd, and upon increased doping the other ones will form arounds±p /2 , ±p /2d. The evolution
of the FS with doping as well as the calculated spectral weight are consistent with the experimental results.
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Recent angle-resolved photoemission spectroscopy
(ARPES) measurements1,2 have revealed the doping evolu-
tion of the Fermi surface(FS) in electron-doped cuprate
Nd2−xCexCuO4. It was found that at low doping a small FS
pocket appears aroundsp ,0d, in contrast to the hole-doped
case where the low-lying states are centered at momentum
sp /2 ,p /2d. Upon increased doping another pocket begins to
form aroundsp /2 ,p /2d and eventually at optimal doping
x=0.15 the several FS pieces evolve into a large curve
aroundsp ,pd.

The ARPES data provide clear evidence for electron-hole
asymmetry in high-temperature superconductors. This asym-
metry has already been seen in the temperature/doping phase
diagram, where the antiferromagnetic(AF) phase is much
more robust and at the same time the superconducting(SC)
one is much narrower in the electron-doped materials. To
understand it, the role of the long-range hoppingst8 and t9
was stressed. Based on thet-t8s-t9d-J model, the single-hole/
electron behavior and its excitation spectrum have been stud-
ied by various methods.3–7 It was shown that a doped hole
enters into the lowest energy state at momentumsp /2 ,p /2d,
while a doped electron goes into that atsp ,0d. The excitation
spectrum for the slightly hole/electron-dopedt-t8-t9-J model
has also been investigated by the variational Monte Carlo
technique,8 which provides an explanation for the different
FS structure in the hole- and electron-doped cuprates at low
doping. In all these studies, the electron-doped Hamiltonian
has been mapped onto the hole-doped one with extra minus
signs for the hopping parameters,3,8 thus both electron- and
hole-doped systems have been treated in the same manner.

On the other hand, it was claimed recently by Kuskoet
al.9 that the use oft-U type models is essential in the study
of electron-doped cuprates. By mean-field(MF) treatment on
the t-t8-t9-U model they have found that the FS evolution
with doping in the AF state is consistent with the ARPES
results. But in their theory the on-siteU is treated as a
doping-dependent effective parameter phenomenologically.

It is not clear whether a different Hamiltonian should be
constructed when electron-doped cuprates are studied. At
least one would ask if thet-t8-t9-J model could have repro-
duced the FS evolution in the electron-doped case(even
without argument of any doping-dependent parameter as

done by Kuskoet al.). As already stated above, for the single
or slightly electron-doped case thet-t8-t9-J model has given
good results compared with the experiments. Naturally the
same model should be further studied atfinite doping.

Another concern for the choice oft-J type models is the
SC pairing symmetry. It is now generally believed that the
SC gap in hole-doped cuprates has ad-wave symmetry. And
the theoretical studies were substantially based on thet-J
type models. Although not well clarified, it has been strongly
suggested by various experimental measurements such as
phase sensitive,10 tunneling,11 ARPES,12 penetration
depth,13–15 etc. that the pairing symmetry is alsod wave for
electron-doped cuprates at low and optimal doping. Thus one
would expect that thed-wave superconductivity in both
electron- and hole-doped cuprates may be understood by a
unified t-J type model.

In this paper we study thet-t8-t9-J model by use of the
slave-boson MF approach in the electron-doped case. In con-
sideration of the AF order, the energy bands and the corre-
sponding FS are calculated in the magnetic Brillouin zone
(MBZ). The experimentally observed FS evolution with dop-
ing is reproduced, essentially, a pocket appears first around
sp ,0d, and another one shows up aroundsp /2 ,p /2d upon
increased doping.

The t-t8-t9-J model Hamiltonian is written as

H = − t o
ki j ls

scis
† cjs + h.c.d − t8 o

ki j l2s

scis
† cjs + h.c.d

− t9 o
ki j l3s

scis
† cjs + h.c.d + Jo

ki j l
SSi ·Sj −

1

4
ninjD

− m0o
is

cis
† cis, s1d

wherek l, k l2, k l3 represent the nearest neighbor(n.n.), sec-
ond n.n., and third n.n. sites, respectively, and the rest of the
notation is standard. No double occupancy is allowed in the
model. The Hamiltonian is essentially the same as that in the
hole-doped case except here for electron-doping,t,0,
t8.0, andt9,0.3,4,7 Throughout the workutu is taken as the
energy unit. Since we mainly focus on the qualitative results,
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no model parameters are fine-tuned. Typical values are
adopted:t8=0.3, t9=−0.2, andJ=0.3.

We make use of the slave-boson transformation, i.e.,cis
=bi

†f is with bi: bosonic holon operator,f is: fermionic spinon
operator and the constraintbi

†bi +osf is
† f is=1 at each site.

