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Mechanism of high-temperature superconductivity in a striped Hubbard model
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It is shown, using asymptotically exact methods, that the two-dimensional repulsive Hubbard model with
strongly modulated interactions exhibits “high-temperature superconductivity.” Specifically, the explicit modu-
lation, which has the same symmetry as period 4 bond-centered stripes, breaks the system into an alternating
array of more and less heavily hole-doped, nearly decoupled two-leg ladders. It is shown that this system
exhibits a pairing scale determined by the spin gap of the undoped two-leg ladder, and a phase ordering
temperature proportional to a low positive power of the interladder coupling.
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Much has been written concerning the mechanism of XSC(T)~A5/T2_K_1: (1)
high-temperature  superconductivity HTC) since the
discovery of the cuprate superconductors in 1986, and in-whereK is the charge Luttinger parameter ands the tem-
deed even before that. However, what is meant by “thdderature. This sounds like a promising start. However, a non-
mechanism” is rarely defined, and clearly evokes differenZeroT is impossible in one dimensiqiD), so that to have
images for different authors. The BCS mechanism, in whict chance of a high transition temperature, interladder cou-
pairing is a consequence of a weak induegtlaction pro- pImgs must be _taken into account. If gll the ladders are
duced by the exchange of phonons between We”_deﬁnegquwalent(? caricature of a perloq 2 stripe ordered or col-
quasiparticles, is not only consistent with a remarkable num‘™mM" staté*3, we shall see that this coupling leads to a SC
ber of experimental facts in conventional superconductors, Prate in @ restricted range of smalivith rather lowT,. For

is also of well-established theoretical validity in simple mod-"2 ¢ substantial values of it inevitably leads to an insu-

. : ._lating, incommensurate charge density wa@bDW) state
els. Because it is a weak coupling theory, even the mean-field.. o . . )
: o . with (in units in which the lattice constant &=1) an order-
(MF) estimate of T, (which is exponentially small,T,

- . ! o ing wave numbeP=27X. (It is customary to call this thelk4
exp(-1/g) whereg is the induced attractigris known to CDW since, despite the fact that there is a spin gap and

be quantitatively reIiapIé.However, there are many well- hence no Fermi surface whatsoever 4k., wherekg is the

known reasons to believe that the BCS mechanism alwaygermi momentum of a 1D noninteracting electron gas at the

leads to lowT,, as recently reviewed in Ref. 3. same electron densifyThat the SC transition is so easily
An alternative idea, which has been the focus of much Obreempted by CDW order follows from the fact that the

the theoretical effort in the field, is that in a doped Mott CDW susceptibility of the LE liquid diverges as

insulator, HTC arises directly from the repulsive interactions

between electrons. However, even as a point of principle, the xcow(P,T) ~ AJT? . (2

\(al|d|ty ofa meghanlsm of this sort has not been well eStabUnder most circumstances for repulsive interactidfs; 1,
lished for any simple model.

In this article, we demonstrate the existence of a “high—and hencexcpy of Eq. (2) is more strongly divergent than

- xsc of Eq. (1). However, if we consider an alternating array
temperature, superconductlr_lg phase OT the Hubbardtand of A- and B-type laddergwith different electron affinities
—J models on a square lattice with periodically modulated

parameterS[see Eq6)]. In particular, we show that a pe- then the tendency to CDW order is greatly suppressed due to

riod 2 modulation can produce superconductivity with a reIa-the mismatch between ordering vect8tsandPg on neigh-
. . P up 1y i boring ladders*'>We shall show that, as long as the expo-
tively low T, in a restricted doping range, while a period 4

modulation produces higher critical temperatures on apent inequalities

broader range of doping. SpeC|f|caIIy,_ we consider a carica- 2> K;\l+ Kgl— Ka 2> K,;1+ Kgl— Kg (3)

