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We consider a Josephson junction device which has a symmetry of a tetrahedron; it can be visualized as a
tetrahedron that contains two Josephson junctions at each edge. We find the conditions for which the ground
state of the system is degenerate or almost degenerate; in this case, the low-energy degrees of freedom can be
mapped on a quantum spin 1/2. We evaluate the effect of the physical perturbations and imperfections on the
level splitting in this system and find that they are small for most perturbations. We argue that this system can
provide a possible physical implementation of a protected quantum bit with a built-in error correction. We
propose a way of manipulating the effective quantum spin by means of electrical potentials and an experimen-
tal scheme to read the information that it contains.
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I. INTRODUCTION

A successful implementation of a quantum bit, a building
block of a putative quantum computer should meet the con-
flicting requirements of extremely low phase decoherence
and scalabilility. Quantitatively, to avoid a huge overhead
imposed by error-correction schemes one should achieve a
decoherence rate of about 10−8–10−10 per unit time(time of
one operation).1 Many qubit implementations were proposed
but none is fully satisfactory. Basically, there are two ap-
proaches: we can either start from one of the atomic size
systems which has naturally low decoherence rates and try to
build a larger system from it, or we can start from a meso-
scopic system(which is much easier to scale) and try to
protect it from the environment. For instance, the atomic
levels of the trapped atoms(controlled by laser pulses),2,3

photons in the cavities,4 and nuclear spin controlled by NMR
techniques,5 have very low decoherence rates but are very
difficult to combine to form a large system. Examples of the
alternative approach are solid-state qubits, i.e., quantum
dots,6 and Josephson junction devices.7–14 They are much
easier to scale but difficult to protect from the noise. Re-
cently, however, it was shown that even a simple Josephson
junction device(“Cooper box”) can be operated in such a
regime that its decoherence rate reaches 10−4 in natural
units.14 This important result shows that Josephson junction
devices are very promising candidates for scalable solid-state
qubits. However, a relatively simple device design employed
in Ref. 14 suffers from a serious problem, namely, the spon-
taneous phonon emission, that makes its improvement highly
unlikely. This problem appears in all qubits based on devices
where the two lowest quantum levels are separated by a large
gap but can be resolved by the designs where the two quan-
tum levels are degenerate or almost degenerate.15

Thus, the natural avenue of research is to study somewhat
more complicated Josephson junction devices(consisting of
6–20 Josephson junctions) that are better decoupled from the
environment, rather than a simple(two junctions) device and
have a degenerate or almost degenerate ground state, and to

use these two low-energy states as a logical bit. This device
should satisfy the following requirements: its ground state
should be degenerate or almost degenerate and separated
from other states by a significant gap,DE. This gap sets the
scale for the time of the operations because an attempt to
change the state of the system faster than by 1/DE would
excite higher levels. Further, the physical noises(magnetic
flux, rf noise, etc.) should have little effect on the level split-
ting in this system.

The basic idea of some of the recent suggestions for solid-
state qubits is to use a small but highly symmetric Josephson
junction.16,17 The essential observation is that a structure
with a non-Abelian symmetry group naturally has degenerate
states that correspond to higher dimensional representations
of the group. The simplest system with a non-Abelian sym-
metry group is the tetrahedral qubit similar to the one shown
in Fig. 1. The paper16 has considered the simplest structure
of this type, which contained six junctions, one for each
edge. It was found that the ground state of this system can be
indeed made degenerate by an appropriate tuning of the pa-
rameters, and that this degeneracy is very insensitive to the
noise in the electric potential and magnetic flux: the coupling
in the linear order is absent. The effect of the noise in the
Josephson junction energy affects it linearly and thus this

FIG. 1. The superconducting tetrahedron. Each edge consists of
a superconducting wire with two Josephson junctions. The tetrahe-
dron is placed in a uniform magnetic field so that the fluxes through
the vertical faces areF0/2 each, while the flux through the hori-
zontal face is 3F0/2.
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effect is stronger. The physical reason for this is that classi-
cally the state of the six-junction tetrahedron is continuously
degenerate and thus a small deviation of the junction strength
from its ideal value has a relatively big effect. Here we study
a modified version of this array in which each edge contains
two junctions. This eliminates the classical degeneracy men-
tioned above and leads to a quantitatively smaller effect of
the noise in the Josephson junction strength, preserving the
main attractive features of the array in:16 absence of linear
coupling to flux and to rf noise.

