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Charge frustration due to further neighbor Coulomb repulsion can have dramatic effects on the electronic
properties of NaxCoO2 in the full doping range. It can significantly reduce the effective mobility of the charge
carriers, leading to a low degeneracy temperatureeF&T. Such strongly renormalized Fermi liquid has rather
unusual properties—from the point of view of the ordinary metals witheF@T—but similar to the properties
that are actually observed in the NaxCoO2 system. For example, we show that the anomalous thermopower and
Hall effect observed in Na0.7CoO2 may be interpreted along these lines. If the repulsion is strong, it can also
lead to charge order; nevertheless, away from the commensurate dopings, the configurational constraints allow
some mobility for the charge carriers, i.e., there remains some “metallic” component. Finally, the particularly
strong bandwidth suppression around the commensuratex=1/3 canhelp resurrect the resonating valence bond
superconductivity, which would otherwise not be expected near this high doping. These suggestions are
demonstrated specifically for atJ-like model with an additional nearest-neighbor repulsion.
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I. INTRODUCTION

Recent discovery1 and confirmation2–4 of superconductiv-
ity in Na0.35CoO2·1.3H2O has stimulated many studies of
this material, and in particular of its unhydrated precursor
host material Na0.7CoO2. The NaxCoO2 series has been
known for more than five years5–8 for its unusual transport
properties such as large thermoelectric power and nearly
linear-T dependence of the resistivity, indicative of strong
correlation effects. This has been brought up even further by
a number of recent careful experiments.9–14

It appears from these studies4,6 that there is a large sup-
pression of the valence-band width(equivalently, large effec-
tive mass enhancement)—by an order of magnitude com-
pared with the local density approximation(LDA ) band-
structure calculations.15

We suggest that such large renormalization may be caused
by strong Coulomb repulsion between charge carriers on
neighboring Co sites, and point out that a number of unusual
properties of the system may be explained by the resulting
low fermion degeneracy temperature. We also consider other
possible effects of such repulsion, in particular, charge order-
ing.

The plan of the paper is as follows. To be specific, we
consider a tJ-like model with additional strong nearest-
neighbor repulsionV. In Secs. II–V, we concentrate on the
dominantt ,V energetics. The study is done by considering
Gutzwiller-like trial fermionic wave functions(projected
Fermi liquid) with additional nearest-neighbor correlations
input through a Jastrow-type configurational weighting fac-
tor. The strength of the input correlations serves as a varia-
tional parameter.

Section III studies the properties of these wave functions.
We find that up to moderate input correlations, the wave
function indeed describes a renormalized Fermi liquid, con-
sistent with the initial motivation. We also realize that for
strong input correlation and over the doping range

0.27,x,0.5 and 0.5,x,0.73, our Jastrow-Gutzwiller
wave function has aÎ33Î3 charge order, which is inherited
from the charge distribution properties of the classical Ja-
strow weight on the lattice. Since such a state is beyond our
initial motivation, we examine its properties and treat it very
critically whenever the variational parameter is driven into
this regime.

In Sec. IV we develop a convenient renormalized mean-
field picture for the energetics in the entire doping range. We
identify the regime of the renormalized Fermi-liquid state,
and also the regime where the strong repulsion drives the
optimal Jastrow-Gutzwiller wave function into theÎ33Î3
charge-order state.

In Sec. V we confirm the renormalized mean-field picture
with numerically accurate evaluations with the trial wave
functions. We also perform a more detailed study of the pos-
sibleÎ33Î3 charge order by comparing with the more con-
ventional charge-density wave(CDW) states. We find that
our Jastrow-Gutzwiller wave function in theÎ33Î3 regime
is rather good energetically and suggest some ways for im-
proving the energetics further.

In Sec. VI we add theJ term and consider the issue of
resonating valence bond(RVB) superconductivity at low
dopings. This is done with the help of the renormalized
mean-field picture. Without the Jastrow renormalizations, the
RVB superconductivity would not survive to the experimen-
tally observedx=0.35. We find that the bandwidth suppres-
sion due to charge frustration may indeed resurrect the su-
perconductivity nearx=1/3 where such renormalizations are
strongest, particularly if we allow the coexisting charge or-
der. We speculate that this may be relevant to explain the
narrow doping range in which the superconductivity has
been found.3

Finally, in Sec. VII we conclude with some simple pre-
dictions for the experiments from the developed charge frus-
tration picture. Most notably, transport properties such as
thermopower and Hall effect of the Fermi liquid with low
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degeneracy temperature resemble those of the Na0.7CoO2
system; these properties look rather unusual from the per-
spective of conventional metals.

Before proceeding, we remark about the possibility of
charge order8,16 in NaxCoO2. The experimental situation is
not settled on this issue.12–14 We favor the picture where
there is no charge order, but only strong local correlations.
Charge-ordering transition should exhibit itself in an abrupt
change in transport properties, which has not been observed.

In the present paper, we do spend a lot of time discussing
the particularÎ33Î3 order, since it inevitably arises in our
systematic treatment of the concrete model. We should warn
the reader that the details are likely strongly model depen-
dent. Since we do not know the precise microscopic model,
the presented analysis of the charge order should be viewed
only as an initial sketch of what might happen. The reported
work is done with the nearest-neighbor repulsion(and
nearest-neighbor Jastrow correlation) only. Including further
neighbor correlations would frustrate theÎ33Î3 charge or-
der and extend the renormalized Fermi-liquid regime, but
might also lead to more complicated charge orders. We have
not pursued such studies systematically, concentrating on the
nearest-neighbor case only.

II. tV MODEL. JASTROW-GUTZWILLER C

For concreteness, we consider the following single band
Hubbard model with additional nearest-neighbor repulsion16

on a triangular lattice

ĤtV = PGo
ki j l

− stcis
† cjs + H.c.dPG + Vo

ki j l
ninj . s1d

Large onsite repulsion is taken into account using the
Gutzwiller projectorPG to project out double occupation of
sites—this gives the “t part” as in the familiartJ Hamil-
tonian. We focus primarily on the effect of adding strong
nearest-neighbor charge repulsionV, and refer to Eq.(1) as
tV Hamiltonian.(We will consider the fulltJV Hamiltonian
with J! t ,V later.) The band is less than half-filled, with the
average fermion densitykcis

† cisl=r,1.
In the context of the NaxCoO2 system,cis

† creates a spin-
ful hole and represents the motion of a Co4+sS=1/2d site,
while Co3+sS=0d sites have no holes;r=1−x. This is shown
schematically in Fig. 1. For more details, see also Refs.
17–19. We taket.0, as in Refs. 17 and 19. This is consis-
tent with the photoemission studies,11 and also with the high-
temperature behavior of the Hall coefficient10 (see Sec. VII).

In this picture the end compound NaCoO2 consists of all
Co3+ with no holessr=0,x=1d, whereas the hypothetical
end compound Nax=0CoO2 is a Mott insulator consisting of
all Co4+ sites each carryingS= 1

2sr=1,x=0d. From the latter
point of view, NaxCoO2 can be viewed as electron doping by
a concentration ofx electrons into a Mott insulator.

