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An alternate set of equations to describe the electrodynamics of superconductors at a macroscopic level is
proposed. These equations resemble equations originally proposed by the London brothers but later discarded
by them. Unlike the conventional London equations the alternate equations are relativistically covariant, and
they can be understood as arising from the “rigidity” of the superfluid wave function in a relativistically
covariant microscopic theory. They predict that an internal “spontaneous” electric field exists in superconduct-
ors, and that externally applied electric fields, both longitudinal and transverse, are screened over a London
penetration length, as magnetic fields are. The associated longitudinal dielectric function predicts a much
steeper plasmon dispersion relation than the conventional theory, and a blueshift of the minimum plasmon
frequency for small samples. It is argued that the conventional London equations lead to difficulties that are
removed in the present theory, and that the proposed equations do not contradict any known experimental facts.
Experimental tests are discussed.
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I. INTRODUCTION

It has been generally accepted that the electrodynamics of
superconductors in the “London limit”(where the response
to electric and magnetic fields is local) is described by the
London equations.1,2 The first London equation

] JW

] t
=

nse
2

me
EW s1ad

describes the collisionless response of a conducting fluid of
density ns, i.e., free acceleration of the superfluid carriers

with chargee and massme, giving rise to the supercurrentJW.
The second London equation

¹W 3 JW = −
nse

2

mec
BW s1bd

is obtained from Eq.(1a) using Faraday’s law and setting a
time integration constant equal to zero, and leads to the
Meissner effect. These equations together with Maxwell’s
equations,
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¹W 3 BW =
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JW +

1

c

] EW

] t
, s2bd

¹W ·EW = 4pr, s2cd

¹W ·BW = 0, s2dd

are generally believed to determine the electrodynamic be-
havior of superconductors. In this paper we argue that these
equations are not correct, and propose an alternate set of
equations.

There is ample experimental evidence in favor of Eq.
(1b), which leads to the Meissner effect. That equation is in
fact preserved in our alternative theory. However, we argue
that there is no experimental evidence for Eq.(1a), even if it
appears compelling on intuitive grounds. In fact, the London
brothers themselves in their early work considered the pos-
sibility that Eq.(1a) may not be valid for superconductors.3

However, because of the result of an experiment4 they dis-
carded an alternative possibility and adopted both Eqs.(1a)
and (1b), which became known as the “first” and “second”
London equations.

It is useful to introduce the electric scalar and magnetic

vector potentialsf andAW . The magnetic field is given by

BW = ¹W 3 AW s3d

and Eq.(2a) is equivalent to

EW = − ¹W f −
1

c

] AW

] t
. s4d

The magnetic vector potential is undefined to within the gra-
dient of a scalar function. The gauge transformation

AW → AW + ¹W f , s5ad

f → f −
1

c

] f

] t
, s5bd

leaves the electric and magnetic fields unchanged.
The second London equation, Eq.(1b), can be written as

JW = −
nse

2

mec
AW . s6d

However the right-hand side of this equation is not gauge
invariant, while the left-hand side is. From the continuity
equation,
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¹W ·JW +
] r

] t
= 0, s7d

it can be seen that Eq.(6) is only valid with a choice of
gauge that satisfies

¹W ·AW =
mec

nse
2

] r

] t
. s8ad

In particular, in a time-independent situation(i.e., when elec-
tric and magnetic fields are time independent) the vector po-

tential AW in Eq. (6) is necessarily transverse, i.e.,

¹W ·AW = 0. s8bd

It is currently generally accepted that the London equation
(6) is valid for superconductors in all situations, time inde-
pendent or not, with the gauge chosen so that Eq.(8b) holds

(London gauge), and hence¹W ·JW =0 from Eq. (6). Together
with Eq. (1a) this is equivalent to assuming that no longitu-

dinal electric fields(i.e., ¹W ·EW Þ0) can exist inside supercon-
ductors, as can be seen by applying the divergence operator
to Eq. (1a).

However, the possibility of an electrostatic field inside
superconductors was recently suggested by the theory of
hole superconductivity,5–7 which predicts that negative
charge is expelled from the interior of superconductors to-
wards the surface. The conventional London electrodynam-
ics is incompatible with that possibility; however, the alter-
nate electrodynamics proposed here is not. We have already
discussed some consequences for the electrostatic case in
recent work.8

Recently, Govaerts, Bertrand, and Stenuit have discussed
an alternate Ginzburg-Landau formulation for superconduct-
ors that is relativistically covariant and has some common
elements with the theory discussed here.9 For the case of a
uniform order parameter their equations reduce to the early
London theory3 that allows for electrostatic fields within a
penetration length of the surface of a superconductor, as our
theory also does. However, in contrast to the theory dis-
cussed here, the theory of Govaertset al. does not allow for
electric charge nor electric fields deep in the interior of su-
perconductors.

