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Split of zero-bias conductance peak in normal-metat-wave superconductor junctions
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Effects of impurity scatterings on the conductance in normal-ntetedve superconductor junctions are
discussed by using the single-site approximation. So far, the split of the zero-bias conductance peak has been
believed to be evidence of the broken time reversal symmetry states at the surface Bf sugierconductors.

In this paper, however, it is shown that the impurity scattering near the interface also causes the split of the
zero-bias conductance peak. Typical conductance spectra observed in experiments at finite temperatures and
under external magnetic fields are explained well by the present theory.
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I. INTRODUCTION electronic structures of higlhz materials are taken into
0
The zero-energy stat?ES)! formed at the surfaces of account? Unfortunately, we could not make clear a mecha-

superconductors is a consequence of the unconvention |[sm of splitting. Our conclusion, however, contradicts those

1 8456 ; :
symmetry of Cooper pairs. Since the ZES appears just on thg & number of theo%%l based on the quasiclassical
Fermi energy, it drastically affects transport properties r%an tf)uncr:]uo_n m(fathpl. Lhe drastic srt:ppressmn of thel
through the interface of junctions consisting of unconven-2BCP by the interfacial randomness is the common conclu-
tional superconductoisFor instance, in normal-metal/high- 21" Off all the the%n%s.hThe theories |ij tgehquaﬁlclassc;cal

) . ' . - reen function method, however, concluded that the random
gicﬁzlsgr?trizcl)rgglrfth?cztgjnnccetlzrt]i’e?olell)rigz Bgﬁlg 'é) $Ezezr\éesd ilsn th otentials do not split the ZBCP. Thus this issue has not been
ge. fixed yet. There are mainly two reasons for the disagreement

also responsible for the low-temperature anomaly of thg JOm the two theoretical approachese., the recursive Green
sephson current between the two unconvention

1 unction method and the quasiclassical Green function

superconductors:2 _ method. One is the treatment of the random potentials, the

An electron incident into a normal-metal/superconductorgther is the effect of the rapidly oscillating wave functions on
(NS) interface suffers the Andreev reflectfdrby the pair  the conductance. In our simulations, we calculate the con-
potential in the superconductor. As a result, a hole traceguctance without any approximation to the random potentials
back the original propagation path of the incident electronand the wave functions; this is an advantage of the recursive
This is called the retro property of a quasiparticle whichGreen function methotf:62
supports the formation of the ZES. Strictly speaking, the In this paper, we discuss effects of the impurity scattering
electron-hole pairs just on the Fermi energy hold the retramn the conductance in normal-methitave superconductor
property in the presence of the time reversal symmetryunctions by using the Lippmann-Schwinger equation. We
(TRS). Thus the ZES is sensitive to the TRS of the systemassume that impurities are near the NS interface on the su-
Actually, the zero-bias conductance pe@BCP) in NS  perconductor side. The differential conductance is analyti-
junctions splits into two peaks under magnetic figf8® cally calculated within the single-site approximation based
The peak splitting is also discusgéd® when the broken on the conductance formut&$4 The split of the ZBCP due
time reversal symmetry statBTRSS is formed at the in- to the impurity scattering is the main conclusion of this pa-
terface. Theoretical studies showed that such BTRSS’s anger. The impurity scattering affects the conductance in two
characterized by the+id,, (Ref. 28 or d,,+id,2_,2 (Ref. 349  ways:(i) drastically suppressing the conductance around the
wave pairing symmetry. Experimental results, however, argero bias voltage andii) making the conductance peak
still controversial. Some experiments reported the split of thevider. The split of the ZBCP is a consequence of the inter-
ZBCP at the zero magnetic fiefé;*2others did nob:”-843-45  play between the two effects. In the present theory, we suc-
The ZBCP is also sensitive to the exchange potential in fereessfully explain typical conductance shapes observed in
romagnets attaching to unconventional superconduéidfs. several experiments. We also show that the splitting peaks

In previous papers, we numerically showed that randonare merged into a single conductance peak for sufficiently
potentials at the NS interface cause the split of the ZBCP atigh temperatures and that the peak splitting width increases
zero magnetic field by using the recursive Green functiorwith increasing external magnetic fields.
method®4° We also showed that the splitting due to the This paper is organized as follows. In Sec. I, we derive
impurity scattering can be seen more clearly when realistithe reflection coefficients in NS junctions within the single-
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d-wave tion when we consider the conductance around the zero bias
Normal metal  superconductor voltage®® The spatial dependence of the pair potential should
N be determined in a self-consistent way when we discussed
x 1% the conductance far from the zero bias suck¥s A,. Here
Yy xx V is the bias voltage applied to junctions.

