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An alternate set of equations to describe the electrodynamics of superconductors at a macroscopic level is
proposed. These equations resemble equations originally proposed by the London brothers but later discarded
by them. Unlike the conventional London equations the alternate equations are relativistically covariant, and
they can be understood as arising from the ‘“rigidity” of the superfluid wave function in a relativistically
covariant microscopic theory. They predict that an internal “spontaneous” electric field exists in superconduct-
ors, and that externally applied electric fields, both longitudinal and transverse, are screened over a London
penetration length, as magnetic fields are. The associated longitudinal dielectric function predicts a much
steeper plasmon dispersion relation than the conventional theory, and a blueshift of the minimum plasmon
frequency for small samples. It is argued that the conventional London equations lead to difficulties that are
removed in the present theory, and that the proposed equations do not contradict any known experimental facts.
Experimental tests are discussed.
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I. INTRODUCTION There is ample experimental evidence in favor of Eq.
b), which leads to the Meissner effect. That equation is in
ct preserved in our alternative theory. However, we argue
that there is no experimental evidence for Ebp), even if it
appears compelling on intuitive grounds. In fact, the London
brothers themselves in their early work considered the pos-
sibility that Eq.(1a) may not be valid for superconductds.

= (1a) However, because of the result of an experirhéhey dis-

Jt  mg carded an alternative possibility and adopted both Ebg).

describes the collisionless response of a conducting fluid ¢"d (1b), which became known as the “first” and “second”
density n,, i.e., free acceleration of the superfluid carriers-ondon equations.

. L > It is useful to introduce the electric scalar and magnetic
with chargee and massn,, giving rise to the supercurredt

It has been generally accepted that the electrodynamics é
superconductors in the “London limi(ivhere the response
to electric and magnetic fields is logas described by the
London equation$? The first London equation

a_j_ns_é

The second London equation vector potentialsp andA. The magnetic field is given by
.- ng- B=V X A 3
VXxJ=-—"B (1b) ®
MeC and Eq.(2a) is equivalent to
is obtained from Eq(1a) using Faraday’s law and setting a -
time integration constant equal to zero, and leads to the E=—% _10A ()
Meissner effect. These equations together with Maxwell’s cat’
equations, ] o ] o
The magnetic vector potential is undefined to within the gra-
. . 1B dient of a scalar function. The gauge transformation
VXE=- —E, (2a)
¢ A— A+ VT, (5a)
- - 4. 1E 19
VXB—?J'FEH, (2b) b—d-——, (5b)
cat
V.E=4 5 leaves the electric and magnetic fields unchanged.
TE= AT, (20 The second London equation, Edb), can be written as
V.B=0, (2d) j=-24 (6)
MeC

are generally believed to determine the electrodynamic be-

havior of superconductors. In this paper we argue that thesdowever the right-hand side of this equation is not gauge
equations are not correct, and propose an alternate set wfvariant, while the left-hand side is. From the continuity
equations. equation,
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it can be seen that Ed6) is only valid with a choice of
gauge that satisfies

(8a)

In particular, in a time-independent situatiore., when elec-
tric and magnetic fields are time independehte vector po-

tential A in Eq. (6) is necessarily transverse, i.e.,

- -

V.A=0. (8b)
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1 4mng€?
P = 7 (11)
L Me

Applying the divergence operator to Ed.0) and using Egs.
(20) and(7) lead to

12

London arguetithat Eq.(12) leads to a rapid decay of any
charge buildup in superconductors, given by the time scales

¢ \2]12
Ti 5= 2ot (2770,1)2—()\—) :

L

(13

the slower of which he estimated to be 39sec, and conse-

It is currently generally accepted that the London equatiorguently that any charge buildup inside the superconductor

(6) is valid for superconductors in all situations, time inde-

pendent or not, with the gauge chosen so that(Bl). holds
(London gaugg and hencev-J=0 from Eg.(6). Together

with Eqg. (18 this is equivalent to assuming that no longitu-

dinal electric fieldgi.e.,V E+ 0) can exist inside supercon- f
ductors, as can be seen by applying the divergence opera

to Eq.(19).

However, the possibility of an electrostatic field inside

superconductors was recently suggested by the theory
hole superconductivity;” which predicts that negative

charge is expelled from the interior of superconductors to
wards the surface. The conventional London electrodynam-
ics is incompatible with that possibility; however, the alter-
nate electrodynamics proposed here is not. We have alrea
discussed some consequences for the electrostatic case ;R

recent worlé

Recently, Govaerts, Bertrand, and Stenuit have discussefjn
an alternate Ginzburg-Landau formulation for superconduct
ors that is relativistically covariant and has some commo

elements with the theory discussed h&feor the case of a

uniform order parameter their equations reduce to the early

London theory that allows for electrostatic fields within a

tor

Q

n

can be ignored. He concluded from this that it is reasonable
to assumep=0 inside superconductors, which from the con-
tinuity equation and Eq6) implies Eq.(8b). The same ar-
gument is given in Ref. 10.