In Sec. II we describe the physical system, identify the
relevant degrees of freedom, and derive the energy level
structure in the quasiclassical limit. In Sec. III we study the
effects of physical perturbations: the effect of magnetic
noise, the potentials and the Josephson junction strength, and
the thermal effects. In Sec. IV we discuss the manipulations
and reading schemes. Section V is the conclusion.

II. THE SYSTEM

The symmetries of the system become transparent when it
is viewed as a tetrahedron made of superconducting wires
with two Josephson junctions at each edge as shown in Fig.
1. Further, this tetrahedron is placed in a magnetic field, so
that the magnetic flux through each lateral face equalsF0/2
and the magnetic flux through the base equals 3F0/2. Note
that fluxes differing by flux quanta are physically indistin-
guishable, so all faces of the tetrahedron are equivalent.

Each junction is characterized by its Josephson energy,
EJ=s" /2edIc, and by its charging energy,EC=se2/2Cd, while
the system as a whole is characterized by the capacitance
matrix of the superconducting wires. In principle, the capaci-
tance matrix also contains the contributions from the self-
capacitances of individual islands, but in a typical physical
implementation(see below) these capacitances are much
smaller than those of the junctions and for the rest of the
paper we will neglect them. The whole system is described
by the Lagrangian

L = o
i=1

12
1

16Ec
fi

2 + EJ cossfi − aid,

where fi are the phase differences on the Josephson junc-
tions and ai are chosen to produce the correct magnetic
fluxes.

It will be more convenient for the following analysis to
consider not the three-dimensional(3D) tetrahedron, but the
equivalent projection shown in Fig. 2, which is also, of
course, much easier to realize. To preserve the frustration
induced by a magnetic field, we need to place the system in
a uniform field so that the flux through each small triangle is
F0/2.

It is not difficult to see that the symmetry of the system is
the permutation groupS4. This group has two-dimensional
(2D) representations and thus some of its levels are doubly
degenerate. In order to implement the qubit, one of these
doublets should correspond to the ground state. In order to
find the level structure and establish the parameter range
when it is indeed the case, we consider the quasiclassical

limit, EJ@EC. The numerical diagonalization that we carried
over for this and other systems(see, e.g., Ref. 16) shows that
the energy structure obtained in this limit survives down to
very smallEJ/EC ratios.

In the quasiclassical limit we have to consider the poten-
tial relief first. As a function of the gauge invariant phase
differences between the four vertices of the big triangle, the
potential energy of the system has six classical minima:
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These minima are mapped one onto another by symmetry
transformations.

In the quasiclassical limitEJ@EC one can restrict oneself
only to the lowest quantum state in each minima, which
yields six degenerate states in the classical limit. Quantum
fluctuations lead to the transitions between these states, re-
moving this degeneracy. Thus, in the leading quasiclassical
approximation the system is described by the Hamiltonian

FIG. 2. The equivalent system obtained by tetrahedron projec-
tion onto its base. There are two Josephson junctions at each edge.
This planar system is placed in the perpendicular magnetic field so
that the flux through each of the smaller triangles is half-fiux
quanta,F0/2.
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H = 3
0 a a b c c

a 0 a c b c

a a 0 c c b

b c c 0 a a

c b c a 0 a

c c b a a 0

4 ,

wherea, b, c are tunneling amplitudes. Clearly, the absolute
values ofa andc should be equal because these amplitudes
describe the equivalent transitions corresponding to the rota-
tions of the classical state around different altitudes of the
tetrahedron. However, their signs can be opposite due to
half-integer magnetic fluxes through each small triangle. As
a result, there are two possibilities:a=c anda=−c. The am-
plitude b corresponds to the inversion of all currents.

We diagonalize the Hamiltonian and obtain the energy
eigenvalues and the corresponding eigenvectors,

E1 = − a + b − c,

c1 =
1

2Î3
s2V1 − V2 − V3 + 2W1 − W2 − W3d,

c2 =
1

2
sV2 − V3 + W2 − W3d;

E2 = − a − b + c,

x1 =
1

2Î3
s2V1 − V2 − V3 − 2W1 + W2 + W3d,

x2 =
1

2
sV2 − V3 − W2 + W3d;

E3 = 2a + b + 2c,

h =
1
Î6

sV1 + V2 + V3 + W1 + W2 + W3d;

E4 = 2a − b − 2c,

f =
1
Î6

sV1 + V2 + V3 − W1 − W2 − W3d.

We see that ifc=a then the ground state is a singlet, the first
excited state is a triplet, and the second excited state is a
doublet. But if c=−a and a.0 then the ground state is a
doublet, which is what we need(See Fig. 3). Therefore, we
want to determine under which physical conditionsc=−a
and a.0. Of course, these physical conditions should pre-
serve the tetrahedron symmetry.