x We consider impurities near the interface on the supercon-

ductor side as indicated by crosses in Fig. 1. The potential of

X X

=0 u . R
= O impurities is given by
+ —

i
FIG. 1. The normal-metaliwave superconductor junction is Vi (r) =Vi2 ar—rj), (6)
schematically illustrated. The crosses represent impurities. j=

whereN; is the number of impurities. In the absence of im-
site approximation based on the Lippmann-Schwinger equaurities, the transmission and reflection coefficients are cal-
tion. The split of the ZBCP is discussed in Sec. lIl. In Sec.culated from boundary conditions of wave functions at the
IV, calculated results are compared with experiments anglinction interface as shown in Appendix A. By using these
another theories. In Sec.V, we summarize this paper. coefficients, four retarded Green functions are obtained as

shown in Appendix B. The normal conductance of the junc-

tion is given by
IIl. LIPPMANN-SCHWINGER EQUATION 2
2

Let us consider two-dimensional NS junctions as shown Gn=—""N.Tg, (7)
in Fig. 1, where normal metalx < 0) andd-wave supercon- h
ductors(x>0) are separated by the potential barrigy(r) "
=V,d(x). We assume that the periodic boundary condition in - f" cos y )
they direction and the width of the junction . B yzg +cog y'

The a axis of highT, superconductors is oriented 45°
from the interface normal. The pair potential of a hih- WhereTg is the transmission probability of the junctioN,

superconductor is described by =2W/\g is the number of the propagating channels on the
Fermi surfacehg=27/kg is the Fermi wave length, ang
Ay = 2A0KK,, (1) =mVy/(h%k) represents the strength of the potential barrier

: . . at the NS interface. In the limit af;>1, Tg is proportional
in the momentum space, whefg is the amplitude of the 1/2 o% B 1S PIOP
pair potential at the zero temperatukg=cosy=k,/ks and Effects of impurities on the wave functions are taken into
ky=siny=k,/ke are the normalized wave number on the account by using the Lippmann-Schwinger equation
Fermi surface in the and they diregtions, respectively. The
: PR > : . .
Fermi wave numbekg SatISerSﬁ. kF_/Zm—,uF, wherg,uF is () = '>(r) +fdr’Go(r,r’)V,(r’)o3w('>(r’), (9)
the Fermi energy. The schematic figure of the pair potential
is shown in Fig. 1. The NS junctions are described by the
Bogoliubov—de Gennes equatfén

f ,(5(r =r")ho(r’) A(r,r’)
dr

Ar(rr) ~ A =r)he(r) wherel indicates a propagating channel characterized by the
(u(r’)) _ (u(r)) @ transverse wave numbke). Here ¢4 (r) is the wave func-
v(r’) v(r) tion in which an electronlike qua3|part|cle W|k§) is inci-

dent into the clean NS interface from normal metals and is

N
) =y (1) + 2 Go(r,r)Vigay(r)), (10
=1

%2y2 described as
ho(r) = - E + Vpot(r) - MF, (3 1 0
vh'(r) = x|<y>{(0>eiq|“+ ( 1) 9D + ( ) "qTXrﬁeNm] ,
Vol I) = Va(r) + Vi(r), (4) (11)
A ik- Tr: Xc 0, (I
AlRaro) = VO'E ) i ® W=, (12)
0: X, <0, VW

whereR = (X,,Yo) =(r+r')/2 andr,=r -r’. Throughout this  for x<<0, whereqj = k*+kZE/ ur is the wave number of a
paper, we neglect the spatial dependence of the pair potentiglasiparticle in normal metals arkﬁ+|g/')2 k2. For x>0,
near the junction interface. This is a reasonable approximahe wave function in clean junctions is given by
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~ u o+ -U o - 1 .+ 0 L=
vo'(r) :xl(y>d>[(v: )ék' =0 +< N )e"k' thm)] YEsA(r) = (0>x.(y)éq|X+E xlr(y)[(l)e'%XAm
I!
(13 1\ .
+(0>e_lq|'XB|r’| y (20)
TER /E+—Q', (14) for x<0, whereA,; andBy, | are the Andreev and the normal
2E reflection coefficients in the presence of impurities, respec-
tively. These coefficients are obtained from relations
iy . [E- e M (r) = @l
v =sgriky)\/ ——, (15 dyxm(y)(0, D¢fssa(r) = €A, (21)
2E -W/2
) Wi2 X . .
(7 ° | a0 =658 v ebip, (22
d= 0 v (16) -wi2

The scattering theory based on the Lippmann-Schwinger
where ¢ is a macroscopic phase of a supercondudtﬁr, equation requires complicated algebra as shown below be-
= (K?£ k2, / ue)Y? is the wave number of a quasiparticle in cause the perturbation expansion is carried out in real space.
the superconductorsﬂ;v’EZ—Alz, and AFZAoW)- The Inreturn, effects o_f t_ht=T impurity scattering can.be taken |r)to
wave function at an impurityﬁ“)(r]—,) can be obtained by ac_:count up to the infinite order of the perturbation expansion
—.r, in Eq. (10) Wlthou_t using any self-conmste_n; treatments. In adc_1I|t|on,_the

! reflection coefficients are explicit functions of the impurity
positions in a single disordered sample. These are advantages
of the present method.

