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It is shown, using asymptotically exact methods, that the two-dimensional repulsive Hubbard model with
strongly modulated interactions exhibits “high-temperature superconductivity.” Specifically, the explicit modu-
lation, which has the same symmetry as period 4 bond-centered stripes, breaks the system into an alternating
array of more and less heavily hole-doped, nearly decoupled two-leg ladders. It is shown that this system
exhibits a pairing scale determined by the spin gap of the undoped two-leg ladder, and a phase ordering
temperature proportional to a low positive power of the interladder coupling.
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Much has been written concerning the mechanism of
high-temperature superconductivity(HTC) since the
discovery1 of the cuprate superconductors in 1986, and in-
deed even before that. However, what is meant by “the
mechanism” is rarely defined, and clearly evokes different
images for different authors. The BCS mechanism, in which
pairing is a consequence of a weak inducedattraction pro-
duced by the exchange of phonons between well-defined
quasiparticles, is not only consistent with a remarkable num-
ber of experimental facts in conventional superconductors, it
is also of well-established theoretical validity in simple mod-
els. Because it is a weak coupling theory, even the mean-field
(MF) estimate of Tc (which is exponentially small,Tc

~exps−1/gd whereg is the induced attraction) is known to
be quantitatively reliable.2 However, there are many well-
known reasons to believe that the BCS mechanism always
leads to lowTc, as recently reviewed in Ref. 3.

An alternative idea, which has been the focus of much of
the theoretical effort in the field, is that in a doped Mott
insulator, HTC arises directly from the repulsive interactions
between electrons. However, even as a point of principle, the
validity of a mechanism of this sort has not been well estab-
lished for any simple model.

In this article, we demonstrate the existence of a “high-
temperature, superconducting” phase of the Hubbard andt
−J models on a square lattice with periodically modulated
parameters4 [see Eq.(6)]. In particular, we show that a pe-
riod 2 modulation can produce superconductivity with a rela-
tively low Tc in a restricted doping range, while a period 4
modulation produces higher critical temperatures on a
broader range of doping. Specifically, we consider a carica-
ture of a stripe ordered state consisting of a quasi-one-
dimensional array of two-leg Hubbard ladders weakly
coupled to each other with a hopping matrix elementdt. For
a range of electron densities per site,knl;1−x, it has been
well established5,7,6,8–10 that the two-leg ladder exhibits a
Luther–Emery(LE) liquid11 phase, with a large spingapDs
,J/2, and a divergent superconducting(SC) susceptibility
for T!Ds

xSCsTd , Ds/T
2−K−1

, s1d

whereK is the charge Luttinger parameter andT is the tem-
perature. This sounds like a promising start. However, a non-
zeroTc is impossible in one dimension(1D), so that to have
a chance of a high transition temperature, interladder cou-
plings must be taken into account. If all the ladders are
equivalent(a caricature of a period 2 stripe ordered or col-
umn state12,13), we shall see that this coupling leads to a SC
state in a restricted range of smallx with rather lowTc. For
more substantial values ofx, it inevitably leads to an insu-
lating, incommensurate charge density wave(CDW) state
with (in units in which the lattice constant isa=1) an order-
ing wave numberP=2px. (It is customary to call this the 4kF
CDW since, despite the fact that there is a spin gap and
hence no Fermi surface whatsoever,P=4kF, wherekF is the
Fermi momentum of a 1D noninteracting electron gas at the
same electron density.) That the SC transition is so easily
preempted by CDW order follows from the fact that the
CDW susceptibility of the LE liquid diverges as

xCDWsP,Td , Ds/T
2−K. s2d

Under most circumstances for repulsive interactions,K,1,
and hencexCDW of Eq. (2) is more strongly divergent than
xSC of Eq. (1). However, if we consider an alternating array
of A- and B-type ladders(with different electron affinities)
then the tendency to CDW order is greatly suppressed due to
the mismatch between ordering vectorsPA andPB on neigh-
boring ladders.14,15We shall show that, as long as the expo-
nent inequalities

2 . KA
−1 + KB

−1 − KA; 2 . KA
−1 + KB

−1 − KB s3d

are satisfied, the SC instability wins out.[f the Luttinger
parameter is the same for both ladders, these inequalities
reduce toK.Kc;sÎ3−1d<0.8.]