Here, in order to gauge the effect of the nearest-neighbor
repulsion, we perform a trial wave-function study of this
strongly correlated system. WhenV=0, a good trial wave
function is obtained by Gutzwiller projecting a simple free
fermion state:

uCGl = PGuC0l = o
hRj,hR8j

detffisRjdgcR1↑ ¯ cRN/2↑

3 detffisRj8dgcR18↓ ¯ cRN/28 ↓,

where the sum is over all configurations of spin-up and spin-
down fermions with allRj and Rj8, distinct, hRjù hR8j=0.
Away from half-filling, this Gutzwiller wave function is a
Fermi-liquid state; this can be confirmed, e.g., by measuring
the quasiparticleZ from the step inkn̂kl. In this state, we
have approximatelykninjl<r2, while the fermion kinetic en-
ergy can be fairly accurately estimated from that of the pre-
projected free fermions20–22

kCGuĤtuCGl
kCGuCGl

< gt

kC0uĤtuC0l
kC0uC0l

, s2d

with

gt =
1 − r

1 − r/2
=

2x

1 + x
. s3d

This is commonly referred to as the Gutzwiller approxima-
tion or the renormalized mean-field theory. The renormaliza-
tion factor gt can be obtained by counting the number of
real-space configurations available for hopping in the pro-
jected and preprojected states, and ignoring all other wave-
function differences.

Turning on the nearest-neighbor repulsionV, we schema-
tize its effect on the ground state by introducing an additional
Jastrow-type factor

expF−
W

2 o
ki j l

ninjG s4d

for each real space configuration of fermions in the above
Gutzwiller wave function.W.0 effectively suppresses the
nearest-neighbor occupation probability, and can be varied to
optimize the trial energy of thetV Hamiltonian. We will refer
to this wave function as Jastrow-Gutzwiller(JG) CJG.

It is clear that the effect ofV is most severe forx=1/3
and 2/3. ForV@ t we expectW@1, in which case the va-
cancies(for x=1/3) or the spin carrying holes(for x=2/3)
would form aÎ33Î3 structure to minimize the repulsion.
Furthermore in this state the particles cannot hop without
paying the energyV. For intermediateV and away from com-
mensuration some remnant of this “jamming” phenomenon
may remain and this is what we would like to investigate in
this paper.

FIG. 1. NaxCoO2: Schematic pictures(borrowed from Ref. 9)
explaining the single band electronic model. The charge carriers are
spin-1/2 chargeq= ueu holes of densityr=1−x.
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III. PROPERTIES OF CJG: CLASSICAL LATTICE GAS
SYSTEM

Before presenting the optimized energetics withCJG, we
first discuss its properties. For nonzero but smallW, it still
describes a Fermi-liquid state with some further renormaliza-
tions compared to the Gutzwiller wave function. However,
one has to be careful whenW becomes large: The probability
of finding a particular configuration of charges now has an
additional “classical” weight expf−Woki j l ninjg, and one has
to be wary of the possibility of phase transitions in the cor-
responding statistical system. Factoring out many possible
spin assignments for each charge configuration, we need to
consider a classical system of particles with nearest-neighbor
repulsion on a triangular lattice with the classical partition
function

Zclass= o
hnij

e−Uclassfng = o
hnij

e−Woki j l
ninj . s5d

Hereni =0,1, and wework at fixed densityr as appropriate
for the discussion of our trial wave functions with fixed fer-
mion number.W plays the role of the inverse temperature in
this classical system,W=T−1 (the classical repulsion strength
is set to one).

This lattice-gas system has been extensively studied in
statistical physics,23,24 most notably as a model for adsorbed
monolayers of rare-gas atoms on graphite. Also, it is equiva-
lent to a triangular lattice Ising antiferromagnet in an exter-
nal field; fixed particle density corresponds to fixed magne-
tization in the Ising system.

The phase diagram in ther-T plane is shown in Fig. 2. It
is symmetric with respect tor=0.5 due to particle-hole sym-
metry in this classical system, and we discuss ther,0.5 part
only.

At high temperatures(small W) the system is in a disor-
dered gaseous phase. For small particle densityr,0.27 the
system remains in the gas phase all the way to zero tempera-
ture. For densities 0.27,r,0.5 the system “crystallizes”
into aÎ33Î3 state at low temperature. This state is charac-
terized by a preferential particle occupation of one of the
three sublattices of the triangular lattice; the order is stron-
gest near the commensurater=1/3,2/3. Note that away

from theser the Î33Î3 phase is more properly character-
ized as a density wave state rather than a crystal. In particu-
lar, a fraction of particles remains relatively mobile having
no activation energy for their motion. TheW=` model is
equivalent to the Baxter’s hard hexagon model and is exactly
solvable.24

It is useful to have the following caricatures of the charge
motion in theÎ33Î3 phase, appropriate at low temperature
(large W) and near the commensurate filling 1/3. For
r.1/3, we have one sublattice, sayA, completely occupied
by particles(these particles are almost localized), while the
remaining small density is smeared out relatively uniformly
over the honeycomb lattice formed by theB and C sublat-
tices. Forr,1/3, we picture theB andC sites as completely
empty (with almost no density fluctuation), while all par-
ticles are spread over theA sublattice. The charge motion is
achieved by hops from occupiedA sites to neighboring
emptyA sites viaB or C sites; the most effective such hops
involve at least two neighboring emptyA sites in order to
avoid the repulsion energy cost for the intermediate step(see
Fig. 8 in Sec. V).

Returning to our trial wave function, we expect it to
roughly inherit the charge distribution properties of the
lattice-gas system, Eq.(5). Thus, forW such that the classi-
cal system is in its disordered phase, the wave function real-
izes a Fermi-liquid state. On the other hand, when the clas-
sical system is in theÎ33Î3 phase, we have checked by
variational Monte Carlo studies that the resulting wave func-
tion has a CDW order but retains some liquid properties.
(The transition pointWc is slightly different for the wave
function and the classical system.) Note that the above Ja-
strow weight realizes a soft projection satisfying the nearest-
neighbor repulsionV. It follows that a hard such projection
sW→`d leads to theÎ33Î3 density wave for 0.27,r,0.5
and 0.5,r,0.73.

Before proceeding further, we want to emphasize again
that we set out to study Fermi-liquid renormalizations in-
duced by nearest-neighbor repulsion. Fermi-liquid state is
achieved in the parameter regime where the classical system
remains disordered; in this case, our treatment is consistent.

On the other hand, when the nearest-neighbor repulsion is
strong, it drives the optimal variational parameterW of CJG
into the regime with the CDW order. In this case, we have to
be very cautious in interpreting the “transition” and the re-
sulting state, since our original assumptions about the prop-
erties of the wave function no longer hold. We may still
interpret this as a sign of an instability towards a different
state(most likely with charge order), but the JG wave func-
tion in this regime should be treated very critically, particu-
larly since it has somewhat unusual charge distribution prop-
erties. Thus, one should at least examine other more
conventional trial states with different orders. This is done in
Sec. V.

IV. ENERGETICS WITH CJG: RENORMALIZED
MEAN-FIELD PICTURE

We now proceed to the actual energetics with the Jastrow-
Gutzwiller trial wave functions. It is possible to perform es-

FIG. 2. Phase diagram of the classical lattice-gas system, Eq.
(5). Note the symmetry relative tor=0.5 due to particle-hole
symmetry.
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sentially exact evaluations of the expectation values with
such fermionic wave functions using a well established and
documented variational Monte Carlo (VMC)
procedure.25,21,22Such detailed studies of thetV energetics at
experimentally relevantx=0.7 and 0.35 are reported in the
following section.

