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Applying the recently developed spin-charge gauge theory for the pseudogap phase in cuprates, we propose
a self-consistent explanation of several peculiar features of the far-infrared in-plane ac conductivity, including
a broad peak as a function of frequency and significant anisotropy at low temperatures, along with a similar
temperature-dependent in-plane anisotropy of dc conductivity in lightly doped cuprates. The anisotropy of the
metal-insulator crossover scale is considered to be responsible for these phenomena. The obtained results are
in good agreement with experiments. An explicit proposal is made to further check the theory.
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The normal state properties of cuprate superconductors
have shown a number of unexpected features, particularly in
an underdoped regime, where the pseudogap effects are
pronounced.1 One of the most recent surprises is the strong
in-plane temperature-dependent anisotropy of dc conductiv-
ity, observed in lightly doped untwinned(LSCO) and
(YBCO) crystals.2 The maximal anisotropyrb/ra−1 reaches
50% for 3% doped LSCO which is far too big compared
with the orthorhombicity(up to 1.7%).2 A “natural” explana-
tion of this unusual behavior would be the “self-organized”
charge stripe structure, proposed by a number of authors,3,4

which was also suggested to be responsible for the occur-
rence of superconductivity.5 The conductivity is indeed
higher in the stripe direction(along thea-axis).6 Meanwhile,
Dummet al.7 recently measured the in-plane ac conductivity
of untwinned 3 and 4% doped LSCO crystals. In the far
infrared region at high temperatures, the data are consistent
with a simple Drude model. Below 80 K, a broad peak ap-
pears at finite frequenciessV,100 cm−1d bearing a close
resemblance to the peak found in temperature-dependent dc
conductivity for the same composition; a significanta−b re-
sistivity anisotropy is observed in complete analogy with the
dc case.2 These ac data seem also to support the presence of
charge stripes.

However, there are several substantial difficulties in the
intuitive “rivers of charge” interpretation: The mean-field
theory predicts the statically charge-ordered state is an
insulator,3 while experimentally these lightly doped cuprates
show metallic behavior at high temperatures. Also, the ob-
served anisotropy ratio is too small compared with quasi-
one-dimensional conductors, usually showing order-of-
magnitude bigger conductivity in the chain direction. To
avoid these difficulties, the “electronic liquid crystal” sce-
nario of meandering stripes5,8 is invoked to induce metallic
conductivity and to reduce the expected anisotropy. This

does not solve the problem, either. In fact, a closer examina-
tion of the data2,7 reveals that the anisotropy effect is most
pronounced in the limitv ,T→0, in contradiction with the
fluctuating stripe picture: One would anticipate a much big-
ger effect of anisotropy at some characteristic frequencies of
the stripe fluctuations, rather than the static limit. This was
also pointed out in Ref. 7. Also, as evident from the experi-
mental curves,2,7 the major source of the in-plane conductiv-
ity anisotropy is due to the shift of the metal-insulator cross-
over (MIC) scale, and a stronger anisotropy is found in the
localized, instead ofmetallic regime. Up to now, many au-
thors attribute this MIC to the disorder effect,9 or more spe-
cifically to localization in Q1D systems.7 However, there is a
fundamental difficulty in that approach: There isonly one
mobility edgein disorder-induced localization for anisotropic
systems,10 at least within the scaling theory. This means the
system cannot be localized in one direction, while delocal-
ized in another.

Recently, we have developed a spin-charge gauge ap-
proach to describe the pseudogap phase in cuprate supercon-
ductors, particularly focusing on the MIC phenomena.11,12 In
this approach11 based on spin-charge decomposition applied
to the two-dimensional(2D) t−J model, the spinon dynam-
ics is described by a nonlinears-model with a theoretically
derived mass gapms,Jsduln dud1/2, whereJ is the exchange
integral,d the doping concentration; the holon is fermionic
with “small” Fermi surfacesseF, tdd (with t as the hopping
integral) centered arounds±p /2 , ±p /2d in the Brillouin
zone and a “Fermi-arc” behavior for the spectral weight.
Both holons and spinons are strongly scattered by gauge
fluctuations. As an effect of gauge interaction, the spinon
mass picks up a dissipative term:ms→MT=sms

2− icT/xd1/2,
wherex, td−1 is the diamagnetic susceptibility andc a nu-
merical constant. This shift in turn introduces a dissipation in
the spinon-gauge sector, whose behavior dominates the low
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energy physics of the system. The competition between the
mass gap and the dissipation is responsible for the MIC,
giving rise to a broad peak in the dc conductivity. At low
temperatures the antiferromagnetic(AF) correlation length
j,ms

−1 is the determining scale of the problem, leading to
localizing behavior, while at higher temperatures, the de Bro-
glie wave lengthlT,sx /Td1/2 becomes comparable, or even
shorter thanj, giving rise to metallic conductivity. Hence in
this approach the MIC is mainly due tocorrelation andAF
order, rather thandisordereffect.

