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We report our results on vortex penetration in two realizations of heterogeneos magnetic superconducting
systems(HMSS) based on the London approach; semi-infinite ferromagnetic(FM)-superconducting(SC) bilay-
ers and a FM dot on a semi-infinite SC film. In the first case, we study quantitatively the vortex entry in FM-SC
bilayers which manifests Bean-Livingston-type vortex barrier, controlled by FM film’s magnetizationm and
SC film’s Ginzburg parameterk. In the second case, we investigate the conditions for sponteneous vortex
creation and determine the position of vortex for various values of magnetization and the dot’s position.
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I. INTRODUCTION

Heterogeneous magnetic superconducting systems
(HMSS) are made of ferromagnetic(FM) and superconduct-
ing (SC) pieces separated by thin layers of insulating oxides.
In contrast to the case of a homogeneous ferromagnetic su-
perconductor studied during the last two decades, the two
order parameters, the magnetization and the SC electron den-
sity do not suppress each other.1,2 In HMSS, the strong in-
teraction between FM and SC components stems from the
magnetic fields generated by the inhomogeneous magnetiza-
tion and the supercurrents as well as SC vortices. Strong
interaction of the FM and SC systems not only gives rise to
a new class of novel phenomena and physical effects, but
also shows the important technological promise of devices
whose transport properties can be easily tuned by compara-
tively weak magnetic fields.

Various theoretical realizations of HMSS have been pro-
posed by different groups, such as arrays of magnetic dots on
the top of a SC film,1,3 ferromagnetic/superconducting bilay-
ers (FSB),4 and magnetic nanorods embedded into a
superconductor,5 whereas only submicron magnetic dots
covered by thin SC films have been prepared and studied.6–8

The experimental samples of FM-SC hybrid systems were
prepared by means of electron beam lithography and lift-off
techniques.9 Both in-plane and out-of-plane magnetization
was experimentally studied. The dots with magnetization
parallel to the plane were fabricated from Co, Ni, Fe, Gd-Co,
and Sm-Co alloys. For the dots with magnetization perpen-
dicular to the plane which requires high anisotropy along
hard-axis, Co/Pt multilayers were used.10

In the most of theoretical studies, the SC subsystem is
considered to be an infinite size for the sake of computa-
tional simplicity. To this date, boundary and edge effects in
FM-SC heterostructures have drawn very little attention,11

though vortex entry conditions in type II superconductors
have been extensively studied earlier.12–14 However, from
both the experimental and theoretical point of view, finite or
semi-infinite systems are more interesting and realistic, and
their study offers better understanding of vortex matter in
HMSS. The author also believes that analytical and quanti-
tative study of aforementioned systems will shed light on
solving other open problems pertaining to HMSS. For ex-
ample, we earlier predicted that in a finite temperature inter-

val below the SC transition the FSB is unstable with respect
to SC vortex formation in FM-SC bilayers(FSB).15 The slow
decays~1/rd of the long-range interactions between Pearl
vortices makes the structure that consists of alternating do-
mains with opposite magnetization and vorticity energeti-
cally favorable. It is possible that the long domain nucleation
time can interfere with the observation of described textures.
We also expect that domain nucleation starts near the edge,
which makes qualitative study of edges in aforementioned
systems necessary. Quantitative study of this dynamic pro-
cess is still in progress. For this purpose, and having been
motivated by current interest in HMSS, in this work, we
attempt to study vortex entry conditions in HMSS. To our
purpose, we work with a method based on London-Maxwell
equations, which is fully explained elsewhere.16 The London
approach works well for large Ginzburgsk=leff /j@1d pa-
rameter, whereleff=lL

2 /d is the effective penetration depth,17

and j is coherence length. Indeed, for thin SC films, the
Ginzburg parameter is on order of 50–100. Previously, our
method was introduced for vortex structures in infinite films.
Here, we extend it to semi-infinite systems. To this end, we
benefit from Kogan’s work on a Pearl vortex near the edge of
SC thin film in which SC piece’s size is considered to be
semi-infinite.18 Likewise, we consider FM subsystems on
semi-infinite SC and FM subsystems in which, we assume
that magnetization points perpendicular to the FM film’s
plane.