ture of a stripe ordered state consisting of a quasi-one-

dimensional array of two-leg Hubbard ladders weaklyare satisfied, the SC instability wins ouf. the Luttinger
coupled to each other with a hopping matrix elemént-or  parameter is the same for both ladders, these inequalities
a range of electron densities per sife}=1-Xx, it has been reduce toK>K,=(y3-1)~0.8]

well established®”68-10that the two-leg ladder exhibits a  Under these circumstances, the 8®sterlitz—Thouless
Luther—Emery(LE) liquid'! phase, with a large spingalk,  transition temperature can be reliably estimated by treating
~J/2, and a divergent superconductiggC) susceptibility the 1D fluctuations exactly, but the interladder Josephson
for T<A, coupling J in MF approximatiof’-16
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Te~ As(

where 7 is an effective coupling andlV is a microscopic
energy which we will discuss in detail below; typically, we
find 7~ &t?/J andW~ J. Although T, is small for small7, it

is only power-law small. In fact, typicallg~ 1. Because of
the MF character of this estimate fdg, one expects this to
be an upper bound to the actugl One also generally ex-

J ) “ 2K K
— 1 a = L
[4KaKg = Ka = Kg]

(4)

w
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FIG. 1. Schematic representation of the striped Hubbard model
analyzed in this paper.

pectsT, to be somewhat suppressed by phase fluctuations,

but typically by no more than a factor of 2. Indeed, a pertur-

bative renormalization-group treatment for smdllyields
the same power-law dependence as @g. suggesting that

this expression is asymptotically exact {@r<W. This fact is
supported in Appendix A, where the accuracyimterchain
MF estimates is discussed for related models.

Since we expecT, to be smooth function obt/ 7, it is
reasonable to extrapolate Hd) to the case in whicl#t is a
substantial fraction of7. This suggests a maximurf, of
order A, and so can easily account for relatively high tran-
sition temperature®¥1° This is in contrast to the case of an
exponentially smalll; as obtained, for example, in a BCS-
like mechanism.

I. THE STRIPED HUBBARD MODEL

Il. ISOLATED TWO-LEG LADDER

For &t=0, the model breaks up into a series of discon-
nected two-leg ladders. Considerable analytic and numerical
effort has gone into studying the properties of two-teg)
and Hubbard ladders, and much is known about them. For
x=0, the undoped two-leg ladder has a unique, fully gapped
state, referred to as COSO in the notation of Ref. 9, meaning
0 gapless charge and 0 gapless spin modes. In the large
limit, the magnitude of the spin gap of the undoed lad-
der isA;=J/2. Then, for a substantial rangexf0<x<x,)
the ladder exhibits a LE or C1S0 phase, with a spin gap that
drops smoothly! with increasing, and vanishes at a critical
value of the dopingx=x.. [This particular LE liquid is
knowrP—?to have ‘t-wave-like” SC correlations, in the sense
that the pair-field operator has opposite signs along the edge
of the ladder (y direction and on the rungs

While the results obtained in this paper are quite robust ir(x-direction).] For x>x., the numerical results are scarce,
the sense that they apply for a broad range of microscopioor is there uniform agreement concerning the number of
interactions, to establish their validity it is useful to considerphases; there méyr may not® be narrow ranges of C2S1

an explicit model. The model we study is the striped Hub-

bard model

— T T
H - = E tr"(r[cr*vo_cr'r'o.'i' HC] + 2 [GFCFYO-CF,O'
(FF"o e

+ (U/2)C|I,(rcrt,—gcr-,—rrcr',(r]1 (5)
where(r, ") designates nearest-neighbor sité@ creates an
electron on sitg” with spin polarizationo=+1 and satisfies
canonical anticommutation relations, add>0 is the repul-
sion between two electrons on the same site. In the limit o
strong repulsiond) >tz , this model reduces approximately
to the corresponding—J model, which operates in the sub-

and C2S2 phases farslightly larger tharx.. At any rate, for

x large enoughx,<x,<x<1, the ladder manifestly enters a
Luttinger liquid C1S1 phase, and finally, a trivial COSO phase
whenx=1 ({n)=0).