In what follows, we consider low transparent junctions
(i.e., z§> 1). From the reflection coefficients in Appendix A,

It is possible to calculate the exact conductance if we obtailllhe Green function in the superconductor is given by
¢(r)) for all impurities by solving Eq(17). Actually it was ‘s _ w2 E ZAZPPx
confirmed that the conductance calculated from the numeri- Go (F.1) == 'WNo;rf dy 20707 Tz 90

cal solution of Eq(17) is exactly identical to that computed 0 -

N
U (rj) = 2 [606; ) = Gorj rVigaly(r).  (17)
=1

in other numerical methods such as the recursive Green func- ZAZ cog2kex COSy)€PPX
tion methodf?7 In this paper, we solve Eq17) within the + =0 0o
single-site approximation, where the multiple scattering ef- -
fect involving many impuritiegAnderson localizationare ZSE E A
neglected. However, the multiple scattering by an impurity is - E{ﬁ COY2KeX COS )0
taken into account up to the infinite order of the scattering 2 .02 2K
events. In the summation ¢fin Eq. (17), only the contribu- +i sin(2kex Cos,y)a_g}eZipx_ Af cog y€? &
tion with j=j’ is taken into account in the single-site 4078
approximatiorf® In this way, the wave function at is ap-
proximately given by - MQZW{E co92keX COS )0
o= F Y)03
v0) =160~ GErpr)Vidal M) (19 +10) sin(2kex cosy)&o}] 23

We note that the single-site approximation yields the exact _ .
conductance whei,=1. Within the single-site approxima- wherep= (kr/2 cosy)(Q/ ug). The local density of stat€s

tion, Eq.(10) can be solved as atr is defined by

N Ng(E,X) = - i Im TrG5r,r). (24)
YsAn) = g (1) + X GYSr.1)Vis _ _ _ _
j The first term in Eq(23) contributes to the bulk density of
. ~s A1) states. SinceRis roughly estimated to be &,, other terms
X[60- Gor,rVigsl 4o'(r) (19 contribute to the local density of states near the interface,
where éy=fvg/ mAq is the coherence length and=7%k:/m
for x<0. On the right-hand side of E@19), all functions is the Fermi velocity. In low transparent junctions, sixth, sev-

have been given by analytical expressions. enth, and eighth terms are negligible. The fourth and the fifth
In the presence of the impurity scattering, the wave functerms are also negligible because integrals of such rapidly
tion Eq.(19) can be expressed as oscillating functions become very small. The second and
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FIG. 2. In (a), the trace of the Green function in the superconductor is shown as a functign where z,=10, xk.=6, and Aq
=0.1ug. The peak width of the imaginary part is given EyEp:Aolzé. The energy scal&g, characterizes the drastic increase of the
imaginary part and the drastic decrease of the real part)inthe local density of states is shown as a functiorxief, whereE=0, z,
=10, andAy=0.1ue. The numerical and the analytical results are denoted by the solid and the broken lines, respectively.

third terms are dominant foE<A,. In Fig. Aa), we show ™2 sir?{xks cOSy}
the trace of the Green function in E@3) as a function oE, a(E=0= g T 02y Xk (30)
where z,=10, A;=0.1ur, xk==6, and No=m/(74?) is the 0

normal density of states in the unit area. Siggle-~6.3, the  Thus the energy scalEy, characterizes the drastic increase
results correspond to the Green function at a distafice of g, and the drastic decrease gf. The local density of
away from the interface. The horizontal axis in Figa)2is  states aE=0 calculated from Eqg23) and(24) is plotted as

normalized by a function ofxkez in Fig. 2b) with the solid line. For com-
A parison, we also show the analytical results represented by
Esep= —. 25 .
w2 29 — 1M GSSr,Mgmg = 27NgzZee ™ oxke i, (31)
The solid and the broken lines represent negative of thavith the broken line. The results show the remarkable en-
imaginary part and the real part of E@3), respectively. hancement of the local density of states arourds,. This
As shown in Fig. 2a), the imaginary part of the Green implies that the ZES is formed aroumd- &,.
function has a large peak arourit=0 reflecting the ZES Here we note the following. To calculate the Green func-

formed at the junction interface. The energy sdalg, char-  tion, we consider the third term in E¢23) which rapidly
acterizes the width of the zero-energy peak. The real part gfscillates as c@@xk:- cosy). Such rapidly oscillating terms
the Green function first increases with decreasihghen are usually neglected in the quasiclassical Green function
suddenly decreases to zero fBr—0. A detailed analysis method. We, however, cannot neglect the third term because
indicates that the real part of the Green function has its maxiit removes the divergence of the local density of stat& at

mum around an energy =0./%71 The third term also becomes important when we
A calculate the local density of states just at the surfaeg,
_ 0 x=0
Edip = 2k (26) )

N(E, 0) 2 JW’Zd {E 2E?Z + A2co y
S E_ZEnraicosy

The Green function foE < E,gp is approximately calculated N, = Re; Q 250 '

from the second and the third terms of E}3) 0

(32
Gg%rvr) =~ ZWNOZ(?Je_Xlgo(gz - igl)a-oy (27)
~EK(&> . zf”’z EiZ+ Ajcod ysity o
. ZI’T’Z Aj cog ysin? y sin(xk: cosy) 28 "o VE) wly TVEA+AZcod ysit 4’
mJo E®Zg+ Ag cos’ ysint y whereK(x) is the complete elliptic integral of the first kind
and describes the bulk density of states. Another term comes
2 (™ EZA,cosy sin y sif(xk: cosy) from the fourth and sixth terms in E¢R3). The first equation
Q2= e o 4 E223+A§ co$ ysir y , (29 is the exact expression and we UsSelE,gp in the second