Since phases and charges are conjugate variables, the am-
plitude t of the process in which theith phase changes by
Dfi is given byt=−utuexpsiqiDfid. Here,qi is the charge of
the ith island(expressed in terms of the Cooper pairs num-

ber). Therefore, the sign of an amplitude is defined by the
exponent expsi oqiDfid, that is, by the charges of all islands,

a = − uauexpsi o qiDfid,

b = − ubuexpsi o qiDfi8d,

c = − ucuexpsi o qiDfi9d.

The overall signs−d is fixed by the condition that in the
absence of charge frustration the tunneling decreases the en-
ergy of the symmetric wave function, thus in this case, all
tunneling amplitudes should be negative. Fora to be positive
the charges of the four tetrahedron vertices should be equal
to 1/2. The charges of all other islands should be equal to
zero. If this is the case,b is positive whilec is negative. The
ground state is a doublet given byE0=−2a−b:

x1 =
1

2Î3
s2V1 − V2 − V3 − 2W1 + W2 + W3d,

x2 =
1

2
sV2 − V3 − W2 + W3d, s1d

while the first excited level is a triplet and the second excited
level is a singlet. The tetrahedron symmetry is valid in this
case because the total charge is an integer.

To find the absolute valuesuau, ubu of the tunneling ampli-
tudes we need to find the saddle trajectories that correspond
to these processes; as usual, these trajectories can be viewed
as a classical motion in the inverted potential. We solve these
equations of motion numerically, use the results to calculate
the action of these processes, and obtain

uau < 2EJ
3/4EC

1/4 exps− 1.58ÎEJ/ECd,

ubu < 8EJ
3/4EC

1/4 exps− 3.08ÎEJ/ECd, s2d

that is, uau@ ubu in the quasiclassical limit.

III. EFFECTS OF PERTURBATIONS

The discussion above assumed the tetrahedron to be com-
pletely symmetric. We now discuss the effect of physical
imperfections that violate the symmetry of the tetrahedron.
Generally, a physical perturbation that reduces the symmetry
of the tetrahedron to the one of the Abelian group or further
splits the degenerate doublets. However, the perturbation that
is applied only to one vertex of the tetrahedron reduces the
symmetry to the one of the triangle; this symmetry group is
non-Abelian(because it includes reflections) and thus such a

FIG. 3. The energy spectrum of the ideal array.

THEORETICAL INVESTIGATION OF A PROTECTED… PHYSICAL REVIEW B 69, 214513(2004)

214513-3



perturbation does not split the degeneracy. In particular, elec-
trostatic potential applied to one island that is a vertex of the
tetrahedron does not affect the degeneracy. For small devia-
tions it means that the effect of the electrostatic potential
appears only in the second order of the perturbation theory
which contains the products of potentials on different is-
lands.

Consider now the effect of magnetic flux deviations. Be-
cause the total magnetic flux through the 3D tetrahedron is
zero, the increase of magnetic flux through one face of the
tetrahedron should be accompanied by its increase through
the other three faces. Such a perturbation reduces the sym-
metry to the symmetry of the group of triangle rotations,Z3,
which is Abelian. This symmetry by itself would not be suf-
ficient to preserve the doublet splitting. However, in the case
of the integer total charge, the Hamiltonian has additional
symmetry, namely, the one of time reversal. This symmetry
ensures that complex one-dimensional(1D) representations
of Z3 have the same energies. The inspection of the ground
states(1) shows that they correspond to the symmetric and
antisymmetric combinations of 1D irreducible representa-
tions and thus their degeneracy is not affected by the flux
through one face. In more physical terms, it means that all
matrix elements of the current operator between the ground
states are zero and thus magnetic field does not split the
degeneracy in the linear order. Generally, we expect that for
small deviationsdF sdF!F0d, the splitting is given by

« , SdF

F0
D2

EJ,

because in the quasiclassical approximation the tunneling
amplitudesa andb do not depend ondF, but the energies of
the six-potential energy minima change in different ways.
The coefficient in the last formula has to be determined nu-
merically. For example, in the case of an additional fluxdF
through one face and −dF through another, we get

« < 40SdF

F0
D2

EJ.