In this work, we first consider semi-infinite SC and FM
films and study vortex entry barrier. Our calculations show
that there exists Bean-Livingston-type surface barrier19 for
the vortices created by FM film. Next, we consider a circular
magnetic dot near the film’s edge and investigate the condi-
tions for vortices to appear and their configurations. It turns
out that, in contrast to the infinite systems, vortices are not
trapped right at the dot’s center, but they are shifted slightly
from the center to the SC film’s edge or opposite direction,
depending on the dot’s magnetization, position, and size. The
physics behind this effect is simple. In the semi-infinite sys-
tems, the vortex interacts with both its image vortex and the
magnetic dot. The competition between these two attractions
determines the vortex’s position. The outline of this articles
is as follows: in the first section, we introduce the method to
study edge effects in FM-SC systems. In the next section, we
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apply our method based on Maxwell-London equations to
two different cases: semi-infinite FM-SC bilayers and FM
dot on a semi-infinite SC film. We conclude with results and
discussions.

II. METHOD

Finite and semi-infinite systems are not as easy and
straightforward as infinite systems, and they usually require
more careful treatment due to the boundary of the systems.
Earlier, Kogan developed a clever technique based on Lon-
don approach to study a vortex near the 2D film’s edge.18

While developing our method, we stick to his technique and
geometry in which a very thin SC film is located at thex–y
half-plane while its edge is atx=0 (see Fig. 1), and general-
ize his method for more than one vortex. We also assume
that no vortex is closer to the SC film’s edge than coherence
lengthj, because London theory does fail in the vicinity ofj.

We start with London equation for the vortices with vor-
ticity nj located atr j,

h +
4plL

2

c
¹ 3 j s = f0ẑo

j

njdsr − r jd, s1d

wherej s is supercurrent density in the SC subsystem. In the
presence of the FM subsystem which is also considered to be
very thin and located at thex–y half plane as the SC sub-
piece, Eq.(1) turns to

h +
4plL

2

c
¹ 3 j =

4plL
2

c
¹ 3 j m + f0ẑo

j

njdsr − r jd,

s2d

wherej = j s+ j m and j m=c¹ 3m. Averaging Eq.(2) over the
thickness of the SC film, one finds

hz +
4pl

c
s¹ 3 gdz = S4pl

c
¹ 3 gmD

z
+ f0o

j

njdsr − r jd,

s3d

whereg is the 2D current density, which can be calculated by
solving Eq.(3) together with the Biot-Savart integral equa-
tion and the continuity equation¹ ·g=0. In terms of the sur-
face current, the Biot-Savart equation is given by

hz =
1

c
E d2r 8fgsr 8d 3 R/R3g, s4d

whereR=r −r 8. Defining the surface current density in terms
of a scalar functionGsr d as g=¹3Gsr dẑ, using R /R3

=¹8s1/Rd and integrating Eq.(4) by parts, one can obtain

hz =
1

c
E

x8.0
d2r 8

¹2Gsr 8d
R

+E
−`

`

dy8S ]x8Gsr 8d

R
D

x8=0
,

s5d

where the first term gives the contribution from the entire
surface current distribution whereas the second term is the
contribution from the film’s edge. The direct substitution of
Eq. (5) into Eq. (2) gives

E
x8.0

d2r 8
¹2Gsr 8d

R
+E

−`

`

dy8S ]x8Gsr 8d

R
D

x8=0
+ 4pl¹2Gsr d

= − cf0o
j

njdsr − r jd − 4pls¹ 3 gmdz. s6d

Solving the above equation in half-plane is difficult. How-
ever, this difficulty can be removed by solving(6) in the
Fourier space and using the boundary conditions. That is, at
the film’s edgesx=0d, the normal component of current den-
sity is zero, namelygxs0,yd=0, whereas, at infinity the cur-
rent distribution vanishes. This implies that the scalar func-
tion is constant at the films boundaries. For simplicity, it can
be set to zero. To haveG vanish at the edge, we setGs
−x,yd=−Gsx,yd. The Fourier transform of Eq.(6) reads

E
0

`

dx8e−ikxx8s]x8
2 − ky

2dGsx8,kyd

+E
−`

`

dy8f]x8Gsr 8dgx8=0e
−ikyy8 − 2lk3Gskd

= i
cf0

p
ko

j

nje
−ikyyj sinskxxjd − 2lksik 3 gm,kx

dz, s7d

wherek =skx,kyd. Replacingx8 by −x8 and writing the Eq.
(7) for −kx, one obtains

E
0

−`

dx8e−ikxx8s]x8
2 − ky

2dGsx8,kyd

+E
−`

`

dy8f]x8Gsr 8dgx8=0e
−ikyy8 + 2lk3Gskd

= − i
cf0

p
ko

j

nje
−ikyyj sinskxxjd − 2lksi k̃ 3 gm,− kx

dz,

s8d

where k̃ =s−kx,kyd. Subtracting(8) from (7), the vortex and
magnetic parts of the scalar function are found as