line. We exactly obtailN(E=0,x=0)=N,. Thus there is no
where we us€)~i|2A, cosysiny|. The imaginary part of remarkable enhancement in the zero energy local density of
the Green functiong, is of the order of unity wherkE states just at the interface. The second and third terms in Eq.
~ Ezep. However,g; at E=0 becomes much larger than unity (23) do not contribute to thé&l(E,0) because they exactly
for xke>1 because cancel each other at=0.
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In the next section, the conductance Bx E,gp will be 262 [* Ifen(E—eV) Ni
discussed. It is possible to rewrite a part of EtQ) as Gpns= ?f dE(FD&(T> X | Ng©?-4X T |,
R R -0 j=1
R - R + s
[60-ViGSTr Dol = 70— 5, (34 (45)
1-¢
2 AZcod ysirt y
= Q1. 35 ©=2 f d 0 : 46
%= Qot & g 7Ezzg+ AZcog ysir? y (46)
S = Qo2, (36) Q2,1+l
S 2= | 1 +1 3
=R 47
Qo = 27V;NgzZe ™%, (37) i=Re £-1 ’ “n
s=s,—isy, (38) | 2 f”’z A§ cos® ysint y sirf(x;kg cosy) 49
. . == Y - )
where s corresponds to the self-energy of a quasiparticle Y 0 (EZZg+AS cos ysir? 3)
scattered by an impurity once and describes two important
features. Firsts becomes large in low transparent junctions | 2 (™2 EzSAg cos ysir® ’)/SinZ(Xij cosvy)
even if V|N is fixed at a small constant becaudg in Eq. 2= Y E22 + A2 cod v sir? v)2 '
(37) is proportional toV;NyZ2~ V;No/ Tg. ThusQ, represents o (EZ+ Agcos ysim )
the normalized strength of the impurity scattering. This be- (49
havior explains the previous numerical simulatf§iSecond,
effects of impurity scattering far away from the interface on Loz gf”’z E?ZA3 cog y sir? ysinz(xj Ke cosy)
the coqductance is negligible begg@edecreases exponen- ST o 0 Y (Ezzg+ A(Z) cod ysir? 1)2
tially with the increase ok. Impurities around the ZEG.e.,
x~ &) seriously affect the conductance flar E gp. (50
Ill. CONDUCTANCE The first term of Eq(45) N.g© is the conductance in clean

_ _ _ _ . . junctions and’; represents effects of the impurity scattering
The differential conductance in NS junctions is calculated "y

: e on the conductance. When we calculdtg,|? and|By, |2 the
from the normal and the Andreev reflection coefficiéh$é summation with respect to impuriti%\“Ej,i must be carried

Gns(eV) :z—ezz Jw dE( ‘9fFD(E—eV)> out only for j’=j in the single-site approximatidif.As a
it aev) consequence, the current conservation law is satisfied for
S _ E<Ezep
X[&m= |Bm,I(E)|2 + |Am,|(E)|2]. (39 To study effects of impurities on the conductance, we first
assumex;=x, for all impurities. The conductance is rewritten
A, \/rm% (40) as
mT N T 2¢? (* [ dfep(E-e
‘ Cns = TL dE( FE:9((ev) \/)) X Ndg - 2n ],

B = \/%Bm,., (41) (51)

) o o . wheren;=N\g/W is the dimensionless line density of impu-
wherefgp(E) is the Fermi-Dirac distribution function. When ities less than unity. When scattering effects are str¢sig,
Z>1 andE < Egp, the reflection coefficients are calculated >1, N; cannot be much larger thaWw/\g. This limits the
as applicability of the single-site approximation.

- i We show conductance for several choices and
Ami = d,mf'&?\jﬂ) + &L [AnfAil(s+ 1) + AAg|(s= 1), ViNg in Fig. 3, wherezy=10 andn;=0.9. The two pxagrt;meters
(42)  are chosen agok-=10, ViNy=0.01 in (a), Xoke=2.0, V;N,
=0.005 in(b), xgke=26.0,V;Ny=0.1 in (c), andxke=12.0,
Bry = 8 ei(l) + Ly [|Aml[A (5 + 1) + AjA (s - 1], ViNo=0.1 in(d). The broken line is the conductance in clean
' ’ ’ junctions. The temperature is fixed at a very low temperature

(43 T=0.01E,ep which is estimated to be 0.05 K by usinyy,
N =50 meV forzy=10. As shown ina)-(c), the ZBCP is split-
_ 7TNoViZé E' V) x(Y) ting into two peaks by the impurity scattering. While the
T ~)ke 1oy XY XmY) results in(d) shows the single ZBCP.