However, this numerical estimate is based on assuming
or o, a value appropriate for the normal state, andNpits
value near zero temperature. Instead, the temperature depen-
dence ofg,, and\| should be considered. The conductivity
off normal carriersr, should be proportional to the number of
normal electrons,” which goes to zero as the temperature
approaches zero; heneg— 0 asT— 0. On the other hand,

the number of superfluid electromg goes to zero a3 ap-
proachesT;; hencex, —« asT—T.. These facts lead to a

Y

(itrong temperature dependence of the relaxation times in Eq.

3), and in fact to the conclusion that long-lived charge
fluctuations should exist both whé@n— T, and whenT— 0.
Equation (12) describes a damped harmonic oscillator.

e crossover between overdampedl high T) and under-
damped(low T) regimes occurs for

c
M

27o,(T) = (14)

penetration length of the surface of a superconductor, as ows T— T, A\ (T)—c and o,(T) approaches its normal state
theory also does. However, in contrast to the theory disvalue atT,; as T—0, A\ (T)—\.(0) and o,,(T)—0; hence

cussed here, the theory of Govaestsal. does not allow for

condition (14) will always be satisfied at some temperature

electric charge nor electric fields deep in the interior of suhetween 0 and’,. For example, for a superconductor with

perconductors.

Il. DIFFICULTIES WITH THE LONDON MODEL

Following London! let us assume that in addition to su-

perfluid electronggiving rise to a supercurreidt), there are
normal electrons giving rise to a normal current

- -

J,=o,E (9)

so that the total currert= 3n + 53 satisfies

aJ_ & - JE

= E+o0,—
ot am?- Mot

(10)

with the London penetration depihy given by

low-temperature London penetration depth~200 A and
normal state resistivity ~ 10 u£) cm the crossover would
be atT/T,~0.69; if A\, ~2000 A andp~ 1000} cm, at
T/T,~0.23. However, no experimental signature of such a
crossover between overdamped and underdamped charge os-
cillations at some temperature beldly has ever been re-
ported for any superconductor.

For T approachindr,, the slower time scale in E¢Ll3) is

B Ao (T)
L e (MP

so that forT sufficiently close tdl, overdamped charge fluc-
tuations should persist for arbitrarily long times. However,
such a space charge would give rise to an electric field in the
interior of the superconductor and herjdeie to Eq.(1a)] to

a current that grows arbitrarily large, destroying supercon-

(15
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ductivity. No such phenomena have ever been observed in In a normal metal these difficulties do not arise. Applying
superconductors close W to our knowledge. the divergence operator to E®) and using Eq.2c) and(7)
At low temperatures, Eq13) implies that underdamped yield
charge oscillations should exist, with damping time scale
ap
1 It =—Admo.p, (21

=T — 16
! 27o,(T) (16
which predicts that any charge fluctuation in the interior of

diverging asT— 0. The frequency of these oscillations is metals is screened over a very short titrel0™L” sed, and

2 consequently that a longitudinal electric field cannot pen-
0=/ 4rlof, (17)  etrate a normal metal. A static uniform electric field can pen-
A etrate a normal metal and it causes a finite current to flow
and asT— 0 it approaches the plasma frequency whose magnitude is limited by _the normal state resistivity.
In summary, London’s equations together with Maxwell's
C equations lead to unphysical predictions regarding the behav-
Wp = )\_L (18 ior of superconductors in connection with space charges and

electric fields, and to predictions that appear to be contra-

Hence at zero temperature plasma oscillations in the supedicted by experiment. These difficulties are avoided in the
conducting state are predicted to exist forever, just as persisonventional London picture byostulatingthat p=0 inside
tent currents. No such persistent charge oscillations haveuperconductors, and that applied static electric fields do not
been observed to our knowledge. penetrate the superconductdrt® These are postulates that

Reference 10 recognized this difficulty and suggested theadre completely independent of E¢$) and(2), for which no
the London electrodynamic equations should only be asebvious justification within London’s theory exists.
sumed to be valid “in situations in which the fields do not
tend to build up a space charge,” hence not in the regions
close toT, and close toT=0 discussed above. On the other lll. THE ALTERNATE EQUATIONS

hand, the consequences of London equations CONCering the possibility of an alternative to the conventional Lon-

magnetic fields and persistent currents are generally believqgjon equations is suggested by the fact that taking the time
to be valid for arbitrary temperatures, and indeed experiyqrivative of Eq.(6) and using Eq(4) leads to
ments support this expectation. The fact that the implications

of London’s equations concerning the behavior of the charge -
density in superconductors appear to have at best a limited 5_33: E(§+§¢) (22)
range of validity is disturbing and suggests a fundamental at  mg
inadequacy of these equations. .

A related difficulty with London’s equations arises from without making any assumptions on the gaugéoClearly,
consideration of the equation for the electric field. Taking thegq. (22) is consistent with the existence of a static electric
time derivative of Eq(2b) and using Eqs(2a), (2¢), and(1a)  field in a superconductor, deriving from an electrostatic po-

yield tential ¢, which will not generate an electric current, con-
. trary to the prediction of Eg¢la). How it may be possible
V2E = ié . i&z_E A (19) for a static electric field to exist in a superconductor without
)\E 2 ot P generating a time-dependent current is discussed in Ref. 8.