It is also possible to study more complicated Hamilto-
nians. However, VMC evaluations are computationally rather
costly. Furthermore, they become inconclusive when the en-
ergy differences become very small. This is particularly the
case when we attempt to study the physics at energy scales
below the dominantt andV, e.g., if we want to resolve the
spin sector, or study pairing instabilities due to theJ term.

Useful and fairly accurate guidance is obtained through
the following “renormalized mean-field” procedure,20–22

which is much simpler computationally and is also more
amenable to interpretation and extrapolation in the regime
where VMC results become inconclusive. Generalization of
the configuration counting arguments mentioned earlier leads
to the following estimate of the hopping energy renormaliza-
tion in the JG wave function relative to the unprojected free
fermion wave function:

kCJGuci↑
† cj↑uCJGl

kCJGuCJGl
= gtfi, jg

kC0uci↑
† cj↑uC0l

kC0uC0l
, s6d

with

gtfi, jg =
1

rs1 − r/2d
kkdsni − 0ddsnj − 1d

3expf− 1
2sUclassfni = 1,nj = 0g

− Uclassfni = 0,nj = 1gdgll. s7d

Here, kk. . .ll denotes averaging in the classical lattice-gas
system with the weight,exps−Uclassfngd discussed earlier.
When obtaining this expression, similar to the original
Gutzwiller approximation, Eq.(3), we again ignored the de-
tails of the fermionic determinant weighting of configura-
tions, but kept the Jastrow weighting. Only configurations
with the occupiedj site and unoccupiedi site contribute, and
the specific “transition weight” comes from the correspond-
ing Jastrow weighting of the configurations before and after
the hop. Note thatUclassfni =1,nj =0g−Uclassfni =0,nj =1g is a
local energy term involving only the affected sitesi , j , and
their immediate neighbors.

Similarly, we can approximate the nearest-neighbor repul-
sion energy by

kCJGun̂in̂juCJGl
kCJGuCJGl

< kkninjll. s8d

The required classical expectation values are readily evalu-
ated via a Monte Carlo study of the lattice-gas system. As we
will see in the following section, such renormalized mean-
field procedure indeed gives fairly accurate estimates of the
expectation values in the Jastrow-Gutzwiller wave function,
both in the metallic and the density wave regimes.

We can now develop an overall picture for all fermion
densities. Particular cuts through the results are shown in
Figs. 3 and 4. Figure 3 shows the hopping renormalization
factor gt as a function ofx for a number of fixedW. (Com-
plimentary cuts through the data for the specific fixedx
=0.70 andx=0.35 can be also found in the following sec-
tion.) Figure 3 is the core of the present paper.

The W=0 curve gives precisely the original Gutzwiller
approximation, Eq.(3), for the no-double-occupancy con-
straint. This sets a useful reference for gauging the additional
effect of the nearest-neighbor repulsion. The curve with the
largestW=8, on the other hand, essentially realizes a com-
plete projection that satisfies the nearest-neighbor repulsion;
this is the maximal renormalization that can be achieved with
such nearest-neighbor correlations. The phase boundary of
the classical lattice gas(cf. Fig. 2) is sketched by a thick dark
line: All points above the line are in the disordered phase
(Fermi-liquid wave functions), while points below the line
are in theÎ33Î3 density wave phase.

Figure 4 shows a similar plot for the repulsion energy
Enn=oki j lkkninjll per site[cf. Eq. (8)], which we reference to

FIG. 3. Jastrow-Gutzwiller renormalization factor for hopping,
Eq. (7), as a function of doping for a number of fixedW. Evalua-
tions are done via classical Monte Carlo study of the lattice-gas
system. The dark thick line delineates the phases ofCJG. The Î3
3Î3 phase lies below the thick line and in this region the exhibited
gt is averaged over all bonds.

FIG. 4. Nearest-neighbor repulsion energy per site, referenced to
the W→` value. TheÎ33Î3 charge-ordered phases ofCJG lie
below the thick line.
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the minimal possible repulsion energy at a given density:
Enn,W→`=0 for rP f0,1/3g, 3r−1 for rP f1/3,2/3g, and
6r−3 for rP f2/3,1g. When plotted in this way, the result is
symmetric with respect tor=0.5 due to classical particle-
hole symmetry. Again, the classical phase boundary is
sketched with a thick dark line. Observe that the curves with
W.5 give almost complete “minimum-nearest-neighbor”
projection.

With these data, and also using the free-fermionkĤtl0sxd
(not shown), we can optimize the fulltV Hamiltonian in this
renormalized mean-field procedure forCJG. The resulting
“phase diagram” can be seen in Fig. 5: For each dopingx
P f0.27,0.73g we show the “critical”V/ t that drives the op-
timal W into the regime with theÎ33Î3 order.

We emphasize that this “phase diagram” is for the opti-
mized Jastrow-Gutzwiller wave function only; in particular,
the exhibited “phase transition” corresponds to the transition
in the properties ofCJG as a function of parameterW. It need
not correspond to the actual phase diagram of thetV Hamil-
tonian. It is exhibited here primarily to delineate the regimes
where the JG renormalized Fermi liquid can adequately de-
scribe thetV model energetics, and also where such descrip-
tion is no longer possible. In the latter case, one should se-
riously examine other physical states paying particular
attention to charge order. Whether the JG wave function in
its Î33Î3 phase can adequately describe the possible charge
ordering in the system is a separate question that requires a
detailed study. We will discuss this more specifically in the
following section. Here we only note that it is rather fortu-
itous that our trial wave function with a single variational
parameter exhibits two phases, and the initially “unexpected”
charge-ordered state should be treated with great caution.

We now return to the main question of this work—the
bandwidth suppression due to nearest-neighbor repulsion.
Again, consider Fig. 3. A conservative approach is to insist

that we consider Fermi-liquid wave functions only. In this
case, we should disregard the data points that end up in the
charge-ordered phase. We still see that there can be signifi-
cant renormalizations by a factor of 3 to 5 relative to the bare
hopping amplitude even remaining in the Fermi-liquid state.
For a fixedW, these renormalizations are strongest near the
commensurate 1/3 and 2/3 fillings, and weakest nearx
=1/2.Also, as can be implied from the “phase diagram,” the
effect of the nearest-neighbor repulsionV is strongest near
x=1/3,2/3.

On the other hand, if we are to take the Jastrow-
Gutzwiller Î33Î3 density wave regime seriously, there can
be even stronger renormalizations of the hopping energy,
particularly near the commensurate densities. As we will
suggest in the following more specific discussion of the
CDW regime, the entire picture provided by Fig. 3 including
the data under the phase boundary is indeed useful, but may
require some less important adjustments. This is because in
theÎ33Î3 regime the charge order is such that there remain
mobile (even if strongly constrained) carriers; there is no
charge gap since there is no nesting for the considered dop-
ings. The Jastrow-Gutzwiller wave function and the above
renormalized mean-field treatment also capture this, and give
a first useful guess on the effect of charge order on the fer-
mion kinetic energy.