In this paper we generalize this approach to frequency-
dependent phenomena and show the ac conductivity exhibits
a maximum as a function of frequency in an exact analogy
with the dc conductivity maximum due to MIC. This out-
come is fully understandable: In the presence of an external
electromagnetic field of frequencyV, that frequency will re-
place the temperatureT, playing the role of cutoff parameter,
for V.T at low temperatures. Moreover, if we assume the
AF correlation lengthj is anisotropic, we argue that as a
consequence the same is true for the MIC scale, then the
in-plane conductivity anisotropy as well as the close parallel
between the above two sets of experimental data can be in-
terpreted in a self-consistent way.

Let us now analyze the theory in more details. In a gauge
approach the physical resistivity is calculated using the Ioffe-
Larkin addition rule:13 r=rs+rh, where rs and rh are the
spinon and holon resistivities, respectively. In order to evalu-
ate the relevant current-current correlation functions, one
first integrates over holons and spinons, and finds that the
gauge propagator in the scaling limit,v ,q,v /q→0, has a
Reizer singularity14 for the transverse componentkATATl
3sv ,qWd,s−xuqW u2+ ikv / uqW ud−1 where k,d is the Landau
damping.

The effect of Reizer singularity on gapless fermions is
subdominant; it has been analyzed in Ref. 15 and at finiteT
it gives a scattering rate for the holon of orderT4/3 instead of
the usual Fermi liquid result,T2. To include, nonperturba-
tively, the effect of gauge fluctuations in the spinon current-
current correlation functions, we expand the spinon propaga-
tor in Feynman paths, as justified by the mass gap and we
integrate over velocity fields in the eikonal approximation.12

Being gauge invariant, the correlator of the spinon current
depends only on the gauge field strength. In the scaling limit
only the magnetic componentsFij are relevant(see Ref. 12);
the corresponding propagator at finiteT is given by

kFijsxdFrss0dl = fdird js − disd jrg E dv

2p

3E dkW

s2pd2

ukWu2eikW·xW−ivx0

i
v

ukWu
k − xukWu2

cothS v

2T
D , s1d

wherex=sxW ,x0d with x0 as the time variable. In the presence
of an external electric field(the probe in linear response
theory) with frequencyV, the integration overv should be
cut off at uvu%L=maxsT,Vd. (We further assume, for tech-
nical reasons, thatLx0!1, as justified aposteriori, see Ref.
12.)

Let us first focus on the static response and setL=T. As
v,T, we approximate cothv /2T.2T/v, then the
v-integration in Eq.(1) becomes

E
0

T dv

2p

2T

svd2 + SxukWu3

k
D2 , s2d

eventually leading to an evaluation of the large-scale “mag-
netic” propagator: −isT/4pxdQT

2exps−QT
2uxWu2/4d, where QT

=sTk /xd1/3 is the inverse of an anomalous skin depth, iden-
tified as the length-scale of gauge fluctuations. The main
effect of the gauge interaction on the spinon propagator is a
renormalization of the mass term in the exponent in the limit
x0@ uxWu

msx
0 →Îms

2 −
T

x
fS uxWuQT

2
Dx0 −

T

2x
QT

2gS uxWuQT

2
D x0

2

ms
2 , s3d

where f andg are regular functions, whose explicit integral
representations are given in Ref. 12. In the evaluation of the
spatial Fourier transform of the current-current correlator, the
shift (3) eventually leads to a complex saddle point foruxWuQT
with absolute valueC,Os1d and phase factoreip/4, which in
turn introduces a dissipation term in the spinon gap

ms → MT = sms
2 − icT/xd1/2, s4d

where ic= fsCeip/4d. The competition between the gap term
ms

2 and the dissipationT/x leads to a MIC upon the decrease
of temperature, yielding a broad peak in the dc conductivity
for T,xms