Assuming that Eq(22) and Eqg.(1a are equivalent, as is
For slowly varying electric fields and assuming no chargedone in the conventional London theory, is tantamount to

density in the superconductor making an additionaindependentassumption, namely that
L no longitudinal electric field can exist inside superconduct-
VZE==E, 20 O .
)\E 20 Consequently it seems natural to abandon @) and

explore the consequences of EQ2) in its full generality.
which implies that an electric field penetrates a distaxge Starting from Eq(22), the second London equati¢hb) also
as a magnetic field does. Indeed, electromagnetic waves ¥gllows, taking the curl and setting the time integration con-
superconductors penetrate a distange hence Eq.(20)  stant equal to zero as done by London. However, to com-
properly describes the screening of transverse electric fieldgjetely specify the problem we need further assumptions.
However Eq.(20) does not depend on the frequency androliowing the early London worwe take as the fundamen-

hence should remain valid in the static limit; but such a - . o >
situation is incompatible with the first London equatidm), :a{eef:rztrl]c;ngiﬁ(g?together with the condition tha obeys

as it would lead to arbitrarily large currents. This then sug-
gests that application of an arbitrarily small static or quasi-
static electric field should lead to destruction of the super- =- 5
conducting state, which is not observed experimentally. 4T\

A, (233
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.- 19¢ mal derivatived¢/dn are continuous across the surface of
V-A=-——-". (23b) the superconducting body. For giveg these equations have
a unique solution for each value of the average charge den-
These equations imply that the magnetic vector potential thagity of the superconductor
enters into London’s equatiof23g) is transverse in a static
situation as in London’s case, but has a longitudinal compo- 1 3
nent in a time-dependent situation. Pave = Vv Vd ro(f).
Application of the divergence operator to E@39), to-
gether with Eq(23b) and the continuity Eq(7), then leads In particular, if p,,.=po the solution isp(F)=p, everywhere

(3D

to inside the superconductor awdr) = ¢(r), with ¢, given by
ap 1 a¢ Eq. (27), valid both inside and outside tr_le superconductor.
T i ot (24 For the general case,,.# po the solution to these equa-
T tions can be obtained numerically for any given body shape
and integration with respect to time to by the procedure discussed in Ref. 8. For a spherical body an
. o o analytic solution exists, and we speculate that analytic solu-
#(1,1) = do(r) = = 4mh{[p(F,1) = po(1)], (25 tions may exist for other shapes of high symmetry. Quite

Where¢O(F) andpo(l?) are constants of integration_ A pOSSibIe genera“y, Eq.(29 ImplleS that for bOdy dimensions much

choice would bep,=p,=0. Instead, motivated by the theory Iarger' than .the .penetration depth the charge density, i_s _
of hole superconductivi§/-58we choose deep in the interior of the superconductor and the potential is

¢o(F). Deviations of p() from p, exist within a layer of
po(l) = po >0, (26)  thickness\, of the surface, to give rise to the give,e. In

u- particular, for a charge neutral superconductgf.=0, ex-

cess negative charge will exist near the surface as discussed
in Ref. 8.

The electrostatic field is obtained from the usual relation

that is, a uniformpositiveconstant in the interior of the s
perconductor. Equation25) then implies that the electro-
static potentialg(r,t) equalsgy(r) when the charge density
inside the superconductor is constant, uniform, and equal to
po; hence from Maxwell's equations we deduce thgtr) is

given by E() ==V ¢(F) (32)
Po and also satisfies the equation
¢0(F) :f dgr'm (27)
v E(F) = Eo(7) + N2VZE(D) (33

where the integral is over the volume of the superconducting . . R .
body. with Eg(r)==V ¢(r). Deep in the interiorE(r)=Ey(r). Be-

In summary, we propose that the macroscopic electrodyeause of Eq(22), no current is generated by this electrostatic
namic behavior of a superconductor is described by &285.  field.
and a single positive number,, which together with Eq. If an external electrostatic field is applied, the charge den-
(27) determines the integration constants in E2p). pgis a  sity will rearrange so as to screen the external field over a
function of temperature, the particular material, and the didistance\, from the surface. This is easily seen from the
mensions and shape of the superconducting Bodythe  superposition principle, since the total electric field will be

following we explore some consequences of this proposal. the sum of the original field and an added fi@é() that

IV. ELECTROSTATICS satisfies
For a static situation Eq25) is é’(F) _ )\EVzé'(F) 34

- _ 2 _
¢(F) = golF) — 4mA[p(F) = pol (28) inside the superconductor, and approaches the value of the
with ¢(r) given by Eq.(27).1! Using Poisson’s equation we applied external field far from the superconductor. Equation
obtain for the charge density inside the superconductor  (34) implies that the additional fiel&’(F) is screened within
) = o+ N2V20(F) 29 a distancen, from the surface, just as an applied magnetic
p(1) = po*+ ALV"p() (29 field would be screened. Quantitative results for general ge-
Inside and outside the superconductor the electrostatic potepmetries can be obtained by the same procedure outlined in

tial obeys Ref. 8 and will be discussed elsewhere.