Gvskd =
2cf0

ip
o

j

nj
e−ikyyj sinskxxjd

ks1 + 4lkd
, s9d

Gmskd = 2li
fk 3 gm,kx

− k̃ 3 gm,− kx
gz

ks1 + 4lkd
. s10d

Taking the inverse Fourier transform of Eq.(9), the vortex
contribution in real space is found as

FIG. 1. Semi-infinite FM-SC bilayer.
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Gvsr d =
cf0

2p2o
j

njE
0

` sJ0skur − r jud − J0skur + r̃ judd
1 + 4kl

dk.

s11d

Note that the first term in(11) represents thej th vortex lo-
cated atr j =sxj ,yjd, whereas the second term is the contribu-
tion of the j th image vortex, or antivortex, atr̃ j =s−xj ,yjd.
Next, we calculate the 2D current density. Keeping in mind
that it is discontinuous at the film’s edge, the Fourier com-
ponents of the current density read

gsx . 0,yd =E d2k

s2pd2sik 3 ẑdGskdeik·r ,

gsx , 0,yd = 0. s12d

Using Eq. (12), one can compute vector potential and the
magnetic field through

A =
4p

c

g

Q2, h =
4p

ic

g 3 Q

Q2 , s13d

whereQ=k +kzẑ. Taking the inverse Fourier of Eq.(13), the
vector potential is found as

Afsr d =
f0

p
o

j

njE
0

` sJ1skur − r jud − J1skur + r̃ judde−kuzu

1 + 4lk
dk.

s14d

At the SC film’s surfacesz=0d, vector potential for one vor-
tex with vorticity n, located atr =a reads

Afsr d =
nf0

4lp
S 4l

ur − au
−

4l

ur + ãu
+

p

2
FY1S ur − au

4l
D

+ H−1S ur − au
4l

D − Y1S ur + ãu
4l

D + H−1S ur + ãu
4l

DGD ,

s15d

whereH and Y are the Struve and the second kind Bessel
fuctions. At short distancessr !ld, Af behaves as
snf0/16pl2dfs−1/4+C/2− ln 2/2dsur −au− ur +aud+ ur
−aulnsur −au /4ld− ur +aulnsur +au /4ld whereas, at large dis-
tances, it decays slowly in space, namelysf0/pds1/ur −au
−1/ur +aud. C=0.577. . . is a Euler constant. Magnetic field
due to the vortex in thez direction reads

hzsr d =
nf0

p
E

0

` sJ0skur − aud − J0skur + auddke−kuzu

1 + 4lk
dk.

s16d

At z=0, the magnetic field reads

hzsr d =
nf0

4lp
S 1

ur − au
−

1

ur + au
−

p

8l
FH0S ur − au

4l
D

− Y0S ur − au
4l

D − H0S ur + au
4l

D − Y0S ur + au
4l

DGD .

s17d

The asymptotics of the magnetic field at small and large
distances are

hz ,
nf0

4pl
S 1

ur − au
−

1

ur + au
+

1

4l
ln

ur − au
ur + auD r ! l,

s18d

hz ,
4nlf0

p
S 1

ur − au3
−

1

ur + au3D r @ l. s19d

The total energy of the FM-SC system reads

E = Ev + Evm + Em, s20d

whereEv is the vortex energy,Evm is the interaction of vortex
and magnetic subsystem, and finallyEm is self-energy of the
magnetic subsystem, which will be ignored at further calcu-
lations, since it is inappropriate for our problem. Vortex en-
ergy is calculated by Kogan18 as

Ev = o
i,j

8 nif0

2c
Gvsr → r jd, s21d

whereo8 denotes the restricted sum in which onlyi = j and
i . j are taken into account. Equation(21) leads to

Ev = o
i

ni
2f0

2

16p2l
Fln

8l

eCj
−

p

2
F0S xi

2l
DG

+ o
i. j

p«0ninjFF0S r i − r j

4l
D − F0S r i + r j

4l
DG , s22d

where F0sxd=Y0sxd−H0sxd. Vortex-magnetization interac-
tion energy is calculated as in16

Evm = −
f0

16pl2 E ¹ w ·amd2x −
1

2
E m ·bvd2x, s23d

where integration is performed over the half-space. Note that
we takel /j=50 in our numerical calculations.

