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Possible effects of charge frustration in NgCoO,: Bandwidth suppression, charge orders,
and resurrected resonating valence bond superconductivity

O. . Motrunich and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 30 October 2003; revised manuscript received 21 January 2004; published 25 Jyne 2004

Charge frustration due to further neighbor Coulomb repulsion can have dramatic effects on the electronic
properties of NgCoG, in the full doping range. It can significantly reduce the effective mobility of the charge
carriers, leading to a low degeneracy temperatgre T. Such strongly renormalized Fermi liquid has rather
unusual properties—from the point of view of the ordinary metals witer T—but similar to the properties
that are actually observed in the )& O, system. For example, we show that the anomalous thermopower and
Hall effect observed in Ng;CoO, may be interpreted along these lines. If the repulsion is strong, it can also
lead to charge order; nevertheless, away from the commensurate dopings, the configurational constraints allow
some mobility for the charge carriers, i.e., there remains some “metallic’ component. Finally, the particularly
strong bandwidth suppression around the commensxraté3 canhelp resurrect the resonating valence bond
superconductivity, which would otherwise not be expected near this high doping. These suggestions are
demonstrated specifically fortd-like model with an additional nearest-neighbor repulsion.
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I. INTRODUCTION 0.27<x<0.5 and 0.5<x<0.73, our Jastrow-Gutzwiller
wave function has a3 3 charge order, which is inherited
Recent discoveryand confirmatiofr* of superconductiv-  from the charge distribution properties of the classical Ja-
ity in Nag3C00;-1.3H0 has stimulated many studies of strow weight on the lattice. Since such a state is beyond our
this material, and in particular of its unhydrated precursorinitial motivation, we examine its properties and treat it very
host material Ng/Co0O,. The NgCoO, series has been critically whenever the variational parameter is driven into
known for more than five yeat< for its unusual transport this regime.
properties such as large thermoelectric power and nearly In Sec. IV we develop a convenient renormalized mean-
linear-T dependence of the resistivity, indicative of strongfield picture for the energetics in the entire doping range. We
correlation effects. This has been brought up even further bidentify the regime of the renormalized Fermi-liquid state,
a number of recent careful experimefit¥! and also the regime where the strong repulsion_drives the
It appears from these studfésthat there is a large sup- optimal Jastrow-Gutzwiller wave function into th8x \3
pression of the valence-band widgmguivalently, large effec- charge-order state.

tive mass enhancementby an order of magnitude com- In Sec. V we confirm the renormalized mean-field picture
pared with the local density approximatighDA) band-  with numerically accurate evaluations with the trial wave
structure calculation® functions. We also perform a more detailed study of the pos-

We suggest that such large renormalization may be causesible V3x13 charge order by comparing with the more con-
by strong Coulomb repulsion between charge carriers owentional charge-density way&€DW) states. We find that
neighboring Co sites, and point out that a number of unusuadur Jastrow-Gutzwiller wave function in th8x 3 regime
properties of the system may be explained by the resultings rather good energetically and suggest some ways for im-
low fermion degeneracy temperature. We also consider othgroving the energetics further.
possible effects of such repulsion, in particular, charge order- In Sec. VI we add thel term and consider the issue of
ing. resonating valence bon(RVB) superconductivity at low

The plan of the paper is as follows. To be specific, wedopings. This is done with the help of the renormalized
consider atJ-like model with additional strong nearest- mean-field picture. Without the Jastrow renormalizations, the
neighbor repulsiorV. In Secs. II-V, we concentrate on the RVB superconductivity would not survive to the experimen-
dominantt,V energetics. The study is done by consideringtally observedx=0.35. We find that the bandwidth suppres-
Gutzwiller-like trial fermionic wave functiongprojected sion due to charge frustration may indeed resurrect the su-
Fermi liquid) with additional nearest-neighbor correlations perconductivity neax=1/3 where such renormalizations are
input through a Jastrow-type configurational weighting fac-strongest, particularly if we allow the coexisting charge or-
tor. The strength of the input correlations serves as a variader. We speculate that this may be relevant to explain the
tional parameter. narrow doping range in which the superconductivity has

Section Il studies the properties of these wave functionsbeen found,

We find that up to moderate input correlations, the wave Finally, in Sec. VIl we conclude with some simple pre-
function indeed describes a renormalized Fermi liquid, condictions for the experiments from the developed charge frus-
sistent with the initial motivation. We also realize that for tration picture. Most notably, transport properties such as
strong input correlation and over the doping rangethermopower and Hall effect of the Fermi liquid with low
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In this picture the end compound NaCp©onsists of all

& —— —— Co®* with no holes(p=0,x=1), whereas the hypothetical
- end compound Ngy,Co0, is a Mott insulator consisting of
Nl all Cd* sites each carrying=3(p=1,x=0). From the latter
te 4+ 4+ point of view, NgCo0, can be viewed as electron doping by
Co* Co** a concentration ok electrons into a Mott insulator.

Here, in order to gauge the effect of the nearest-neighbor

FIG. 1. N3CoO,: Schematic picturegborrowed from Ref. 9 repulsion, we perform a trial wave-function study of this
explaining the single band electronic model. The charge carriers argifongly correlated system. Wher=0, a good trial wave

spin-1/2 charge=|e| holes of densityp=1-x. funct'ion is obtained by Gutzwiller projecting a simple free
fermion state:
degeneracy temperature resemble those of thg 00, W) =Pg[¥= > def ‘f’i(RJ)]CRlT'”CRN,ZT

system; these properties look rather unusual from the per-
spective of conventional metals.

Before proceeding, we remark about the possibility of x defei(R)]cr; -+~ Cry 1
charge ordé¥'® in Na,CoO,. The experimental situation is . . . . ,
not settled on this issié-14 We favor the picture where Where the sumis over al configurations of spm—up,and spin-
there is no charge order, but only strong local correlationsdoWn fermions with allR; and Ry, distinct, {R} N{R'}=0.
Charge-ordering transition should exhibit itself in an abrupt"Way from half-filling, this Gutzwiller wave function is a
change in transport properties, which has not been observef€Mi-liquid state; this can be confirmed, e.g., by measuring

In the present paper, we do spend a lot of time discussin§'¢ dquasiparticleZ from thezstep in(Ry. In this state, we
the particulary3 x \3 order, since it inevitably arises in our have approximatelynn;)=~ p“, while the fermion kinetic en-
systematic treatment of the concrete model. We should warfirgy can be fairly accurately estimated from that of the pre-
the reader that the details are likely strongly model depenprojected free fermiorf8-22
dent. Since we do not know the precise microscopic model, ~ -
the presented analysis of the charge order should be viewed (WelHWe)  (WolH |V 2
only as an initial sketch of what might happen. The reported (PglPe) L (WP
work is done with the nearest-neighbor repulsigand

{RIR'}

nearest-neighbor Jastrow correlajiamly. Including further with
neighbor correlations would frustrate th8x y3 charge or- 1-p 2x
der and extend the renormalized Fermi-liquid regime, but 0= 1_p/2=m- )

might also lead to more complicated charge orders. We have
not pursued such studies systematically, concentrating on thEhis is commonly referred to as the Gutzwiller approxima-
nearest-neighbor case only. tion or the renormalized mean-field theory. The renormaliza-
tion factor g; can be obtained by counting the number of
real-space configurations available for hopping in the pro-
jected and preprojected states, and ignoring all other wave-
For concreteness, we consider the following single bandunction differences.
Hubbard model with additional nearest-neighbor repuf§ion ~ Turning on the nearest-neighbor repulsiywe schema-

II. tv MODEL. JASTROW-GUTZWILLER W

on a triangular lattice tize its effect on the ground state by introducing an additional