1 For the particular case of a spherical geometry the solu-

VA B(1) = po(N)] = S[B(F) = po(N], (309  tion to these equations is easily obtained. The electrostatic
AL potential for a sphere of radil® and total charge is ¢(r)
=h(r) + ¢y(r), with
V(M) =0, @op ATHD

respectively. Furthermore we assume that no surface charges B(r) = Q sinh(r/\)) <R (359
can exist in superconductors, hence that hptand its nor- f(RI\) r '
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~ Q sinh(R/\)) 1 1 1.1 7B
d(r) = +Ql=--J], r>R B=— —
f(R\D) R R r V2B = )\zB 22 (409
(35b)
1AE-E
and VAE-Ey) = )\Z(E Eo)+ % (40b)
Q = QO -q, (363)
- 1. 1A
4 2= =7, =%+
Q — ?R?’Po' (36b) V= )\E‘] + 02 &tz, (400)
= i 1 #(p~po)
f(x) =x coshx - sinhx (360 V(- Po)‘)\z(p po) + S o (400)
2
Bo(r) = %<3 - _2> r<R (36d)  so that all quantities obey exactly the same equation. Equa-
R tions (40a@—(40¢) with py and Eo 0 are also obtained from
the conventional London equations only if one imposes the
¢0(r):%), r>R (360 additional assumption thgi=0 inside the superconductor.
For example, the equation for the electric field in London’s
and the electric field and charge density follow from Eqs'case 'S
(32) and (28). In the presence of a uniform applied electric . 1- 16E .
field Eq, the potential isp(r)+¢'(r, 6), with VE= FE et 47V p (41)
L

A :
¢'(r,0)=a—f(r/\)Ee,cos6, r<R (379  instead of Eq(40b.
r The simplicity of Eqs(40) derives from the fact that the
theory is relativistically covariart.This is seen as follows.

&'(r.6) = (r% _ r)Eexpos 6 r>R (37b) We define the current four-vector in the usual way,

J=(A(F,1),icp(F,1), (42)
with .
and the four-vector potential,
3R -
" SR (383 A= (A 1),ip(F 1). (43
The continuity equation sets the four-dimensional divergence
)\2 f(RINL of the four-vectord equal to zero,
a= R{l - —Zg} (380 ‘ .
R®sinh(R/A) Div J=0 (44)

The induced charge density is easily obtained from(E8).  where the fourth derivative i&/ d(ict), and the Lorenz gauge

Note that a dipole momentE,, is induced on the sphere condition Eq.(23b) sets the divergence of the four-vectdr
and that the polarizabilityx becomes increasingly reduced tg zero
compared with the normal metal value=R® as the ratio of ,
radius to penetration length decreases. Ror >\, Eq. Div A=0. (45)

(38b yields a’:(R_Z)\L)B as one would expect, and for Fyrthermore we define the four-vectors associated with the
R< <\, a=R°/15\{. positive uniform charge densify, and its associated current

V. MAGNETOSTATICS Jo, denoted byl,, and the associated four-vector potentigl
In the frame of reference where the superconducting body is
The magnetostatics for our case is identical to the convergt rest the spatial part of these four-vectors is zero, hence
tional case. From Eq$23a), (2b), and(2d) it follows that
Jo=(0,icpy), (463
B(F) = \2V2B(), (39

- . . =(0,ig(r 46h)
giving rise to the usual Meissner effect. The generated Ao=( ¢°Q) _ (460
screening supercurrent is not sensitive to the presence of tiie that reference frame. In any inertial reference frarg,

electrostatic field. andJ, are obtained by Lorentz-transforming E46) and are
related by
VI. ELECTRODYNAMICS 4o
Using Egs.(23) and Maxwell's equations the following %Ag= - ?Jo (47)
equations result for the electrodynamic behavior of super-
conductors: with the d’Alembertian operator
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o 1 & ductors has to be describable by relativistically covariant
Do=V"- 272 (48)  equations.
However, imagine a superconductor with a flat surface of
according to Maxwell’s equations, just as the four-vectbrs arbitrarily large extent, and an observer moving parallel to

andA obey this surface. Since in the conventional London theory the
4 superconductor is locally charge neutral, the state of motion
2A= -2 49 of the observer relative to the superconductor is determined