2,st /ddud ln du, tuln du, thus shifting to lower
temperature upon doping increase. More precisely the behav-
ior derived for the dc conductivity is given by12

ssTd , S d

f9sCeip/4duMTuD
1/2

sinS1

2
argMTD , s5d

where f9 means the second derivative.
We turn now to the ac conductivity atT=0 and setL

=V. In this case cothv/2T is replaced by sgnv and the
v-integration in Eq.(1) becomes

E
0

V dv

2p

v

svd2 + SxukWu3

k
D2 . s6d

Up to logarithmic accuracy, one finds for the magnetic
propagator at large scales: −isT/4pxdQV

2 l exps−QV
2 uxWu2/4d

whereQV=sVk /xd1/3 and 0,l&1/2, as follows from com-
paring Eqs.(6) and(2). Repeating the steps of the dc calcu-
lations with this parameterl included, we find as the analog
of Eq. (4):

ms → MV = sms
2 − iclV/xd1/2. s7d

For V!2ms, one easily obtains for the ac conductivity
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s1sVd , S d

lf9sCeip/4duMVuD
1/2

sinS1

2
argMVD . s8d

We see that the behavior of the ac conductivity atT=0 is
rather similar to that of the dc conductivity, with a broad
peak corresponding to a MIC, hardening and shifting to
lower temperature upon doping increase(see Fig. 1). Al-
though the replacement ofT by V as cutoff yieldsa priori
only an order estimation, the presence of the factorl (mainly
coming from the factor cothv/2T) suggests that the position
of the peak in the ac conductivity is shifted by a factor<l−1

to higher frequencies with respect to the dc case and its value
is enhanced by a factor<l−1/2 (see Fig. 2), roughly in agree-
ment with experimental data.7

The finite temperature behavior of the dynamical conduc-
tivity is as follows: forT!V we get only a small correction
to the damping term in Eq.(7) of order sT/Vd5/3 while for
V&T essentially theV=0 result applies and the conductiv-
ity will be frequency independent and equal to the dc value.

Therefore upon temperature increase, the MIC peak is ex-
pected to shrink asymmetrically and eventually disappears
from the spectrum, a behavior consistent with experiments.7

The limits of validity of the approximations involved in the
calculation of the spinon correlation functions arems

2

ùcL/x ùmsQL, where the lower bound comes from the
effectiveness of the saddle point atuxWu,QL

−1. When ex-
pressed in terms of temperature, this yields a range between
a few tens and few hundreds of kelvin. We expect that the
upper limit corresponds to a crossover to a “strange metal”
phase, analyzed in Ref. 16, where thep-flux lattice is melt
and the “metallic,” linear inT resistivity is recovered. In
some sense the pseudogap phase is on the “insulating” side
of the MIC, and the description adopted here is a rather good
approximation near the MIC, but the “high temperature as-
ymptotics” ,T1/4 is not correct, although it reproduces at
lower temperature the inflection point in resistivity found
experimentally. The above calculations do not take into ac-
count the holon contribution to the physical conductivity, but
that is of the orderL4/3, hence negligible for small cutoffL.

Let us finally discuss how the in-plane resistivity aniso-
tropy found2,7 in untwinned single crystals of La2−xSrxCuO4
sx=0.02−0.04d can fit into our scheme. The neutron scatter-
ing experiments have revealed incommensurate magnetic
structure in lightly doped LSCO samplessdø0.05d.17 Unlike
the superconducting LSCO compounds where the deviation
of the elastic magnetic scattering peaks fromsp ,pd is along
the a,b directions in the tetragonal basis,18 these peaks are
rotated by 45° aroundsp ,pd, i.e., they are located along the
b* axis in the orthorhombic basis. Moreover, from the half-
width of the scattering peaks one can determine the magnetic
correlation length in different directions. As a big surprise,
one finds the correlation length strongly anisotropic. In par-
ticular, for d=0.024,ja*8 =94.9A, and jb*8 =39.9A.6 The au-
thors of Ref. 6 interpreted this result as due to stripe forma-
tion along thea-axis, but no quantitative argument was
given. This behavior is fully consistent with the magnetic
susceptibility anisotropy, observed in untwinned lightly
doped LSCO crystals(up to 3% doping).19 We do not have a
quantitative microscopic theory to consider the anisotropy of
the AF correlation lengthj, but we can see how such aniso-
tropy can be included in our scheme and explore its conse-
quences. Suppose the hole distribution is anisotropic(which
may come from the underlying stripe structure), say the av-
erage distance between holes is bigger along thea axis, so
does the distribution of vortices on the AF background. To
use the nonlinear-s model treatment of spinons, we can
rescale the spatial coordinates. The result will be almost the
same as in the isotropic case,12 except for a coefficienta in
the spinon dispersionÎms