~ Jastrow-type factor

Hy =P —(tc! ¢, + H.C)Pg + VX nin;. (1) W

(i (i expl - —> n.n} (4)
: L . . 24

Large onsite repulsion is taken into account using the j)
Gutzwiller projectorPg to project out double occupation of for each real space configuration of fermions in the above
sites—this gives thet“part” as in the familiart) Hamil-  Gytzwiller wave functionW=>0 effectively suppresses the

tonian. We focus primarily on the effect of adding strong pearest-neighbor occupation probability, and can be varied to

nearest-neighbor charge repulsignand refer to Eq(1) as  gptimize the trial energy of the/ Hamiltonian. We will refer

with J<t,V later) The band is less than half-filled, with the |t is clear that the effect o¥/ is most severe fox=1/3

average fermion densitic),c;,)=p<1. and 2/3. ForlV>t we expectWs 1, in which case the va-

In the context of the N&oO, system ¢/, creates a spin-  cancies(for x=1/3) or the spin carrying holegor x=2/3)
ful hole and represents the motion of a*0&=1/2) site,  would form a3 3 structure to minimize the repulsion.
while Co**(S=0) sites have no holegi=1-x. This is shown  Furthermore in this state the particles cannot hop without
schematically in Fig. 1. For more details, see also Refspaying the energy. For intermediat& and away from com-
17-19. We takeé >0, as in Refs. 17 and 19. This is consis- mensuration some remnant of this “jamming” phenomenon
tent with the photoemission studi€sand also with the high- may remain and this is what we would like to investigate in
temperature behavior of the Hall coeffici€htsee Sec. V). this paper.
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0.5 — T T T T T from thesep the V3x43 phase is more properly character-
ized as a density wave state rather than a crystal. In particu-
lar, a fraction of particles remains relatively mobile having
no activation energy for their motion. Th&=o model is

04} Disordered ‘gas’ phase

= 0.3 ¢ equivalent to the Baxter’s hard hexagon model and is exactly
= solvable?*
02 It is useful to have the following caricatures of the charge
motion in the\3X {3 phase, appropriate at low temperature
0.1+ (large W) and near the commensurate filling 1/3. For

p>1/3, we have one sublattice, sAy completely occupied
by particles(these particles are almost localizedhile the
h) remaining small density is smeared out relatively uniformly
over the honeycomb lattice formed by tBeand C sublat-
FIG. 2. Phase diagram of the classical lattice-gas system, Edices. Forp<<1/3, we picture th& andC sites as completely
(5). Note the symmetry relative tp=0.5 due to particle-hole empty (with almost no density fluctuationwhile all par-

symmetry. ticles are spread over the sublattice. The charge motion is
achieved by hops from occupied sites to neighboring

lIl. PROPERTIES OF W,5: CLASSICAL LATTICE GAS emptyA sites viaB or C sites; the most effective such hops
SYSTEM involve at least two neighboring emp# sites in order to

, o ) avoid the repulsion energy cost for the intermediate &ep
Before presenting the optimized energetics wWiths, we Fig. 8 in Sec. V.

first discuss its properties. For nonzero but snvélit still Returning to our trial wave function, we expect it to
describes a Fermi-liquid state with some further renormahzafougmy inherit the charge distribution properties of the

tions compared to the Gutzwiller wave function. HOW?Yer’Iattice-gas system, E@5). Thus, forW such that the classi-
one has to be careful whéi becomes large: The probability ¢4 system is in its disordered phase, the wave function real-
of finding a particular configuration of charges now has an,eg 3 Fermi-liquid state. On the other hand, when the clas-
additional “classical” weight eXpW=;) nin;], and one has - gjca) system is in the3x V3 phase, we have checked by
to be wary of the possibility of phase transitions in the cor-yariational Monte Carlo studies that the resulting wave func-
responding statistical system. Factoring out many possiblg@on has a CDW order but retains some liquid properties.
spin assignments for each charge configuration, we need {The transition pointw, is slightly different for the wave
consider a classical system of particles with nearest-neighbafinction and the classical systenNote that the above Ja-
repulsion on a triangular lattice with the classical partitionstrow Weight realizes a soft projec[ion Satisfying the nearest-

function neighbor repulsiorV. It follows that a hard such projection
(W— ) leads to the/3 x y3 density wave for 0.2% p<0.5
Zolass™ 2 e telast] = 2 e_WE(iD i, (5 and 0.5<p<0.73.
i} i} Before proceeding further, we want to emphasize again

Heren,=0,1, and wework at fixed densityp as appropriate that we set out to study Fermi-liquid renormalizations in-
for the discussion of our trial wave functions with fixed fer- duced by nearest-neighbor repulsion. Fermi-liquid state is
mion numberW plays the role of the inverse temperature in achieved in the parameter regime where the classical system
this classical systenW/=T! (the classical repulsion strength remains disordered; in this case, our treatment is consistent.
is set to ong On the other hand, when the nearest-neighbor repulsion is
This lattice-gas system has been extensively studied iftrong, it drives the optimal variational paramet@mf W¥;q
statistical physicé324 most notably as a model for adsorbed into the regime with the CDW order. In this case, we have to
monolayers of rare-gas atoms on graphite. Also, it is equivade very cautious in interpreting the “transition” and the re-
lent to a triangular lattice Ising antiferromagnet in an exter-sulting state, since our original assumptions about the prop-
nal field; fixed particle density corresponds to fixed magneerties of the wave function no longer hold. We may still
tization in the Ising system. interpret this as a sign of an instability towards a different
The phase diagram in theT plane is shown in Fig. 2. It state(most likely with charge ordgy but the JG wave func-
is symmetric with respect tp=0.5 due to particle-hole sym- tion in this regime should be treated very critically, particu-

metry in this classical system, and we discusspthed.5 part  larly since it has somewhat unusual charge distribution prop-
only. erties. Thus, one should at least examine other more

At high temperaturegsmall W) the system is in a disor- conventional trial states with different orders. This is done in

dered gaseous phase. For small particle depsity.27 the  Sec. V.

system remains in the gas phase all the way to zero tempera-

ture. Fgr dgz_nsities 0.27p<0.5 the system “cryst_allizes“ IV. ENERGETICS WITH W,5: RENORMALIZED

into a\3Xx 3 state at Ipw temperature. Th_|s state is charac- MEAN-FIELD PICTURE

terized by a preferential particle occupation of one of the

three sublattices of the triangular lattice; the order is stron- We now proceed to the actual energetics with the Jastrow-
gest near the commensurape=1/3,2/3. Note that away Gutzwiller trial wave functions. It is possible to perform es-
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sentially exact evaluations of the expectation values with 1 __Renormalization factor for hopping
such fermionic wave functions using a well established and 09 L T W=00
documented  variational  Monte  Carlo (VMC) 08 | -
procedure?>21.22Sych detailed studies of th¥ energetics at 07 |
experimentally relevanx=0.7 and 0.35 are reported in the 06+ .
following section. S$05F -
It is also possible to study more complicated Hamilto- 04t
nians. However, VMC evaluations are computationally rather 03 |
costly. Furthermore, they become inconclusive when the en- 02|
ergy differences become very small. This is particularly the 04 |

case when we attempt to study the physics at energy scales
below the dominant andV, e.g., if we want to resolve the
spin sector, or study pairing instabilities due to theerm.