Under these circumstances, the SC(Kosterlitz–Thouless)
transition temperature can be reliably estimated by treating
the 1D fluctuations exactly, but the interladder Josephson
couplingJ in MF approximation17,16
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Tc , DsS J
W̃
Da

; a =
2KAKB

f4KAKB − KA − KBg
, s4d

where J is an effective coupling andW̃ is a microscopic
energy which we will discuss in detail below; typically, we

find J,dt2/J andW̃,J. AlthoughTc is small for smallJ, it
is only power-law small. In fact, typicallya,1. Because of
the MF character of this estimate forTc, one expects this to
be an upper bound to the actualTc. One also generally ex-
pectsTc to be somewhat suppressed by phase fluctuations,
but typically by no more than a factor of 2. Indeed, a pertur-
bative renormalization-group treatment for smallJ yields
the same power-law dependence as Eq.(4), suggesting that

this expression is asymptotically exact forJ!W̃. This fact is
supported in Appendix A, where the accuracy ofinterchain
MF estimates is discussed for related models.

Since we expectTc to be smooth function ofdt /J, it is
reasonable to extrapolate Eq.(4) to the case in whichdt is a
substantial fraction ofJ. This suggests a maximumTc of
orderDs, and so can easily account for relatively high tran-
sition temperatures.18,19 This is in contrast to the case of an
exponentially smallTc as obtained, for example, in a BCS-
like mechanism.

I. THE STRIPED HUBBARD MODEL

While the results obtained in this paper are quite robust in
the sense that they apply for a broad range of microscopic
interactions, to establish their validity it is useful to consider
an explicit model. The model we study is the striped Hub-
bard model

H = − o
krW,rW8l,s

trW,rW8fcrW,s
† crW8,s + H.C.g + o

rW,s

ferWcrW,s
† crW,s

+ sU/2dcrW,s
† crW,−s

† crW,−scrW,sg, s5d

wherekrW ,rW8l designates nearest-neighbor sites,crW,s
† creates an

electron on siterW with spin polarizations= ±1 and satisfies
canonical anticommutation relations, andU.0 is the repul-
sion between two electrons on the same site. In the limit of
strong repulsions,U@ trW,rW8, this model reduces approximately
to the correspondingt−J model, which operates in the sub-
space of no double occupied sites, but with an exchange
coupling, JrW,rW8=4utrW,rW8u

2/U between neighboring spins. Our
results only depend on the low-energy physics of the ladder
and, thus, apply equally to thet−J and Hubbard models.

In the translationally invariant Hubbard model,trW,rW8= t and
erW=0. The striped version of this model is still translationally
invariant along the stripe direction(which we take to be the
y axis), so trW,rW+ŷ= t. However, perpendicular to the stripes the
hopping matrix takes on alternately large and small values:
trW,rW+x̂= t8 for rx= even, andtrW,rW+x̂=dt! t8, t for rx= odd. This
defines a “period 2 striped Hubbard model,” as shown in Fig.
1. For the “period 4 striped Hubbard model,” we include a
modulated site energy,erW=Î2e cosfprx/2−p /4g, which has
site energiese and −e, respectively, on every other two-leg
ladder, withe@dt.