. (49

by its motion relative to lateral surfaces of the body that are
,@arbitrarily far away. According to the conventional London
equations this observer should be able to detect instanta-
neously any change in the position of these remote lateral
5 1 surfaces. Since information cannot travel at speeds larger
O(A=Ag) = F(A_ Ao) (509 than the speed of light, this would imply that London’s equa-
- tions cannot be valid for times shorter than the time a light
or, equivalently using Eqg47) and (49) signal takes in traveling from the observer to the lateral sur-
face; this time increases as the dimensions of the body in-
S(A- Ay, (50p)  crease, and can become arbitrarily large unless one assumes
4N there is some limiting value to the possible size of a super-

which we propose to be valid in any inertial reference frame.congucto:' %\llﬁﬁrlly’ tol descrtlibi thvt\elhelectrro?]ynarr;li:/s I?Jitsuger'
In the frame of reference at rest with respect to the supercoﬁ:—O uctors 1 local equations whose range of valldity de-
ends on the dimensions of the body is not satisfactory. Our

ducting body,J, and A, have only timelike components; in P : : b yiee
another reference frame they will also have spacelike Comgovarlant equations aVO.'O.I th|s d|ff|culty_. .
Note also that a relativistically covariant formulation does

ponents. The spatial and timelike parts of Ezpb) give rise not make sense ipy=0, as assumed in the early London

to Egs.(233 and(25), respectively. 3 et
Equations(40) can also be written in covariant form. work= In that case, the fundamental equation“A=

. —(4m/c)J makes no reference to the state of motion of the
Equations(40¢) and(40d) are ( . . . .
q S(409 (400 solid and would describe the same physics irrespective of the

Our fundamental equation is then the relation between fou
vectors

C

J_Joz_

5 1 relative motion of the superfluid and the solid, in contradic-
03 o) = )\_E(J ~J), (518 ton with experiment.
and Eqs(40g and(40b) VIIl. THE LONDON MOMENT
1 The presence of a magnetic field in rotatin
OXF -Fp)=S(F-F 51b P gnetic  Tielc 9
( o )\E( o (510 superconductotspresents another difficulty in the conven-

. L _ tional London theory. A rotating superconductor has a mag-
whereF is the usual electromagnetic field tensor dfgis  atic field in its interior given by?
the field tensor with entriegy and O forE and B, respec-
tively, when expressed in the reference frame at rest with B 2mgC . (52)

respect to the ions. e

with W the angular velocity. This is explained as follows: in
VII. RELATIVISTIC COVARIANCE Eerms of the superfluid velocity, the superfluid current is
. . . Js=nev,, so that Eq(6) is

The fundamental equatiaib0) relates theelative motion
of the superfluid and the positive background, with four- . e -
currentsJ andJy, and associated vector potentidlend A, Us= ™ @A' (53)
respectively. It is a covariant relation between four-vectors. ) o _
This means it is valid in any inertial reference frame, with N€xt one assumes that in the interior the superfluid rotates
the four-vectors in different inertial frames related by thetogether with the lattice, so that at position
Lorentz transformation connecting the two frames. o XT (54)

In contrast, the conventional London equation, Es), s
with condition Eq.(8b) is notrelativistically covariant, rather and replacing in Eq’53) and taking the curl, Eq52) results.
it is only valid in the reference frame where the supercon- The problem with this explanation is that, as discussed
ducting solid is at rest. It can certainly be argued that theearlier, the conventional London equations are not covariant,
frame where the superconducting solid is at rest is a prerather they are valid only in the rest frame of the supercon-
ferred reference frame, different from any other referencealucting body. However, in writing Eq54) one is affirming
frame.[In fact, our covariant equatior{s0) do recognize the the validity of London’s equation in a frame thatnst the
special status of that reference frame, as the only frameest frame of the solid, but is a particular inertial frame. To
where the spatial part of the four-vectdyis zero] Hence it  assume the validity of the equations with respect to one par-
is nota priori obvious that the electrodynamics of supercon-ticular inertial frame that is not the rest frame of the solid but

214515-6
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not in other inertial frames does not appear to be logicallywith W*¥=n,, the superfluid density, this assumption and
consistent and is reminiscent of the old theories of theEgs.(55) and(56) lead to

“aether”: one is stating that the superconductor “drags” the &2
“aether” with it if it translates but not if it rotates. J(F)=- ns—,&(rjt), (593
mC
IX. LONDON RIGIDITY . ne
p(F,t) = po =~ ——[A(F,1) = po(1)], (59b)

In the conventional microscopic theory  of mec?
superconductivity, as well as in the theory of hole e the four components of the fundamental equatfib).
superconductivitiy, the superfluid carriers are pairs of elec-  \we pelieve this is a compelling argument in favor of the
trons with total spin 0. The Schrddinger equation for par-form of the theory proposed here. It is true that for particles
ticles of spin 0 is the nonrelativistic limiting form of the moving at speeds slow compared to the speed of light the
more fundamental Klein-Gordon equatibhlt is then rea-  Kiein-Gordon equation reduces to the usual Schrédinger
sonable to expect that the proper microscopic theory to deaquation. However, by the same token the Schrodinger equa-
scribe superconductivity should be consistent with Klein-tjon satisfied by Cooper pairs can be viewed as a limiting
Gordon theory. It is very remarkable that the Londoncase of the Klein-Gordon equation. In the conventional
brothers in their early worRwithout knowledge of Cooper theory in the framework of nonrelativistic quantum mechan-
pairs, suggested the possible relevance of the Klein-Gordogs, “rigidity” of the wave function leads to the second Lon-
equation to superconductivity. don equation. It would be unnatural to assume that the same