Useful and fairly accurate guidance is obtained through FIG. 3. Jastrow-Gutzwiller renormalization factor for hopping,
the following “renormalized mean-field” procedi®??  Eq.(7), as a function of doping for a number of fix&ll. Evalua-
which is much simpler computationally and is also moretions are done via classical Monte Carlo study of the lattice-gas
amenable to interpretation and extrapolation in the regimaystem. The dark thick line delineates the phase¥ gf. The \3
where VMC results become inconclusive. Generalization ofx y3 phase lies below the thick line and in this region the exhibited
the configuration counting arguments mentioned earlier leadg is averaged over all bonds.
to the following estimate of the hopping energy renormaliza-
tion in the JG wave function relative to the unprojected free We can now develop an overall picture for all fermion
fermion wave function: densities. Particular cuts through the results are shown in

Figs. 3 and 4. Figure 3 shows the hopping renormalization
<‘I’JG|CiTIC‘T|‘I’JG> o <‘I’o|CiTIC‘T|‘I’o> factor g; as a function ok for a number of fixedVN. (Com-
W, Wsyo) =g j] (VoW (6)  plimentary cuts through the data for the specific fixed
=0.70 andx=0.35 can be also found in the following sec-
with tion.) Figure 3 is the core of the present paper.

The W=0 curve gives precisely the original Gutzwiller

approximation, Eq(3), for the no-double-occupancy con-

o N .
0 01 02 03 04 05 06 07 08 09 1
doping X

ali,jl= ;<<5(ni -0)d(n - 1) straint. This sets a useful reference for gauging the additional
p(1-pl2) effect of the nearest-neighbor repulsion. The curve with the

Xexd - %(udasgni =1,n,=0] largestW=8, on the other hand, essentially realizes a com-

plete projection that satisfies the nearest-neighbor repulsion;

— Ugasdni = 0,0 = 1) ])). () this is the maximal renormalization that can be achieved with

o ) ] such nearest-neighbor correlations. The phase boundary of
Here, ({...)) denotes averaging in the classical lattice-gashe classical lattice gasf. Fig. 2) is sketched by a thick dark
system with the weight-exp(-asin]) discussed earlier. |ine: All points above the line are in the disordered phase
When obtaining this expression, similar to the original (Fermi-liquid wave functions while points below the line
Gutzwiller approximation, Eq(3), we again ignored the de- are in the\3x 3 density wave phase.
tails of the fermionic determinant weighting of configura-  Figure 4 shows a similar plot for the repulsion energy

tions, but kept the Jastrow weighting. Only ConfigurationsEnn:§<ij><<ninj>> per site[cf. Eq.(8)], which we reference to
with the occupied site and unoccupiedsite contribute, and

the specific “transition weight” comes from the correspond-
ing Jastrow weighting of the configurations before and after
the hop. Note thal ,cdn=1,n=0]-Uyasdn;=0,n;=1] is a 0.30 |
local energy term involving only the affected sitg$, and
their immediate neighbors.

Similarly, we can approximate the nearest-neighbor repul- 020 |
sion energy by

0.35 Enn[W] - Epp[W=2 o]

Z]

NOOARON=O

0.25

[o¥eXolelaNoNoe)o]

0.15 | N AR 0 - ]

(W 6lRiRy |V 5) 010 |
AIGRELEIE (i ). 8
(V36 V50) (g ® 0.05 |

The required classical expectation values are readily evalu-  0.00 =wisisssiszazts ki LB EEEAEL:
ated via a Monte Carlo study of the lattice-gas system. As we 0 01 02 03 °‘4d°;fg X°'6 0.7 08 09 f
will see in the following section, such renormalized mean-

field procedure indeed gives fairly accurate estimates of the FIG. 4. Nearest-neig_l’]bou’epulsion energy per site, referenced to
expectation values in the Jastrow-Gutzwiller wave functionthe W— value. They3x 3 charge-ordered phases ;s lie

both in the metallic and the density wave regimes. below the thick line.
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tV ‘phase diagram’ with ¥’ in renorm. meanfield that we consider Fermi-liquid wave functions only. In this
R ’ C case, we should disregard the data points that end up in the
V3 x v 3 x V3 charge-ordered phase. We still see that there can be signifi-
15 CDW 1 cant renormalizations by a factor of 3 to 5 relative to the bare
hopping amplitude even remaining in the Fermi-liquid state.
For a fixedW, these renormalizations are strongest near the
commensurate 1/3 and 2/3 fillings, and weakest near
=1/2.Also, as can be implied from the “phase diagram,” the
5 1 effect of the nearest-neighbor repulsivnis strongest near
Fermi liquid x=1/3,2/3. _
0 e On the cheL hand, if we are to take the Jastrow-
00 01 02 03 04 05 06 0.7 08 0.9 1.0 Gutzwiller y3X 3 density wave regime seriously, there can
doping X be even stronger renormalizations of the hopping energy,
. . ., _ . _ particularly near the commensurate densities. As we will
FIG. 5. Phase diagram obt_amed by opnmlzmg“uNsHar?u- suggest in the following more specific discussion of the
tonian over the JG wave functions. The different “phases corre-=pyw regime, the entire picture provided by Fig. 3 including

spond to the difference in the physical propertiesigh as a func- oo 412" nder the phase boundary is indeed useful, but may
tion of W. Calculations are performed in the renormalized mean-

field approximation using the data of Figs. 3 and 4, and the freé’equ‘ﬂe sgme [ess Important adIUStments' This is because, n

fermion(F)o(x). The phase diagram is not expected to be Syrnmetthe V3 X V3 regime the charge order is such that there remain
0(X). T i i i iare- i

ric relative toV — cf. Fig. 3. The observed rough symmetry is due mobile (even if strongly constraingdcarriers; there is no

) o - charge gap since there is no nesting for the considered dop-
to compensating tendenciesgr(x) and(Hyo(x) that make the ac-  jnqq "The Jastrow-Gutzwiller wave function and the above
tual kinetic energy “more symmetric” relative #6=0.5.

renormalized mean-field treatment also capture this, and give

o _ ) ) ~a first useful guess on the effect of charge order on the fer-
the minimal possible repulsion energy at a given densityijon kinetic energy.

Ennw_=0 for pe[0,1/3], 3p-1 for pe[1/3,2/3, and

6p—-3 fOI"p € [2/3,1]. When plotted in this way, the resglt IS\ ENERGETICS WITH W ,5: VMC STUDY. POSSIBLE
symmetric with respect t@=0.5 due to classical particle- CDW

hole symmetry. Again, the classical phase boundary is

sketched with a thick dark line. Observe that the curves with We now consider théV model energetics in more detail
W=>5 give almost complete “minimum-nearest-neighbor” for specificx=0.70 andx=0.35. These values are relevant
projection. for the unhydrated and hydrated J&oO,. The evaluations

With these data, and also using the free-fern’ﬂél@o(x) Wit_h the trizzizl 2\évav_e functions are done_ esse_ntially exactly
(not shown, we can optimize the fulf\V Hamiltonian in this using VMC#==This more concrete setting will allow us to
renormalized mean-field procedure fif;g. The resulting discuss some robust features that emerge from our study vs
“ohase diagram” can be seen in Fig. 5: For each doping the specifics qf the.partlcular Hamiltonian used to model
€[0.27,0.73 we show the “critical’V/t that drives the op- charge frustration. Since an ?‘Ccurat_e treatment of the CD\.N
timal W into the regime with tha/3x 3 order. states may depend on specific details, the present discussion

We emphasize that this “phase diagram’” is for the opti-is only intende_d to give a flavor of the possibilities that

. X ; = . should be considered.
mized Jastrow-Gutzwiller wave function only; in particular,
the exhibited “phase transition” corresponds to the transition ,
in the properties off 5 as a function of paramet#V. It need A. Doping x=0.70
not correspond to the actual phase diagram oftthelamil- Figure 6 shows expectation values of the two parts of the
tonian. It is exhibited here primarily to delineate the regimestV Hamiltonian in the Jastrow-Gutzwiller wave function for
where the JG renormalized Fermi liquid can adequately devaryingW evaluated using VMC. It also shows the renormal-
scribe thetV model energetics, and also where such descripized mean-field approximation to these expectation values.
tion is no longer possible. In the latter case, one should seAs mentioned in the preceding section, this approximation is
riously examine other physical states paying particulaindeed fairly accurate and can be taken seriously. Since we
attention to charge order. Whether the JG wave function iwill be comparing several trial states, we will use only VMC
its V3 X 3 phase can adequately describe the possible chargesults in this section.
ordering in the system is a separate question that requires a At this particle density we hav&/.=~3.3 in the corre-
detailed study. We will discuss this more specifically in thesponding lattice-gas system. Note that nd&rthe repulsion
following section. Here we only note that it is rather fortu- energy drops quickly and essentially all the way to zero,
itous that our trial wave function with a single variational similar to the transition in the classical system. This is be-
parameter exhibits two phases, and the initially “unexpectedtause it is possible to completely satisfy the repulsion energy
charge-ordered state should be treated with great caution. by arranging charges so that there are no nearest neighbors.