For the purposes of the present paper, we will confine
ourselves to the range of parameters where both A- and
B-type ladders are in the LE phase. The low-energy physics
(at all energies less thaky) of the two-leg ladder in the LE
phase is contained in the free bosonic Hamiltonian for the
collective charge degrees of freedom, given as

f

H= f dy%c[K(o"yb‘)2+ %(&y@z} oy (6)

space of no double occupied sites, but with an exchang@here is the CDW phase andis the SC phase; these two

coupling, J;-»=4|t; #[*/U between neighboring spins. Our

fields are dual to each other, and so satisfy the canonical

results only depend on the low-energy physics of the laddegommutation re|ation5¢(y’),ﬁya(y)]:ig(y—y’)_ This effec-

and, thus, apply equally to the-J and Hubbard models.

In the translationally invariant Hubbard modgl;» =t and
€-=0. The striped version of this model is still translationally
invariant along the stripe directiomvhich we take to be the
y axis), sot;r.;=t. However, perpendicular to the stripes the

tive Hamiltonian is general and physical; the precisde-
pendence of the spin-gak,, the charge Luttinger exponent
K, the charge velocity., and the chemical potential(x),
depends on details such as the valuedJof andt’/t. For
certain case$;’ these have been accurately computed in

hopping matrix takes on alternately large and small valuesyonte-Carlo studies, and these studies could be straightfor-

trrg=t" for ry= even, andy .= dt<t’' ~t for r,= odd. This
defines a “period 2 striped Hubbard model,” as shown in Fig
1. For the “period 4 striped Hubbard model,” we include a
modulated site energy;=2e cog =r,/2—m/4], which has
site energies and -, respectively, on every other two-leg
ladder, withe> &t.

wardly extended to other values of the parameters.

- The ellipsis in Eq.(6) represent cosine potentials, which
we will not explicitly exhibit here, that produce the Mott gap
Ay at x=0. A consequence of these terms is thatXes 0,

the elementary excitations are charge sblitons that can
either be viewed as spinless fermions or hard-core bosons,
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with a dispersion relatiofE(k) =A), +Tk?. One consequence ing another dimer, thus producing two quasiparticles with the
of this is that?2 K—2 andv.— 2mtx as x—0. A second quantum numbers of an electron, or of removing the un-
consequence is that the renormalized harmonic theory, whicpaired electron left behind by the first removal, thus produc-
retains only the explicitly exhibited terms in E@), is valid ~ ing a new boson—a missing dimer—with chargeahd spin

in a range of energies that is small in proportion to the ef-0. The persistence of the spin gap upon doping the ladder can
fective Fermi energyEleD)ZZﬁfxz. (An estimate off~t/2 thus be m_terpreted as |mpl_y|ng tha_t the energy needed to
can be obtained from the denisty matrix renormalization®€@K @ dimer(of order Ay) is sufficiently large that one

DMRG) study of thet—J ladd ith 3/t=1/3 i cha_rge 2 boson costs Ie_ss than two chalgquasiparti.cles.
gRrgfl.J% ) study of the adder with J/t=1/3 in At finite X, the missing dimers can be treated as a dilute gas

of hardcore bosons. That the elementary excitations of the
undoped ladder can be constructed in this simple manner
reflects the fact that this is a confining ph&3é&: not a spin

For largerx, the numerical studié€g-*generally find that
both K and A4 drop monotonically with increasing By the
time x=x;=0.1,K is generally found to be close to 1, and by

x=x.~0.3, Ag has dropped to values that are indistinguish—“qu'd'

able from 0, andK=0.5. Thus, over most of the entire LE

phase, both the SC and the CD_V\_/_su_sceptlbllltles are diver- IIl. INTERLADDER INTERACTIONS

gent. However, the SC susceptibility is the more divergent

only at rather small values of<x;. We now address the effect of a small, but nonzero cou-