2+a2vs
2kx

2+vs
2ky

2, which reflects the
ratio of the AF correlation lengths in different directions.
Since the spinon massms is inversely proportional to the
correlation length, we can effectively interpret this as
ms,a,ms,b. To calculate the anisotropic conductivity we need
to modify the entire scheme. However, the major effect can
be grasped without detailed calculation. The diamagnetic
susceptibilityx and Landau dampingk due to holons will
change, but only very slightly, since they come from angular
integration. On the other hand, in the saddle point calculation

FIG. 1. Theoretically calculated frequency dependence of the ac
conductivity for different dopings:d=0.03 (full line), d=0.04
(dashed), andd=0.05 (dotted).

FIG. 2. Calculated frequency dependence of the ac conductivity
for d=0.03. Also shown is the corresponding dc conductivity as a
function of temperature(in cm−1).
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of the path integral the effect is more pronounced, so the
values of integralsf, g, and hence the numerical factorc,
mentioned above, will also change. In our spin-charge gauge
approach the combinationcxms

2= t /6p uln dur is crucial in
determining the MIC scale. If we assume that the basic re-
sults of our theory developed for the 2D isotropic model
survive the generalization to the anisotropic case as outlined
above, one would anticipate the parameterr to be also an-
isotropic. In view of the AF correlation length anisotropy we
expectra/ rb,1. As a consequence, the peak insa will be
shifted to lower temperature with respect tosb, as follows
from Eq. (4); the anisotropy ratiosa/sb will show a sharp
increase near the MIC and saturates asT→0, in agreement
with experiments.2 The same phenomenon occurs for the ac
conductivity at low temperatures, where the factorl makes
the anisotropy ratio even bigger. To estimate this enhance-
ment, we extract the ratiora/ rb by fitting the dc data(the
extracted valuera/ rb=0.725). We can then use Eq.(8) to
evaluate the corresponding anisotropy ratio for ac conductiv-
ity without introducing any additional parameters; a com-
parison with the experimental curve is shown in Fig. 3. This
anisotropy is less pronounced than the experimentally ob-
served value for AF correlation length, as quoted above for

d=0.024, but this is consistent with the above scheme, where
we expect that part of the anisotropy effect in the combina-
tion cxms

2 has already been canceled by other effects.
It is true that these peculiar features in the in-plane con-

ductivity are “due to modifications of the dynamics of the
metallic carriers, and not due to the opening of a charge
gap,”7 since there is no charge gap in doped Mott insulators.
What we have shown here is that these modifications are due
to the presence of a gap in the spin excitations and its com-
petition with the dissipation which is different from the dis-
order induced localization. For the same reason, the state-
ment ofonly one mobility edgein the scaling theory,10 does
not apply here. As we learned from the authors of Ref. 7,20

the anomalous behavior of ac conductivity is observed only
up to 6% doping. It is understandable that the anisotropy due
to stripes is not present since they are rotated by 45° beyond
6% doping, and their orientation is alternating betweena and
b directions in adjacent layers. However, the disappearance
of the low-frequency peak cannot be explained by the stripe
interpretation. On the contrary, this is very natural in our
interpretation since the MIC is not observed in samples be-
yond 6% doping in the absence of magnetic field. Now we
make an explicit proposal: To do the ac experiment in the
presence of a magnetic field which would suppress supercon-
ductivity and reveal MIC. If the deviation from the Drude
behavior reappears, that would be a confirmation of our in-
terpretation.

To conclude we have shown that the peculiar in-plane
anisotropy of dc and ac conductivity observed in the lightly
doped cuprates can be explained in a unified, self-consistent
manner within the spin-charge gauge approach, and the key
ingredient is to attribute the MIC to the correlation effect.
The anisotropy of the AF correlation length, and conse-
quently the MIC scale provides a rather natural explanation
of the observed conductivity anisotropy, being most pro-
nounced in the limitV ,T→0 which is very difficult to ex-
plain based only on the stripe existence. In fact, this is a
crucial experiment to distinguish the disorder- and
correlation-induced MIC.
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