We now return to the main question of this work—the Also, such arrangements still allow some fermion hopping,
bandwidth suppression due to nearest-neighbor repulsioso there remains nonzero kinetic-energy gain even for very
Again, consider Fig. 3. A conservative approach is to insistarge W.

20
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02 [iny, Ey/V, Jastrow-GutlzwiIIel"“P: e HEbw =~ > (ticl cjp + H.C) — 2 2A¢ cogQ - 1))fy;.
* S classical’ -—- G i

00 P )
Szt . .
[ =0.70 Ag=Acpw(Q) is a CDW order parameter at the ordering
é -0.4 _ : wave vectorQ. Here,Acp\y serves as a variational parameter
g 06 /B Jas’;ﬁ:’gfﬂutﬁq‘:‘gﬁf’i;fé - for the trial wave function. In the/3x y3 phase, the trial
:1’ ‘ ) Hcpw has onsite potential 42 on the preferred sublattice
“Yos and A on theB and C sublattices of the triangular lattice.

g The trial wave function is obtained by Gutzwiller projection
-1.0 ’ J, ] of the mean-field ground state.
Ao L - . : - . - The optimizedtV energetics for such more conventional
0 1 2 3 \?v 5 6 7 8 CDW wave function is also shown in Fig. 7. Feft<4.5

the optimal wave function hascpy = 0, but develops strong
FIG. 6. Expectation values of the hopping and nearest-neighbdeDW order for large//t. In this conventional CDW state at
repulsion energies in the Jastrow-Gutzwiller wave function at dopthis filling, we have a coexistence of the charge order and
ing x=0.70(fermion densityp=0.3). We also show the correspond- Fermi liquid.
ing renormalized mean-field values. Vertical arrow ngér~=3.3 From Fig. 7, we see that the JG wave function performs
indicates the transition point in the classical lattice-gas system. significantly better than the conventional CDW wave func-
tion. This is simple for the metallic side, since the JG wave
function has an additional variational parameter to optimize
Using the above data, we can optimize the total energy folocal correlations compared to the plain metallic state with
different values oiV/t. The result is indicated in Fig. 7. For Acpw=0. On the other hand, on the charge-ordered side the
V/1=<6.0, the optimall,, remains<2.0 and the wave func- Jastrow-Gutzwiller wave function performs better almost en-
tion is metallic with relatively weak renormalizations. For tirely due to better kinetic energy. As discussed earlier, the
larger V/t, the optimalW,,, jumps to they3X 3 ordered JG state retains some of the metallic kinetic energy even in
side, andW ;g has the corresponding density wave order.the largeW limit. At the same time, the conventional CDW
Note that the optima¥V,,, remains fairly close to the critical Wwave function localizes the fermions to thesublattice very
value. In this way, while the repulsion energy is almost com-strongly and loses essentially all kinetic energy: in the limit
pletely satisfied, the system still gains from some of theof largeV, the optimalAcpy~V and the optimal total en-
original kinetic energy. ergy is~-t2/V. Even though the lowest band remains only
We now discuss the regime of larye where the Jastrow- partially filled, its bandwidth goes to zero in the limit of large
Gutzwiller energetics suggests charge ordering. First, it i$dcpw-
instructive to compare this with the energetics in a more Thus, we conclude that the Jastrow-Gutzwiller wave func-
conventional CDW trial state. Such a state is obtained, fotion with the y3 y3 order performs fairly well for large/'.
example, by considering a CDW mean-field Hamiltonian ~However, this is by no means the end of the story even for
the tV model. The most serious reservation here is that we
have not explored other competing states in the system for

Optimized tV energetics large V. We will not address this. We still hope that our

00F  conventional CDW approach captures the relevant local energetics in the system.
geRcRRARKEE i aads In_the present context, we can explore the energetics of
02 the v3x 3 ordering more systematically. As discussed, the
04l cgmp[gte minimum-nearest-neighbor projection leads to the
e V3X 3 order. Forp<1/3, we essentially have charges liv-
w06t ing on theA sublattice only and moving primarily viA-B
-A or A-C-A routes, while the bondB-C are rarely useg@see
-0.8 | Fig. 8). In the above, we were projecting the uniform free
fermion triangular lattice hopping ground state, while it is
1.0 02 4681012 | clear that in the resulting charge-ordered state the Bofs
1.2 . . . Vv . are poorly utilized, and more generally the kinetic energy—
0 2 4 3 8 10 12 the driving force for uniformity—is less important. In the

\V3X 13 regime, it then seems more appropriate to project a
FIG. 7. Optimization of thetV Hamiltonian over Jastrow- hopping state with strong-B and A-C hopping amplitudes

Gutzwiller and conventional CDW trial wave functions. Inset showsand weakB-C hops. The limiting case is the dice lattice

the optimalW,, for the Jastrow-Gutzwiller wave function; arrow hopping shown in Fig. @); the six-coordinated sites are the

indicates the critical\;~ 3.3 in the corresponding classical lattice- A sites, while the three-coordinated sites are Ehand C

gas system. sites. The dice hopping state by construction R&8s< 3

214516-6
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the spin-polarized wave function performs better than the

¢ o o ° o unpolarized one. One can get some feeling of the slight dif-
° B & * ferences by examining Fig. 9. Such itinerant ferromagnet

2 ° @ g ° tendencies become even more pronounced at lower fermion
c e o o e density (higherx).

e o o e o o After the presented detall, it should be clear that the en-

ergetics can be rather subtle and model dependent, particu-
o larly in the charge-order regime. We now want to separate
FIG. 8. (8 Schematics of the3x \3 charge order fop<1/3.  out which features are more robust than the above specifics.
Charges occupy tha sublattice and spend very little time on tBe  This is important since at present we do not have a good
andC sublattices. The remaining empfysites can be utilized for  knowledge of the microscopic Hamiltonian in the /8a0,
charge hopping. There is an intermediate repulsion energy cdst of system.
to move an isolated such site, but no such cost for two neighboring  First of all, we conclude that there can be significant
emptyA sites as shown in the figureb) Dice lattice hopping ansatz - renormalizations in the metallic wave function. The hopping
motivated by the observation that hopsC are rarely used. can be effectively suppressed roughly by a factor ¢&e
Fig. 6), with the wave function retaining its Fermi-liquid
character. The achievable Fermi-liquid renormalizations may

th? fermion density IS located on tife subIaFtlce. Clearly, ._be even larger if we include further neighbor repulsion, since
this has better repul_spn energy than the_ triangular hop_plngnis will frustrate they3x 3 charge order and give more
state. Tol further optimize the negregt—naghbor correla_tlonsparameter space to the liquid state with uniform charge dis-
we can introduce a Jastrow weighting as for the uniform

hopping statgnote that in the dice case the classical IatticembUt.'(.)n' As long as the system remains urln‘(_)rm, this 'S,,nOt
sensitive to the microscopicgAt this local “high-energy

gas transition is no longer relevant since the charge systerlréveI of analvsis we comoletely disreaard the low-eneray in-
has the3X V3 order from the outsgt The optimizedtV y mpietely disreg 9y
stabilities of the resulting Fermi-liquid stafe.

energetics is shown in Fig. 9, and we indeed find that the S .