In Klein-Gordon theory, the components of the currentargument cannot be extended to the superfluid wave function
four-vectorJ=(J(r,t) icp(F,t)) in the presence of the four- in its relativistic version, independent of the speed at which

vector potentiaA=(A(7,1),i4(7,1)) are given in terms of the the superfluid electrons are moving.

scalar wave fUnCtiOhI’(l'?,t) by18 X. DIELECTRIC EUNCTION
zo_ el fhe e~ As discussed in previous sections, the electric potential in
JFH = Zm[q’ ( i V- CA(r,t))\If the interior of the superconductor satisfies
ho e~ . . 1P(p—¢o) _ 1
+x1r<— Y ——A(r,t))\lf , (55a VAp-¢o) - 53— > =—(¢p—dp), (608
[ c C at A
while outside the superconductor the potential satisfies the
p(F t) = e {\If*(iﬁi _ e¢>(F,t)>\I’ usual wave equation
2mc at 1 &2¢
9 X V- 22 (60b)
+¥ —iﬁﬂ—edﬁ,t))\lf : (55b) ¢

If a harmonic potentiakbe,(q, w) is applied, the supercon-
Deep in the interior of the superconductor we hgiee su-  ductor responds with an induced potentigl], w) related to
perconductors of dimensions much larger than the penetras,,, by
tion depth

¢exl(va)
. W) = ———— 61
p(r,t) = po, (568 $(0.«) &0, ) (6D
Lo and we obtain for the longitudinal dielectric function of the
¢(F,0) = olF), (560) superconductor
- . 2 4 2R - 2
JFH=A®FH=0, (560 Qo) = &ﬁ (62)
independent of any applied electric or magnetic fields. We
now postulate, analogously to the conventional thédmpat ~ with
the wave functiony(r,t) is “rigid”. In terms of the four- c m |2
dimensional gradient operator W= = ( ) (63
)\L 47Tnse2
Grad :<€,_ li>, (57) the plasma frequency. For comparison, the dielectric function
cat of the normal metal is given by the Linhardt dielectric
what we mean is that the combination function'?
* * 4 ez f _f +
[V GradV - ¥ Grad¥'] (58) Q) =1+ > Kk (64)
0" K €q— &~ R +id

is unaffected by external electric and magnetic fields, as well
as by proximity to the boundaries of the superconductorwith f, the Fermi function.
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Let us compare the behavior of the dielectric functio.ns.fo_r wgn= a)p(l + %)\%qu)' (71b)
the superconductor and the normal metal. In the static limit ) i
we have for the superconductor from E§2) showing that low-energy plasmons in superconductors re-

quire wavelengths larger thaqn according to the alternate
2

B wp _ 1 equations, in contrast to normal metals where the wave-
(0,0 —0)= 1+czq2_1+)\fq2' (65) lengths are of ordeh{g, i.e., interatomic distances. This

again shows the enhanced “rigidity” of the superconductor
For the normal metal, the zero frequency limit of the Lin- with respect to charge fluctuations compared to the normal
hardt function yields the Thomas-Fermi dielectric function metal.

err(@=1+—5— (669 XI. PLASMONS
ATed
ith In the conventional London theory one deduces from Eq.
wi (1@ in the absence of normal state carriers
1 2
= = Ip
)\?I-F 47Tezg(€|:) (66b) W + a)gp =0 (72)

with g(eg) the density of states at the Fermi energy. Equaupon taking the divergence on both sides and using the con-
tions (65) and (66) imply that static external electric fields tinuity equation. The solution of this equation is a charge
are screened over distanckg and Mg for the supercon- oscillation with plasma frequency and arbitrary spatial distri-
ductor and the normal metal, respectively. For free electronpution

we have . .
p(F,t) = p(Fe“s". (73
g(er) = 3n (67) In other words, the plasmon energy is independent of wave
2er vector. This indicates that charge oscillations with arbitrarily
so that short wavelength can be excited in the superconductor ac-

cording to London theory. Clearly this is unphysical, as one

1 6mné 13mc? would not expect charge oscillations with wavelengths
N2 = . = 2 2e (68 smaller than interelectronic spacings. Consequently one has
TF F L <F to conclude that the “perfect conductor” equatid®) nec-

assuming the density of superconducting electnais the essarily has to break down at sufficiently short length scales.
same as that of normal electrons. Equati68) shows that Experiments using electron energy loss spectroscopy
the superconductor is much more “rigid” than the normal(EELS) have been performed on metals in the normal $tate
metal with respect to charge distortions: the energy cost inand plasmon peaks have been observed, with plasmon dis-
volved in creating a charge distortion to screen an appliedP€rsion relation approximately consistent with the prediction
electric field iser in the normal metal versusc? in the of the Linhardt dielectric functiori70). If London’s theory
superconductor, resulting in the much longer screeningvas correct, one would expect that in the superconducting
length in the superconductor compared to the normal metaftate plasmon excitation energies should be independent of
The same rigidity is manifest in the dispersion relation forat least for values of ! larger than interelectronic distances.
longitudinal charge oscillations. From the zero of the dielec- However, instead it is expected from BCS theory that
tric function (62) we obtain for the plasmon dispersion rela- Plasmons belowl'; should be very similar to plasmons in the