Roughly speaking, the impurity scattering affects the
\/F_km . _ ) ZBCP in two waysi(i) it decreases the conductance around
X =@ sin(kox)sin(kx).  (44)  the zero bias voltage an@) it makes the ZBCP wider. The
=i=m two effects(i) and(ii) are well characterized by tHedepen-
The conductance is then given by dence ofl’; and the sign change df; in Eq. (51), respec-
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V/ Epgp eV/Epgp becomes negative and impurities enhance the conductance.
-0 05 00 05 10 05 00 05 10 As a consequence, the conductance peak becomes wider than
20F@vN-0m 4 210 |mv-ows n 20 o g©. The split of the ZBCP is a consequence of the interplay
T sk WS n-os k=21 158, between the suppression of the conductance around the zero
“o ol o 2 bias voltage and the widening of the ZBCP as shown in Figs.
z [ S 3(a)-3(c). Therefore the sign change bf explains the split
g 035 05 = of the ZBCP.
© oof 0.0 For Egjp<E<Egzep, I'j is almost a decreasing function of
_ P TevN-on a @VN-01 o 1*° 4 E and is positive aE=Ey, as shown in Fig. 4. It follows
= s5p mk=2 g0 WS 1155 from Eq. (47) that
’ 1 ]
I’ \ N lA nz
P ° o, Ty o [g{sy(11 = ) + 2185 +{sy(11 — 15) = 21,5}, (52)
, * 405 =
I ” . \.'\-- oo = Within our study,s;(l1;—15) tends to be much smaller than
.10 -05 00 05 10 05 00 05 10 21,5, for Eg, <E<Ezp Which implies the importance of
V/ By eV/Eqppp the real part of the self-energy for the splitting. The sign

. . ) change ofl’; happens when the impurity scattering is suffi-
FIG. 3. The conductance is plotted as a function of bias V°|t'ciently weak so that

ages, wherezy=10 and n;=0.9. The parameters anmgkg=10,
ViNg=0.01 in (), Xgke=2.0, V;Ng=0.005 in (b), Xoke=26, ViNg
=0.1in(c), andxgke=12,V;Ny=0.1 in(d). The broken lines denote
the conductance in clean junctions.

$=grg-1

is satisfied. Whefs(E=Egj,)| is a small value less than unity,
the effects of impurities are negligible and the conductance
almost remains unchanged from that in clean junctions. The
xoke, whereV;N, is fixed at 0.01. We note thdt; for xgke  SPlit @lso cannot be seen wWhes(E=Ezep)| is larger than
=10 yields the conductance in Fig(a® When xoke>¢&,,  Unity. An example is shown in Fig.(8), wherexyk-=12.0,
I';~0 and impurity scattering is negligible as shown for ViNo=0.1, and|s(E=Ezgp)| is estimated to be 1.5. In this
Xoke=50 becaus&, in Eq. (37) becomes almost zero. For case, the suppression of the zero-bias conductance dominates
Xoke=2, 5, and 10['; increases with decreasirfg which  over the widening of the ZBCP. As a result, the conductance
indicates the enhancement of the impurity scattering arount$ always smaller than that in clean junctions and the ZBCP
E=0. The suppression of the conductance around the zef@mains in a single peak.

bias is explained in terms of the drastic increase of the local We should pay attention to the similarity in the shapes of
density of states with decreasir®as shown in Fig. @). the conductance in the present theory and those in experi-
Therefore the suppression of the zero-bias conductance hagments. Amazingly, the conductance structure in Fig) &
pens irrespective ofgk: andV;N,. In addition, a nonmono- Vvery similar to that observed in the experiméntt is pos-
tonic E dependence of’; for xoke=10 is a source of the sible to find a very small conductance peak/atO in addi-
small conductance peak at the zero bias in Fig).3The tion to the splitting peaks around~ +1 mV in Fig. 2 of

(53

tively. In Fig.4,T’; is plotted as a function o for several

same small peak is also found in Fighg ! _
The widening of the ZBCP can be explained by the signother conductance shape in the experinfefihe conduc-

change ofl’;. WhenE>0.15¢p in Fig. 4, T'; for xoke=10

1.0

0.8

0.6

o~ 04

02

0.0

-0.2

0.00

0.05

0.10
E/E,,

0.15

020

Ref.35. The impurities away from the interface explain an-

tance structure in Fig. 2 of Ref. 8 is very similar to that in
Fig. 3d). The present theory explains at least two typical
conductance shapes observed in the experiments.

As shown in Fig. 3, the magnitude of the impurity poten-
tial and the position of impurities are key factors for the
degree of splitting. In Fig. 5, the gray area indicates sets of
(ViNo,Xoke) which satisfy Eq.(53) within Egj,<E<Ezgp.

The open circles denote sets(0¥;Ny,Xkg), where we find
the split of the ZBCP in Eq(51).

All the circles are inside the gray area. Although the
circles and the gray region do not perfectly coincide with
each other, they show qualitatively the same tendency. The
parameters used in Fig. 3 are indicated by filled squares.
Sinces at E=0 is proportional to the local density of states,
we also show th&l(E=0,x) in Eq.(31). To satisfy Eq(53),
impurities around,~ & should have sufficiently small scat-
tering potentials because the local density of states has large
values there. Thus the gray area appears for small impurity

potentials near the interfagee., Xo=< &y). The gray region
spreads to largev;N, as the increase of,> &, because the
local density of states becomes smaller. The results imply