) : . : Our second observation is about the nature of possible
dice hopping ansatz is somewhat better than the uniform .
State charge orders in such strongly frustrated system. Our JG

Finally, we should point out that we have completely ig_wave functions offer an interesting possibility of essentially

nored the spin physics by considering only unpolarized wav satisfying the nearest-neighbor Coulomb repulsion while re-

functions. It should be clear that since the bandwidth be(:{;"’“nm.g some klnet[c-energy gain "’?”d T“e‘a”'c'ty- Projecting
the triangular or dice lattice hopping is merely a detail of

comes s0 narrow, there will be significant degeneracy—on ow the quantum tunneling is put into the wave function, but

thetv energy scale—in the spin sector. This degeneracy wil he overall picture of the resulting state is the same. Whether
be resolved in some way or other at lower energy scale, ang

the details will depend largely on the specifics of the micro->UCh State is energetically favorable compared with other

scopic Hamiltonian. As an example, trying out spin- olarizedcompeting states requires a more detailed study.
P : p'e, trying pin-p Finally, we expect that the spin dynamics is highly degen-

Jastrow-Gutzwiller wave functions in th¢ Hamiltonian, we : : d
. . . —____erate in such charge frustrated systems, and its ultimate fate
find that in the charge-ordered regime the fully polarized.

wave function performs only slightly worse than the unpo-IS resolved only at much lower energy scales.
larized one. For the dice hopping ansatz, on the other hand,

order. It is easy to verify that in the lowest band one half of

B. Doping x=0.35

0.0 ill more tV energetics, X=0.7'
* ﬁoenﬁf;mg' Sﬁg‘élnd We now summarize similaV study atx=0.35. This is of
0.1 | -& JG TRIANG, Poistf™ ; interest for the hydrated compound NgCo0, 1.3H,0 that
pe jg B:gE NRolzd was found to exhibit superconductivity.
02t ' Figure 10 shows the expectation values of the kinetic and
< nearest-neighbor repulsion energies in thg; evaluated us-
o3 ing VMC. The repulsion energy is referenced to the minimal
repulsion energy at this densif§,, min=V(3p—1) per site;
0.4 1 cf. Fig. 4]. The renormalized mean-field approximation is
05 | also shown and is fairly accurate.
) SF The result of the wave-function optimization for tie
06 A Hamiltonian is shown in Fig. 11. For/t<4.2, the optimal

L L L L L

0 2 4 6 8 10 12 W remains=1.5; the wave function is metallic with weak
renormalizations. For larger/t, the optimal¥ ;s jumps to

FIG. 9. This is a blow-up of Fig. 7 focusing on th&x 3  the 33 ordered side; however, the optimal,, remains
regime and showing additional Jastrow-Gutzwiller type trial wavefairly close toW;=~2.8, and the system retains significant
functions for thetV Hamiltonian. Besides the unpolarized triangular part of the original kinetic energy.
lattice hopping ansatz, we also show the optimized energetics for Turning to the regime of larg®, we consider also the
the corresponding fully polarized state, and also for the dice latticanore familiar CDW trial state obtained from the mean-field
hopping ansatz. Hamiltonian, Eq.(9). The optimized energetics with such

214516-7
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0.4 T r T r T T
. EyN - (EyN)ppn, Jastrow-Gutzwiller ¥ ——
0.2 ™ g ‘classical’ -
0.0 T
[
2
g-02rx=0.35
S 04 o
5 / Egt, Jastrow-Gutzwiller ¥ ++-
D renorm. meanfield -
2.0.6
a5
-0.8 ’,/"
1.0 ¢ l
12 L L L A A L A
0 1 2 3 4 5 6 7 8
w

FIG. 10. This is similar to Fig. 6, but for doping=0.35 (fer-
mion densityp=0.65. The repulsion energy is referenced to the
minimal repulsion energy. At this density/,~2.8.

conventional CDW wave function is also shown in Fig. 11.
The optimalAcpy remains close to zero fo¥ <3, but be-
comes significant and negative for largérWe now observe
that in the regime with the putative3 X y3 charge order

PHYSICAL REVIEW B69, 214516(2004)

However, for the range 0¥/t studied here, the uniform tri-
angular hopping ansatz performs better, primarily since it
manages to retain some of tAeB and A-C hopping energy.
This completes our exploration of the& X y3 order.

Finally, we note that at this high fermion densipy
=0.65, unlike the case witlp=0.30, the spin degeneracy
does not occur, and the unpolarized wave functions are al-
ways better.

To summarize, the local energetics of thémodel atx
=0.35 is well captured by either the renormalized Fermi lig-
uid, or the V3 y3 charge-ordered state, depending on the
value of V/t. The y3x 3 state also has mobile fermions
occupying primarily the honeycomb sublattice the origi-
nal triangular latticg however, since the fermion density is
close to complete covering of the honeycomb lattice, the
fermion hopping is strongly suppressed.

Again, the ultimate fate of the Fermi liqui@r the liquid
part in they3x 3 regimg is resolved only at lower ener-
gies. In the following section we study the superconducting
instability due to thel term, and whether the RVB supercon-
ductivity can be significantly enhanced by the discussed
strong kinetic-energy suppression.

both the JG wave function and the mean-field CDW wave
function give very close optimal energies. This is also trueVl. RVB SUPERCONDUCTIVITY: RESURRECTION NEAR

for the individualt andV parts, suggesting that the Jastrow-
Gutzwiller and conventional CDW wave functions give in
fact essentially the same physical state.

This can be understood by examining the meanfield CD
state. FoA-pyw <0 theB andC sublattices are preferentially
occupied, while theA sublattice is preferentially empty. In

this case, the lower two mean-field bands retain much of th

original bandwidth even in the limit of larg&cpy. This is
because th® andC sites form a connected honeycomb lat-

tice, and for large\ cpy the two bands correspond essentially

x=1/3?

We now turn to the issue of RVB superconductivity due to

V\;he antiferromagnetic spin interaction at dopings < 0.4.

In the context of the triangular lattice) model, this was
considered by several authdrfs!®262"These studies predict

d+id superconductivity. As expected for such scenario, the

RVB gap is strongest near half fillimg=0, where the charge
mobility is low. Away from half-filling at moderate dopings,
the need to satisfy the kinetic energy of the carriers leads to

to hopping on this lattice. The physical state is now obtainedong suppression of the superconductivity. As pointed out

by the Gutzwiller projection of this free fermion honeycomb
lattice hopping state. But this is also roughly the picture o
the Jastrow-Gutzwiller wave function in théx y3 regime
for this density.

The above suggests that we also try projecting honey-

comb hopping ansatz, since it better utilizes B« hops.

Oqtimized t\/ enerqetlics

0.0 |
02 [x=0.35 o™ onventional CDW -
g JG, TRIANG 4
-0.4 xfx“ N
g *:5. 4 Optlmllzat!on 'ofwl G
w06 | 3l -
08 | 2y
. T
1.0 0
02 46 81012
v
12 - . : : '
0 2 4 6 8 10 12
v

FIG. 11. Optimization of thetV Hamiltonian over Jastrow-
Gutzwiller and conventional CDW trial wave functions»at0.35
(cf. Fig. 7). We also show the result for Jastrow-Gutzwiller honey-
comb hopping ansatz.

In Ref. 19 and discussed further below, the experimentally

fobserved superconductivity at doping0.35 represents a

significant problem to this scenario: If one uses the LDA
bandwidth to estimatét, .. ~50-100 meV, and takes the
hopping integral sign as in this work, and makes a reasonable
guess]~10-20 meV, the resulting RVB superconductivity
is vanishingly weak for this doping and would not be ob-
served.