II. ISOLATED TWO-LEG LADDER

For dt=0, the model breaks up into a series of discon-
nected two-leg ladders. Considerable analytic and numerical
effort has gone into studying the properties of two-legt−J
and Hubbard ladders, and much is known about them. For
x=0, the undoped two-leg ladder has a unique, fully gapped
state, referred to as C0S0 in the notation of Ref. 9, meaning
0 gapless charge and 0 gapless spin modes. In the largeU
limit, the magnitude of the spin gap of the undoped6,20 lad-
der isDs<J/2. Then, for a substantial range ofx s0,x,xcd
the ladder exhibits a LE or C1S0 phase, with a spin gap that
drops smoothly21 with increasingx, and vanishes at a critical
value of the doping,x=xc. [This particular LE liquid is
known5–9 to have “d-wave-like” SC correlations, in the sense
that the pair-field operator has opposite signs along the edge
of the ladder (y direction) and on the rungs
(x-direction).] For x.xc, the numerical results are scarce,
nor is there uniform agreement concerning the number of
phases; there may9 or may not10 be narrow ranges of C2S1
and C2S2 phases forx slightly larger thanxc. At any rate, for
x large enough,xcøxc8,x,1, the ladder manifestly enters a
Luttinger liquid C1S1 phase, and finally, a trivial C0S0 phase
whenx=1 sknl=0d.

For the purposes of the present paper, we will confine
ourselves to the range of parameters where both A- and
B-type ladders are in the LE phase. The low-energy physics
(at all energies less thanDs) of the two-leg ladder in the LE
phase is contained in the free bosonic Hamiltonian for the
collective charge degrees of freedom, given as

H =E dy
vc

2
FKs]yud2 +

1

K
s]yfd2G + ¯ , s6d

wheref is the CDW phase andu is the SC phase; these two
fields are dual to each other, and so satisfy the canonical
commutation relationsffsy8d ,]yusydg= idsy−y8d. This effec-
tive Hamiltonian is general and physical; the precisex de-
pendence of the spin-gapDs, the charge Luttinger exponent
K, the charge velocityvc, and the chemical potentialmsxd,
depends on details such as the values ofU / t and t8 / t. For
certain cases,5–7 these have been accurately computed in
Monte-Carlo studies, and these studies could be straightfor-
wardly extended to other values of the parameters.

The ellipsis in Eq.(6) represent cosine potentials, which
we will not explicitly exhibit here, that produce the Mott gap
DM at x=0. A consequence of these terms is that forx→0,
the elementary excitations are charge 2e solitons that can
either be viewed as spinless fermions or hard-core bosons,

FIG. 1. Schematic representation of the striped Hubbard model
analyzed in this paper.
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with a dispersion relationEskd=DM + t̃k2. One consequence
of this is that5,22 K→2 and vc→2pt̃x as x→0. A second
consequence is that the renormalized harmonic theory, which
retains only the explicitly exhibited terms in Eq.(6), is valid
in a range of energies that is small in proportion to the ef-

fective Fermi energy,ẼF
s1Dd=2pt̃x2. (An estimate oft̃< t /2

can be obtained from the denisty matrix renormalization
group (DMRG) study of thet−J ladder with J/ t=1/3 in
Ref. 7.)

For largerx, the numerical studies5,7,16generally find that
both K andDs drop monotonically with increasingx. By the
time x=x1<0.1,K is generally found to be close to 1, and by
x=xc<0.3, Ds has dropped to values that are indistinguish-
able from 0, andK<0.5. Thus, over most of the entire LE
phase, both the SC and the CDW susceptibilities are diver-
gent. However, the SC susceptibility is the more divergent
only at rather small values ofx,x1.

Although the charge fields exhaust the low-energy de-
grees of freedom of the LE liquid, when we come to consider
the effects of the single-particle hopping perturbation with
small coupling constantdt, we need to consider(as virtual
intermediate states) high-energy states with the quantum
numbers of an electron. Thus, we need to reintroduce gapped
fieldsfs to represent the spin-degrees of freedom. Since this
is standard,3 we will not belabor the point; the appropriate
continuum fermionic fields are