II. DIFFICULTIES WITH THE LONDON MODEL

Following London,1 let us assume that in addition to su-

perfluid electrons(giving rise to a supercurrentJWs), there are
normal electrons giving rise to a normal current

JWn = snEW s9d

so that the total currentJW =JWn+JWs satisfies

] JW

] t
=

c2

4plL
2EW + sn

] EW

] t
s10d

with the London penetration depthlL given by

1

lL
2 =

4pnse
2

mec
2 . s11d

Applying the divergence operator to Eq.(10) and using Eqs.
(2c) and (7) lead to

]2r

] t2
+ 4psn

] r

] t
+

c2

lL
2r = 0. s12d

London argued1 that Eq.(12) leads to a rapid decay of any
charge buildup in superconductors, given by the time scales

t1,2
−1 = 2psn ± Fs2psnd2 − S c

lL
D2G1/2

, s13d

the slower of which he estimated to be 10−12 sec, and conse-
quently that any charge buildup inside the superconductor
can be ignored. He concluded from this that it is reasonable
to assumer=0 inside superconductors, which from the con-
tinuity equation and Eq.(6) implies Eq.(8b). The same ar-
gument is given in Ref. 10.

However, this numerical estimate is based on assuming
for sn a value appropriate for the normal state, and forlL its
value near zero temperature. Instead, the temperature depen-
dence ofsn and lL should be considered. The conductivity
of normal carrierssn should be proportional to the number of
“normal electrons,” which goes to zero as the temperature
approaches zero; hencesn→0 asT→0. On the other hand,
the number of superfluid electronsns goes to zero asT ap-
proachesTc; hencelL→` as T→Tc. These facts lead to a
strong temperature dependence of the relaxation times in Eq.
(13), and in fact to the conclusion that long-lived charge
fluctuations should exist both whenT→Tc and whenT→0.

Equation (12) describes a damped harmonic oscillator.
The crossover between overdamped(at high T) and under-
damped(low T) regimes occurs for

2psnsTd =
c

lLsTd
. s14d

As T→Tc, lLsTd→` andsnsTd approaches its normal state
value atTc; as T→0, lLsTd→lLs0d and snsTd→0; hence
condition (14) will always be satisfied at some temperature
between 0 andTc. For example, for a superconductor with
low-temperature London penetration depthlL,200 Å and
normal state resistivityr,10 mV cm the crossover would
be at T/Tc,0.69; if lL,2000 Å andr,1000mV cm, at
T/Tc,0.23. However, no experimental signature of such a
crossover between overdamped and underdamped charge os-
cillations at some temperature belowTc has ever been re-
ported for any superconductor.

For T approachingTc, the slower time scale in Eq.(13) is

t1 ,
4psnsTd

fc/lLsTdg2 s15d

so that forT sufficiently close toTc overdamped charge fluc-
tuations should persist for arbitrarily long times. However,
such a space charge would give rise to an electric field in the
interior of the superconductor and hence[due to Eq.(1a)] to
a current that grows arbitrarily large, destroying supercon-
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ductivity. No such phenomena have ever been observed in
superconductors close toTc to our knowledge.

At low temperatures, Eq.(13) implies that underdamped
charge oscillations should exist, with damping time scale

t1 =
1

2psnsTd
s16d

diverging asT→0. The frequency of these oscillations is

v =Î c2

lL
2 − 4p2sn

2 s17d

and asT→0 it approaches the plasma frequency

vp =
c

lL
. s18d

Hence at zero temperature plasma oscillations in the super-
conducting state are predicted to exist forever, just as persis-
tent currents. No such persistent charge oscillations have
been observed to our knowledge.

Reference 10 recognized this difficulty and suggested that
the London electrodynamic equations should only be as-
sumed to be valid “in situations in which the fields do not
tend to build up a space charge,” hence not in the regions
close toTc and close toT=0 discussed above. On the other
hand, the consequences of London equations concerning
magnetic fields and persistent currents are generally believed
to be valid for arbitrary temperatures, and indeed experi-
ments support this expectation. The fact that the implications
of London’s equations concerning the behavior of the charge
density in superconductors appear to have at best a limited
range of validity is disturbing and suggests a fundamental
inadequacy of these equations.

A related difficulty with London’s equations arises from
consideration of the equation for the electric field. Taking the
time derivative of Eq.(2b) and using Eqs.(2a), (2c), and(1a)
yield

¹2EW =
1

lL
2EW +

1

c2

]2EW

] t2
+ 4p¹W r. s19d

For slowly varying electric fields and assuming no charge
density in the superconductor

¹2EW =
1

lL
2EW , s20d

which implies that an electric field penetrates a distancelL,
as a magnetic field does. Indeed, electromagnetic waves in
superconductors penetrate a distancelL; hence Eq.(20)
properly describes the screening of transverse electric fields.
However Eq.(20) does not depend on the frequency and
hence should remain valid in the static limit; but such a
situation is incompatible with the first London equation(1a),
as it would lead to arbitrarily large currents. This then sug-
gests that application of an arbitrarily small static or quasi-
static electric field should lead to destruction of the super-
conducting state, which is not observed experimentally.

In a normal metal these difficulties do not arise. Applying
the divergence operator to Eq.(9) and using Eqs.(2c) and(7)
yield

] r

] t
= − 4psnr, s21d

which predicts that any charge fluctuation in the interior of
metals is screened over a very short times,10−17 secd, and
consequently that a longitudinal electric field cannot pen-
etrate a normal metal. A static uniform electric field can pen-
etrate a normal metal and it causes a finite current to flow
whose magnitude is limited by the normal state resistivity.