V. ENERGETICS WITH CJG: VMC STUDY. POSSIBLE
CDW

We now consider thetV model energetics in more detail
for specific x=0.70 andx=0.35. These values are relevant
for the unhydrated and hydrated NaxCoO2. The evaluations
with the trial wave functions are done essentially exactly
using VMC.22,25 This more concrete setting will allow us to
discuss some robust features that emerge from our study vs
the specifics of the particular Hamiltonian used to model
charge frustration. Since an accurate treatment of the CDW
states may depend on specific details, the present discussion
is only intended to give a flavor of the possibilities that
should be considered.

A. Doping x=0.70

Figure 6 shows expectation values of the two parts of the
tV Hamiltonian in the Jastrow-Gutzwiller wave function for
varyingW evaluated using VMC. It also shows the renormal-
ized mean-field approximation to these expectation values.
As mentioned in the preceding section, this approximation is
indeed fairly accurate and can be taken seriously. Since we
will be comparing several trial states, we will use only VMC
results in this section.

At this particle density we haveWc<3.3 in the corre-
sponding lattice-gas system. Note that nearWc the repulsion
energy drops quickly and essentially all the way to zero,
similar to the transition in the classical system. This is be-
cause it is possible to completely satisfy the repulsion energy
by arranging charges so that there are no nearest neighbors.
Also, such arrangements still allow some fermion hopping,
so there remains nonzero kinetic-energy gain even for very
largeW.

FIG. 5. “Phase diagram” obtained by optimizing thetV Hamil-
tonian over the JG wave functions. The different “phases” corre-
spond to the difference in the physical properties ofCJG as a func-
tion of W. Calculations are performed in the renormalized mean-
field approximation using the data of Figs. 3 and 4, and the free

fermion kĤtl0sxd. The phase diagram is not expected to be symmet-
ric relative toV — cf. Fig. 3. The observed rough symmetry is due

to compensating tendencies ingtsxd and kĤtl0sxd that make the ac-
tual kinetic energy “more symmetric” relative tox=0.5.
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Using the above data, we can optimize the total energy for
different values ofV/ t. The result is indicated in Fig. 7. For
V/ t&6.0, the optimalWopt remains&2.0 and the wave func-
tion is metallic with relatively weak renormalizations. For
larger V/ t, the optimalWopt jumps to theÎ33Î3 ordered
side, andCJG has the corresponding density wave order.
Note that the optimalWopt remains fairly close to the critical
value. In this way, while the repulsion energy is almost com-
pletely satisfied, the system still gains from some of the
original kinetic energy.

We now discuss the regime of largeV, where the Jastrow-
Gutzwiller energetics suggests charge ordering. First, it is
instructive to compare this with the energetics in a more
conventional CDW trial state. Such a state is obtained, for
example, by considering a CDW mean-field Hamiltonian

HCDW
mf = − o

ki j l
stijcis

† cjs + H.c.d − o
i

2DQ cossQ · r idn̂i .

s9d

DQ;DCDWsQd is a CDW order parameter at the ordering
wave vectorQ. Here,DCDW serves as a variational parameter
for the trial wave function. In theÎ33Î3 phase, the trial
HCDW has onsite potential −2D on the preferredA sublattice
and +D on theB and C sublattices of the triangular lattice.
The trial wave function is obtained by Gutzwiller projection
of the mean-field ground state.

The optimizedtV energetics for such more conventional
CDW wave function is also shown in Fig. 7. ForV/ t&4.5
the optimal wave function hasDCDW<0, but develops strong
CDW order for largerV/ t. In this conventional CDW state at
this filling, we have a coexistence of the charge order and
Fermi liquid.

From Fig. 7, we see that the JG wave function performs
significantly better than the conventional CDW wave func-
tion. This is simple for the metallic side, since the JG wave
function has an additional variational parameter to optimize
local correlations compared to the plain metallic state with
DCDW=0. On the other hand, on the charge-ordered side the
Jastrow-Gutzwiller wave function performs better almost en-
tirely due to better kinetic energy. As discussed earlier, the
JG state retains some of the metallic kinetic energy even in
the largeW limit. At the same time, the conventional CDW
wave function localizes the fermions to theA sublattice very
strongly and loses essentially all kinetic energy: in the limit
of large V, the optimalDCDW,V and the optimal total en-
ergy is,−t2/V. Even though the lowest band remains only
partially filled, its bandwidth goes to zero in the limit of large
DCDW.

Thus, we conclude that the Jastrow-Gutzwiller wave func-
tion with theÎ33Î3 order performs fairly well for largeV.
However, this is by no means the end of the story even for
the tV model. The most serious reservation here is that we
have not explored other competing states in the system for
large V. We will not address this. We still hope that our
approach captures the relevant local energetics in the system.

In the present context, we can explore the energetics of
the Î33Î3 ordering more systematically. As discussed, the
complete minimum-nearest-neighbor projection leads to the
Î33Î3 order. Forr,1/3, we essentially have charges liv-
ing on theA sublattice only and moving primarily viaA-B
-A or A-C-A routes, while the bondsB-C are rarely used(see
Fig. 8). In the above, we were projecting the uniform free
fermion triangular lattice hopping ground state, while it is
clear that in the resulting charge-ordered state the hopsB-C
are poorly utilized, and more generally the kinetic energy—
the driving force for uniformity—is less important. In the
Î33Î3 regime, it then seems more appropriate to project a
hopping state with strongA-B andA-C hopping amplitudes
and weakB-C hops. The limiting case is the dice lattice
hopping shown in Fig. 8(b); the six-coordinated sites are the
A sites, while the three-coordinated sites are theB and C
sites. The dice hopping state by construction hasÎ33Î3

FIG. 6. Expectation values of the hopping and nearest-neighbor
repulsion energies in the Jastrow-Gutzwiller wave function at dop-
ing x=0.70(fermion densityr=0.3). We also show the correspond-
ing renormalized mean-field values. Vertical arrow nearWc<3.3
indicates the transition point in the classical lattice-gas system.

FIG. 7. Optimization of thetV Hamiltonian over Jastrow-
Gutzwiller and conventional CDW trial wave functions. Inset shows
the optimalWopt for the Jastrow-Gutzwiller wave function; arrow
indicates the criticalWc<3.3 in the corresponding classical lattice-
gas system.
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order. It is easy to verify that in the lowest band one half of
the fermion density is located on theA sublattice. Clearly,
this has better repulsion energy than the triangular hopping
state. To further optimize the nearest-neighbor correlations,
we can introduce a Jastrow weighting as for the uniform
hopping state(note that in the dice case the classical lattice
gas transition is no longer relevant since the charge system
has theÎ33Î3 order from the outset). The optimizedtV
energetics is shown in Fig. 9, and we indeed find that the
dice hopping ansatz is somewhat better than the uniform
state.

Finally, we should point out that we have completely ig-
nored the spin physics by considering only unpolarized wave
functions. It should be clear that since the bandwidth be-
comes so narrow, there will be significant degeneracy—on
the tV energy scale—in the spin sector. This degeneracy will
be resolved in some way or other at lower energy scale, and
the details will depend largely on the specifics of the micro-
scopic Hamiltonian. As an example, trying out spin-polarized
Jastrow-Gutzwiller wave functions in thetV Hamiltonian, we
find that in the charge-ordered regime the fully polarized
wave function performs only slightly worse than the unpo-
larized one. For the dice hopping ansatz, on the other hand,

the spin-polarized wave function performs better than the
unpolarized one. One can get some feeling of the slight dif-
ferences by examining Fig. 9. Such itinerant ferromagnet
tendencies become even more pronounced at lower fermion
density(higherx).