Although the charge fields exhaust the low-energy depling (i.e., single-particle hoppingoetween laddersgt> 0.
grees of freedom of the LE liquid, when we come to consideBecause of the spin gapt is an irrelevant perturbation in
the effects of the single-particle hopping perturbation withthe renormalization group sense, and so does not directly
small coupling constandt, we need to considegias virtual  affect the thermodynamic state of the system. However, sec-
intermediate stat@shigh-energy states with the quantum ond order processes result in various induced interactions
numbers of an electron. Thus, we need to reintroduce gappdittween neighboring ladders. These consist of marginal for-
fields ¢ to represent the spin-degrees of freedom. Since thisvard scattering interactions, which are negligible for small
is standard? we will not belabor the point; the appropriate &, and potentially relevant Josephson tunneling and back-
continuum fermionic fields are scattering density—density interactions.

+ —= . The important(possibly relevantlow-energy pieces of
V.o~ expNm/2 0+ ¢+ bt ohs]2iPY2},  (7)  these latter interactions are most naturally expressed in terms

where = refer to left- and right-going fermions with momen- of the bosonic collective variables defined above:

tum near £/2, respectively, and=+1 represents the spin

polarization. It is important to stress that for strongly inter- H' ==, f dy7 CO{VET(Oi = 6j+1)]+V cod(P; - P,y
acting problems, such as the present one, there is no simple j
relation between the original lattice fermions and the con- o+ _
tinuum fermion fields that describe the “physical” 27~ bl (10
W-fermions of Eq.(7). In particular, what appears as &2 whereP;=2mx;, with X; the concentration of doped holes on
CDW expressed in terms oF-fermions, would be consid- ladderj, and ¢; and 6; are the charge field and its dual on
ered a 4 CDW in terms of the original, lattice fermions. In each ladder. Here, again, the form of the low-energy interac-
terms of thesaV-fields, the component of the charge densitytions between two LE liquids is entirely determined by sym-

operator that varies with wave numbers nlais metry considerations, but the magnitude of the Josephson
R N _ — coupling 7 and the induced interaction between CDW3
pp(y) = 2 W[ Ve, o exliPy+iN2md(y)],  (8)  must be computed from microscopics; they are renormalized
7 parameters which result from “integrating” out the high-
while the singlet pair creation operator energy degrees of freedom with energies between the band-

. - width W~ 4t and the renormalized cutoXg, or with wave-
d(y) = [‘I’Jr ‘I’Jr +‘1’Jr ‘I’[ (] exi 276, (99 lengths betweea and &=v¢/Ag, Whereuv is the spin-wave
velocity. Thus, the dimensionless measure of the interladder
where in the right-most expressions we have again su couplmgs which, for instance, enter the expressionsTfor
pressed the dependence on the spin fields.

Before leaving the single-ladder problem, it is worth men-are.J/W andV/W, whereW=A/ & (As long asx is not too
tioning a useful intuitive caricature of its electronic proper- nearx;, As~J, and hencan~ J.)
ties. We picture a singlet pair of electrons on neighboring Quantitative estimates f andV could certainly be ob-
sites as being a hard-core bosonic “dimer.” The undopedained, given the state of DMRG calculations, from studies
ladder can be thought of as a Mott insulating state of thesef four-leg ladders consisting of two weakly coupled two-leg
dimers, with one dimer per rung of the ladder, that is, “va-ladders’®®> However, such calculations have not yet been car-
lence bond crystal” with lattice spacing one. To remove oneied out. Fortunately, our qualitative conclusions are not very
electron from the system, we need to destroy one dimer angensitive to the values of and7, which can, in any case, be
remove one electron, leaving behind a single electron witlestimated with reasonable accuracy from bosonization, as
spin 1/2 and charge. However, when we remove a second discussed in Ref. 16. The subtlety here is that the interladder
electron from the system, we have the choice of either breakiopping is expressed in terms of microscopic lattice fermi-
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ons, whereas our low-energy theory is expressed in terms @fan(h)/ah|h:o, which is related to the SC susceptibility in
the W-fermions of Eq.(7). However, since these have the Eq. (1) by a proportionality constant that depends on the
same quantum numbers as an electron, and operate on tbgpectation value of the spin fields. In the case in which all
scale ofAg, which is large with respect tét, there is no the ladders are equivalent, this yields the implicit relation
reason to expect any large renormalization of the hoppin@7ysdT.)=1. For an alternating array of A- and B-type lad-
parameters. If we assume that the interladder hopping can hters, the expression for the SG is easily seen to be
approximated agt times an operator representing the hop- (A \~(B)