In summary, London’s equations together with Maxwell’s
equations lead to unphysical predictions regarding the behav-
ior of superconductors in connection with space charges and
electric fields, and to predictions that appear to be contra-
dicted by experiment. These difficulties are avoided in the
conventional London picture bypostulatingthat r=0 inside
superconductors, and that applied static electric fields do not
penetrate the superconductor.1,2,10 These are postulates that
are completely independent of Eqs.(1) and(2), for which no
obvious justification within London’s theory exists.

III. THE ALTERNATE EQUATIONS

The possibility of an alternative to the conventional Lon-
don equations is suggested by the fact that taking the time
derivative of Eq.(6) and using Eq.(4) leads to

] JWs

] t
=

nse
2

me
sEW + ¹W fd s22d

without making any assumptions on the gauge ofAW . Clearly,
Eq. (22) is consistent with the existence of a static electric
field in a superconductor, deriving from an electrostatic po-
tential f, which will not generate an electric current, con-
trary to the prediction of Eq.(1a). How it may be possible
for a static electric field to exist in a superconductor without
generating a time-dependent current is discussed in Ref. 8.
Assuming that Eq.(22) and Eq.(1a) are equivalent, as is
done in the conventional London theory, is tantamount to
making an additionalindependentassumption, namely that
no longitudinal electric field can exist inside superconduct-
ors.

Consequently it seems natural to abandon Eq.(1a) and
explore the consequences of Eq.(22) in its full generality.
Starting from Eq.(22), the second London equation(1b) also
follows, taking the curl and setting the time integration con-
stant equal to zero as done by London. However, to com-
pletely specify the problem we need further assumptions.
Following the early London work3 we take as the fundamen-

tal equation Eq.(6) together with the condition thatAW obeys
the Lorenz gauge:

JWs = −
c

4plL
2AW , s23ad
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¹W ·AW = −
1

c

] f

] t
. s23bd

These equations imply that the magnetic vector potential that
enters into London’s equation(23a) is transverse in a static
situation as in London’s case, but has a longitudinal compo-
nent in a time-dependent situation.

Application of the divergence operator to Eq.(23a), to-
gether with Eq.(23b) and the continuity Eq.(7), then leads
to

] r

] t
= −

1

4plL
2

] f

] t
s24d

and integration with respect to time to

fsrW,td − f0srWd = − 4plL
2frsrW,td − r0srWdg, s25d

wheref0srWd andr0srWd are constants of integration. A possible
choice would bef0=r0=0. Instead, motivated by the theory
of hole superconductivity,6,7,5,8we choose

r0srWd = r0 . 0, s26d

that is, a uniformpositiveconstant in the interior of the su-
perconductor. Equation(25) then implies that the electro-
static potentialfsrW ,td equalsf0srWd when the charge density
inside the superconductor is constant, uniform, and equal to
r0; hence from Maxwell’s equations we deduce thatf0srWd is
given by

f0srWd =E
V

d3r8
r0

urW − rW8u
s27d

where the integral is over the volume of the superconducting
body.

In summary, we propose that the macroscopic electrody-
namic behavior of a superconductor is described by Eqs.(23)
and a single positive numberr0, which together with Eq.
(27) determines the integration constants in Eq.(25). r0 is a
function of temperature, the particular material, and the di-
mensions and shape of the superconducting body.8 In the
following we explore some consequences of this proposal.

IV. ELECTROSTATICS

For a static situation Eq.(25) is

fsrWd = f0srWd − 4plL
2frsrWd − r0g s28d

with f0srWd given by Eq.(27).11 Using Poisson’s equation we
obtain for the charge density inside the superconductor

rsrWd = r0 + lL
2¹2rsrWd. s29d

Inside and outside the superconductor the electrostatic poten-
tial obeys

¹2ffsrWd − f0srWdg =
1

lL
2 ffsrWd − f0srWdg, s30ad

¹2fsrWd = 0, s30bd

respectively. Furthermore we assume that no surface charges
can exist in superconductors, hence that bothf and its nor-

mal derivative]f /]n are continuous across the surface of
the superconducting body. For givenr0, these equations have
a unique solution for each value of the average charge den-
sity of the superconductor

rave =
1

V
E

V

d3rrsrWd. s31d

In particular, if rave=r0 the solution isrsrWd=r0 everywhere
inside the superconductor andfsrWd=f0srWd, with f0 given by
Eq. (27), valid both inside and outside the superconductor.

For the general caseraveÞr0 the solution to these equa-
tions can be obtained numerically for any given body shape
by the procedure discussed in Ref. 8. For a spherical body an
analytic solution exists, and we speculate that analytic solu-
tions may exist for other shapes of high symmetry. Quite
generally, Eq.(29) implies that for body dimensions much
larger than the penetration depth the charge density isr0
deep in the interior of the superconductor and the potential is
f0srWd. Deviations ofrsrWd from r0 exist within a layer of
thicknesslL of the surface, to give rise to the givenrave. In
particular, for a charge neutral superconductor,rave=0, ex-
cess negative charge will exist near the surface as discussed
in Ref. 8.

The electrostatic field is obtained from the usual relation

EW srWd = − ¹W fsrWd s32d

and also satisfies the equation

EW srWd = EW 0srWd + lL
2¹2EW srWd s33d

with EW 0srWd=−¹W f0srWd. Deep in the interior,EW srWd=EW 0srWd. Be-
cause of Eq.(22), no current is generated by this electrostatic
field.