tion in the superconducting state normal staté>® This expectation is based on the fact that
plasmon energies are several orders of magnitude larger than
wés: w,23+ c?0P. (69) superconducting energy gaps, and as a consequence within

o ) ] o ~ BCS theory plasmons should be insensitive to the onset of
Notably, this dispersion relation for longitudinal modes in e superconducting state. However, no EELS experiments

the superconductor is identical to the one for transverse e|e%rppear to have ever been performed on superconducting met-
tromagnetic waves in this medium. In contrast, the zeros ofs tg verify this expectation.

the Linhardt dielectric function yield for the plasmon disper- |5 contrast, the counterpart to E2) with the alternate
sion relatior® equations is the equation for the charge density obtained
from Eq. (400):

3
2 _ 2 2.2
Wgn = wp+ sUFd (70) oy,
(7t2 + wFZ)ppl = szzppla (74)

so that the plasmon dispersion relation is much steeper for
the superconductor, since typically ~0.01c. We can also wherep, is the difference between the charge density and its

write Egs.(69) and(70) as static value obtained from solution of E(9). The right-
L hand side of this equation gives a rigidity to charge oscilla-
Wy 5= wp(l +§>qu2), (718  tions that is absent in the London model. From Etf) we
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obtain the dispersion relatiq69) for plasmons in the super- in the normal state. Furthermore the minimum volume plas-

conducting state.
Furthermore the allowed values of the wavevectawill

mon frequency should become larger as the sample becomes
smaller, and surface plasmon resonance frequencies should

be strongly constrained in small samples of dimension comalso become larger for small samples.
parable to the penetration depth. Consider for simplicity a

small superconducting sphere of radRsA plasma oscilla-
tion is of the form

singr

P70 = pp— —€"at (75)
and because of charge neutrality
f drpp(f,H)=0 (76)
\Y
we obtain the condition on the wave vector
tan(qR) = qR. (77)
The smallest wave vector satisfying this condition is
4.493
=— 78
R (78

so that the smallest frequency plasmon has frequency

)\2
Dp=wp\/1+ 20.255.

(79)

This shift in the plasmon frequency can be very large for

small samples. For example, for a sphere of raied 0\,

Xll. EXPERIMENTAL TESTS

We do not know of any existing experiments that would
be incompatible with the proposed theory. Here we summa-
rize the salient features of the theory that may be amenable
to experimental verification.

A. Screening of the applied electric field

Our equations predict that longitudinal electric fields
should be screened over distanegsrather than the much
shorter Thomas-Fermi length. This could be tested by mea-
suring changes in capacitance of a capacitor with supercon-
ducting metal plates, or with a superconductor in the region
between plates, upon onset of superconductivity. Such an
experiment was performed by H. Londoim 1936 but no
change was observed. We are not aware of any follow-up
experiment. More accurate experiments should be possible
now.

B. Measurement of charge inhomogeneity

The theory predicts excess negative charge within a pen-
etration depth of the surface of a superconductor and a deficit

Eq. (79 yields a 20% blueshift in the minimum plasmon of negative charge in the interior. It may be possible to detect

frequency.

this charge inhomogeneity by direct observation, for ex-

The optical response of small samples will also be differ-gmple, by electron microscopy or other spectroscopic tools.
ent in our theory. Electromagnetic waves excite surface plas-

mons in small metallic particles, and resonance frequencies

depend on sample shape and its polarizablilitxs the sim-

C. External electric field

plest example, for a spherical sample the resonance fre- rqor small superconducting samples of nonspherical shape

guency is given by
2=
M™ Ma

with Q the total mobile chargey its mass andx=R® the
static polarizability of a sphere of radil® We expect the

(80)

polarizability to become smaller in the superconducting state
as given by Eq(38b), hence our theory predicts an increase

an electric field is predicted to existtsidethe supercon-
ductor near the surfadeyhich should be detectable by elec-
trostatic measurements. Associated with it there should be a
force between small superconducting particles leading to the
formation of spherical aggregates.

D. Internal electric field

in surface plasmon resonance frequency upon entering the The predicted internal electric field is small on a micro-
superconducting state for small samples, which should becopic scale but extends over macroscopic distances. Perhaps
seen, for example, in photoabsorption spectra. For exampléhat makes it experimentally detectable.

for samples of radius 10Q and 10\, the decrease in polar-
izability predicted by Eq(38b) is 6% and 27%, respectively.

The conventional theory would predict no such change.