A. Semi-infinite FM-SC bilayers

In this part, we study a semi-infinite FM film on top of a
semi-infinite SC film. Both films are taken to be very thin, lie
on thex–y half-plane, whereas their edges are located atx
=0 (see Fig. 1). We assume that FM film has uniform mag-
netization along thez direction and has high anisotropy, so
that its magnetization does not change direction due to the
magnetic field of the vortex. The magnetization of the FM
film reads

m = musxddszdẑ. s24d

Magnetic current in real space and Fourier space is given as
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gm = − mcdsxdŷ, gm,k = − 2pmcdskydk̂y. s25d

Substituting Eq.(24) into Eq. (10), one can find the scalar
potential as

Gmskd = − 8plmci
kxdskyd

ks1 + 4lkd
. s26d

Taking the inverse Fourier transform of Eq.(26) we find

Gmsxd =
mc

p
fS x

4l
D , s27d

where fsxd=e0
`dkx sinskxxd / s1+kxd. The asymptotics offsxd

are

fsxd <
p

2
+ xslnsxd + C − 1d,x ! 1, s28d

fsxd <
1

x
,x @ 1.

Using Eq. (12) and (13), the z component of the screened
magnetic field atz=0 due to the FM film, reads

hzsr d =
m

4l
E

0

` kx sinSkx
x

4l
D

1 + ukxu
dkx. s29d

The magnetic field decays as 1/x for x!l and 1/x2 for x
@l. In order to study vortex configuration, we need to cal-
culate total effective energy of the system. To this end, we
consider a simple case, namely a vortex with a single flux
located atr =a. For this case, vortex energy for a single
vortex reads[see Eq.(22)]

Ev =
f0

2

16p2l
Fln

8l

elj
−

p

2
F0S a

2l
DG , s30d

wheras the vortex-magnetization interaction energy can be
calculated by means of Eq.(23),

Evm = − mf0F1 −
2

p
fS a

4l
DG . s31d

The sum of Eqs.(22) and (31) gives the effective total
energy of the system. Vortex becomes energetically favorable
when effective total energy becomes less than zero. Equating
the effective energy to zero, one can obtain the curve for
spontenous creation of the vortex. This curve,

mf0

«0
=

lnS 8l

elj
D −

p

2
SH0S a

2l
D − Y0S a

2l
DD

1 −
2

p
fS a

4l
D s32d

separates the regions where the vortex appears spontaneously
and does appear as seen in Fig. 2. For large values of the
mf0/«0 ratio, the vortex comes out near the edge. On the
other hand, it prefers going further away from the surface for
a small ratio ofmf0/«0. We can estimate the minimum value
of magnetization of the FM film through effective energy for

infinite films,16 which isEeff=«0 lnsl /jd−mf0. Equating this
equation to zero and solving it form, we find mc1
=f0/ s16p2l lnsl /jdd. When magnetization exceeds this
value, the vortex appears very far away from the edge. In
order to get the vortex to appear close to the edge,m must be
significantly larger thanmc1. Another interesting thing is that
the system manifests a Bean-type surface barrier for the vor-
tex. The surface barrier is controlled bymf0/«0 and Gin-
zburg parameterk. We analyze three regimes for this ratio
for fixed k=l /j. Whenm,mc1, vortex does not appear(see
Fig. 3). In the second regime,mc1,m,mc2, vortex prefers
going further away from the surface, whereas, whenm.mc2,
the barrier disappears(see Fig. 4). mc2 is the second critical
magnetization, at which barrier disappears, and can be cal-
culated through the condition that the slopeu]Etot/]xux=j is
zero, which gives mf0/«0<2pk / lns4kd. When ratio
mf0/«0 is greater than this, the barrier disappears. Physi-
cally, two contributions play an important role for the vortex
barrier. Namely, the vortex is attracted to the SC film’s edge
through its attraction towards image vortex whereas it is re-

FIG. 2. Phase diagram of a single vortex created by the semi-
infinite FM film. In the region below the curve, the vortex does not
appear, whereas it becomes energetically favorable in an area above
the curve.

FIG. 3. The effective energy versus the vortex’s position. When
m,mc1, the vortex does not appear.
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pelled by the FM film’s edge. Competition between these
two factors controls the barrier(see Fig. 5).

B. FM dot on a semi-infinite SC film

In this case, we study a circular FM disc on top of semi-
infinite SC film. Earlier, we studied the conditions for the
vortex states to appear on a similar system, in which SC film,
however was infinite. Due to the circular symmetry of the
FM dot, vortex was appearing at the dot’s center. In this
section, we study the vortex states in more realastic case and
investigate the role of edge effects on the spontaneous for-
mation of the vortex due to the FM dot. To this end, we start
with the magnetization of a circular FM disc located atr d
=sxd,0d,

m = musR− ur − r duddszdẑ, s33d

whereR is the radius of the circular dot. The Fourier trans-
form of Eq. (33) reads

mk = 2pmR
J1skRde−ikxxd

k
. s34d

Using Eqs.(10), (12), and (13) together with Eq.(34), one
can calculate the screened magnetic field due to the FM dot
as

hzsr,zd = 4pmlR

3E
0

` J1skRdfJ0skur − r dud − J0skur + r dudgk2e−kuzu

1 + 4lk
dk.