If an external electrostatic field is applied, the charge den-
sity will rearrange so as to screen the external field over a
distancelL from the surface. This is easily seen from the
superposition principle, since the total electric field will be

the sum of the original field and an added fieldEW 8srWd that
satisfies

EW 8srWd = lL
2¹2EW 8srWd s34d

inside the superconductor, and approaches the value of the
applied external field far from the superconductor. Equation

(34) implies that the additional fieldEW 8srWd is screened within
a distancelL from the surface, just as an applied magnetic
field would be screened. Quantitative results for general ge-
ometries can be obtained by the same procedure outlined in
Ref. 8 and will be discussed elsewhere.

For the particular case of a spherical geometry the solu-
tion to these equations is easily obtained. The electrostatic
potential for a sphere of radiusR and total chargeq is fsrd
=f̃srd+f0srd, with

f̃srd =
Q

fsR/lLd
sinhsr/lLd

r
, r , R s35ad
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f̃srd =
Q

fsR/lLd
sinhsR/lLd

R
+ QS 1

R
−

1

r
D, r . R

s35bd

and

Q = Q0 − q, s36ad

Q0 =
4p

3
R3r0, s36bd

fsxd = x coshx − sinhx s36cd

f0srd =
Q0

2R
S3 −

r2

R2D, r , R s36dd

f0srd =
Q0

r
, r . R s36ed

and the electric field and charge density follow from Eqs.
(32) and (28). In the presence of a uniform applied electric
field Eext the potential isfsrd+f8sr ,ud, with

f8sr,ud = a
lL

2

r2 fsr/lLdEextcosu, r , R s37ad

f8sr,ud = S a

r2 − rDEextcosu, r . R s37bd

with

a = −
3R

sinhsR/lLd
, s38ad

a = R3F1 − 3
lL

2

R2

fsR/lLd
sinhsR/lLdG , s38bd

The induced charge density is easily obtained from Eq.(28).
Note that a dipole momentaEext is induced on the sphere
and that the polarizabilitya becomes increasingly reduced
compared with the normal metal valuea=R3 as the ratio of
radius to penetration length decreases. ForR. .lL Eq.
(38b) yields a=sR−lLd3 as one would expect, and for
R, ,lL, a=R5/15lL

2.

V. MAGNETOSTATICS

The magnetostatics for our case is identical to the conven-
tional case. From Eqs.(23a), (2b), and(2d) it follows that

BW srWd = lL
2¹2BW srWd, s39d

giving rise to the usual Meissner effect. The generated
screening supercurrent is not sensitive to the presence of the
electrostatic field.

VI. ELECTRODYNAMICS

Using Eqs.(23) and Maxwell’s equations the following
equations result for the electrodynamic behavior of super-
conductors:

¹2BW =
1

lL
2BW +

1

c2

]2BW

] t2
, s40ad

¹2sEW − EW 0d =
1

lL
2 sEW − E0d +

1

c2

]2sEW − EW 0d
] t2

, s40bd

¹2JW =
1

lL
2JW +

1

c2

]2JW

] t2
, s40cd

¹2sr − r0d =
1

lL
2 sr − r0d +

1

c2

]2sr − r0d
] t2

, s40dd

so that all quantities obey exactly the same equation. Equa-

tions (40a)–(40c) with r0 and EW 0=0W are also obtained from
the conventional London equations only if one imposes the
additional assumption thatr=0 inside the superconductor.
For example, the equation for the electric field in London’s
case is

¹2EW =
1

lL
2EW +

1

c2

]2EW

] t2
+ 4p¹W r s41d

instead of Eq.(40b).
The simplicity of Eqs.(40) derives from the fact that the

theory is relativistically covariant.3 This is seen as follows.
We define the current four-vector in the usual way,

J = „JWsrW,td,icrsrW,td…, s42d

and the four-vector potential,

A = „AW srW,td,ifsrW,td…. s43d

The continuity equation sets the four-dimensional divergence
of the four-vectorJ equal to zero,

Div J = 0 s44d

where the fourth derivative is] /]sictd, and the Lorenz gauge
condition Eq.(23b) sets the divergence of the four-vectorA
to zero

Div A = 0. s45d

Furthermore we define the four-vectors associated with the
positive uniform charge densityr0 and its associated current

JW0, denoted byJ0, and the associated four-vector potentialA0.
In the frame of reference where the superconducting body is
at rest the spatial part of these four-vectors is zero, hence

J0 = s0,icr0d, s46ad

A0 = „0,if0srWd… s46bd

in that reference frame. In any inertial reference frame,A0
andJ0 are obtained by Lorentz-transforming Eq.(46) and are
related by

h2A0 = −
4p

c
J0 s47d

with the d’Alembertian operator
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h2 = ¹2 −
1

c2

]2

] t2
s48d

according to Maxwell’s equations, just as the four-vectorsJ
andA obey

h2A = −
4p

c
J. s49d

Our fundamental equation is then the relation between four-
vectors

h2sA − A0d =
1

lL
2 sA − A0d s50ad

or, equivalently using Eqs.(47) and (49)

J − J0 = −
c

4plL
2 sA − A0d, s50bd

which we propose to be valid in any inertial reference frame.
In the frame of reference at rest with respect to the supercon-
ducting body,J0 and A0 have only timelike components; in
another reference frame they will also have spacelike com-
ponents. The spatial and timelike parts of Eq.(50b) give rise
to Eqs.(23a) and (25), respectively.