E. Plasmons

In summary, the conventional theory and our theory lead Plasmon dispersion relations should be strongly affected
to very different consequences concerning the behavior dby the transition to superconductivity, with plasmons becom-
plasmon excitations when a normal metal is cooled into théng much stiffer at low temperatures. Volume and surface
superconducting state. In the London theory plasmons anglasmon frequencies should increase in the superconducting
predicted to be completely dispersionless. Within BCSstate for small samples. “Small” is defined by the value of
theory, no change with respect to the normal state is expectdtie ratio of a typical sample dimension 19, and effects
either in the plasmon dispersion relation nor in the long-should be detectable even for this ratio considerably larger
wavelength limit of the plasmon frequency. Instead, in ourthan unity. EELS and optical experiments should be able to
theory the plasmon dispersion should be much steeper thafetect these changes.
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F. Polarizability The existence ol in Eq. (81), originating in the positive
The polarizability of small samples should be smaller inCN&r9€po, breaks charge conjugation symmetry. As discussed
the superconducting than in the normal state. The effec‘farl'er’ a nonzerg, IS hecessary .fo_r a mealjllngfu! .relat|V|s-
should be largest at low temperatures. For samples smadic@lly covariant theory. The prediction tha§ is positivefor

compared to the penetration depth the polarizability should@!! superconductors follows from the fundgmental electron-
scale as/5’3 rather tharV, with V the volume. hole asymmetry of condensed matter that is the focus of the

theory of hole superconductivify1° The fact that electron-
hole asymmetry is a fundamental aspect of superconductivity
is already experimentally established by the fact that the
We have proposed a fundamental reformulation of themagnetic field of rotating superconductors always points in
conventional London electrodynamics. The proposed theorglirection parallel, neverantiparallel, to the mechanical an-
is relativistically covariant and embodied in the single equagular momentuni?
tion The electrodynamic equations proposed here describe
1 only the superfluid electrons. At finite temperatures belgw
20N _ A= (A _ there will also be a normal fluid composed of thermally ex-
HA=A) = )\E(A Ao (81) cited quasiparticles. A two-fluid model description of the sys-
tem at finite temperatures should be possible and lead to
interesting insights.
The theory discussed here appears to be “simpler” than
o X the conventional London theory in that it requires fewer in-
_ Similarly as the conventional London thedryhe equa-  jenendent assumptions. It is also consistent with the more
tions proposed here can be understood as arising from theyamental Klein-Gordon theory, while the conventional
rigidity of the microscopic wave function of the superfluid | 5nqon theory is not, and it avoids certain difficulties of the
with respect to perturbations. However, in our case the rele,nentional London theory. We do not believe it contradicts
evant microscopic theory is thegelativistically covariant any known experimental facts, except for the 1936 experi-

Klein-Gordon theory, appropriate for spin 0 Cooper pairs,ment by H. Londorf,which to our knowledge has never been
rather than the nonrelativistic Schrodinger equation. R'g'd'tyreproduced. Also, recent remarkable experiments by Tao and

in this framework leads inescapably to &85) and hence 10 o \yorkerd! indicate that the properties of superconductors
the four-dimensional equatio@®l). Furthermore, rigidity in i, the presence of strong static or quasistatic electric fields

our context refers to both the effect of external electric and, o ot well understood. The theory leads to many conse-
magnetic fields on the superfluid wave function as well as 1 ences that are different from the conventional theory and
the effect on it of proximity to the surface of the supercon-gho|q pe experimentably testable, as discussed in this paper.
ducting body in the absence of external fields. It should apply to all superconductors, with the magnitude of

The constanp, may be viewed as a phenomenological e charge-conjugation symmetry breaking paramgagese-
parameter arising from integration of E@4), independent ing largest for high-temperature superconducfors.

of any microscopic theory. Instead, within the theory of hole  “pecent experiments indicate that optical properties of cer-
superconductivitypg 'S & positive parameter determined by (5in metals in the visible range are affected by the onset of
microscopic physicS-® The magnitude o, doesnotcorre-  g,harconductivity? This surprising coupling of low- and

spond to an ionic positive charge but is much smaller. It,jon energy physics, unexpected within conventional BCS
originates in the absence of a small fraction of conductio heory, was predicted by the theory of hole

electrons fr?m the bulk, which, as a consequence of theserconductivity? In this paper we find that physical phe-
undressing” associated with the transition to superconduc-,gmena associated with longitudinal plasma_oscillations,

tivity, have moved outwards to within a London penetration s, 4 high-energy phenomenon, should also be affected by

depth of the surface. In Ref. 8 we estimated the excess neggyserconductivity. Further discussion of the consequences of

tive charge near the surface for Nb to be one extra electrofig theory and its relation with the microscopic physics will
per 500,000 atoms. For a sample of 1 cm radius this corresg given in future work.

spond to a deficit of 1 electron per #0atoms in the bulk,
which gives rise to an electric field of order®9/cm near
the surface. This electric field is very small at a microscopic
level, yet it gives rise to very large potential differences be- The author is grateful to A.S. Alexandrov and L.J. Sham
tween different points in the interior of a macroscopicfor stimulating discussions, and to D. Bertrand for calling
sample. Ref. 9 to his attention.

XI1ll. DISCUSSION

with A the four-vector potential ané, the four-vector po-
tential corresponding to a uniform charge denggat rest in
the rest frame of the superconducting body.
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