FIG. 4. The functionl';(E) is plotted as a function oE for
severalxoke at ViNy=0.01. The arrows indicatEy;,. For Xgkg=10,
Ed,p=0001EZEP
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FIG. 5. A phase diagram for the split of the ZBCP. The gray area
indicates sets of V;Ng,xoke) which satisfy Eq.(53). The open ] ! g
circles denote sets diV;Ng,Xoke), where we find the split of the uted randomly in the range of<lxjks <20, wherep; is the dimen-
ZBCP in Eq.(51). The local density of state &=0 in Fig. ab)is  Sionless area density of impurities near the interface. The conduc-

also shown. The filled squares are parameters used for the condd@nce for low density strong impurities is shown (& with ViNo
tance in Fig. 3. =0.1 andp;=0.2. The conductance for high density weak impurities

with V;Ny=0.005 andp;=0.6 are shown for several choices of tem-

hat th . o for th lit of hgeratures. The zero-bias conductance and the peak positighs in
that the st'rong'lmpurmes ar'e not nece§sary O'jt e sp '_t oft re plotted as a function of temperaturesanand(d), respectively.
ZBCP. It is evident that this phase diagram is valid in the

limit of high impurity density and the diagram would be havior of the zero-bias conductance, which was found in the
changed depending on the transmission probability of junc- . g C . .
tionsg pending Isston p tiy ot experiment® In Fig. 6(d), the peak positioriéeV) in (d) is

In Fig. 3, all impurities are aligned aj=x,. In real junc- plotted as a function temperatures. SinéeV is _about
tions, however, impurities may be distributed randomly neaf-1%zep at T=0, peak splitting is washed out at high tem-
the interface as shown in Fig. 1. The conductance in sucReratures such as=0.11Eep. High density impurities with

realistic junctions are shown in Fig. 6, where impurities are? Weak random potential are responsible for the split of the

distributed randomly in the range of <Ixjke<Leke, p; ZBCP in low transparent junctions.

. 0 o
=N,(\2/WLy) is the dimensionless area density of impurities Severalkexperlmengél show a S?nEtIVILy of the ?j(_)nduc- N

and z,=10. The conductance is calculated from the expresEance peaks to external magnetic fields. Here we discuss the
sion conductance in the presence of magnetic fields. The effects

of magnetic fields are taken into account phenomenologi-
2 [~ o ep(E—eV) o keLs cally by using the Aharonov-Bohm-like phase sfift of a
Gns= TNCJ dE T dey) X119 _Pi7<r> , quasiparticle. Since the impurity scattering in magnetic fields
* itself is a difficult problem to solve analytically, we neglect
(54) the interplay between magnetic fields and impurity scatter-
ings. Within the phenomenological thedeffects of mag-
netic fields is considered by replacitgyin Eq. (46) by E

FIG. 6. The conductance in the presence of impurities distrib-

N.
1 1
Ty= WE L/, (55  +|Agcosysiny|¢g as
ij=1
h ts th b Since th © = f ™ dyy 20008 ySirf y (56)
where(...) represents the ensemble average. Since the con- Og = L yE§23+AS c0% 7S 5"

ductance in Eq(45) is characterized by the number of im-
purities, a factorkeLs/ 7w appears in Eq(54). We choose
L&ke=20 in Fig. 6 because we focus on the impurities near Eg = E+ 2Ag|cosy sin y|¢g, (57)
the interface andyks ~ 6.3. We consider low density strong
impurities in (a), whereV;Ny=0.1 andp;=0.2. There is no
peak splitting in Fig. 6a) because most impurities are out-
side of the gray region in Fig. 5. On the other hand, the
results in Fig. @) show the split of the ZBCP &t=0, where  where ¢y=2¢#c/e andB,=1.0"° corresponds t@=1 T. A

we consider high density weak impurities withiNy=0.02  quasiparticle acquires the Aharonov-Bohm-like phase shift
and p;=0.6. This is because most impurities are inside thepg while moving near the NS interfacé.In a previous pa-
gray region in Fig. 5. The splitting peaks merge into a singleper, we found that ZBCP in clean junctions remains a single
peak under finite temperatures suchTas0.1E,ep In Fig.  peak even in the strong magnetic fi€klas shown in Fig.
6(c), we show the temperature dependence of the zero-bia&c), wherez;=10 andT=0.09,¢p. In Figs. &) and {b),
conductance in Fig.(6). The results show the reentrant be- we show the conductance in the presence of low density

B&
g = ZW?tan y=Bytany, (58
0
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In order to compare the theoretical results in this paper

- 0.6 50 200" . . . . . . .
® :i‘;)‘l"-‘ Eﬁ ME VN, =0.005 EE 0 with experiments, we may consider the impurity scattering in
R AN I5F 5= 2 normal metals. The total resistan(®) in the dirty normal-
B 005 °gm® ¢ metal(110-d-wave junction can be described simply By

oy
=3
T
=
=]

=Rp+Rys, > "®whereRy=1/Gp, is the resistance of the dirty
normal metal andsys=1/Rys is the conductance discussed
in this paper. The equation indicates the absence of the prox-
imity effect in the dirty normal metal”"® The height of the
ZBCP can be reduced to reasonable values in the presence of
the impurity scattering in normal metals because the total
conductance is given by Ry +Rys). The degree of splitting
depends on parameters such as the potential of impurities
(V;), the position of impuritiegx;), and the transparency of
the junction(Tg~ 1/72). In particular,Tg is the most impor-
tant parameter becau@Ep:AO/z§~AoTB determines the
width of the ZBCP. As shown in Figs. 3 and 6, the degree of