Equations(40) can also be written in covariant form.
Equations(40c) and (40d) are

h2sJ − J0d =
1

lL
2 sJ − J0d, s51ad

and Eqs.(40a) and (40b)

h2sF − F0d =
1

lL
2 sF − F0d s51bd

whereF is the usual electromagnetic field tensor andF0 is

the field tensor with entriesEW 0 and 0 forEW and BW , respec-
tively, when expressed in the reference frame at rest with
respect to the ions.

VII. RELATIVISTIC COVARIANCE

The fundamental equation(50) relates therelative motion
of the superfluid and the positive background, with four-
currentsJ andJ0, and associated vector potentialsA andA0,
respectively. It is a covariant relation between four-vectors.
This means it is valid in any inertial reference frame, with
the four-vectors in different inertial frames related by the
Lorentz transformation connecting the two frames.

In contrast, the conventional London equation, Eq.(6),
with condition Eq.(8b) is not relativistically covariant, rather
it is only valid in the reference frame where the supercon-
ducting solid is at rest. It can certainly be argued that the
frame where the superconducting solid is at rest is a pre-
ferred reference frame, different from any other reference
frame.[In fact, our covariant equations(50) do recognize the
special status of that reference frame, as the only frame
where the spatial part of the four-vectorJ0 is zero.] Hence it
is nota priori obvious that the electrodynamics of supercon-

ductors has to be describable by relativistically covariant
equations.

However, imagine a superconductor with a flat surface of
arbitrarily large extent, and an observer moving parallel to
this surface. Since in the conventional London theory the
superconductor is locally charge neutral, the state of motion
of the observer relative to the superconductor is determined
by its motion relative to lateral surfaces of the body that are
arbitrarily far away. According to the conventional London
equations this observer should be able to detect instanta-
neously any change in the position of these remote lateral
surfaces. Since information cannot travel at speeds larger
than the speed of light, this would imply that London’s equa-
tions cannot be valid for times shorter than the time a light
signal takes in traveling from the observer to the lateral sur-
face; this time increases as the dimensions of the body in-
crease, and can become arbitrarily large unless one assumes
there is some limiting value to the possible size of a super-
conductor. Clearly, to describe the electrodynamics of super-
conductors with local equations whose range of validity de-
pends on the dimensions of the body is not satisfactory. Our
covariant equations avoid this difficulty.

Note also that a relativistically covariant formulation does
not make sense ifr0=0, as assumed in the early London
work.3 In that case, the fundamental equationh2A=
−s4p /cdJ makes no reference to the state of motion of the
solid and would describe the same physics irrespective of the
relative motion of the superfluid and the solid, in contradic-
tion with experiment.

VIII. THE LONDON MOMENT

The presence of a magnetic field in rotating
superconductors1 presents another difficulty in the conven-
tional London theory. A rotating superconductor has a mag-
netic field in its interior given by12

BW = −
2mec

e
vW s52d

with wW the angular velocity. This is explained as follows: in
terms of the superfluid velocityvWs the superfluid current is

JWs=nsevWs, so that Eq.(6) is

vWs = −
e

mec
AW . s53d

Next one assumes that in the interior the superfluid rotates
together with the lattice, so that at positionrW

vWs = vW 3 rW s54d

and replacing in Eq.(53) and taking the curl, Eq.(52) results.
The problem with this explanation is that, as discussed

earlier, the conventional London equations are not covariant,
rather they are valid only in the rest frame of the supercon-
ducting body. However, in writing Eq.(54) one is affirming
the validity of London’s equation in a frame that isnot the
rest frame of the solid, but is a particular inertial frame. To
assume the validity of the equations with respect to one par-
ticular inertial frame that is not the rest frame of the solid but
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not in other inertial frames does not appear to be logically
consistent and is reminiscent of the old theories of the
“aether”: one is stating that the superconductor “drags” the
“aether” with it if it translates but not if it rotates.

IX. LONDON RIGIDITY

In the conventional microscopic theory of
superconductivity,2 as well as in the theory of hole
superconductivitiy,6 the superfluid carriers are pairs of elec-
trons with total spin 0. The Schrödinger equation for par-
ticles of spin 0 is the nonrelativistic limiting form of the
more fundamental Klein-Gordon equation.18 It is then rea-
sonable to expect that the proper microscopic theory to de-
scribe superconductivity should be consistent with Klein-
Gordon theory. It is very remarkable that the London
brothers in their early work,3 without knowledge of Cooper
pairs, suggested the possible relevance of the Klein-Gordon
equation to superconductivity.