Since we are interested in low temperatures, boson conden-
sation is assumed, i.e.,kbil=kbi

†l=Îd (d: doping concentra-
tion). Then we decouple the Hamiltonian by defining the MF
parameters:

kf is
† f isl = s1 − dd/2 + ss− 1dim

[thus m=s−1dikSi
zl representing the AF order] and the uni-

form bond order

kf is
† f jsl = x.

Based on the above treatment, the Hamiltonian(1) can be
expanded as follows in momentum space(up to irrelevant
constants)

H = o
k,s

s«kfks
† fks + «k+Qfk+Qs

† fk+Qsd − 2Jmo
k,s

ssfks
† fk+Qs

+ h.c.d + 2NJsx2 + m2d, s2d

where «k=s2utud−Jxdscoskx+coskyd−4t8d coskx cosky

−2t9dscos 2kx+cos 2kyd−m, Q=sp ,pd, and N is the total
number of lattice sites. The chemical potential is renormal-
ized: m=m0−l+Js1−dd with l: the Lagrange multiplier.
(The local constraint has been relaxed to the global one.)
Note that the summation tok is over the MBZ: −p,kx±ky
øp.

By use of the following unitary transformations:

S fks

fk+Qs
D = S cosuk s sinuk

s̄ sinuk cosuk
DSaks

bks
D , s3d

with

cos 2uk = s«k+Q − «kd/Îs«k+Q − «kd2 + 4s2Jmd2, s4d

the Hamiltonian(2) can be diagonalized into

H = o
ks

sjkaaks
† aks + jkbbks

† bksd + 2NJsx2 + m2d, s5d

with the energy bands

jka,b = s«k + «k+Qd/2 7 Îs«k+Q − «kd2/4 + s2Jmd2. s6d

The free energy is simply given byskB=1d

F = − 2T o
h=a,b

o
k

lns1 + e−jkh/Td + 2NJsx2 + m2d. s7d

The MF parametersm andx are then decided bys]F /]mdm

=0 ands]F /]xdm=0. The chemical potentialm is adjusted to
yield the right filling: −s]F /]md=Ns1−dd. For each given
doping d and temperatureT, the quantitiesm, x, andm are
calculated self-consistently.

In Fig. 1 we give the results form andx as functions of
doping atT.0. It is seen that the staggered magnetization
decreases with increasing doping, and goes sharply to zero at
aroundd=0.145. The AF order is overestimated due to the

MF treatment: for example, in the undoped casesd=0d, one
hasm=0.5, which is larger than the accurate value 0.3 for the
two-dimensional Heisenberg model. In spite of this, the ob-
tained energy bands are still instructive to understand the
experimental observation as shown below.

The energy dispersions are plotted in Fig. 2, and the cor-
responding Fermi surfaces in Fig. 3. Note that the beginning
Hamiltonian(1) with t,0 (and t8.0, t9,0) is already the
transformed version after particle-hole transformation, thus
doping electron actually means doping hole in our treatment.
For the same reason,jka,b in Fig. 2 should be inverted, i.e.,
jka,b→−jka,b if they are understood as the energy bands for
the original electrons. The Matsubara Green’s function for
the f-operator is simply written down: Gsk, ivnd
=cos2 uk/ sivn−jkad+sin2 uk/ sivn−jkbd. And the single par-
ticle sc-electron) spectral function is Ask,vd=
−sd /pdIm Gsk, ivnduivn→v+i0+. The density plots for

edvAsk,vd / s1+e−v/Td over an energy interval around the
Fermi level have been shown in Fig. 4 for a few dopings. We
come to see the details in the following.

At low doping sd=0.04d, the Fermi level crosses only the
a-band. The low-energy states are aroundsp ,0d and equiva-
lent points, are consistent with the numerical results based on
the single/slightly electron-doped systems.3,4,8 Correspond-
ingly small FS pockets appear arounds±p ,0d and s0, ±pd,
as shown by the upper-left panel of Fig. 3(see also the left
panel of Fig. 4). The energy gap above the Fermi level at
sp /2 ,p /2d is about 0.44utu.0.15 eV (if typical utu
=0.35 eV is taken), which is in the same energy scale
,0.2 eV as measured by ARPES.1,2 With increasing doping
sd=0.1d, the staggered magnetization is reduced. Then the
two bands become close to each other and the energy mini-
mum of theb-band atsp /2 ,p /2d shifts towards the Fermi
level. The FS is still contributed by the singlea-band: the
pockets arounds±p ,0d and s0, ±pd expand. Although the
b-band has not touched the Fermi level, it may contribute
enough strong spectral intensity aroundsp /2 ,p /2d if it fur-
ther approaches the latter with increasing doping. This is
evidenced by the middle panel of Fig. 4 ford=0.12, where
finite spectral intensity is clear aroundsp /2 ,p /2d. Also
there, it is observed that half of the square aroundsp ,0d