As discussed above—cf. Fig. 3—charge frustration can
lead to strong suppression of the effective hopping amplitude
tesr, €ven for larger doping. Here we study whether this sup-
pression can be strong enough to resurrect the superconduc-
tivity at x=0.35. Figure 3 also suggests that the region near
x=1/3 is special in that it allows the strongest such renor-
malizations, with or without the charge ordering. As dis-
cussed earlier, this is because the charge system is most sen-
sitive to the nearest-neighbor interactions near this
commensurate doping. On the other hand, when the super-
conductivity is weak, the transition temperature is exponen-
tially sensitive to the effective hopping amplitudsee be-
low). Thus, we may speculate about the possibility of a small
superconducting dome around this special doping due to
charge correlatioipossibly, charge ordering

The physics treatment presented below is very schematic.
We will essentially think only in terms of the renormalized
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couplings and ignore the fact that the underlying state may In this formulation, only the ratid\/y is meaningful. A
be charge ordered. This is done to get a rough feeling as toonvenient procedure to minimize EEL.0) is to minimize
whether the suggested scenario can work at all. If the supemstead the so called mean-field Hamiltonian

conductivity nearx=1/3 canreappear only in the charge-
ordered region, the obtained insight is still useful and may
suggest a more careful treatment. For example, the charge

~ 8 .
H. .= — |y = t"2+ AT+ H,
mf % 3gJJij HXIJ Ot |]| | IJ| ] trial

order may be suppressed by longer-range repulsion. Another

possibility is that a more accurate treatment may lead

short-range charge order for intermediate coupling whic

shares the same kinetic-energy suppression.

We first summarize the standard RVB mean field for the®
puretJ model. We formulate this mean field as an approxi-

mate variational proceduré:?>26This is particularly conve-

nient for the present work, which also takes the variationa

wave function perspective.

To study the possibility of singlet superconductivity, we

consider “trial” Hamiltonian
_ t t .t
Hyia = 2 [ XijCisCjr — (AjiCiiCj) + H.C)]
ij

-2 uleleio— (1-%)],

with in:er, Aji=4j;. For each such trial Hamiltonian, we

obtain the corresponding ground stdtky). In the mean

= standard arguments, the global minimum of the mean-

ield Hamiltonian is also the minimum of the trial expecta-
tion value Eq.(10). In this formulation, the optimatf andA
ach obtain physical scale as settlandJ. Thus, we can get
a crude idea about the quasiparticle spectrum above the
ground state by considering the mean-field excitation spec-
frum, which now has physical scale. In particular, the opti-
mal A gives a physical measure of the RVB gap, while the
optimal y sets the bandwidth.

The self-consistency conditions read

* 303J;i

Xij = 9t + —lé (oY (12)
« 3035

Aij = %l<eo'o"c;tycjjro-r>- (13)

From now on, we specialize to thetid superconductor
ansatz:

field, we ignore the no-double-occupancy constraint and only

require the average density to be correc;{tdﬁgci(,):l—x,
which is achieved by tuning the chemical potenfialGoing

beyond the mean field, the physical wave function is obH1€rée=

tained by Gutzwiller projection.

A=A, A, =A™ A =A*P (14

X, e2:%>?+(\s’§/2)§/, ande;=e,—e; are the unit tri-
angular lattice vectors. There is strong evidence that this

As discussed at length earlier, we can approximate thgtate wins thetJ model energetics folrgtzt;eﬂconsidered dop-
expectation value of the) Hamiltonian in the physical wave NS, at least on the mean-field levét!2®

function by proper renormalizations of the mean-field values:

(Wl Wo)

(TelHulPe)  (WolH{Wo) .
Y (W W)

WelWe (W)

== gtz tij<CiT(er(r> +cC.C.
€ij)

3J.
=02 = el )P+ Kevorcloe, ).
(i

(10)

The hopping renormalization factor is given by E®),
while for the Heisenberg exchange we havé

4

= m (11)

95

These estimates @, andg; follow essentially from the no-

We give the results for=3J andt=5J. This is somewhat
different from the cited=(5-10J values!® At the moment,
there is significant uncertainty in the precise microscopic
model, while the superconductivity energy scale is exponen-
tially sensitive to the microscopic values and to numerical
constants in the theory. The=3J results make the demon-
stration of principle more dramatic. A similar, but weaker,
effect is seen fot=5J.

The optimal A in units of J is shown as a function of
doping in Fig. 12. For weal.z=93;J much smaller thar.
=git, the optimalA is given by a BCS-like formulgsee
Appendix A for detaily

A ~ toge Clet et (15)

with some numerical constantc(x). The effective mobility
of charges increases with doping;~ xt, and this leads to
the observed very quick drop df.

Note that in our treatment here and below, the mean-field
gapA is the primary factor that determines the physical tran-

double-occupancy configuration constraints, and do not desition temperature neai=1/3. It iswell appreciated that for
pend on the details of the preprojected state as long as it isw dopings when the mean field is large the supercon-
spatially uniform. Also, they give numerical results that areducting order parameteb is suppressed compared with

fairly close to the actual evaluations with the projected waveoughly, ®=g,A. The zero-temperature superfluid stiffness is
functions, as discussed earlier. The above is precisely thalso renormalized by, and there is no simple BCS relation
renormalized mean-field formulation of Refs. 21, 22, and 26between the order parameter and the transition temperature.

The slave boson mean field of Ref. 19 uses instgac and
g;=1, so the numerical values are somewhat different.

However, we are interested in the regime neaf /3, where
the predicted mean field is very small to start with. Since

214516-9
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10400 Renormalized meanfie|d for d+id Renormalization factor for Heisenberg exchange

v 4.0 W00
t=3J 35t 0
2 iy meanfield T, —— sor
S 1e-01 h § 1 25t
2 =M\ self-consistent A = 5
5 ", (Eooy )2 20 R
2 . — 0
S, cond 15+ . 0 - |
91 02 1.0 < S
@ 1e-02 | ot x
(& R
05 | o]
00 b Aeduiiltsaalis
N 0 01 02 03 04 05 06 07 08 09 1
1e-03 : . : : . * doping X
0 005 01 015 02 025 03 035 04

doping X . .
FIG. 13. Jastrow-Gutzwiller renormalization factor for the

FIG. 12. Renormalized mean-field results for theid super-  Heisenberg exchange as a function of doping for a number of fixed
conducting state fot=3J. We show the meanfield,, the optimal W (cf. Figs. 3 and # In the y3X 3 phase(data points below the
A, and the square root of the condensation en&gyy The energy  thick dark ling, the exhibitedg, is averaged over all bonds.
scale is the bard; note the logarithmic scale for the energy.
x<0.4 the effect of the Jastrow correlations on the Heisen-