C±,s
† , exphÎp/2fu ± f + sus ± sfsg ± iPy/2j, s7d

where ± refer to left- and right-going fermions with momen-
tum near ±P/2, respectively, ands= ±1 represents the spin
polarization. It is important to stress that for strongly inter-
acting problems, such as the present one, there is no simple
relation between the original lattice fermions and the con-
tinuum fermion fields that describe the “physical”
C-fermions of Eq.(7). In particular, what appears as a 2kF
CDW expressed in terms ofC-fermions, would be consid-
ered a 4kF CDW in terms of the original, lattice fermions. In
terms of theseC-fields, the component of the charge density
operator that varies with wave numbers nearP is

r̂Psyd = o
s

CL,s
† CR,s ~ expfiPy + iÎ2pfsydg, s8d

while the singlet pair creation operator

F̂syd = fCL,↑
† CR,↓

† + CR,↑
† CL,↓

† g ~ expfiÎ2pug, s9d

where in the right-most expressions we have again sup-
pressed the dependence on the spin fields.

Before leaving the single-ladder problem, it is worth men-
tioning a useful intuitive caricature of its electronic proper-
ties. We picture a singlet pair of electrons on neighboring
sites as being a hard-core bosonic “dimer.” The undoped
ladder can be thought of as a Mott insulating state of these
dimers, with one dimer per rung of the ladder, that is, “va-
lence bond crystal” with lattice spacing one. To remove one
electron from the system, we need to destroy one dimer and
remove one electron, leaving behind a single electron with
spin 1/2 and chargee. However, when we remove a second
electron from the system, we have the choice of either break-

ing another dimer, thus producing two quasiparticles with the
quantum numbers of an electron, or of removing the un-
paired electron left behind by the first removal, thus produc-
ing a new boson—a missing dimer—with charge 2e and spin
0. The persistence of the spin gap upon doping the ladder can
thus be interpreted as implying that the energy needed to
break a dimer(of order Ds) is sufficiently large that one
charge 2e boson costs less than two chargee quasiparticles.
At finite x, the missing dimers can be treated as a dilute gas
of hardcore bosons. That the elementary excitations of the
undoped ladder can be constructed in this simple manner
reflects the fact that this is a confining phase,23,24 not a spin
liquid.

III. INTERLADDER INTERACTIONS

We now address the effect of a small, but nonzero cou-
pling (i.e., single-particle hopping) between ladders,dt.0.
Because of the spin gap,dt is an irrelevant perturbation in
the renormalization group sense, and so does not directly
affect the thermodynamic state of the system. However, sec-
ond order processes result in various induced interactions
between neighboring ladders. These consist of marginal for-
ward scattering interactions, which are negligible for small
dt, and potentially relevant Josephson tunneling and back-
scattering density–density interactions.

The important(possibly relevant) low-energy pieces of
these latter interactions are most naturally expressed in terms
of the bosonic collective variables defined above:

H8 = − o
j
E dyhJ cosfÎ2psu j − u j+1dg+ V cosfsPj − Pj+1dy

+ Î2psf j − f j+1dgj, s10d

wherePj =2pxj, with xj the concentration of doped holes on
ladder j , andf j and u j are the charge field and its dual on
each ladder. Here, again, the form of the low-energy interac-
tions between two LE liquids is entirely determined by sym-
metry considerations, but the magnitude of the Josephson
couplingJ and the induced interaction between CDWssVd
must be computed from microscopics; they are renormalized
parameters which result from “integrating” out the high-
energy degrees of freedom with energies between the band-
width W,4t and the renormalized cutoffDs, or with wave-
lengths betweena andjs;vs/Ds, wherevs is the spin-wave
velocity. Thus, the dimensionless measure of the interladder
couplings, which, for instance, enter the expressions forTc,

areJ /W̃ andV /W̃, whereW̃=Ds/js. (As long asx is not too

nearxc, Ds,J, and henceW̃,J.)
Quantitative estimates ofJ andV could certainly be ob-

tained, given the state of DMRG calculations, from studies
of four-leg ladders consisting of two weakly coupled two-leg
ladders.25 However, such calculations have not yet been car-
ried out. Fortunately, our qualitative conclusions are not very
sensitive to the values ofV andJ, which can, in any case, be
estimated with reasonable accuracy from bosonization, as
discussed in Ref. 16. The subtlety here is that the interladder
hopping is expressed in terms of microscopic lattice fermi-
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ons, whereas our low-energy theory is expressed in terms of
the C-fermions of Eq.(7). However, since these have the
same quantum numbers as an electron, and operate on the
scale ofDs, which is large with respect todt, there is no
reason to expect any large renormalization of the hopping
parameters. If we assume that the interladder hopping can be
approximated asdt times an operator representing the hop-
ping amplitude forC-fermions, then, from second-order per-
turbation theory, we obtain