In Klein-Gordon theory, the components of the current

four-vectorJ=sJWsrW ,td , icrsrW ,tdd in the presence of the four-

vector potentialA=(AW srW ,td , ifsrW ,td) are given in terms of the
scalar wave functionCsrW ,td by18

JWsrW,td =
e

2m
FC*S"

i
¹W −

e

c
AW srW,tdDC

+ CS−
"

i
¹W −

e

c
AW srW,tdDC*G , s55ad

rsrW,td =
e

2mc2FC*Si"
]

] t
− efsrW,tdDC

+ CS− i"
]

] t
− efsrW,tdDC*G . s55bd

Deep in the interior of the superconductor we have(for su-
perconductors of dimensions much larger than the penetra-
tion depth)

rsrW,td = r0, s56ad

fsrW,td = f0srWd, s56bd

JWsrW,td = AW srW,td = 0, s56cd

independent of any applied electric or magnetic fields. We
now postulate, analogously to the conventional theory,1,2 that
the wave functioncsrW ,td is “rigid”. In terms of the four-
dimensional gradient operator

Grad =S¹W ,−
i

c

]

] t
D , s57d

what we mean is that the combination

fC* GradC − C GradC*g s58d

is unaffected by external electric and magnetic fields, as well
as by proximity to the boundaries of the superconductor.

With C*C=ns, the superfluid density, this assumption and
Eqs.(55) and (56) lead to

JWsrW,td = −
nse

2

mec
AW srW,td, s59ad

rsrW,td − r0 = −
nse

2

mec
2ffsrW,td − f0srWdg, s59bd

i.e., the four components of the fundamental equation(50b).
We believe this is a compelling argument in favor of the

form of the theory proposed here. It is true that for particles
moving at speeds slow compared to the speed of light the
Klein-Gordon equation reduces to the usual Schrödinger
equation. However, by the same token the Schrödinger equa-
tion satisfied by Cooper pairs can be viewed as a limiting
case of the Klein-Gordon equation. In the conventional
theory in the framework of nonrelativistic quantum mechan-
ics, “rigidity” of the wave function leads to the second Lon-
don equation. It would be unnatural to assume that the same
argument cannot be extended to the superfluid wave function
in its relativistic version, independent of the speed at which
the superfluid electrons are moving.

X. DIELECTRIC FUNCTION

As discussed in previous sections, the electric potential in
the interior of the superconductor satisfies

¹2sf − f0d −
1

c2

]2sf − f0d
] t2

=
1

lL
2 sf − f0d, s60ad

while outside the superconductor the potential satisfies the
usual wave equation

¹2f −
1

c2

]2f

] t2
= 0. s60bd

If a harmonic potentialfextsq,vd is applied, the supercon-
ductor responds with an induced potentialfsq,vd related to
fext by

fsq,vd =
fextsq,vd
essq,vd

s61d

and we obtain for the longitudinal dielectric function of the
superconductor

essq,vd =
vp

2 + c2q2 − v2

c2q2 − v2 s62d

with

vp =
c

lL
= S me

4pnse
2D1/2

s63d

the plasma frequency. For comparison, the dielectric function
of the normal metal is given by the Linhardt dielectric
function13

ensq,vd = 1 +
4pe2

q2 o
k

fk − fk+q

ek+q − ek − " + id
s64d

with fk the Fermi function.
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Let us compare the behavior of the dielectric functions for
the superconductor and the normal metal. In the static limit
we have for the superconductor from Eq.(62)

essq,v → 0d = 1 +
vp

2

c2q2 = 1 +
1

lL
2q2 . s65d

For the normal metal, the zero frequency limit of the Lin-
hardt function yields the Thomas-Fermi dielectric function13

eTFsqd = 1 +
1

lTF
2 q2 s66ad

with

1

lTF
2 = 4pe2gseFd s66bd

with gseFd the density of states at the Fermi energy. Equa-
tions (65) and (66) imply that static external electric fields
are screened over distanceslL and lTF for the supercon-
ductor and the normal metal, respectively. For free electrons
we have

gseFd =
3n

2eF
s67d

so that

1

lTF
2 =

6pne2

eF
=

1

lL
2

3mec
2

2eF
s68d

assuming the density of superconducting electronsns is the
same as that of normal electrons. Equation(68) shows that
the superconductor is much more “rigid” than the normal
metal with respect to charge distortions: the energy cost in-
volved in creating a charge distortion to screen an applied
electric field iseF in the normal metal versusmec

2 in the
superconductor, resulting in the much longer screening
length in the superconductor compared to the normal metal.

The same rigidity is manifest in the dispersion relation for
longitudinal charge oscillations. From the zero of the dielec-
tric function (62) we obtain for the plasmon dispersion rela-
tion in the superconducting state

vq,s
2 = vp

2 + c2q2. s69d

Notably, this dispersion relation for longitudinal modes in
the superconductor is identical to the one for transverse elec-
tromagnetic waves in this medium. In contrast, the zeros of
the Linhardt dielectric function yield for the plasmon disper-
sion relation13

vq,n
2 = vp

2 +
3

5
vF

2q2 s70d

so that the plasmon dispersion relation is much steeper for
the superconductor, since typicallyvF,0.01c. We can also
write Eqs.(69) and (70) as

vq,s = vps1 + 1
2lL

2q2d , s71ad

vq,n = vps1 + 9
10lTF

2 q2d , s71bd

showing that low-energy plasmons in superconductors re-
quire wavelengths larger thanlL according to the alternate
equations, in contrast to normal metals where the wave-
lengths are of orderlTF, i.e., interatomic distances. This
again shows the enhanced “rigidity” of the superconductor
with respect to charge fluctuations compared to the normal
metal.