FIG. 1. The MF parametersm andx (negative) as functions ofd
at T=0.001u tu. The model parameters are taken as:t8=0.3, t9=
−0.2, J=0.3 (in units of utu).
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loses much of its intensity, consistent with the ARPES find-
ings. When doping continues to increase, e.g., ford=0.144,
the two bands are strongly overlapped and both crossed by
the Fermi level. New FS pockets centered ats±p /2 , ±p /2d
contributed by theb-band will emerge, as shown by the solid
lines in the lower-left panel of Fig. 3. If the FS curves for
a-band(the dashed lines) are moved outside of the MBZ by
the wave vectorQ, one will see totally three FS pieces in the
first quadrant, which, when looked together, are close to a
large curve around the pointsp ,pd. This is more explicitly

seen from the spectral intensity as shown in the right panel of
Fig. 4. From the above, we can see that the FS evolution with
doping is in essential agreement with the ARPES
measurements.1,2

Eventually, whend=0.145, the AF order breaks down.
The two bands touch, which will merge into a single band
when plotted in the original Brillouin zone. This is suggested
by the lower-right panel of Fig. 3, where a single continuous
FS curve will form in the first quadrant if the dashed lines
are moved outside of the MBZ byQ.

FIG. 2. The energy dispersions
for different dopings. In each
panel, the solid and dashed lines
are for b and a bands, respec-
tively, and the Fermi energy is
fixed at zero.

FIG. 3. The Fermi surfaces
plotted in the MBZ: one-to-one
correspondence to the energy
bands shown in Fig. 2.
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The energy bands at finite doping as shown in Fig. 2 are,
if inverted, qualitatively similar to those obtained by Kusko
et al. based on thet-t8-t9-U model, see Fig. 2 in Ref. 9. In
order to realize the appearance of the pocket around
sp /2 ,p /2d at a relatively large doping, Kuskoet al.9 intro-
duced the doping-dependentU-Ueffsdd. Then the issue,
whether the pocket aroundsp /2 ,p /2d really appears or not,
is dependent on the phenomenological form ofUeffsdd. But
the latter is not unambiguously clarified. In the currentt-t8
-t9-J model no parameters are introduced. Actually in our
approach, the hoppings have been effectively multiplied by a
factord. We notice that the pocket aroundsp /2 ,p /2d shows
up naturally upon increased doping.

We would also mention that, due to the intrinsic limitation
of the MF treatment, some ARPES data are not explained,
for example, the development of the spectral weight inside
the gap. This needs the study beyond MF, as recently done
by Kusunose and Rice.16

So far we have studied the FS evolution with doping
based on thet-t8-t9-J model. Very recently the similar model
was adopted by Liet al.17 to calculate the spin dynamics in
the SC and normal states around the optimal doping, and
consistent results with neutron scattering data on
Nd2−xCexCuO4 sx=0.15d (Ref. 18) were obtained. It shows
that the t-J type models may be available in the study of

electron-doped cuprates. On the other hand, more theoretical
predictions based on them are needed. As an example, fol-
lowing Li et al. one may further calculate the spin dynamics
in the AF state. As already shown above, within certain dop-
ing region the two energy bands are both crossed by the
Fermi level. It is expected that the interband excitation will
lead to characteristic spin susceptibility. Another interesting
topic is to investigate the potential spinon pairing under the
AF background and the possible coexistence of the AF and
SC states. Note that the pairing here is special due to the
existence of two bands around the Fermi level.(A similar
situation seems not to be present in the hole-doped case.)
The studies on these issues are in progress.

In conclusion, the electron-dopedt-t8-t9-J model has been
studied in the AF state. By using slave-boson MF treatment
we have calculated the two energy bands in the MBZ. It was
shown that at low doping only one band is crossed by the
Fermi level and small FS pockets appear arounds±p ,0d and
s0, ±pd. Upon increased doping, the other band will be
crossed and new FS pockets form arounds±p /2 , ±p /2d.
The evolution of the FS with doping and the calculated spec-
tral weight are in good agreement with the ARPES data.

This work was supported by the Texas Center for Super-
conductivity at the University of Houston and the Robert A.
Welch Foundation.
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FIG. 4. The maps for spectral weight, ob-
tained by integratingAsk,vd times the Fermi
function over an energy intervalf−0.06,0.12gutu
(<f−20,40g meV corresponding to that adopted
in the ARPES experiments) around the Fermi
level. Highs are denoted by white and lows by
black.
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