A is exponentially sensitive tt, it can change orders of Perg exchange is weak since the spins cannot avoid being
magnitude whery, is reduced several times. We therefore €lose to each other, arg} is roughly given by Eq(11) for
study only the effect of the, renormalization om\ and do &l W, i )
not try to accurately predict the transition temperature. Thus, for each doping levedand the Jastrow suppression
Figure 12 also shows two other measures that are rough§irengthW, we can estimate the correspondigg Je, and
related to the mean-field gap. One is the mean field,  then the optimalA. The latter is our main measure of the
defined here as the transition temperature of the mean-fief/perconductivity strength and is shown in Fig. 14. Wie
HamiltonianH,. The other measure is obtained by consid-=0 line is the same as in Fig. 12, while té=8 corresponds
ering the condensation energy of the superconducting statgSsentially to the minimum-nearest-neighbor projection.
This is defined as the energy gain in the optimal superconfgain, the dark thick line corresponds to the phase boundary
ducting state relative to the Fermi-liquid stat&=0). For  Of the Jastrow weight. For>0.27 all points above this line
small A, the condensation energy is expected to scale adave they3X 3 charge order. These are obtained by using
Eong~ A2/t to compare withA in Fig. 12, we plot instead the correspond!ng formal renorma}llza_tmn factorg .a.nd the
(Econd)¥2. From Fig. 12, these measures all trail each other?bo‘(e presgrlptlon, even 'though this V|0'Iates .the. |n|t.|al mo-
The figure has been somewhat arbitrarily cut off ar310 tivation coming from_ a uniform rgnormallzeq I|q_U|d plcturg.
any A below this scale would not be observed in the experi-AS empha_s|zed earlier, the precise energetics in this regime
ments. We see a precipitous drop oz 0.20; there is simply  Ikely requires a more careful treatment. However, we expect
no hope in thigJ setting for the superconductivity to survive that even such simplistic analysis in th&X 3 regime
to the experimentally observex=0.35. [We also remark
here that a direct VMC study must see the condensation en-  1e+00
ergy to establish the ground state SinceE_,qis extremely
small, such studies become impractical. This is where the
renormalized mean-field procedure becomes very ugeful.
Let us now return to theéJV model with strong nearest-
neighbor repulsion. We think roughly as follows. The domi-
nantt andV parts can be satisfied as above by the appropri-
ate Jastrow weighting of charge configurations in our trial
wave functions. As discussed earlier, the effect of the Jastrow
factor can be conveniently described by the corresponding
renormalizations of the hopping amplitudge [Eqg. (7) and
Fig. 3] and the Heisenberg exchange The latter is ap- 1e-03
proximated by

.Ilastrovlv renorlmalizeld meg'nﬁeld f|0r d+iq

t=3J

1e-01 |

o=

OCOoOODOCOoO0OOCO

1e02 | —=-

NokoONM=O

—+- 8,
== phase boundary

0 005 01 015 02 025 03 035 04

Self-consistent A (in units of J)

doping X
_ {{alni — én; - 1)) (16) FIG. 14. Renormalized mean field for the Jastrow-weighted
J [p(1-pl2)? +id superconducting state for3J (cf. Fig. 12. We show the self-

consistentA as the measure of the superconductivity stren@th
and is plotted in Fig. 18cf. discussion following Eq:7)]. As  plots look very similay. The dark thick line corresponds to the
long as the charge distribution remains uniform, these renofphase boundary of the Jastrow weigtit Figs. 2, 3, and 18—the
malizations capture the main effect of the nearest-neighbahaximum enhancement of the superconductivity while remaining
correlations built in by the Jastrow factor. Note that for smallin the uniform phase.
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16400 Jastrow renormalized meanfield for d+id to the honeycomb lattice. On the other hand, dRed state
t=5J wins the energetics in the original uniform triangular lattice
mean field and needs to be reexamined in the present con-
text. The above renormalized mean-field procedure roughly
corresponds to restricting thettid ansatz onto the honey-
comb lattice. Of course, one should also consider other pos-
sible RVB superconductor states on the honeycomb lattice
and decide which one is optimal energetically. More gener-
ally, one may want to consider triangular lattice supercon-
ducting ansatz with broken translational symmetry patterned
‘ after the V3x 3 state. We are not pursuing such studies
AW here, since it is important to first establish whether the charge
0 005 01 °-15d0°if 025 08 035 04 ordering occurs at all in the material. If this indeed happens,
Ping the above rough considerations can give us some initial idea
FIG. 15. This is the same as Fig. 14, but fer5J. about the scale of the superconducting instabilities in such
state.

gives a reasonable first guidance on how the role of the ki-
netic energy can be suppressed by possible charge ordering
in the system.

Our tentative conclusion from Fig. 14 is that fisr3J the

considered nearest-neighbor Jastrow renormalizations that \we conclude by stating some consequences of the dis-
leave the underlying liquid wave function in the pure Fermi-cyssed effects of charge frustration as follows.

liquid state are borderline sufficient to explain the supercon- (1) It will clearly be interesting to look for signs of
ductivity nearx=1/3. Oneshould of course judge this criti- charge order neax=1/3 and 2/3using x-ray or neutron
cally because of the exponential sensitivity to the actuakcattering. The conductivity is metallic and in the case of
value of the ratid/ Jer, Eq. (15). The trend for increasing =1/3 reaches 5€?/h at low temperature$? This suggests
t/J can be seen by comparing3J, Fig. 14, and=5J, Fig.  that long-range charge ordering is unlikely, but there may be
15. a tendency for short-range ordering.

We speculate that in N&00,-1.3H,0 the actual situation  (2) There can be strong suppression of the effective hop-
is qualitatively close to the curve withV=3 in Fig. 14,  ping amplitude due to nearest-neighbor repulsion while re-
which near x=1/3 roughly corresponds to the critical maining in the Fermi-liquid state. The mean-field hopping
strongly correlated liquid of the nearest-neighbor JaSthV\lamplitudeX”:X is given by Eq.(12) and has contributions
weight (cf. Figs. 2 and B This curve may lie inside the proportional togit andg,J. Note that in addition to the sup-
liquid phase for longer-ranged Jastrow weight. Another pospression ofg, (Fig. 3), g; is also suppresse@Fig. 13, espe-
sibility is that only short-range charge order is developed forgjally for x>0.5.
intermediate Coupling. One thing should be clear from FlgS This Suppression leads to low fermion degeneracy tem-
14 and 15: There can indeed be significant enhancementperature. The properties of such Fermi-liquid system with
one to two orders of magnitude—in the superconductivitye_ <T are rather unusual from the perspective of the familiar
scale due to the kinetic-energy suppression in the chargenetals wither>T (the Fermi energy is measured from the
correlated liquid. Because the charge system is most respoBottom of the band, and is roughég ~ t.). This is given in
sive near the commensurate1/3, this enhancement may  the following:
be strongest near this doping, which may explain the experi-  (g) In particular, the thermopower is large and satu-
mentally suggestéd superconducting “dome” around  rates to the value
=1/3. However, we note that even faW=3, A in Fig. 14
shows only a shallow maximum near1/3. Apossible ex-

e ont is thateignif __n ke 270
planation of the experiment is thatsignificantly less than Q= =—In
1/3 is not achievable due to chemical reasons and supercon- aT q p
ductivity is simply cut off. Again, the important message we
draw from Fig. 14 is the possibility of pushirif, up to an  at large temperature. Note the “classical” scg/|e|
observable level near=1/3. _ =86.2uV/K, which is in fact observed in N&00,.>"*°

Finally, if we continue the theory into the Jastrov@ The full temperature dependence fo0.70 isshown in
X 3 charge-order regime, the enhancement may be even Fig. 16. Here and below, we use simple-minded transport
stronger. This is not surprising, since the charge mobility igheory summarized in Appendix B. From Fig. 16, the ther-
suppressed even further in this case. Thus, our earlier analyropower reaches one half of the maximal value Tor
sis tells us that fok>1/3 we are essentially doping a nearly = tes.
half-filled honeycomb lattice. This picture also suggests (b) The Hall coefficient for the triangular lattice band
some possibilities of treating the8 X y3 CDW regime more  structure has an unusual nonsaturating increase with the tem-
carefully, similar to our discussion in Sec. V. For example,perature forT= e as observed experimentally in Ref. 10.
for x>1/3, we can view the fermions as restricted primarily The limiting high-temperature behavior is

1e-01 |

o=

ODO0O0DOCOoO0OOO

1e-02 |

-

Self-consistent A (in units of J)

ONONROD O

== phase boundary

1e-03

VIl. CONCLUSIONS:
CONNECTION WITH EXPERIMENTS

17
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Transport prop%rties; x=0.70 superfluid density(observable via the London penetration
16 L Thermopower Q | Hall coefficient R depth in the case of superconducjosse directly propor-
in units of kg/le| 8 I'in units of Q/elc tional to g;. These will provide a more sensitive test of the
I - predicted dip ing; nearx=1/3 andx=2/3 asshown in Fig.
3. For example, it will be interesting to compare the Drude
weight forx=1/3 andx=0.5 samples.