XI. PLASMONS

In the conventional London theory one deduces from Eq.
(1a) in the absence of normal state carriers

]2r

] t2
+ vp

2r = 0 s72d

upon taking the divergence on both sides and using the con-
tinuity equation. The solution of this equation is a charge
oscillation with plasma frequency and arbitrary spatial distri-
bution

rsrW,td = rsrWde−ivpt. s73d

In other words, the plasmon energy is independent of wave
vector. This indicates that charge oscillations with arbitrarily
short wavelength can be excited in the superconductor ac-
cording to London theory. Clearly this is unphysical, as one
would not expect charge oscillations with wavelengths
smaller than interelectronic spacings. Consequently one has
to conclude that the “perfect conductor” equation(1a) nec-
essarily has to break down at sufficiently short length scales.

Experiments using electron energy loss spectroscopy
(EELS) have been performed on metals in the normal state14

and plasmon peaks have been observed, with plasmon dis-
persion relation approximately consistent with the prediction
of the Linhardt dielectric function(70). If London’s theory
was correct, one would expect that in the superconducting
state plasmon excitation energies should be independent ofq,
at least for values ofq−1 larger than interelectronic distances.

However, instead it is expected from BCS theory that
plasmons belowTc should be very similar to plasmons in the
normal state.15,16 This expectation is based on the fact that
plasmon energies are several orders of magnitude larger than
superconducting energy gaps, and as a consequence within
BCS theory plasmons should be insensitive to the onset of
the superconducting state. However, no EELS experiments
appear to have ever been performed on superconducting met-
als to verify this expectation.

In contrast, the counterpart to Eq.(72) with the alternate
equations is the equation for the charge density obtained
from Eq. (40d):

]2rpl

] t2
+ vp

2rpl = c2¹2rpl, s74d

whererpl is the difference between the charge density and its
static value obtained from solution of Eq.(29). The right-
hand side of this equation gives a rigidity to charge oscilla-
tions that is absent in the London model. From Eq.(74) we

J. E. HIRSCH PHYSICAL REVIEW B 69, 214515(2004)

214515-8



obtain the dispersion relation(69) for plasmons in the super-
conducting state.

Furthermore the allowed values of the wavevectorq will
be strongly constrained in small samples of dimension com-
parable to the penetration depth. Consider for simplicity a
small superconducting sphere of radiusR. A plasma oscilla-
tion is of the form

rplsrW,td = rpl
sin qr

r
eiwq,st s75d

and because of charge neutrality

E
V

d3rrplsrW,td = 0 s76d

we obtain the condition on the wave vector

tansqRd = qR. s77d

The smallest wave vector satisfying this condition is

q =
4.493

R
s78d

so that the smallest frequency plasmon has frequency

ṽp = vpÎ1 + 20.2
lL

2

R2 . s79d

This shift in the plasmon frequency can be very large for
small samples. For example, for a sphere of radiusR=10lL,
Eq. (79) yields a 20% blueshift in the minimum plasmon
frequency.

The optical response of small samples will also be differ-
ent in our theory. Electromagnetic waves excite surface plas-
mons in small metallic particles, and resonance frequencies
depend on sample shape and its polarizability.17 As the sim-
plest example, for a spherical sample the resonance fre-
quency is given by17

vM
2 =

Q2

Ma
s80d

with Q the total mobile charge,M its mass anda=R3 the
static polarizability of a sphere of radiusR. We expect the
polarizability to become smaller in the superconducting state
as given by Eq.(38b), hence our theory predicts an increase
in surface plasmon resonance frequency upon entering the
superconducting state for small samples, which should be
seen, for example, in photoabsorption spectra. For example,
for samples of radius 100lL and 10lL the decrease in polar-
izability predicted by Eq.(38b) is 6% and 27%, respectively.
The conventional theory would predict no such change.

In summary, the conventional theory and our theory lead
to very different consequences concerning the behavior of
plasmon excitations when a normal metal is cooled into the
superconducting state. In the London theory plasmons are
predicted to be completely dispersionless. Within BCS
theory, no change with respect to the normal state is expected
either in the plasmon dispersion relation nor in the long-
wavelength limit of the plasmon frequency. Instead, in our
theory the plasmon dispersion should be much steeper than

in the normal state. Furthermore the minimum volume plas-
mon frequency should become larger as the sample becomes
smaller, and surface plasmon resonance frequencies should
also become larger for small samples.

XII. EXPERIMENTAL TESTS

We do not know of any existing experiments that would
be incompatible with the proposed theory. Here we summa-
rize the salient features of the theory that may be amenable
to experimental verification.

A. Screening of the applied electric field

Our equations predict that longitudinal electric fields
should be screened over distanceslL rather than the much
shorter Thomas-Fermi length. This could be tested by mea-
suring changes in capacitance of a capacitor with supercon-
ducting metal plates, or with a superconductor in the region
between plates, upon onset of superconductivity. Such an
experiment was performed by H. London4 in 1936 but no
change was observed. We are not aware of any follow-up
experiment. More accurate experiments should be possible
now.

B. Measurement of charge inhomogeneity

The theory predicts excess negative charge within a pen-
etration depth of the surface of a superconductor and a deficit
of negative charge in the interior. It may be possible to detect
this charge inhomogeneity by direct observation, for ex-
ample, by electron microscopy or other spectroscopic tools.

