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Effects of impurity scatterings on the conductance in normal-metal/d-wave superconductor junctions are
discussed by using the single-site approximation. So far, the split of the zero-bias conductance peak has been
believed to be evidence of the broken time reversal symmetry states at the surface of high-Tc superconductors.
In this paper, however, it is shown that the impurity scattering near the interface also causes the split of the
zero-bias conductance peak. Typical conductance spectra observed in experiments at finite temperatures and
under external magnetic fields are explained well by the present theory.
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I. INTRODUCTION

The zero-energy state(ZES)1 formed at the surfaces of
superconductors is a consequence of the unconventional
symmetry of Cooper pairs. Since the ZES appears just on the
Fermi energy, it drastically affects transport properties
through the interface of junctions consisting of unconven-
tional superconductors.2 For instance, in normal-metal/high-
Tc superconductor junctions, a large peak is observed in the
differential conductance at zero bias voltage.3–10 The ZES is
also responsible for the low-temperature anomaly of the Jo-
sephson current between the two unconventional
superconductors.11–21

An electron incident into a normal-metal/superconductor
(NS) interface suffers the Andreev reflection22 by the pair
potential in the superconductor. As a result, a hole traces
back the original propagation path of the incident electron.
This is called the retro property of a quasiparticle which
supports the formation of the ZES. Strictly speaking, the
electron-hole pairs just on the Fermi energy hold the retro
property in the presence of the time reversal symmetry
(TRS). Thus the ZES is sensitive to the TRS of the system.
Actually, the zero-bias conductance peak(ZBCP) in NS
junctions splits into two peaks under magnetic fields.23–26

The peak splitting is also discussed27–33 when the broken
time reversal symmetry state(BTRSS) is formed at the in-
terface. Theoretical studies showed that such BTRSS’s are
characterized by thes+ idxy (Ref. 28) or dxy+ idx2−y2 (Ref. 34)
wave pairing symmetry. Experimental results, however, are
still controversial. Some experiments reported the split of the
ZBCP at the zero magnetic field,35–42others did not.5,7,8,43–45

The ZBCP is also sensitive to the exchange potential in fer-
romagnets attaching to unconventional superconductors.46,47

In previous papers, we numerically showed that random
potentials at the NS interface cause the split of the ZBCP at
zero magnetic field by using the recursive Green function
method.48,49 We also showed that the splitting due to the
impurity scattering can be seen more clearly when realistic

electronic structures of high-Tc materials are taken into
account.50 Unfortunately, we could not make clear a mecha-
nism of splitting. Our conclusion, however, contradicts those
of a number of theories51–56 based on the quasiclassical
Green function method.57–61 The drastic suppression of the
ZBCP by the interfacial randomness is the common conclu-
sion of all the theories. The theories of the quasiclassical
Green function method, however, concluded that the random
potentials do not split the ZBCP. Thus this issue has not been
fixed yet. There are mainly two reasons for the disagreement
in the two theoretical approaches(i.e., the recursive Green
function method and the quasiclassical Green function
method). One is the treatment of the random potentials, the
other is the effect of the rapidly oscillating wave functions on
the conductance. In our simulations, we calculate the con-
ductance without any approximation to the random potentials
and the wave functions; this is an advantage of the recursive
Green function method.49,62

In this paper, we discuss effects of the impurity scattering
on the conductance in normal-metal/d-wave superconductor
junctions by using the Lippmann-Schwinger equation. We
assume that impurities are near the NS interface on the su-
perconductor side. The differential conductance is analyti-
cally calculated within the single-site approximation based
on the conductance formula.63,64 The split of the ZBCP due
to the impurity scattering is the main conclusion of this pa-
per. The impurity scattering affects the conductance in two
ways:(i) drastically suppressing the conductance around the
zero bias voltage and(ii ) making the conductance peak
wider. The split of the ZBCP is a consequence of the inter-
play between the two effects. In the present theory, we suc-
cessfully explain typical conductance shapes observed in
several experiments. We also show that the splitting peaks
are merged into a single conductance peak for sufficiently
high temperatures and that the peak splitting width increases
with increasing external magnetic fields.

This paper is organized as follows. In Sec. II, we derive
the reflection coefficients in NS junctions within the single-
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site approximation based on the Lippmann-Schwinger equa-
tion. The split of the ZBCP is discussed in Sec. III. In Sec.
IV, calculated results are compared with experiments and
another theories. In Sec.V, we summarize this paper.