ping amplitude for’-fermions, then, from second-order per- (2D xse(TIxse(Te) = 1. (14

turbation theory, we obtain Notice that in the case in which the A- and B-type ladders are

T=V~A&)4, (11 identical, Eq.(14) reduces properly to the expression for
_ _ _ _ equivalent ladders. The expression fgic from Eq. (1) can
whereA is the dimensionless function dfs/J be used to invert Eq14) to obtain the estimate foF, given
in Eq. (4).
A=J J dyd,—|<ei\’W[[ﬁs(w—ﬁs@ws(r)+¢s(0>]>s|2, The MF equations for the CDW order are obtained simi-
larly. The expression for the transition temperature for CDW

wherer =(y,7) and r denotes imaginary time, the expecta- Order with wave vectoP is

tion value is taken With_ respe_c_t to the spin-field_s on the de- (ZV)Z;((CAE))W(P!TC)’)?(CBI%W(PyTC) =1, (15)
coupled ladders, and in deriving this expression we have

assumed that the charge fields are slowly varying comparedhere the notation is the obvious extension of that used in
to the spin-fields. Simple scaling arguments of the sort disthe SC case. The best ordering vector is that which maxi-
cussed in Ref. 16 suggest that- 1 asA¢/J— 0. (For further  mizesT.. For P=P,, X@SW(PA,T) diverges with decreasing
discussion, see Ref. 2@n any case, as long asis not too  temperature as in Eq2), but X(CBI;W(PA’T) saturates to a
close tox,, Asis of order of the exchange couplidgso that  finite, low-temperature value whefi~uv.|P,—Pg|. Thus,

estimate that matter qualitatively for our present purposes igymperature thags, there are two divergent susceptibilities
that the two couplings are comparable in sizé~V) and  j, the expression for the ST,, and only one for the CDW

both are small in proportion tét?. T.; as long as the inequalities in E@) are satisfied, the SC

iti iti |
IV. RENORMALIZATION-GROUP ANALYSIS AND transition preempts the CDW transition!
INTERLADDER MEAN-FIELD THEORY

The effect of these interchain couplings can be deduced V. THE x—=0 LIMIT

from an analysis of the lowest order perturbative renormal- Since K—2 asx—0, there is necessarily a regime of
ization group equations in powers of the couplingandJ.  smallx in which the SC susceptibility on the isolated ladder
However, equivalentresults are obtained from interladder js more divergent than the CDW susceptibility. Here, in the
mean-field theoryMFT),'o*"which is conceptually simpler. presence of weak interladder coupling, even the period 2
These equations are the analog of the BCS gap equatiorgriped Hubbard modei.e.,with €=0) is superconducting.
applied to this model, and are expected to give a quantitaHowever, care must be taken in this limit, since, as men-
tively accurate estimate of; for small 5t/ A for precisely  tioned above, the range of energies over whitin Eq. (6)
the same reason. A discussion of the accuracintefrchain is applicable vanishes in proportion 3. Fortunately, a
MFT is given in Appendix A. In the present two-dimensional complementary treatment of the problem, which takes into
system, T, should be interpreted as the onset of quasi-longaccount the additional terms, the ellipsis in E6), can be
range order; that is, as a Kosterlitz—Thouless transition.  employed in this limit. The smakt-problem can be mapped
To implement this MFT, we need to compute the expeconto a problem of dilute, hard-core charge Bosons(with
tation valueM;(h;) =(cos[v2m,]) of the pair creation opera- concentrationx per rung with an anisotropic dispersion