C. External electric field

For small superconducting samples of nonspherical shape
an electric field is predicted to existoutside the supercon-
ductor near the surface,8 which should be detectable by elec-
trostatic measurements. Associated with it there should be a
force between small superconducting particles leading to the
formation of spherical aggregates.

D. Internal electric field

The predicted internal electric field is small on a micro-
scopic scale but extends over macroscopic distances. Perhaps
that makes it experimentally detectable.

E. Plasmons

Plasmon dispersion relations should be strongly affected
by the transition to superconductivity, with plasmons becom-
ing much stiffer at low temperatures. Volume and surface
plasmon frequencies should increase in the superconducting
state for small samples. “Small” is defined by the value of
the ratio of a typical sample dimension tolL, and effects
should be detectable even for this ratio considerably larger
than unity. EELS and optical experiments should be able to
detect these changes.
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F. Polarizability

The polarizability of small samples should be smaller in
the superconducting than in the normal state. The effect
should be largest at low temperatures. For samples small
compared to the penetration depth the polarizability should
scale asV5/3 rather thanV, with V the volume.

XIII. DISCUSSION

We have proposed a fundamental reformulation of the
conventional London electrodynamics. The proposed theory
is relativistically covariant and embodied in the single equa-
tion

h2sA − A0d =
1

lL
2 sA − A0d s81d

with A the four-vector potential andA0 the four-vector po-
tential corresponding to a uniform charge densityr0 at rest in
the rest frame of the superconducting body.

Similarly as the conventional London theory,1 the equa-
tions proposed here can be understood as arising from the
rigidity of the microscopic wave function of the superfluid
with respect to perturbations. However, in our case the rel-
evant microscopic theory is the(relativistically covariant)
Klein-Gordon theory, appropriate for spin 0 Cooper pairs,
rather than the nonrelativistic Schrodinger equation. Rigidity
in this framework leads inescapably to Eq.(25) and hence to
the four-dimensional equation(81). Furthermore, rigidity in
our context refers to both the effect of external electric and
magnetic fields on the superfluid wave function as well as to
the effect on it of proximity to the surface of the supercon-
ducting body in the absence of external fields.

The constantr0 may be viewed as a phenomenological
parameter arising from integration of Eq.(24), independent
of any microscopic theory. Instead, within the theory of hole
superconductivityr0 is a positiveparameter determined by
microscopic physics.5–8 The magnitude ofr0 doesnot corre-
spond to an ionic positive charge but is much smaller. It
originates in the absence of a small fraction of conduction
electrons from the bulk, which, as a consequence of the
“undressing”7 associated with the transition to superconduc-
tivity, have moved outwards to within a London penetration
depth of the surface. In Ref. 8 we estimated the excess nega-
tive charge near the surface for Nb to be one extra electron
per 500,000 atoms. For a sample of 1 cm radius this corre-
spond to a deficit of 1 electron per 1011 atoms in the bulk,
which gives rise to an electric field of order 106 V/cm near
the surface. This electric field is very small at a microscopic
level, yet it gives rise to very large potential differences be-
tween different points in the interior of a macroscopic
sample.

The existence ofA0 in Eq. (81), originating in the positive
charger0, breaks charge conjugation symmetry. As discussed
earlier, a nonzeror0 is necessary for a meaningful relativis-
tically covariant theory. The prediction thatr0 is positivefor
all superconductors follows from the fundamental electron-
hole asymmetry of condensed matter that is the focus of the
theory of hole superconductivity.6,7,19The fact that electron-
hole asymmetry is a fundamental aspect of superconductivity
is already experimentally established by the fact that the
magnetic field of rotating superconductors always points in
direction parallel, neverantiparallel, to the mechanical an-
gular momentum.20

The electrodynamic equations proposed here describe
only the superfluid electrons. At finite temperatures belowTc
there will also be a normal fluid composed of thermally ex-
cited quasiparticles. A two-fluid model description of the sys-
tem at finite temperatures should be possible and lead to
interesting insights.

The theory discussed here appears to be “simpler” than
the conventional London theory in that it requires fewer in-
dependent assumptions. It is also consistent with the more
fundamental Klein-Gordon theory, while the conventional
London theory is not, and it avoids certain difficulties of the
conventional London theory. We do not believe it contradicts
any known experimental facts, except for the 1936 experi-
ment by H. London,4 which to our knowledge has never been
reproduced. Also, recent remarkable experiments by Tao and
co-workers21 indicate that the properties of superconductors
in the presence of strong static or quasistatic electric fields
are not well understood. The theory leads to many conse-
quences that are different from the conventional theory and
should be experimentably testable, as discussed in this paper.
It should apply to all superconductors, with the magnitude of
the charge-conjugation symmetry breaking parameterr0 be-
ing largest for high-temperature superconductors.8

Recent experiments indicate that optical properties of cer-
tain metals in the visible range are affected by the onset of
superconductivity.22 This surprising coupling of low- and
high-energy physics, unexpected within conventional BCS
theory, was predicted by the theory of hole
superconductivity.23 In this paper we find that physical phe-
nomena associated with longitudinal plasma oscillations,
also a high-energy phenomenon, should also be affected by
superconductivity. Further discussion of the consequences of
this theory and its relation with the microscopic physics will
be given in future work.
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