J < V , Asdtd2/J, s11d

whereA is the dimensionless function ofDs/J

A = JE dydtukeiÎp/2ffussr d−uss0d+fssr d+fss0dglsu2,

where r =sy,td and t denotes imaginary time, the expecta-
tion value is taken with respect to the spin-fields on the de-
coupled ladders, and in deriving this expression we have
assumed that the charge fields are slowly varying compared
to the spin-fields. Simple scaling arguments of the sort dis-
cussed in Ref. 16 suggest thatA,1 asDs/J→0. (For further
discussion, see Ref. 26.) In any case, as long asx is not too
close toxc, Ds is of order of the exchange couplingJ, so that
it is reasonable to assumeA,1. The only aspects of this
estimate that matter qualitatively for our present purposes is
that the two couplings are comparable in sizesJ,Vd and
both are small in proportion todt2.

IV. RENORMALIZATION-GROUP ANALYSIS AND
INTERLADDER MEAN-FIELD THEORY

The effect of these interchain couplings can be deduced
from an analysis of the lowest order perturbative renormal-
ization group equations in powers of the couplingsV andJ.
However, equivalent results are obtained from interladder
mean-field theory(MFT),16,17 which is conceptually simpler.
These equations are the analog of the BCS gap equations
applied to this model, and are expected to give a quantita-
tively accurate estimate ofTc for small dt /Ds for precisely
the same reason. A discussion of the accuracy ofinterchain
MFT is given in Appendix A. In the present two-dimensional
system,Tc should be interpreted as the onset of quasi-long-
range order; that is, as a Kosterlitz–Thouless transition.

To implement this MFT, we need to compute the expec-
tation valueMjshjd=kcosfÎ2pu jgl of the pair creation opera-
tor on an isolated ladder, where the expectation value is
taken with respect to the MF Hamiltonian

HMF = Hj − hj E dy cosfÎ2pu jg s12d

in which Hj is the effective Hamiltonian in Eq.(6) with
parameters appropriate to ladderj , and hj represents the
mean field due to the neighboring ladders, and so satisfies the
self-consistency condition

hj = JfMj+1 + Mj−1g. s13d

The expression for the MF transition temperature can be
expressed in terms of the corresponding susceptibility,x̃SC

s jd

=]Mjshd /]huh=0, which is related to the SC susceptibility in
Eq. (1) by a proportionality constant that depends on the
expectation value of the spin fields. In the case in which all
the ladders are equivalent, this yields the implicit relation
2Jx̃SCsTcd=1. For an alternating array of A- and B-type lad-
ders, the expression for the SCTc is easily seen to be

s2Jd2x̃SC
sAdsTcdx̃SC

sBdsTcd = 1. s14d

Notice that in the case in which the A- and B-type ladders are
identical, Eq. (14) reduces properly to the expression for
equivalent ladders. The expression forxSC from Eq. (1) can
be used to invert Eq.(14) to obtain the estimate forTc given
in Eq. (4).

The MF equations for the CDW order are obtained simi-
larly. The expression for the transition temperature for CDW
order with wave vectorP is

s2Vd2x̃CDW
sAd sP,Tcdx̃CDW

sBd sP,Tcd = 1, s15d

where the notation is the obvious extension of that used in
the SC case. The best ordering vector is that which maxi-
mizesTc. For P=PA, xCDW

sAd sPA,Td diverges with decreasing
temperature as in Eq.(2), but xCDW

sBd sPA,Td saturates to a
finite, low-temperature value whenT,vcu PA−PBu. Thus,
even if xCDW

sAd sPA,Td diverges more strongly with decreasing
temperature thanxSC

sAd, there are two divergent susceptibilities
in the expression for the SCTc, and only one for the CDW
Tc; as long as the inequalities in Eq.(3) are satisfied, the SC
transition preempts the CDW transition!