The situation is different with the charge noise: it has no
effect on the classical minima but changes significantly the
tunneling amplitudes between them. Suppose we have an
additional chargedq on the islandA (Fig. 2). There are no
linear (in charge noisedq) terms in splitting because of the
time-reversal symmetry. In the appropriate basis, the pertur-
bation is given by

h1 = «ŝz, s3d

where e,uaudq2, with the proportionality coefficient being
of the order of unity. The basis of this perturbation can be
found using the representation theory. The applied perturba-
tion preserves the symmetry between islandsB andC. This
means that the eigenstates of the Hamiltonian should be the
eigenstates of the transformationB→C; this transformation
maps classical minimaVi →Wi. The vectorssx1,x2d from
Eq. (1) are eigenvectors of this transformation, thus they also
give the eigenstates of the perturbed Hamiltonian. We con-
clude that this perturbation has a form(3) in the basis

sx1,x2d from Eq. (1). This can be also verified by the direct
calculation of the eigenvectors of the perturbed Hamiltonian.
If we put additional charge on another island(B or C in Fig.
2) the perturbation in the basissx1,x2d becomes

h2,3= «S−
1

2
ŝz ±

Î3

2
ŝxD ,

where the plus or minus sign corresponds to islandsB andC.
That is, one can rotate the quantum state in different direc-
tions by inducing charges on different islands. This fact can
be used to manipulate the system, and indeed, the application
of the external potential to islands, shown in Fig. 2, induces
the charges which create the effective fields acting on the
doublet. Thus, using the appropriate combination of these
potentials one can create an arbitrary field in thesx−zd plane
of the doublet which is sufficient to rotate it in arbitrary
direction. Note that since the linear component of the poten-
tial has no effect on the energy, one can use a periodic low
frequency potential to rotate the effective spin.

Now, let us consider the situation when all charges and
magnetic fluxes are equal to their ideal values but the junc-
tion energies are slightly different. In the general case, the
splitting depends linearly on the inaccuracy in the junction
preparationdEJ. The splitting« can be calculated numeri-
cally. For example, in the case when the Josephson energies
of only the junctions 1 and 2 in Fig. 2 are different fromEJ,
the splitting « is given by «<0.4dEJ. It is clear from the
above discussion that this linear dependence can be compen-
sated by tuning the magnetic fluxes through the small tri-
angles forming the system.

Finally, we need to take into account thermal effects. At
low temperaturesT!Ds (where Ds is the superconducting
gap) one can neglect the effect of the quasiparticles. To be
more precise, in order to ignore the quasiparticles one needs
their number in each wire to be much smaller than one, i.e.,
WnT exps−Ds/Td!1, whereW is the volume of the super-
conductor,n,ne/eF is the density of states, andne is the
electron density. For a typical Al wire of 0.01mm3 volume
this is satisfied forTø0.1K. Note, however, that if this con-
dition is not satisfied, the thermally excited quasiparticles
would lead to the random and fluctuating charge of each
wire, which would affect the signs of the transition ampli-
tudes and destroy the quantum coherence of the states(II ). In
the following we shall therefore assume that this condition is
satisfied, and that there are no BCS quasiparticles in the
whole system.

In this case the only dangerous modes that can excite the
quantum Josephson system are phonons and photons. In a
typical setup both phonons and photons are gapless(athough
one can eliminate the photons placing the whole system in
the resonator), but the interaction with photons is extremely
small because a typical energy of the excitation is less than
1 K, which corresponds to the photon wavelength of the or-
der of l,1 cm or more. The dipole matrix element for the
emission or absorption of the photon containssL /ld4, where
L is the typical linear size of the system and thus is vanish-
ingly small. The situation is different in the case of
phonons,15 here the wavelength,ls, corresponding to such
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excitations is about the size of the system and so these pro-
cesses are not rare. Note, however, that the transitions be-
tween the two states, which are the result of splitting of the
ground state, involve a very small energy transfer, so they are
suppressed by a factor similar to the one for the case of
photon excitationssL /lsd4. So, we conclude that the main
effect of the temperature is the phonon-mediated excitation
of the higher energy levels. The probability of these transi-
tions is determined by the Boltzmann exponent

P =
1

Z
exps− DE/Td,

whereZ is the partition function andDE is the difference of
the initial and the final energies. Taking the energy level
structure into account, we find that the transitions from the
doublet into the triplet play the most important role. In this
case,DE=2sa+bd<2a (since ubu! uau) and the temperature
T should be much less thanuau sT! uaud.