FIG. 7. The conductance under external magnetic fields for lowsplitting is roughly given by 0.1—0Ey:p. Thus it is possible
density strong impurities witl/;Ny=0.1 andp;=0.2 are shown in  to chooseTy to fit the degree of splitting with that found in
(@, whereT is fixed at 0.0%,ep. Those for high density weak experiments. The amplitude of the pair potential is about
impurities with ViNy=0.005 andp;=0.6 are shown inb). In the 40 meV in typical highT. materials. The degree of splitting
insets, peak positions are plotted as a function of magnetic field§s then estimated to be 0.4—1.6 meV =3, which is al-

The conductance of clean junctions is showrdp most consistent with that found in experiments, for instance,
2 meV3 |t is also necessary to consider electronic structures
strong impurities and high density weak impurities, respecof high-T. materials for the quantitative agreement of the
tively, whereV; and p; are same as those in Figgapand  splitting width in theories with those in experiments. Actu-
6(b), respectively. A temperature is fixed 8:0.0E,zp. In  ally we have experienced in numerical simulations that the
contrast to clean junctions in Fig(cj, the ZBCP in disor- peak splitting width seems to be larger when more realistic
dered junctions splits into two peaks under magnetic fields aglectronic structures of high; materials are taken into
shown in Fig. Ta). The results within the phenomenological account?
theory indicate that the sensitivity of the ZBCP to magnetic In quasiclassical Green function theories, the conductance
fields depends on the degree of impurity scatterings. In thés proportional to the density of states at the surface of su-
insets, peak positiongseV) are plotted with circles as a perconductors. We find that tiedependence of the density
function of magnetic fields. For high density weak impuritiesof states at the interface in E¢33) is apparently different
in Fig. 7(b), we also found that the degree of peak splittingfrom that of the conductance even in the clean junctions
increases with increasing magnetic fields. In the limit of theshown in Eqg. (46). We also find thatNg(E,x=0)~N,
strong fields,seV tends to saturate as shown in the inset.<Ng(E,x=&;) as shown in Fig. @). The density of states
These characteristic behavior are found in the experiffent. near the interface averaged ovgrin this paper may corre-

Although we have explained the characteristic behavior opond to the surface density of states in the quasiclassical
the experimental conductance peaks under magnetic fieldgpproximation, where the rapidly oscillating part of the wave
well, the applicability of the phenomenological theory in the function is neglected and the smallest length scales is given
presence of impurities is still unclear. This issue would beby &,. It is impossible to directly compare the present theory
addressed more clearly in an exact numerical simulation. with the quasiclassical Green function theories because the
position of impurities is a key parameter for the split of the
ZBCP in our theory.

The Abrikosov-Gor’kov (AG) theory® is a useful ap-

In experiments, the split of the ZBCP has been reported iproach to discuss the impurity scattering in superconductors.
overdoped highF, superconductor® The heavy carrier The applicability of the AG theory is limited to the supercon-
doping may bring a number of defects or imperfections inductivity in diffusive metals, where the mean free path is
superconductors. It is evident that the impurity scattering isnuch smaller than the size of the disordered region in super-
unavoidable even in underdoped higih-superconductors. conductors. Here we briefly discuss the relation between the
The split of the ZBCP can be found in underdoped superconAG theory and ours. Since the AG theory assumes the diffu-
ductors if they have bad sample quality. In the same way, thegive transport regime, we define the mean free path of a
split of the ZBCP would not be found even in overdopedquasiparticle in the Born approximation
superconductors if their sample qualities are good enough.

2
G, [2N ¢ /h]

2
G [2N, & /h]
e
w

Hed
n

Gy [2N ¢’ /h]

(O
%
o

05 00 05 10
eV/E,

IV. DISCUSSION

The sample quality is a key factor for the spilt of the ZBCP. | =veT, (59
This argument is consistent with an experiménihere the

potential disorder was artificially introduced to the NS junc- 5

tions by ion irradiation and washed out the ZBCP in the limit 2 = 2mpNg\V2, (60)
of strong disorder. T
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i =N/WL, (61) normal reflection coefficients which are estimated by using
) ] ) the single-site approximation. We consider impurities near
vv_here we considerWx L dlso_rdered region on two- the junction interface on the superconductor side. The
dimensional superconductor as in Fig. 6. The impurity densgrength of the impurity scattering strongly depends on the
sity pi can be replaced by the dimensionless impurity densityyansparency of the junction, the position of impurities, and
pi=(2m/ke)pi. The ratio of the mean free path and the co-the energy of a quasiparticle because the ZES's are formed at
herence length is given by the NS interface. We conclude that the impurity scattering
| A, w causes the split of the zero-bias conductance peak. The re-
— = . (62)  sults are consistent with previous numerical simulations. We
& wmrpi(NoVi) have also shown that characteristic behaviors of the conduc-
In this paper,/&, is larger than unity even in the limit of tance spectra at finite temperatures and under external mag-
pi=1 because we assumg/ ur=0.1 andN,V;<0.1. On the  netic fields qualitatively agree with those reported in experi-
other hand, the dirty limit is defined by the relatibhg, ~ Ments.
<1. When we choosé, to be a few coherence length as  \ppEnNpix A: TRANSMISSION AND REFLECTION
shown in Fig. 6, wherd s~ 3&,, we find thatl/Lg is still COEFEICIENTS
larger than unity. The disordered region is not in the diffusive
regime but in the quasiballistic regime because the diffusive In the clean NS junctions, the transmission and the reflec-
regime is characterized by the relatibHh..<1. Thus it is  tion coefficients can be calculated from the appropriate
basically impossible to apply the Abrikosov-Gor’kov theory boundary condition of the wave function. The calculated re-
to the model in this paper. The scattering th€®nysed in  sults are shown below:
this paper is a suitable analytic method to discuss the con-