II. LIPPMANN-SCHWINGER EQUATION

Let us consider two-dimensional NS junctions as shown
in Fig. 1, where normal metalssx,0d andd-wave supercon-
ductorssx.0d are separated by the potential barrierVBsr d
=V0dsxd. We assume that the periodic boundary condition in
the y direction and the width of the junction isW.

The a axis of high-Tc superconductors is oriented 45°
from the interface normal. The pair potential of a high-Tc
superconductor is described by

Dk = 2D0k̄xk̄y, s1d

in the momentum space, whereD0 is the amplitude of the

pair potential at the zero temperature,k̄x=cosg=kx/kF and

k̄y=sing=ky/kF are the normalized wave number on the
Fermi surface in thex and they directions, respectively. The
Fermi wave numberkF satisfies"2kF

2 /2m=mF, wheremF is
the Fermi energy. The schematic figure of the pair potential
is shown in Fig. 1. The NS junctions are described by the
Bogoliubov–de Gennes equation65

E dr 8Sdsr − r 8dh0sr 8d Dsr ,r 8d
D * sr ,r 8d − dsr − r 8dh0sr 8d

D
3Susr 8d

vsr 8d
D = ESusr d

vsr d
D , s2d

h0sr d = −
"2¹2

2m
+ Vpotsr d − mF, s3d

Vpotsr d = VBsr d + VIsr d, s4d

DsRc,r rd = 5 1

Vvol
ok

Dkeik·r r: Xc . 0,

0: Xc , 0,

s5d

whereRc=sXc,Ycd=sr +r 8d /2 andr r =r −r 8. Throughout this
paper, we neglect the spatial dependence of the pair potential
near the junction interface. This is a reasonable approxima-

tion when we consider the conductance around the zero bias
voltage.66 The spatial dependence of the pair potential should
be determined in a self-consistent way when we discussed
the conductance far from the zero bias such aseV,D0. Here
V is the bias voltage applied to junctions.

We consider impurities near the interface on the supercon-
ductor side as indicated by crosses in Fig. 1. The potential of
impurities is given by

VIsr d = Vio
j=1

Ni

dsr − r jd, s6d

whereNi is the number of impurities. In the absence of im-
purities, the transmission and reflection coefficients are cal-
culated from boundary conditions of wave functions at the
junction interface as shown in Appendix A. By using these
coefficients, four retarded Green functions are obtained as
shown in Appendix B. The normal conductance of the junc-
tion is given by

GN =
2e2

h
NcTB, s7d

TB =E
0

p/2

dg
cos3 g

z0
2 + cos2 g

, s8d

whereTB is the transmission probability of the junction,Nc
=2W/lF is the number of the propagating channels on the
Fermi surface,lF=2p /kF is the Fermi wave length, andz0
=mV0/ s"2kFd represents the strength of the potential barrier
at the NS interface. In the limit ofz0

2@1, TB is proportional
to 1/z0

2.
Effects of impurities on the wave functions are taken into

account by using the Lippmann-Schwinger equation

csldsrd = c0
sldsrd +E dr8Ĝ0sr,r8dVIsr8dŝ3csldsr8d, s9d

=c0
sldsrd + o

j=1

Ni

Ĝ0sr,r jdViŝ3csldsr jd, s10d

wherel indicates a propagating channel characterized by the
transverse wave numberky

sld. Here c0
sldsrd is the wave func-

tion in which an electronlike quasiparticle withky
sld is inci-

dent into the clean NS interface from normal metals and is
described as

c0
sldsrd = xlsydFS1

0
Deiql

+x + S0

1
Deiql

−xrNN
he sld + S1

0
De−iql

+xrNN
ee sldG ,

s11d

xlsyd =
eiky

sldy

ÎW
, s12d

for x,0, whereql
±=Îkl

2±kF
2E/mF is the wave number of a

quasiparticle in normal metals andkl
2+ky

sld2=kF
2. For x.0,

the wave function in clean junctions is given by

FIG. 1. The normal-metal/d-wave superconductor junction is
schematically illustrated. The crosses represent impurities.
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c0
sldsrd = xlsydF̂FSul

vl
Deikl

+xtSN
eesld + S− vl

ul
De−ikl

−xtSN
hesldG ,

s13d

ul =ÎE + Vl

2E
, s14d

vl = sgnsky
slddÎE − Vl

2E
, s15d

F̂ = Seiw 0

0 e−iw D , s16d

where w is a macroscopic phase of a superconductor,kl
±

=skl
2±kF

2Vl /mFd1/2 is the wave number of a quasiparticle in

the superconductors,Vl =ÎE2−Dl
2, and Dl =2D0k̄lk̄y

sld. The
wave function at an impuritycsldsr j8d can be obtained byr
→ r j8 in Eq. (10)