IV. READING SCHEME

Let us suppose that, after some manipulations, the system
is in a quantum stateau0l+bu1l, where the statesu0l and u1l
coincide with the statesx1 andx2 from Eq. (1). The coeffi-
cientsa and b are unknown and we want to deduce them
from the results of some experiment. We follow the ideas
proposed in Refs. 14 and 18, which used a similar experi-
mental scheme for a two-junction system. The schematics
are shown in Fig. 4. The central point of the triangle is fab-
ricated in the form of three islands with each pair of the
islands being connected by a very big Josephson junction. If
the external currents across these “big” Josephson junctions
are zeros, the device shown in Fig. 4 is equivalent to the one
in Fig. 2.

The measurement starts with a state in which these exter-
nal currents are zeros. Then we apply nonzero current to one

of the outside wires(e.g., the top wire in Fig. 4). At point A
in Fig. 4 the current splits. Most of it flows through the two
big junctions but a small part of it flows through the tetrahe-
dron. If the total outside current is rather big, the value and
sign of this small current depend on the state of the tetrahe-
dron. A value of the total outside current corresponds to the
moment when the big junctions fall into the oscillating re-
gime depends on this small current flowing through the tet-
rahedron. It is possible to distinguish three different situa-
tions: (1) the total currentI1 for the statesV1, W1, (2) the
total currentI2 for the statesV2, V3, and(3) the total current
I3 for the statesW2, W3. Therefore, the total current through
the outside wire is different for various quantum states. Re-
peating this experiment many times allows us to determine
the absolute values of the coefficientsa andb.

We emphasize that the described effect does not contra-
dict the statement of the last section, that the effect of the
field deviations appears only in the second order, because
here we have a nonlinear effect: when the current through the
big junctions is close to the critical one, it induces the addi-
tional phasep /2 on the corresponding tetrahedron edge.
This deforms the quasiclassical states of the tetrahedron and
induces significant average currents through each edge of the
tetrahedron.

To convert the measured probabilitiesp1, p2, p3 for the
critical current to have valuesI1, I2, I3 into the amplitudesa,
b, we can use the following formulas:

I1 → p1 =
2

3
a2,

I2 → p2 = 2Sb

2
−

a

2Î3
D2

,

I3 → p3 = 2Sb

2
+

a

2Î3
D2

.

This experiment has two potential pitfalls. First, the addi-
tional phases induced by an external current on the big Jo-
sephson junctions disturb the quantum state of the tetrahe-
dron and might smear the differences between the currents
sI1,I2,I3d in different states. We have solved the classical
equations for the minima in the presence of these phases and
verified that the quantum states evolve smoothly with the
application of the external current characterized by similar

valuessĨ1, Ĩ2, Ĩ3d. We did not find any evidence for an abrupt
transition from one state into another. Second, the current

operatorĴ generally has nondiagonal matrix elements in the
basis of the Hamiltonian eigenstates. If these matrix elements
are not small compared to the diagonal elements, the mea-
surement process itself would excite higher states and would
show not the slighly modified values of the currents,

sĨ1, Ĩ2, Ĩ3d corresponding to the states(1–6), but the values of
the current corresponding to the transition to higher states. In
order to estimate this effect, we calculated numerically the
current matrix elements between all low-energy states. We
have found that all nondiagonal elements are small in the
quasiclassical limit and thus the described measurement

FIG. 4. Schematics of the measurement.
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should be able to distinguish these states with a probability
close to 1.

V. CONCLUSION

We have proposed and studied a small Josephson junction
device that has two degenerate quantum ground states well
protected from the most common sources of the physical
noise. We have shown that electric and magnetic fields split
the ground-state degeneracy very weakly because the linear
coupling to these fields is completely absent. The only
known source of physical noise that remains linearly coupled
to the ground-state doublet is the noise in the value of the
Josephson coupling itself, but this effect is usually believed
to become very small at low temperatures. We have further
shown that it is possible to manipulate the quantum states
appearing in this system by applying appropriate potentials
to the different islands, and that it is possible to read out the
final state measuring the critical current through the external
classical Josephson junctions. All this makes this system
very attractive for the implementation of the qubit with a
very long phase coherence time. However, this system does

not resolve all problems. Ideally, one would like to find the
system in which all three types of noises(electrical, mag-
netic, and Josephson coupling) are suppressed in the linear
order. Further, one would like to be able to precisely perform
most manipulations, for example, rotations byp in different
directions. Big Josephson junction arrays that satisfy these
criteria are known.17 In these big arrays the couplings to all
noises are suppressed exponentially and all operations
needed for quantum computations can be performed exactly,
but unfortunately, these arrays are too complex for today’s
technology. The challenging problem is to identify a simpler
system(consisting of less than 20 junctions) that satisfies
less stringent criteria: the absence of linear coupling for three
sources of noise, both in an idle state and under most com-
mon manipulations.19,20
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