V. THE x\0 LIMIT

Since K→2 as x→0, there is necessarily a regime of
small x in which the SC susceptibility on the isolated ladder
is more divergent than the CDW susceptibility. Here, in the
presence of weak interladder coupling, even the period 2
striped Hubbard model(i.e.,with e=0) is superconducting.
However, care must be taken in this limit, since, as men-
tioned above, the range of energies over whichH in Eq. (6)
is applicable vanishes in proportion tox2. Fortunately, a
complementary treatment of the problem, which takes into
account the additional terms, the ellipsis in Eq.(6), can be
employed in this limit. The small-x problem can be mapped
onto a problem of dilute, hard-core charge 2e bosons(with
concentrationx per rung) with an anisotropic dispersion

EskWd= t̃ky
2−J cosf2kxg. (The “2” reflects the ladder periodic-

ity.) Consequently, for smallx,

Tc < 2p Î2Jt̃xFsxd , udtux, s16d

whereFsxd,1/ ln lns1/xd is never far from 1, and the loga-
rithm reflects27 the factd=2 is the marginal dimension for
Bose condensation.(This result is not substantially different
for the period 4 striped Hubbard model, as long ase is not
too large.) There is a complicated issue of order of limits
when bothdt andx are small; roughly, we expect thatTc will
be determined by whichever expression, Eq.(14) or Eq.(16),
gives the higherTc, but with the understanding thatxSC must
be computed taking into account the terms represented by the
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ellipsis in Eq.(6), which cause the susceptibility to vanish as
x→0.

The period 2 striped Hubbard ort−J model indeed has a
SC phase at smallx, because this phase is confined to rather
small x&0.1, whereTc is small in proportion to bothdt and
x. Moreover, this may still not be enough to establish a
mechanism of HTC. The situation looks even worse when
the effects of weak disorder28 are considered: when the dis-
order strength is greater than the intraladder energy scale
EF=2pt̃x2, it is unlikely that any sort of SC coherence will
survive.

For an array of alternating ladders, the range ofx for
which superconductivity dominates is much extended. This
means that the maximumTc is much greater, and the super-
conductivity much more robust to disorder25 for the period 4
than the period 2 striped Hubbard model.

VI. OPTIMAL DEGREE OF INHOMOGENEITY FOR
SUPERCONDUCTIVITY

Here, we have established that in a strongly striped Hub-
bard model, superconductivity is produced directly by the
repulsive interactions between electrons. The resultingTc is
proportional to a positive power ofdt / t, and thus rises as the
stripe order becomes less strong. It is thus natural to ask: Is
the stripe order introduced in the present paper simply a cal-
culational crutch that permits us to obtain well-controlled
results, or is inhomogeneity essential to the mechanism of
HTC, as has been suggested3,25,29–31in several previous stud-
ies?

The answer to this question turns on the issue of whether
or not the uniform Hubbard model, and its strong coupling
relative thet−J model, by themselves support HTC. This
question has been the focus of much theoretical research
since the discovery of superconductivity in the cuprates. To
this date, this is not a settled issue. Nor is it the purpose of
the present paper to review this extensive literature. Varia-
tional calculations have been interpreted both as giving evi-
dence in support of32 and against33 superconductivity in
Hubbard andt−J-type models. There is also considerable
evidence, from several numerical techniques and high-
temperature expansions, that the canonicalt−J and Hubbard
models on a square lattice most likelydo notsupport HTC;
instead, they show clear evidence for other types of order
that compete with superconductivity.3,34

Assuming that the uniform model does not support HTC,
it follows from the arguments given in the previous sections
that there is an optimal degree of inhomogeneity(an optimal
degree of stripe order) for a strongly correlated system to
exhibit superconductivity. Probably, this occurs whendt
,Ds. An analogous result was established25 recently in the
weakly interacting limit of the four-leg ladder(itself a cari-
cature of a single unit cell of the present model). We should
also note that there is nothing essential about having period
4. In fact, the longer the period, the more the CDW instabil-
ity is suppressed and the larger the range of superconductiv-
ity.