tor on an isolated ladder, where the expectation value ig(ﬁ):'fké_ J cog2k,]. (The “2” reflects the ladder periodic-

taken with respect to the MF Hamiltonian ity.) Consequently, for smak
Hye = H; = h, f dy cog\2m6]] (12) T~ 27 N2AXF(x) ~ |at)x, (16)

) ) ] ] S ) whereF(x) ~1/In In(1/x) is never far from 1, and the loga-
in which H; is the effective Hamiltonian in Eq®) with  jihm reflecté” the factd=2 is the marginal dimension for
parameters appropriate to laddgrand h; represents the pgoge condensatioriThis result is not substantially different
mean field due to the neighboring ladders, and so satisfies thg, ihe period 4 striped Hubbard model, as longeds not
self-consistency condition too large) There is a complicated issue of order of limits
hy = JMjsq + M,_q]. (13) when bothﬁt andx are small; roughly, we expect thag will
be determined by whichever expression, 84) or Eq.(16),
The expression for the MF transition temperature can bgjives the highefl,, but with the understanding thgkc must
expressed in terms of the corresponding susceptibﬂ@% be computed taking into account the terms represented by the
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ellipsis in Eq.(6), which cause the susceptibility to vanish as model analyzed here exhibits HTC, a few comments are in
x— 0. order concerning the more general implications of the
The period 2 striped Hubbard ¢6rJ model indeed has a present results for the mechanism of superconductivity in the
SC phase at smaX, because this phase is confined to rathercuprates.
smallx=0.1, whereT, is small in proportion to bottét and Firstly, the explicit striped inhomogeneities introduced
X. Moreover, this may still not be enough to establish anhere are a caricature of the spontaneous symmetry breaking
mechanism of HTC. The situation looks even worse whenn 3 charge striped phase. However, the model possesses a
the effects of w_eak disord@rare c0n§|dered: when the dis- large spingap, so that it does not contain any of the physics
order strength is greater than the intraladder energy scalg |oy-energy incommensurate spin fluctuations, which are
Er=271¢, it is unlikely that any sort of SC coherence will g principle experimental signatures to date of stripe corre-
survive. . lations in the cuprates. Secondly, although the SC state is
For an array of alternating ladders, the rangexofor g\ ave.jike”in the sense that the order parameter changes
which superconductivity dominates is much extended. Th'ssign under rotations byr/2, since the striped Hamiltonian

means that the maximuif is much greater, and the super- wplicitly breaks this symmetry. there is no breci mmetr
conductivity much more robust to disordefor the period 4 explicitly breaks this symmetry, there 1S no precise symmetry
than the period 2 striped Hubbard model. dls_tlnctlon betweerd-_wave ands-wave _supe_rconductlwty.
Thirdly, the SC state is not even truly adiabatically connected
VI. OPTIMAL DEGREE OF INHOMOGENEITY FOR to the SC state observed in the cuprates, because the exis-
SUPERCONDUCTIVITY tence of a spin gap implies the absence of gapless “nodal’

Here, we have established that in a strongly striped Hupduasiparticles in the SC state. However, the transition be-
bard model, superconductivity is produced directly by theWeen & nodeless and nodaivave-like state was studied in
repulsive interactions between electrons. The resulfipg ~ Refs- 35 and 36 where it was found to be a MHishitz)
proportional to a positive power dt/t, and thus rises as the transition with relatively little effect orl.. Moreover, using
stripe order becomes less strong. It is thus natural to ask: &€ same lines of reasoning employed in that article, it is
the stripe order introduced in the present paper simply a caPossible to make compellinglthough not entirely rigorogs
culational crutch that permits us to obtain well-controlledarguments that upon heavier doping, the present model, too,
results, or is inhomogeneity essential to the mechanism o#ill exhibit a nodal SC state. We are currently working to
HTC, as has been suggestéei?®-3lin several previous stud- obtain a more complete treatment of the phase diagram of
ies? the present model.