c0
sldsr j8d = o

j=1

Ni

fŝ0d j ,j8 − Ĝ0
SSsr j8,r jdViŝ3gcsldsr jd. s17d

It is possible to calculate the exact conductance if we obtain
csldsr jd for all impurities by solving Eq.(17). Actually it was
confirmed that the conductance calculated from the numeri-
cal solution of Eq.(17) is exactly identical to that computed
in other numerical methods such as the recursive Green func-
tion method.62,67 In this paper, we solve Eq.(17) within the
single-site approximation, where the multiple scattering ef-
fect involving many impurities(Anderson localization) are
neglected. However, the multiple scattering by an impurity is
taken into account up to the infinite order of the scattering
events. In the summation ofj in Eq. (17), only the contribu-
tion with j = j8 is taken into account in the single-site
approximation.68 In this way, the wave function atr j is ap-
proximately given by

csldsr jd < fŝ0 − Ĝ0
SSsr j,r jdViŝ3g−1c0

sldsr jd. s18d

We note that the single-site approximation yields the exact
conductance whenNi =1. Within the single-site approxima-
tion, Eq. (10) can be solved as

cSSA
sld srd = c0

sldsrd + o
j

Ni

Ĝ0
NSsr,r jdViŝ3

3fŝ0 − Ĝ0
SSsr j,r jdViŝ3g−1c0

sldsr jd s19d

for x,0. On the right-hand side of Eq.(19), all functions
have been given by analytical expressions.

In the presence of the impurity scattering, the wave func-
tion Eq. (19) can be expressed as

cSSA
sld srd = S1

0
Dxlsydeiql

+x + o
l8

xl8sydFS0

1
Deiq

l8
−

xAl8,l

+ S1

0
De−iq

l8
+

xBl8,lG , s20d

for x,0, whereAl8,l andBl8,l are the Andreev and the normal
reflection coefficients in the presence of impurities, respec-
tively. These coefficients are obtained from relations

E
−W/2

W/2

dyxm
* syds0,1dcSSA

sld srd = eiqm
− xAm,l , s21d

E
−W/2

W/2

dyxm
* syds1,0dcSSA

sld srd = eiql
+xdl,m + e−iqm

+ xBm,l . s22d

The scattering theory based on the Lippmann-Schwinger
equation requires complicated algebra as shown below be-
cause the perturbation expansion is carried out in real space.
In return, effects of the impurity scattering can be taken into
account up to the infinite order of the perturbation expansion
without using any self-consistent treatments. In addition, the
reflection coefficients are explicit functions of the impurity
positions in a single disordered sample. These are advantages
of the present method.

In what follows, we consider low transparent junctions
(i.e., z0

2@1). From the reflection coefficients in Appendix A,
the Green function in the superconductor is given by

Ĝ0
SSsr,rd = − ipN0

2

p
E

0

p/2

dgF E

2V
ŝ0 −

z0
2Dk

2e2ipx

2JV
ŝ0

+
z0

2Dk
2 coss2kFx cosgde2ipx

2JV
ŝ0

−
z0

2E

2J
H E

V
coss2kFx cosgdŝ0

+ i sins2kFx cosgdŝ3Je2ipx −
Dk

2 cos2 ge2ipx

4VJ
ŝ0

−
z0 cosg

2J
e2ipxhE coss2kFx cosgdŝ3

+ iV sins2kFx cosgdŝ0jG , s23d

wherep<skF /2 cosgdsV /mFd. The local density of states69

at r is defined by

NssE,xd = −
1

p
Im TrĜ0

SSsr,rd. s24d

The first term in Eq.(23) contributes to the bulk density of
states. Since 2p is roughly estimated to bei /j0, other terms
contribute to the local density of states near the interface,
wherej0="vF /pD0 is the coherence length andvF="kF /m
is the Fermi velocity. In low transparent junctions, sixth, sev-
enth, and eighth terms are negligible. The fourth and the fifth
terms are also negligible because integrals of such rapidly
oscillating functions become very small. The second and
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third terms are dominant forE!D0. In Fig. 2(a), we show
the trace of the Green function in Eq.(23) as a function ofE,
where z0=10, D0=0.1mF, xkF=6, and N0=m/ sp"2d is the
normal density of states in the unit area. Sincej0kF,6.3, the
results correspond to the Green function at a distancej0
away from the interface. The horizontal axis in Fig. 2(a) is
normalized by

EZEP;
D0

z0
2 . s25d

The solid and the broken lines represent negative of the
imaginary part and the real part of Eq.(23), respectively.