(4) The spin physics near=2/3 isexpected to be highly
degenerate and complicated, and will manifest itself below
the energy scalé.. In particular, the above transport pic-
tures will likely be modified below this scale.
| (5) Nearx=1/3, whether the system prefers uniform or
, . , charge-ordered state, the correlated liquid can have further
4 RVB superconducting instabilities. The suppression of the

charge mobility serves to enhance and may even resurrect
. : the superconductivity under a small superconducting dome
FIG. 16. Simple-minded transport theory for nondegeneratearoundx:1/3. Experiments observe the disappearance of

spin-1/2 Fermi gas on the triangular lattice. The thermopower is g -
plotted in “classical” units okg/|e], while the units for the Hall the superconductivity below=0.26. However, the strongest

coefficient contain the three-dimensional volume per Co afbm RVB superconductivity is expected at muc,h lower doping,
and the search should be pursued more vigorously towards
x=0, if that is chemically possible.

©C = N W A~ GO N
T T T

0

1 2 3 1 2 3
kg Theg kg T/og

ac p(2 - p) teir |
where () is the three-dimensional volume per Co. The full _
temperature dependence is shown in Fig. 16; the high- The autho_rs are grateful to A. y|shwgnath, C. Honerkamp,
temperature trend sets in far~ 1t to 2. Possibility of and T. S_enthll fO( many useful dlscu_ssmns, and to N._P. Qng
this unusual behavior was predicted in Ref. 18 from thefor.maklng experimental results avallqble befo_re publication.
high-temperature expansion for th&model (the doping Th|s work was supported by the National Science Founda-
dependence of the proportionality coefficient is somewhafion under Grants No. DMR-0201069 and DMR-0213282.
different her¢. We remark that this unusual behavior is
the consequence of the triangular lattice band structure APPENDIX A: DETAILS OF EQ. (15)
only, and its origin can be traced to the presence of three-
site hopping loops as detailed in Appendix B. Correlation Equation(15) can be understood by examining the self-
effectsper seare needed only to redudg; below the ex- consistency conditions, E@13). Specializing for thed+id
perimental temperatures. ansatz, we have

(c) Pauli susceptibility per Co site for= e becomes

Ry (18)

ACKNOWLEDGMENTS

et 1 5 faria(k)

2 =
8 N« VE+AL

o
Xpaui= fp(l -pl2). (19)

Note that this has a Curie-like behavior, but is somewhats,, . (k) = 2 cosk -e1<cosk -el—%cosk-ez—lcosk-e3>.
smaller—by a factor of 1 p/2—from the case of completely 2
free spins.

(3) The kinetic-energy renormalizations are stronggst
fixed repulsion strenglth near the commensuratex
=1/3,2/3, andveakest neax=1/2.This is because the sys-
tem finds it easiest to order, even if only locally, near the
commensurate filling, while away from commensuration
much of the nearest-neighbor repulsion energy cannot be 4 X
avoided in any case. A=A 0 3

Charge frustration may also be relevant for the experi- OV did ef
mental “charging” curve of Ref. 4. The observed plateaus af is an order one numerical constang(x) is the triangular
x=1/3,2/3remind one of the magnetization plateaus in thelattice hopping density of states per sitet including spin
frustrated triangular lattice Ising modgklated to the lattice at the Fermi energy corresponding to dopigand fy.iq iS
gas with nearest-neighbor repulsion as mentioned in Sethe d+id wave factor averaged over the Fermi surface. The
[11). Note that the bandwidth observed by heat cap&gity scaley in front of the exponential corresponds to the energy
and by ARPESRef. 1)) is proportional toy and has contri- cutoff being roughly the Fermi energy, since the pairing is
butions from bothg;t and g;J [see Eq.(12)]. On the other over the full Fermi volume. For small,; we see from Eq.
hand, electromagnetic response couples onlydo that the (12) that y can be replaced bi in Eq. (Al), yielding Eq.
Drude weight observable from infrared reflectivity and the(15). Similar expression is obtained for the mean fi&ld

Here N, is the number of lattice siteg=e€,—u with .=
—2x(cosk-e;+cosk-e,+cosk-ey).

For weak superconductivitd <J.=<t., following a
BCS-like analysis, we obtain the following approximate for-
mula:

(A1)
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12 ITrianlguIar Ilatticezlingreqients forA((lJ), T°. L, J d3k( (9]:) ) .
20 Oxx=q a3\ g (K)vy(K).
1F 15+
10l Here,f(e)=1/(e*#+1) is the Fermi distribution. We cite the
08 | more familiar three-dimensional expressions. When applying
to NaCoO,, we specialize to the layered triangular lattice
06 °0 by assuming no dispersion in the direction. The full
temperature dependence frr0.70 isshown in Fig. 16,
04r and the limiting high-temperature behavior is given in Eq.
02 | (17).
| o (b) In weak magnetic fieldso.7<<1, the Hall coeffi-
o= . cient is given by
6 5 4 3 2_-1 0 1 2 3
E oy
_ _ _ Ry= . (B2)
FIG. 17. Density of states per siig(E) and the integrated den- OxxOyy

sity of states(DOS) N(E) for the triangular lattice band structure
(unit hopping amplitude, no spinWe also show the data for the
averaged+id wave factorfy,iq at the corresponding energy cut; we
plot 0.5 4,4 to fit into the same vertical scale. To obtain the values 37-2 d3k af

x(k)[l\/lyy vy(K) = Moy (K)].

oy Oyy are the static zero-field conductivities given earlier,
while

corresponding to the particular dopirgwe first locateE such that
N(E)=(1-x)/2. In this manner, we obtaio(x)=4/(3vyfg+iq) plot-
ted for the relevant range<0x< 0.4 in the inset. (B3)

In the last equatlorMa,B(k) Pel ok «9Kg is the inverse mass
The necessary data is shown in Fig. 17. The coefficienfepgor.

c(x) depends rather weakly on and the main effect onthe  The high-temperature behavior for the layered triangular
A andT, is from the doping dependence Rf. The above |attice is given by Eq(18). The origin of this nonsaturating
approximate formula agrees fairly well with the actual mean-ncrease with temperature lies in the presence of triangular
field calculations performed in the main text. hopping loops. Indeed, consider the above semiclassical ex-
pression foro at high temperature, and translate it from the
momentum space back to the real space assuming a general

APPENDIX B: TRANSPORT FOR T=e€r hopping problentzr on a Bravais lattice. The result reads

In this appendix, we summarize the simple Fermi-liquid P2[ of
transport theory that was used to obtain Fig. 16 and &43. oy=— ( ) > tortisto RixRoy(R; X Ry),.
and(18). The main formulas can be found in standard texts c de QRl Ry
2829They are as follows. (B4)

(a) The thermopower is given by
Here, {df/ de) = p(2-p)/(4T), and also entersy,, oy, () is

Q= L1z (B1) the volume of the unit cell. The lattice hopping problem is
Oy input through the real-space sum over possible hops out of
the origin:R;=Ry;, R,=Rg,. For each triangle specified by
an unordered triple of vertice8,R;,R,, the clockwise 0
—1—2—0 and anticlockwise 6-2—1—0 contributions
Bk/ af e(k) " add to(R; X Ry)?, i.e., a quantity of definite sign. The effect
Lip= qTf 4773( ) K)oy (K)——— is of course strongest for the triangular lattice.

The kinetic coefficients are given by the integrals over the
Brillouin zone
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