The answer to this question turns on the issue of whether The present model realizes the idea that the pairing scale,
or not the uniform Hubbard model, and its strong couplingin this case the spin gap, can be inherited from a parent Mott
relative thet—J model, by themselves support HTC. This jnsulating state. Moreover, like the underdoped cuprates, the
question has been the focus of much theoretical researciap scale in the present model is a decreasing function of
since the discovery of superconductivity in the cuprates. Tqncreasingx, while the actual superconducting transition oc-
this date, this is not a settled issue. Nor is it the purpose ofrs at aT, much smaller tham\/2, and is determined by
the present paper to review this extensive literature. Variage phase ordering temperature rather than the pairing scale.
tional calculations have been interpreted both as giving ®Vigjence, forx not too close tox, this model exhibits a

dence in support éf and againsf superconductivity in - .

" ' ; pseudogap regime for temperatures betwdgnand T
Hubbard andt-J-type models. There is also considerable’_ ;5 ®oiniscent of that seen in underdoped cuprates.
evidence, from several numerical techniques and high;

temperature expansions, that the canortiedl and Hubbard However, T; is always bounded from above hy; and so
models on a square lattice most likelp notsupport HTC; tends to zero as— X
instead, they show clear evidence for other types of order
that compete with superconductivity* ACKNOWLEDGMENTS
Assuming that the uniform model does not support HTC,
it follows from the arguments given in the previous sections This work was supported, in part, by NSF Grant nos.
that there is an optimal degree of inhomogenéiy optimal DMR 01-10329 at UCLA(S.A.K.), and DMR-01-32990 at
degree of stripe ordgrfor a strongly correlated system to the University of lllinois(E.F), and by a Heisenberg grant
exhibit superconductivity. Probably, this occurs whén (AR 324/3-]) fro the DFG(E.A.).
~ A An analogous result was establisfetecently in the
weakly interacting limit of the four-leg laddgitself a cari-
cature of a single unit cell of the present mgd#&e should
also note that there is nothing essential about having period
4. In fact, the longer the period, the more the CDW instabil- In this section, we discuss the accuracy of the interchain
ity is suppressed and the larger the range of superconducti¥AFT. Although no general proof exist$o the best of our
ity. knowledge, we believe that it is asymptotically exact in the
VIl RELATION TO SUPERCONDUCTIVITY IN THE present case, at least to Ioggrithmic accur[easydefined_ in
’ Eqg. (A11)]. The latter conclusion also follows, as mentioned
CUPRATES in the text, by comparison with perturbative RG calculations.
While the main purpose of the present paper was to es- Quite generally, using an argument based on Griffiths in-
tablish, as a point of principle, that the striped Hubbardequalities, one knows that the exakt of a general aniso-

APPENDIX A: ACCURACY OF THE INTERCHAIN MEAN-
FIELD THEORY ESTIMATES
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tropic ferromagnetic systeifmot necessarily an Ising model Kosterlitz—Thouless transition occurs&t=0.89J, so that in
will obey the boundsT(J,)<T.<T.J), for 0<J,<J,,  this limit, To/T ~2. In the limit of extreme anisotropy, the
where T,(J) is the T, of an isotropic system of coupling 2D classicalXY model can be mapped onto the familiar 1D
constant]. However, for specific systems, it is possible to quantumXY (rotor) model with Hamiltonian
establish more precise estimatesTgf TN