As shown in Fig. 2(a), the imaginary part of the Green
function has a large peak aroundE=0 reflecting the ZES
formed at the junction interface. The energy scaleEZEP char-
acterizes the width of the zero-energy peak. The real part of
the Green function first increases with decreasingE then
suddenly decreases to zero forE→0. A detailed analysis
indicates that the real part of the Green function has its maxi-
mum around an energy

Edip ;
D0

z0
2sxkFd3 . s26d

The Green function forE,EZEP is approximately calculated
from the second and the third terms of Eq.(23)

Ĝ0
SSsr,rd < 2pN0z0

2e−x/j0sg2 − ig1dŝ0, s27d

g1 =
2

p
E

0

p/2

dg
D0

2 cos4 g sin2 g sin2sxkF cosgd
E2z0

4 + D0
2 cos6 g sin2 g

, s28d

g2 =
2

p
E

0

p/2

dg
Ez0

2D0 cosg sing sin2sxkF cosgd
E2z0

4 + D0
2 cos6 g sin2 g

, s29d

where we useV, i u2D0 cosg singu. The imaginary part of
the Green functiong1 is of the order of unity whenE
,EZEP. However,g1 at E=0 becomes much larger than unity
for xkF@1 because

g1sE = 0d =
2

p
E

0

p/2

dg
sin2hxkF cosgj

cos2 g
, xkF. s30d

Thus the energy scaleEdip characterizes the drastic increase
of g1 and the drastic decrease ofg2. The local density of
states atE=0 calculated from Eqs.(23) and(24) is plotted as
a function ofxkF in Fig. 2(b) with the solid line. For com-
parison, we also show the analytical results represented by

− Im Ĝ0
SSsr,rdE=0 . 2pN0z0

2e−x/j0xkFŝ0, s31d

with the broken line. The results show the remarkable en-
hancement of the local density of states aroundx,j0. This
implies that the ZES is formed aroundx,j0.

Here we note the following. To calculate the Green func-
tion, we consider the third term in Eq.(23) which rapidly
oscillates as coss2xkF cosgd. Such rapidly oscillating terms
are usually neglected in the quasiclassical Green function
method. We, however, cannot neglect the third term because
it removes the divergence of the local density of state atE
=0.70,71 The third term also becomes important when we
calculate the local density of states just at the surface(i.e.,
x=0)

NssE,0d
N0

= Re
2

p
E

0

p/2

dgF E

V
−

2E2z0
2 + Dk

2cos2 g

2JV
G ,

s32d

.
2

p
KSD0

E
D +

2

p
E

0

p/2

dg
E2z0

2 + D0
2 cos6 g sin2 g

E2z0
4 + D0

2 cos6 g sin2 g
, s33d

whereKsxd is the complete elliptic integral of the first kind
and describes the bulk density of states. Another term comes
from the fourth and sixth terms in Eq.(23). The first equation
is the exact expression and we useE,EZEP in the second
line. We exactly obtainNsE=0,x=0d=N0. Thus there is no
remarkable enhancement in the zero energy local density of
states just at the interface. The second and third terms in Eq.
(23) do not contribute to theNssE,0d because they exactly
cancel each other atx=0.

FIG. 2. In (a), the trace of the Green function in the superconductor is shown as a function ofE, where z0=10, xkF=6, andD0

=0.1mF. The peak width of the imaginary part is given byEZEP=D0/z0
2. The energy scaleEdip characterizes the drastic increase of the

imaginary part and the drastic decrease of the real part. In(b), the local density of states is shown as a function ofxkF, whereE=0, z0

=10, andD0=0.1mF. The numerical and the analytical results are denoted by the solid and the broken lines, respectively.
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In the next section, the conductance forE,EZEP will be
discussed. It is possible to rewrite a part of Eq.(19) as

fŝ0 − ViĜ0
SSsr,rdŝ3g−1 =

ŝ0 + sŝ3

1 − s2 , s34d

s1 = Q0g1, s35d

s2 = Q0g2, s36d

Q0 = 2pViN0z0
2e−x/j0, s37d

s= s2 − is1, s38d

where s corresponds to the self-energy of a quasiparticle
scattered by an impurity once and describes two important
features. First,s becomes large in low transparent junctions
even if ViN0 is fixed at a small constant becauseQ0 in Eq.
(37) is proportional toViN0z0

2,ViN0/TB. ThusQ0 represents
the normalized strength of the impurity scattering. This be-
havior explains the previous numerical simulation.48 Second,
effects of impurity scattering far away from the interface on
the conductance is negligible becauseQ0 decreases exponen-
tially with the increase ofx. Impurities around the ZES(i.e.,
x,j0) seriously affect the conductance forE,EZEP.