s35d

Outside the dot, magnetic field decays rapidly in space,
namely, for r !l, ,1/r3, whereas forr !l, ,1/r5. From
Eq. (23), the vortex-magnetic disc interaction energy reads

Evm = − mf0RE
0

`

J1skRd
fJ0skur d − aud − J0skur d + audg

1 + 4lk
dk.

s36d

After we formulate the total effective energy asE=Ev+Evm,
whereEv is given in Eq.(30), we study the conditions for a
vortex to appear spontaneously. The criteria for spontaneous
vortex formation is that effective energy becomes negative.
However, vortex in semi-infinite systems also interacts with
its image. Therefore, it is necessary to minimize total effec-
tive energy with respect to the vortex position. To this end,
we first fix the dot’s location and value ofmf0/«0 and vary
the vortex’s position afterwards, to find the minimum total
effective energy. In our calculations, we investigate where
vortex first comes out, and how it is shifted with a further
increase ofmf0/«0. For this purpose, we determine the vor-
tex’s position for different values of therd/l, R/l, and
mf0/«0, by optimizing the total effective energy. Our results
are shown in Table I and Fig. 6.

According to our calculations, vortex appears first close to
the edge exceptrd/Rù10 case, in which it sits at the dot’s
center. On the other hand, whenmf0/«0 is increased further,
vortex is first shifted towards the dot’s center. With further
increase ofmf0/«0, it drifts away from the dot’s center.
However, this is not always the general picture. In the case of
rd/R.5/3, vortex is located at the dot’s center even for
large values ofmf0/«0. However, for larger dot’s sizes
(rd/R,1 and rd/lù2) vortex first appears away from the
dot’s center. This situation differs from the vortex in an infi-

FIG. 4. The effective energy versus the vortex’s position. When
mc1,m,mc2, the surface barrier shrinks toward the edge of the SC
film, and the vortex is created a little further from the edge.

FIG. 5. The effective energy versus the vortex’s position. When
m.mc2 the barrier disappears, and the vortex can be seen anywhere
in the SC film.

TABLE I. The position of vortices for different values of the
rd/l, R/l, andmf0/e0. The two columns on the left are input.

rd/l R/l a/l mf0/e0

2.0 2.0 2.04 17

2.0 2.0 2.32 187

3.0 3.0 3.12 31

3.0 3.0 3.44 132

4.0 4.0 4.20 11

4.0 4.0 4.56 185
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nite system. In the latter, only the force acting on the vortex
stems from the vortex-magnetization interaction, and due to
the dot’s circular symmetry, it comes out at the dot’s center.
However, in this case, there is another force coming from the
vortex-image vortex, which decays slowly,1/r for large
distancesr .l and pulls the vortex towards the SC film’s
edge, whereas the force exerted by the magnetic dot pushes
the vortex towards the dot’s center. As a result, the vortex’s
position is determined by the balance between these two
forces.

III. CONCLUSIONS

In this article, we studied vortex entry conditiions in
HMSS. First, we generalized Kogan’s method for quantita-
tive study of semi-infinite HMSS. For applications, we first
considered semi-infinite FM film on top of a semi-infinite SC
film. The quantative analysis of this system showed that the
vortex undergoes Bean-type barrier which is controlled by

two intrinsic properties of the system; FM film’s magnetiza-
tion m and Ginzburg parameterk. Note that our result is
valid only for a single flux. Our study for the case of several
fluxes will be published elsewhere. Secondly, we studied a
single circular FM dot on a semi-infinite SC film. We ana-
lyzed the conditions for sponteneous vortex creation and vor-
tex location for various positions of the dot. It turns out that
the vortex does not always appear at the dot’s center, which
differs from the case in which there is a similar dot on an
infinite SC film. In closing, there are two important contri-
butions in semi-infinite HMSS: attraction of vortex to the
edge through its image vortex and vortex-magnetization in-
teraction. As a result of competion betweeen these two fac-
tors, peculiar physical effects which do not come out in in-
finite HMSS, appear. In this work, we studied the simplest
cases to get an idea about edge effects in HMSS. However,
there are still several interesting realizations that can be stud-
ied via the method that is developed here. We leave them for
possible future works.

FIG. 6. Position of the vortexa/l versusmf0/«0 for various locationsrd/l and sizesR/l of the magnetic dot.
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