After the presented detail, it should be clear that the en-
ergetics can be rather subtle and model dependent, particu-
larly in the charge-order regime. We now want to separate
out which features are more robust than the above specifics.
This is important since at present we do not have a good
knowledge of the microscopic Hamiltonian in the NaxCoO2
system.

First of all, we conclude that there can be significant
renormalizations in the metallic wave function. The hopping
can be effectively suppressed roughly by a factor of 3(see
Fig. 6), with the wave function retaining its Fermi-liquid
character. The achievable Fermi-liquid renormalizations may
be even larger if we include further neighbor repulsion, since
this will frustrate theÎ33Î3 charge order and give more
parameter space to the liquid state with uniform charge dis-
tribution. As long as the system remains uniform, this is not
sensitive to the microscopics.(At this local “high-energy”
level of analysis we completely disregard the low-energy in-
stabilities of the resulting Fermi-liquid state.)

Our second observation is about the nature of possible
charge orders in such strongly frustrated system. Our JG
wave functions offer an interesting possibility of essentially
satisfying the nearest-neighbor Coulomb repulsion while re-
taining some kinetic-energy gain and metallicity. Projecting
the triangular or dice lattice hopping is merely a detail of
how the quantum tunneling is put into the wave function, but
the overall picture of the resulting state is the same. Whether
such state is energetically favorable compared with other
competing states requires a more detailed study.

Finally, we expect that the spin dynamics is highly degen-
erate in such charge frustrated systems, and its ultimate fate
is resolved only at much lower energy scales.

B. Doping x=0.35

We now summarize similartV study atx=0.35. This is of
interest for the hydrated compound Na0.35CoO2 1.3H2O that
was found to exhibit superconductivity.

Figure 10 shows the expectation values of the kinetic and
nearest-neighbor repulsion energies in theCJG evaluated us-
ing VMC. The repulsion energy is referenced to the minimal
repulsion energy at this density[Enn,min=Vs3r−1d per site;
cf. Fig. 4]. The renormalized mean-field approximation is
also shown and is fairly accurate.

The result of the wave-function optimization for thetV
Hamiltonian is shown in Fig. 11. ForV/ t&4.2, the optimal
Wopt remains&1.5; the wave function is metallic with weak
renormalizations. For largerV/ t, the optimalCJG jumps to
theÎ33Î3 ordered side; however, the optimalWopt remains
fairly close to Wc<2.8, and the system retains significant
part of the original kinetic energy.

Turning to the regime of largeV, we consider also the
more familiar CDW trial state obtained from the mean-field
Hamiltonian, Eq.(9). The optimized energetics with such

FIG. 8. (a) Schematics of theÎ33Î3 charge order forr,1/3.
Charges occupy theA sublattice and spend very little time on theB
andC sublattices. The remaining emptyA sites can be utilized for
charge hopping. There is an intermediate repulsion energy cost ofV
to move an isolated such site, but no such cost for two neighboring
emptyA sites as shown in the figure.(b) Dice lattice hopping ansatz
motivated by the observation that hopsB-C are rarely used.

FIG. 9. This is a blow-up of Fig. 7 focusing on theÎ33Î3
regime and showing additional Jastrow-Gutzwiller type trial wave
functions for thetV Hamiltonian. Besides the unpolarized triangular
lattice hopping ansatz, we also show the optimized energetics for
the corresponding fully polarized state, and also for the dice lattice
hopping ansatz.
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conventional CDW wave function is also shown in Fig. 11.
The optimalDCDW remains close to zero forV&3, but be-
comes significant and negative for largerV. We now observe
that in the regime with the putativeÎ33Î3 charge order
both the JG wave function and the mean-field CDW wave
function give very close optimal energies. This is also true
for the individualt andV parts, suggesting that the Jastrow-
Gutzwiller and conventional CDW wave functions give in
fact essentially the same physical state.

This can be understood by examining the meanfield CDW
state. ForDCDW,0 theB andC sublattices are preferentially
occupied, while theA sublattice is preferentially empty. In
this case, the lower two mean-field bands retain much of the
original bandwidth even in the limit of largeDCDW. This is
because theB andC sites form a connected honeycomb lat-
tice, and for largeDCDW the two bands correspond essentially
to hopping on this lattice. The physical state is now obtained
by the Gutzwiller projection of this free fermion honeycomb
lattice hopping state. But this is also roughly the picture of
the Jastrow-Gutzwiller wave function in theÎ33Î3 regime
for this density.

The above suggests that we also try projecting honey-
comb hopping ansatz, since it better utilizes theB-C hops.

However, for the range ofV/ t studied here, the uniform tri-
angular hopping ansatz performs better, primarily since it
manages to retain some of theA-B andA-C hopping energy.
This completes our exploration of theÎ33Î3 order.

Finally, we note that at this high fermion densityr
=0.65, unlike the case withr=0.30, the spin degeneracy
does not occur, and the unpolarized wave functions are al-
ways better.

To summarize, the local energetics of thetV model atx
=0.35 is well captured by either the renormalized Fermi liq-
uid, or theÎ33Î3 charge-ordered state, depending on the
value of V/ t. The Î33Î3 state also has mobile fermions
occupying primarily the honeycomb sublattice(of the origi-
nal triangular lattice); however, since the fermion density is
close to complete covering of the honeycomb lattice, the
fermion hopping is strongly suppressed.

Again, the ultimate fate of the Fermi liquid(or the liquid
part in theÎ33Î3 regime) is resolved only at lower ener-
gies. In the following section we study the superconducting
instability due to theJ term, and whether the RVB supercon-
ductivity can be significantly enhanced by the discussed
strong kinetic-energy suppression.

VI. RVB SUPERCONDUCTIVITY: RESURRECTION NEAR
x=1/3?

We now turn to the issue of RVB superconductivity due to
the antiferromagnetic spin interaction at dopings 0,x,0.4.
In the context of the triangular latticetJ model, this was
considered by several authors.17–19,26,27These studies predict
d+ id superconductivity. As expected for such scenario, the
RVB gap is strongest near half fillingx=0, where the charge
mobility is low. Away from half-filling at moderate dopings,
the need to satisfy the kinetic energy of the carriers leads to
strong suppression of the superconductivity. As pointed out
in Ref. 19 and discussed further below, the experimentally
observed superconductivity at dopingx=0.35 represents a
significant problem to this scenario: If one uses the LDA
bandwidth to estimateutbareu<50–100 meV, and takes the
hopping integral sign as in this work, and makes a reasonable
guessJ,10–20 meV, the resulting RVB superconductivity
is vanishingly weak for this doping and would not be ob-
served.

As discussed above—cf. Fig. 3—charge frustration can
lead to strong suppression of the effective hopping amplitude
teff, even for larger doping. Here we study whether this sup-
pression can be strong enough to resurrect the superconduc-
tivity at x=0.35. Figure 3 also suggests that the region near
x=1/3 is special in that it allows the strongest such renor-
malizations, with or without the charge ordering. As dis-
cussed earlier, this is because the charge system is most sen-
sitive to the nearest-neighbor interactions near this
commensurate doping. On the other hand, when the super-
conductivity is weak, the transition temperature is exponen-
tially sensitive to the effective hopping amplitude(see be-
low). Thus, we may speculate about the possibility of a small
superconducting dome around this special doping due to
charge correlation(possibly, charge ordering).