ductance of such NS junctions. Although the impurity scat-
tering near the interface is very weak in normal states, it
drastically affects the conductance below the critical tem-
perature. Impurities located at the resonant states seriously
suppress the degree of the resonance even if their potentials
are weak. In the AG theory, the real part of the self-energy is
usually neglected. In our theory, this approximation corre-
sponds to an equatiosy=0. Howevers, plays an important
role in the peak splitting. When we ons, |, and I3 must

also be zero, which leads to positiVg and no splitting irre-
spective ofV;N, andxjk.

We show that the impurity scattering causes the splitting
of the ZBCP. The conclusion, however, does not deny the
possibility of the BTRSS. In a previous papémve assume
s+id symmetry near the NS interface and numerically study
the tunneling conductance. The results show that the split of
the ZBCP is insensitive to the potential disorder. Thus peak
splitting would always be expected in low transparent
junctions? if the BTRSS appears at the NS interface. At
present, we have only limited information on the BTRSS
within the mean-field theories. To understand the nature of
the BTRSS beyond mean-field theory, we have to analyze the
electronic structure of highz superconductors based on mi-
croscopic models and make clear effects of the surface, the
electron correlation, and the random potentials on the super-
conducting state. This is an important problem for the future.

Since the formation of the ZES is a universal phenom-
enon in superconductors with unconventional pairing sym-
metries, the ZES is also expected at a surface of spin-triplet
superconductor® It would be interesting to study the effects
of impurities on transport properties in spin-triplet supercon-
ductor junctiong®78.81-94

V. CONCLUSION

We have discussed effects of impurity scatterings on the
conductance in normal-metadsivave superconductor junc-
tions. The conductance is calculated from the Andreev and
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the(|) = 120 'Q vie 92, (A12) OE k' iol2, (A16)
.2
oy = (K +22) A
Hh=—"F7—" Al3 —[(E+Q
"4 = B2 (ALY E|:Ez§+k|2<—2 '). (A17)
iz (k +izp)
ryn) = =0, (A14)  For instancefl(l) is the transmission coefficients from the

‘—'I

electron branch in a superconductor to the hole branch in a

normal metal. In the above coefficients, we use the relation

o)) = Kilk + lZo) Quei?, (AL5) di =k =k for simplicity. The conclusions in this paper re-
main unchanged in this approximation.

‘—4I

APPENDIX B: GREEN FUNCTIONS

The real space retarded Green function in clean junctions can be calculated by using the transmission and the reflection
coefficients in Appendix A. For<x’ <0, the Green function from a normal metal to a normal metal is

Dy~ 1 10 g [x=x" 00 iq Xamig X! 10 —ig (x+x’
GyNrr) =~ IWOEeJ" 0 % {q {(0 0>éqll +(1 0)6% el rRFN(I)+(O O)e ai >r§‘;;(|)}

kyl)
1/(0 0\ .- , 0 1\ .+ .- 0 0\ - ..,
+ = el [x=x"] 4 ( )e"ql gl X/reh 1+ ( )e'ql (X+x )rhh | ] , B1
q—{(o 1) 0 0 NN() O 1 NN() ( )
m
No = % (B2)
For x>x'>0, the Green function from a superconductor to a superconductor is
7TN0 0 E.l1 U|2 Uop\ o+ o — Uy U|2
GS rr')y=- e|k (y-y’) (I) ( elk,\xx|+ |k|x+|kI e|
% ) W % k+ Uy, U|2 U|2 — U, 4 )
2 2 2
U| — U, L+ , 1 U — U, ) U, U| St =
+ gk Ox)eee)) » 4 — ( )e ikp "] 4 ( gk x=ik;x reh [
(u|v| -v? ) sdl) K \-upv, v? Uy sd)
2
- U| - ulvl ) —ik_(X+X') hh 1 ~
+ e redl) [ [P*, B3
<U|U| 2 i) (B3)
R gl(ef2) 0
®= 0 eie ) (B4)

where ¢ is the phase of a superconductor. &or 0> x’, the Green function from a normal metal to a superconductor is

kTR P (M e TR I St
|

kﬂ) q U
[ 2 o]

For x<0<x’, the Green function from a superconductor to a hormal metal is

7N () E 1 U - R 0 0 T )
GN — 0 |k (y=y') — [_ ( ) iq x+ik;'x tee 1+ ( e|q Xk X the |
0 (1) = w% o |k\lo o /® sl oy, sl

1)/0 0O\ - .-, u e, A
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