VII. RELATION TO SUPERCONDUCTIVITY IN THE
CUPRATES

While the main purpose of the present paper was to es-
tablish, as a point of principle, that the striped Hubbard

model analyzed here exhibits HTC, a few comments are in
order concerning the more general implications of the
present results for the mechanism of superconductivity in the
cuprates.

Firstly, the explicit striped inhomogeneities introduced
here are a caricature of the spontaneous symmetry breaking
in a charge striped phase. However, the model possesses a
large spingap, so that it does not contain any of the physics
of low-energy incommensurate spin fluctuations, which are
the principle experimental signatures to date of stripe corre-
lations in the cuprates. Secondly, although the SC state is
“d-wave-like”in the sense that the order parameter changes
sign under rotations byp /2, since the striped Hamiltonian
explicitly breaks this symmetry, there is no precise symmetry
distinction betweend-wave ands-wave superconductivity.
Thirdly, the SC state is not even truly adiabatically connected
to the SC state observed in the cuprates, because the exis-
tence of a spin gap implies the absence of gapless “nodal”
quasiparticles in the SC state. However, the transition be-
tween a nodeless and nodald-wave-like state was studied in
Refs. 35 and 36 where it was found to be a MF(Lifshitz)
transition with relatively little effect onTc. Moreover, using
the same lines of reasoning employed in that article, it is
possible to make compelling(although not entirely rigorous)
arguments that upon heavier doping, the present model, too,
will exhibit a nodal SC state. We are currently working to
obtain a more complete treatment of the phase diagram of
the present model.

The present model realizes the idea that the pairing scale,
in this case the spin gap, can be inherited from a parent Mott
insulating state. Moreover, like the underdoped cuprates, the
gap scale in the present model is a decreasing function of
increasingx, while the actual superconducting transition oc-
curs at aTc much smaller thanDs/2, and is determined by
the phase ordering temperature rather than the pairing scale.
Hence, for x not too close toxc, this model exhibits a
pseudogap regime for temperatures betweenTc and T*

,Ds/2, reminiscent of that seen in underdoped cuprates.
However,Tc is always bounded from above byDs and so
tends to zero asx→xc.
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APPENDIX A: ACCURACY OF THE INTERCHAIN MEAN-
FIELD THEORY ESTIMATES

In this section, we discuss the accuracy of the interchain
MFT. Although no general proof exists(to the best of our
knowledge), we believe that it is asymptotically exact in the
present case, at least to logarithmic accuracy[as defined in
Eq. (A11)]. The latter conclusion also follows, as mentioned
in the text, by comparison with perturbative RG calculations.

Quite generally, using an argument based on Griffiths in-
equalities, one knows that the exactTc of a general aniso-
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tropic ferromagnetic system(not necessarily an Ising model)
will obey the boundsTcsJxdøTcøTcsJyd, for 0,JxøJy,
where TcsJd is the Tc of an isotropic system of coupling
constantJ. However, for specific systems, it is possible to
establish more precise estimates ofTc.

As our first example, consider the two-dimensional(2D)
anisotropic Ising model on a square lattice, with couplingsJx
andJyøJx in thex andy directions, respectively. In particu-
lar, for the case of the 2D Ising model, it is also known that
the exactTc is the solution to the equation37

sinhs2Jx/Tcdsinhs2Jy/Tcd = 1. sA1d

Interchain MFT for the same model gives the familiar ex-
pression for the MF transition temperature,T0, given by

2Jyx1DsT0d = 1, sA2d

which is analogous to Eq.(14), and where

x1DsTd = T−1 expf2Jx/Tg sA3d

is the susceptibility of the 1D Ising model. In the limit of
small Jy/Jx, it thus follows that the ratio

T0

Tc
= 1 +

ln 2

lnfJx/Jyg
+ ¯ sA4d

tends to 1 asJy/Jx→0; that is, the interchain MFT is asymp-
totically exact without any apologies.