As our first example, consider the two-dimensio(D) H=> | == =cod 61— 6, |, (A8)
anisotropic Ising model on a square lattice, with couplidgs nlL2 2
andJ,<J, in thex andy directions, respectively. In particu-
lar, for the case of the 2D Ising model, it is also known that
the exactT, is the solution to the equatiéh

where the coupling constant Px;=2JXJy/T2 (see Ref. 39

The critical value of the coupling of the quantum rotor model
(\¢) has been computed quite accurately using a Padé—Borel
sinh(2J,/To)sinh(23,/T¢) = 1. (A1)  resummation of the strong-coupling serf&4! Using the no-
tation of these papers, an accurate estimate for the critical
coupling to bex.=1.8+£0.5 is obtained. By carefully invert-
ing this mapping, we get

Interchain MFT for the same model gives the familiar ex-
pression for the MF transition temperatufig, given by

2] T =1, A2 —
o wao(To A2) To= AV + O3/, (A9)
which is analogous to Eq14), and where
~ whereA=1.05+0.1. Thus, we see that
xip(T) =T ex23/T] (A3)
is the susceptibility of the 1D Ising model. In the limit of TofTe— (2/A), asd/3—0. (AL0)
small J,/J,, it thus follows that the ratio It seems unlikely that the error bars drare sufficient to be
T In2 consistent with a limit of 1. The interchain MFT is therefore
O-14+ FE (A4) found to be asymptotically exact only to logarithmic accu-
Te In[J,/3,] racy, that is,
tends to 1 agy/J,— 0; that is, the interchain MFT is asymp- In T, J
totically exact without any apologies. nT. 1, asEY — 0. (A11)
Cc X

Before leaving the Ising example, it is interesting to see
how well the interchain MFT works when eXtrapOlatEd to theThiS, we be“eve, is generica"y true of interchain MFT as

isotropic casely=J,=J. It is easy to verify thaffo=3.53]  applied in the present paper. Nonetheless, in all cases for
and T,=2J/In[1+2], so that which the exact answers are known, interchain MFT gives
estimates ofT, that are within a factor of 2 of the exact
To/Tc=1.55, fordy/J,=1. (AS) results. This isC certainly sufficiently accurate for present pur-
In general, T/ T, rises monotonically from 1 for increasing POSE€s. o o .
J,/J,, but T, gives a reasonably good estimateTgfover the Finally, it is worth mentioning that the 2IXY model is
entire range of parameterfNote, ordinary MFT givesT sqmethlr)g of a worst-case example, l:_)ecause 2D is the lower
=2(J,+J,), which is not much worse than interchain MFT in critical dimension and hence fluctuation effects are anoma-
the isotropic limit, butTy/T,— asJ,/J—0.] lously large. If we consider an anisotropic three-dimensional
Now, we move to the 2D classicXlY model on a square XY model with couplingsl,=J,=J, in the three directions,
lattice; the case of most direct relevance to the estimates ¢fe MF transition temperature can still be readily computed
T, made in the text. The susceptibility of an isolated chain@ccording to 2Jy+J,)x1p(To)=1. Monte-Carlo results exist

can easily be seen to be 42 for the T, of layered models),=J,=J for various values
of J,/J,. For instance,
M= 1 [ 1o(IdT) + 1434 (A6)
X1D - 2T IO(‘JX/T) _ Il(‘]x/T) ! Tc = 1].], TO/Tc = 160, for JZ/J = 001,

where_ln(x) isa Bess_el func_tion. Fal, /< 1 Egs.(A3) and T,=1.324), TYT.=141, ford/I=0.1;
(A6) yield the following estimate of the critical temperature:

To=234,[1 +0(3/3)], (A7) T,=2.2), ToT.=1.29, ford/J=1.0.
while Ty=1.75%) in the isotropic limit. Clearly, even a very small amount of interplane coupling can

Unlike the Ising case, no exact results exist for theX@d  be expected to greatly improve the accuracy of duesti-
model. Extensive Monte-Carlo work has been done on thénates.(Interplane MFT, of course, is still more accurate, as
isotropic 2D XY model, from which we know that the shown in Ref. 42.
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