The physics treatment presented below is very schematic.
We will essentially think only in terms of the renormalized

FIG. 10. This is similar to Fig. 6, but for dopingx=0.35 (fer-
mion densityr=0.65). The repulsion energy is referenced to the
minimal repulsion energy. At this density,Wc<2.8.

FIG. 11. Optimization of thetV Hamiltonian over Jastrow-
Gutzwiller and conventional CDW trial wave functions atx=0.35
(cf. Fig. 7). We also show the result for Jastrow-Gutzwiller honey-
comb hopping ansatz.
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couplings and ignore the fact that the underlying state may
be charge ordered. This is done to get a rough feeling as to
whether the suggested scenario can work at all. If the super-
conductivity nearx=1/3 canreappear only in the charge-
ordered region, the obtained insight is still useful and may
suggest a more careful treatment. For example, the charge
order may be suppressed by longer-range repulsion. Another
possibility is that a more accurate treatment may lead to
short-range charge order for intermediate coupling which
shares the same kinetic-energy suppression.

We first summarize the standard RVB mean field for the
pure tJ model. We formulate this mean field as an approxi-
mate variational procedure.21,22,26This is particularly conve-
nient for the present work, which also takes the variational
wave function perspective.

To study the possibility of singlet superconductivity, we
consider “trial” Hamiltonian

Htrial = o
i j

f− xi j cis
† cjs − sDi j ci↑

† cj↓
† + H.c.dg

− o
i

mfcis
† cis − s1 − xdg,

with x ji =xi j
* , D ji =Di j . For each such trial Hamiltonian, we

obtain the corresponding ground stateuC0l. In the mean
field, we ignore the no-double-occupancy constraint and only
require the average density to be correctlykcis

† cisl=1−x,
which is achieved by tuning the chemical potentialm. Going
beyond the mean field, the physical wave function is ob-
tained by Gutzwiller projection.

As discussed at length earlier, we can approximate the
expectation value of thetJ Hamiltonian in the physical wave
function by proper renormalizations of the mean-field values:

kCGuĤtJuCGl
kCGuCGl

< gt

kC0uĤtuC0l
kC0uC0l

+ gJ

kC0uĤJuC0l
kC0uC0l

= − gto
ki j l

tijkcis
† cjsl + c.c.

− gJo
ki j l

3Jij

8
fukcis

† cjslu2 + ukess8cis
† cjs8

† lu2g.

s10d

The hopping renormalization factor is given by Eq.(3),
while for the Heisenberg exchange we have21,22

gJ =
4

s1 + xd2 . s11d

These estimates ofgt andgJ follow essentially from the no-
double-occupancy configuration constraints, and do not de-
pend on the details of the preprojected state as long as it is
spatially uniform. Also, they give numerical results that are
fairly close to the actual evaluations with the projected wave
functions, as discussed earlier. The above is precisely the
renormalized mean-field formulation of Refs. 21, 22, and 26.
The slave boson mean field of Ref. 19 uses insteadgt=x and
gJ=1, so the numerical values are somewhat different.

In this formulation, only the ratioD /x is meaningful. A
convenient procedure to minimize Eq.(10) is to minimize
instead the so called mean-field Hamiltonian

Ĥmf = o
ki j l

8

3gJJij
fuxi j − gttij u2 + uDi j u2g + Ĥtrial.

By standard arguments, the global minimum of the mean-
field Hamiltonian is also the minimum of the trial expecta-
tion value Eq.(10). In this formulation, the optimalx andD
each obtain physical scale as set byt andJ. Thus, we can get
a crude idea about the quasiparticle spectrum above the
ground state by considering the mean-field excitation spec-
trum, which now has physical scale. In particular, the opti-
mal D gives a physical measure of the RVB gap, while the
optimal x sets the bandwidth.

The self-consistency conditions read

xi j
* = gttij +

3gJJij

8
kcis

† cjsl, s12d

Di j
* =

3gJJij

8
kess8cis

† cjs8
† l. s13d

From now on, we specialize to thed+ id superconductor
ansatz:

De1
= D, De2

= Dei2p/3, De3
= Dei4p/3. s14d

Heree1= x̂, e2= 1
2x̂+sÎ3/2dŷ, ande3=e2−e1 are the unit tri-

angular lattice vectors. There is strong evidence that this
state wins thetJ model energetics for the considered dop-
ings, at least on the mean-field level.17–19,26,27

We give the results fort=3J and t=5J. This is somewhat
different from the citedt=s5–10dJ values.19 At the moment,
there is significant uncertainty in the precise microscopic
model, while the superconductivity energy scale is exponen-
tially sensitive to the microscopic values and to numerical
constants in the theory. Thet=3J results make the demon-
stration of principle more dramatic. A similar, but weaker,
effect is seen fort=5J.

The optimalD in units of J is shown as a function of
doping in Fig. 12. For weakJeff=gJJ much smaller thanteff
=gtt, the optimalD is given by a BCS-like formula(see
Appendix A for details)

D , teffe
−cteff/Jeff, s15d

with some numerical constantc=csxd. The effective mobility
of charges increases with dopingteff,xt, and this leads to
the observed very quick drop ofD.

Note that in our treatment here and below, the mean-field
gapD is the primary factor that determines the physical tran-
sition temperature nearx=1/3. It iswell appreciated that for
low dopings when the mean fieldD is large the supercon-
ducting order parameterF is suppressed compared withD:
roughly,F=gtD. The zero-temperature superfluid stiffness is
also renormalized bygt, and there is no simple BCS relation
between the order parameter and the transition temperature.
However, we are interested in the regime nearx=1/3,where
the predicted mean fieldD is very small to start with. Since
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D is exponentially sensitive toteff, it can change orders of
magnitude whengt is reduced several times. We therefore
study only the effect of thegt renormalization onD and do
not try to accurately predict the transition temperature.

Figure 12 also shows two other measures that are roughly
related to the mean-field gapD. One is the mean fieldTc
defined here as the transition temperature of the mean-field
HamiltonianHmf. The other measure is obtained by consid-
ering the condensation energy of the superconducting state.
This is defined as the energy gain in the optimal supercon-
ducting state relative to the Fermi-liquid statesD=0d. For
small D, the condensation energy is expected to scale as
Econd,D2/ teff; to compare withD in Fig. 12, we plot instead
sEcondJd1/2. From Fig. 12, these measures all trail each other.
The figure has been somewhat arbitrarily cut off at 10−3J:
any D below this scale would not be observed in the experi-
ments. We see a precipitous drop forx*0.20; there is simply
no hope in thistJ setting for the superconductivity to survive
to the experimentally observedx=0.35. [We also remark
here that a direct VMC study must see the condensation en-
ergy to establish the ground stateD. SinceEcond is extremely
small, such studies become impractical. This is where the
renormalized mean-field procedure becomes very useful.]