Before leaving the Ising example, it is interesting to see
how well the interchain MFT works when extrapolated to the
isotropic caseJx=Jy=J. It is easy to verify thatT0=3.53J

andTc=2J/ lnf1+Î2g, so that

T0/Tc = 1.55, forJy/Jx = 1. sA5d

In general,T0/Tc rises monotonically from 1 for increasing
Jy/Jx, but T0 gives a reasonably good estimate ofTc over the
entire range of parameters.[Note, ordinary MFT givesT08
=2sJx+Jyd, which is not much worse than interchain MFT in
the isotropic limit, butT08 /Tc→` asJy/Jx→0.]

Now, we move to the 2D classicalXY model on a square
lattice; the case of most direct relevance to the estimates of
Tc made in the text. The susceptibility of an isolated chain
can easily be seen to be

x1DsTd =
1

2T
F I0sJx/Td + I1sJx/Td

I0sJx/Td − I1sJx/TdG , sA6d

whereInsxd is a Bessel function. ForJy/Jx!1, Eqs.(A3) and
(A6) yield the following estimate of the critical temperature:

T0 = 2ÎJxJyf1 +OsÎJy/Jxdg, sA7d

while T0=1.755J in the isotropic limit.
Unlike the Ising case, no exact results exist for the 2DXY

model. Extensive Monte-Carlo work has been done on the
isotropic 2D XY model, from which we know38 that the

Kosterlitz–Thouless transition occurs atTc=0.89J, so that in
this limit, T0/Tc<2. In the limit of extreme anisotropy, the
2D classicalXY model can be mapped onto the familiar 1D
quantumXY (rotor) model with Hamiltonian

H = o
n
FLn

2

2
−

l

2
cossun+1 − undG , sA8d

where the coupling constant isl=2JxJy/T2 (see Ref. 39).
The critical value of the coupling of the quantum rotor model
slcd has been computed quite accurately using a Padé–Borel
resummation of the strong-coupling series.40,41Using the no-
tation of these papers, an accurate estimate for the critical
coupling to belc=1.8±0.5 is obtained. By carefully invert-
ing this mapping, we get

Tc = AÎJxJyf1 +OsÎJy/Jxdg, sA9d

whereA=1.05±0.1. Thus, we see that

T0/Tc → s2/Ad, asJy/Jx → 0. sA10d

It seems unlikely that the error bars onA are sufficient to be
consistent with a limit of 1. The interchain MFT is therefore
found to be asymptotically exact only to logarithmic accu-
racy, that is,

ln T0

ln Tc
→ 1, as

Jy

Jx
→ 0. sA11d

This, we believe, is generically true of interchain MFT as
applied in the present paper. Nonetheless, in all cases for
which the exact answers are known, interchain MFT gives
estimates ofTc that are within a factor of 2 of the exact
results. This is certainly sufficiently accurate for present pur-
poses.

Finally, it is worth mentioning that the 2DXY model is
something of a worst-case example, because 2D is the lower
critical dimension and hence fluctuation effects are anoma-
lously large. If we consider an anisotropic three-dimensional
XY model with couplingsJxùJyùJz in the three directions,
the MF transition temperature can still be readily computed
according to 2sJy+Jzdx1DsT0d=1. Monte-Carlo results exist
42 for the Tc of layered models,Jy=Jx;J for various values
of Jz/Jx. For instance,

Tc = 1.1J, T0/Tc = 1.60, for Jz/J = 0.01;

Tc = 1.324J, T0/Tc = 1.41, forJz/J = 0.1;

Tc = 2.2J, T0/Tc = 1.29, forJz/J = 1.0.

Clearly, even a very small amount of interplane coupling can
be expected to greatly improve the accuracy of ourTc esti-
mates.(Interplane MFT, of course, is still more accurate, as
shown in Ref. 42.)
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