Let us now return to thetJV model with strong nearest-
neighbor repulsion. We think roughly as follows. The domi-
nant t andV parts can be satisfied as above by the appropri-
ate Jastrow weighting of charge configurations in our trial
wave functions. As discussed earlier, the effect of the Jastrow
factor can be conveniently described by the corresponding
renormalizations of the hopping amplitudegt [Eq. (7) and
Fig. 3] and the Heisenberg exchangegJ. The latter is ap-
proximated by

gJ =
kkdsni − 1ddsnj − 1dll

frs1 − r/2dg2 , s16d

and is plotted in Fig. 13[cf. discussion following Eq.(7)]. As
long as the charge distribution remains uniform, these renor-
malizations capture the main effect of the nearest-neighbor
correlations built in by the Jastrow factor. Note that for small

x,0.4 the effect of the Jastrow correlations on the Heisen-
berg exchange is weak since the spins cannot avoid being
close to each other, andgJ is roughly given by Eq.(11) for
all W.

Thus, for each doping levelx and the Jastrow suppression
strengthW, we can estimate the correspondingteff, Jeff, and
then the optimalD. The latter is our main measure of the
superconductivity strength and is shown in Fig. 14. TheW
=0 line is the same as in Fig. 12, while theW=8 corresponds
essentially to the minimum-nearest-neighbor projection.
Again, the dark thick line corresponds to the phase boundary
of the Jastrow weight. Forx.0.27 all points above this line
have theÎ33Î3 charge order. These are obtained by using
the corresponding formal renormalization factors and the
above prescription, even though this violates the initial mo-
tivation coming from a uniform renormalized liquid picture.
As emphasized earlier, the precise energetics in this regime
likely requires a more careful treatment. However, we expect
that even such simplistic analysis in theÎ33Î3 regime

FIG. 12. Renormalized mean-field results for thed+ id super-
conducting state fort=3J. We show the meanfieldTc, the optimal
D, and the square root of the condensation energyEcond. The energy
scale is the bareJ; note the logarithmic scale for the energy.

FIG. 13. Jastrow-Gutzwiller renormalization factor for the
Heisenberg exchange as a function of doping for a number of fixed
W (cf. Figs. 3 and 4). In theÎ33Î3 phase(data points below the
thick dark line), the exhibitedgJ is averaged over all bonds.

FIG. 14. Renormalized mean field for the Jastrow-weightedd
+ id superconducting state fort=3J (cf. Fig. 12). We show the self-
consistentD as the measure of the superconductivity strength(Tc

plots look very similar). The dark thick line corresponds to the
phase boundary of the Jastrow weight(cf. Figs. 2, 3, and 13)—the
maximum enhancement of the superconductivity while remaining
in the uniform phase.
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gives a reasonable first guidance on how the role of the ki-
netic energy can be suppressed by possible charge ordering
in the system.

Our tentative conclusion from Fig. 14 is that fort=3J the
considered nearest-neighbor Jastrow renormalizations that
leave the underlying liquid wave function in the pure Fermi-
liquid state are borderline sufficient to explain the supercon-
ductivity nearx=1/3. Oneshould of course judge this criti-
cally because of the exponential sensitivity to the actual
value of the ratioteff /Jeff, Eq. (15). The trend for increasing
t /J can be seen by comparingt=3J, Fig. 14, andt=5J, Fig.
15.

We speculate that in NaxCoO2·1.3H2O the actual situation
is qualitatively close to the curve withW=3 in Fig. 14,
which near x=1/3 roughly corresponds to the critical
strongly correlated liquid of the nearest-neighbor Jastrow
weight (cf. Figs. 2 and 3). This curve may lie inside the
liquid phase for longer-ranged Jastrow weight. Another pos-
sibility is that only short-range charge order is developed for
intermediate coupling. One thing should be clear from Figs.
14 and 15: There can indeed be significant enhancement—
one to two orders of magnitude—in the superconductivity
scale due to the kinetic-energy suppression in the charge-
correlated liquid. Because the charge system is most respon-
sive near the commensuratex=1/3, this enhancement may
be strongest near this doping, which may explain the experi-
mentally suggested3 superconducting “dome” aroundx
=1/3. However, we note that even forW=3, D in Fig. 14
shows only a shallow maximum nearx=1/3. A possible ex-
planation of the experiment is thatx significantly less than
1/3 is not achievable due to chemical reasons and supercon-
ductivity is simply cut off. Again, the important message we
draw from Fig. 14 is the possibility of pushingTc up to an
observable level nearx=1/3.

Finally, if we continue the theory into the JastrowÎ3
3Î3 charge-order regime, theTc enhancement may be even
stronger. This is not surprising, since the charge mobility is
suppressed even further in this case. Thus, our earlier analy-
sis tells us that forx.1/3 we are essentially doping a nearly
half-filled honeycomb lattice. This picture also suggests
some possibilities of treating theÎ33Î3 CDW regime more
carefully, similar to our discussion in Sec. V. For example,
for x.1/3, we can view the fermions as restricted primarily

to the honeycomb lattice. On the other hand, thed+ id state
wins the energetics in the original uniform triangular lattice
mean field and needs to be reexamined in the present con-
text. The above renormalized mean-field procedure roughly
corresponds to restricting thed+ id ansatz onto the honey-
comb lattice. Of course, one should also consider other pos-
sible RVB superconductor states on the honeycomb lattice
and decide which one is optimal energetically. More gener-
ally, one may want to consider triangular lattice supercon-
ducting ansatz with broken translational symmetry patterned
after the Î33Î3 state. We are not pursuing such studies
here, since it is important to first establish whether the charge
ordering occurs at all in the material. If this indeed happens,
the above rough considerations can give us some initial idea
about the scale of the superconducting instabilities in such
state.

VII. CONCLUSIONS:
CONNECTION WITH EXPERIMENTS

We conclude by stating some consequences of the dis-
cussed effects of charge frustration as follows.

(1) It will clearly be interesting to look for signs of
charge order nearx=1/3 and 2/3using x-ray or neutron
scattering. The conductivity is metallic and in the case ofx
=1/3 reaches 50e2/h at low temperatures.4,9 This suggests
that long-range charge ordering is unlikely, but there may be
a tendency for short-range ordering.

(2) There can be strong suppression of the effective hop-
ping amplitude due to nearest-neighbor repulsion while re-
maining in the Fermi-liquid state. The mean-field hopping
amplitudexi j =x is given by Eq.(12) and has contributions
proportional togtt andgJJ. Note that in addition to the sup-
pression ofgt (Fig. 3), gJ is also suppressed(Fig. 13), espe-
cially for x.0.5.

This suppression leads to low fermion degeneracy tem-
perature. The properties of such Fermi-liquid system with
eF&T are rather unusual from the perspective of the familiar
metals witheF@T (the Fermi energy is measured from the
bottom of the band, and is roughlyeF, teff). This is given in
the following:

(a) In particular, the thermopower is large and satu-
rates to the value

Q = −
m

qT
=

kB

q
ln

2 − r

r
s17d

at large temperature. Note the “classical” scalekB/ ueu
=86.2mV/K, which is in fact observed in NaxCoO2.

5,7,9

The full temperature dependence forx=0.70 is shown in
Fig. 16. Here and below, we use simple-minded transport
theory summarized in Appendix B. From Fig. 16, the ther-
mopower reaches one half of the maximal value forT
< teff.

(b) The Hall coefficient for the triangular lattice band
structure has an unusual nonsaturating increase with the tem-
perature forT*eF as observed experimentally in Ref. 10.
The limiting high-temperature behavior is

FIG. 15. This is the same as Fig. 14, but fort=5J.

POSSIBLE EFFECTS OF CHARGE FRUSTRATION IN… PHYSICAL REVIEW B 69, 214516(2004)

214516-11



RH =
V

qc rs2 − rd
kBT

teff
, s18d

whereV is the three-dimensional volume per Co. The full
temperature dependence is shown in Fig. 16; the high-
temperature trend sets in forT<1teff to 2teff. Possibility of
this unusual behavior was predicted in Ref. 18 from the
high-temperature expansion for thetJ model sthe doping
dependence of the proportionality coefficient is somewhat
different hered. We remark that this unusual behavior is
the consequence of the triangular lattice band structure
only, and its origin can be traced to the presence of three-
site hopping loops as detailed in Appendix B. Correlation
effectsper seare needed only to reduceteff below the ex-
perimental temperatures.

(c) Pauli susceptibility per Co site forT*eF becomes

xPauli=
mB

2

T
rs1 − r/2d. s19d

Note that this has a Curie-like behavior, but is somewhat
smaller—by a factor of 1−r /2—from the case of completely
free spins.

(3) The kinetic-energy renormalizations are strongest(for
fixed repulsion strength) near the commensuratex
=1/3,2/3, andweakest nearx=1/2.This is because the sys-
tem finds it easiest to order, even if only locally, near the
commensurate filling, while away from commensuration
much of the nearest-neighbor repulsion energy cannot be
avoided in any case.

Charge frustration may also be relevant for the experi-
mental “charging” curve of Ref. 4. The observed plateaus at
x=1/3,2/3remind one of the magnetization plateaus in the
frustrated triangular lattice Ising model(related to the lattice
gas with nearest-neighbor repulsion as mentioned in Sec.
III ). Note that the bandwidth observed by heat capacity4,6

and by ARPES(Ref. 11) is proportional tox and has contri-
butions from bothgtt and gJJ [see Eq.(12)]. On the other
hand, electromagnetic response couples only tot so that the
Drude weight observable from infrared reflectivity and the

superfluid density(observable via the London penetration
depth in the case of superconductors) are directly propor-
tional to gt. These will provide a more sensitive test of the
predicted dip ingt nearx=1/3 andx=2/3 asshown in Fig.
3. For example, it will be interesting to compare the Drude
weight for x=1/3 andx=0.5 samples.

(4) The spin physics nearx=2/3 isexpected to be highly
degenerate and complicated, and will manifest itself below
the energy scaleteff. In particular, the above transport pic-
tures will likely be modified below this scale.

(5) Near x=1/3, whether the system prefers uniform or
charge-ordered state, the correlated liquid can have further
RVB superconducting instabilities. The suppression of the
charge mobility serves to enhance and may even resurrect
the superconductivity under a small superconducting dome
aroundx=1/3. Experiments3 observe the disappearance of
the superconductivity belowx=0.26. However, the strongest
RVB superconductivity is expected at much lower doping,
and the search should be pursued more vigorously towards
x=0, if that is chemically possible.
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APPENDIX A: DETAILS OF EQ. (15)

Equation(15) can be understood by examining the self-
consistency conditions, Eq.(13). Specializing for thed+ id
ansatz, we have

1 =
3Jeff

8

1

Nlatt
o
k

fd+idskd
Îjk

2 + Dk
2
.

fd+idskd ; 2 cosk ·e1Scosk ·e1 − 1
2cosk ·e2 −

1

2
cosk ·e3D .

HereNlatt is the number of lattice sites;jk=ek−m with ek=
−2xscosk ·e1+cosk ·e2+cosk ·e3d.

For weak superconductivityD!Jeff& teff, following a
BCS-like analysis, we obtain the following approximate for-
mula:

D = A x expS−
4

3n0sxdfd+idsxd
x

Jeff
D . sA1d

A is an order one numerical constant,n0sxd is the triangular
lattice hopping density of states per site(not including spin)
at the Fermi energy corresponding to dopingx, and fd+id is
the d+ id wave factor averaged over the Fermi surface. The
scalex in front of the exponential corresponds to the energy
cutoff being roughly the Fermi energy, since the pairing is
over the full Fermi volume. For smallJeff we see from Eq.
(12) that x can be replaced byteff in Eq. (A1), yielding Eq.
(15). Similar expression is obtained for the mean fieldTc.

FIG. 16. Simple-minded transport theory for nondegenerate
spin-1/2 Fermi gas on the triangular lattice. The thermopower is
plotted in “classical” units ofkB/ ueu, while the units for the Hall
coefficient contain the three-dimensional volume per Co atomV.
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The necessary data is shown in Fig. 17. The coefficient
csxd depends rather weakly onx, and the main effect on the
D and Tc is from the doping dependence ofteff. The above
approximate formula agrees fairly well with the actual mean-
field calculations performed in the main text.

APPENDIX B: TRANSPORT FOR T›eF

In this appendix, we summarize the simple Fermi-liquid
transport theory that was used to obtain Fig. 16 and Eqs.(17)
and (18). The main formulas can be found in standard texts
28,29 They are as follows.

(a) The thermopower is given by

Q =
L12

sxx
. sB1d

The kinetic coefficients are given by the integrals over the
Brillouin zone

L12 = qtE d3k

4p3S−
] f

] e
Dvxskdvxskd

eskd − m

T
,

sxx = q2tE d3k

4p3S−
] f

] e
Dvxskdvxskd.

Here,fsed=1/see−m+1d is the Fermi distribution. We cite the
more familiar three-dimensional expressions. When applying
to NaxCoO2, we specialize to the layered triangular lattice
by assuming no dispersion in theẑ direction. The full
temperature dependence forx=0.70 is shown in Fig. 16,
and the limiting high-temperature behavior is given in Eq.
s17d.

(b) In weak magnetic fieldsvct!1, the Hall coeffi-
cient is given by

RH =
sH

sxxsyy
. sB2d

sxx, syy are the static zero-field conductivities given earlier,
while

sH =
q3t2

c
E d3k

4p3S−
] f

] e
DvxskdfMyy

−1vxskd − Myx
−1vyskdg.

sB3d

In the last equation,Mab
−1skd=]2e /]ka]kb is the inverse mass

tensor.
The high-temperature behavior for the layered triangular

lattice is given by Eq.(18). The origin of this nonsaturating
increase with temperature lies in the presence of triangular
hopping loops. Indeed, consider the above semiclassical ex-
pression forsH at high temperature, and translate it from the
momentum space back to the real space assuming a general
hopping problemtRR8 on a Bravais lattice. The result reads

sH =
q3t2

c
S−

] f

] e
D 2

V
o

R1,R2

t01t12t20 R1xR2ysR1 3 R2dz.

sB4d

Here, −s]f /]ed<rs2−rd / s4Td, and also enterssxx,syy; V is
the volume of the unit cell. The lattice hopping problem is
input through the real-space sum over possible hops out of
the origin:R1;R01, R2;R02. For each triangle specified by
an unordered triple of vertices0,R1,R2, the clockwise 0
→1→2→0 and anticlockwise 0→2→1→0 contributions
add tosR13R2dz

2, i.e., a quantity of definite sign. The effect
is of course strongest for the triangular lattice.
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