III. CONDUCTANCE

The differential conductance in NS junctions is calculated
from the normal and the Andreev reflection coefficients63,64

GNSseVd =
2e2

h
o
l,m
E

−`

`

dES ]fFDsE − eVd
]seVd

D
3fdl,m − uB̄m,lsEdu2 + uĀm,lsEdu2g, s39d

Ām,l =Îkm

kl
Am,l , s40d

B̄m,l =Îkm

kl
Bm,l , s41d

wherefFDsEd is the Fermi-Dirac distribution function. When
z0

2@1 andE,EZEP, the reflection coefficients are calculated
as

Ām,l = dl,mrNN
he sld + e−iwLm,lfDmuDluss+ 1d + DluDmuss− 1dg,

s42d

B̄m,l = dl,mrNN
ee sld + iLm,lfuDmuuDluss+ 1d + DlDmss− 1dg,

s43d

Lm,l =
pN0Viz0

2

s1 − s2dkF
o
j=1

Ni

xlsyjdxm
* syjd

3
Îk̄lk̄m

JlJm
eispm+pldxj sinskmxjdsinsklxjd. s44d

The conductance is then given by

GNS =
2e2

h
E

−`

`

dES ]fFDsE − eVd
]seVd

D 3 FNcg
s0d − 4o

j=1

Ni

G jG ,

s45d

gs0d = 2E
0

p/2

dg
D0

2 cos7 g sin2 g

E2z0
4 + D0

2 cos6 g sin2 g
, s46d

G j = Re
sQ0s2I2 − iI 1 + iI 3d

s2 − 1
, s47d

I1 =
2

p
E

0

p/2

dg
D0

4 cos10 g sin4 g sin2sxjkF cosgd
sE2z0

4 + D0
2 cos6 g sin2 gd2 , s48d

I2 =
2

p
E

0

p/2

dg
Ez0

2D0
3 cos7 g sin3 g sin2sxjkF cosgd
sE2z0

4 + D0
2 cos6 g sin2 gd2 ,

s49d

I3 =
2

p
E

0

p/2

dg
E2z0

4D0
2 cos4 g sin2 g sin2sxjkF cosgd

sE2z0
4 + D0

2 cos6 g sin2 gd2 .

s50d

The first term of Eq.(45) Ncg
s0d is the conductance in clean

junctions andG j represents effects of the impurity scattering

on the conductance. When we calculateuĀm,lu2 anduB̄m,lu2, the
summation with respect to impuritieso j

Nio j8
Ni must be carried

out only for j8= j in the single-site approximation.68 As a
consequence, the current conservation law is satisfied for
E,EZEP.

To study effects of impurities on the conductance, we first
assumexj =x0 for all impurities. The conductance is rewritten
as

GNS =
2e2

h
E

−`

`

dES ]fFDsE − eVd
]seVd

D 3 Ncfgs0d − 2niG jg,

s51d

whereni =NilF /W is the dimensionless line density of impu-
rities less than unity. When scattering effects are strong,usu
@1, Ni cannot be much larger thanW/lF. This limits the
applicability of the single-site approximation.

We show conductance for several choices ofx0kF and
ViN0 in Fig. 3, wherez0=10 andni =0.9. The two parameters
are chosen asx0kF=10, ViN0=0.01 in (a), x0kF=2.0, ViN0
=0.005 in (b), x0kF=26.0,ViN0=0.1 in (c), andx0kF=12.0,
ViN0=0.1 in (d). The broken line is the conductance in clean
junctions. The temperature is fixed at a very low temperature
T=0.01EZEP which is estimated to be 0.05 K by usingD0
=50 meV forz0=10. As shown in(a)-(c), the ZBCP is split-
ting into two peaks by the impurity scattering. While the
results in(d) shows the single ZBCP.

Roughly speaking, the impurity scattering affects the
ZBCP in two ways:(i) it decreases the conductance around
the zero bias voltage and(ii ) it makes the ZBCP wider. The
two effects(i) and(ii ) are well characterized by theE depen-
dence ofG j and the sign change ofG j in Eq. (51), respec-
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tively. In Fig.4, G j is plotted as a function ofE for several
x0kF, whereViN0 is fixed at 0.01. We note thatG j for x0kF
=10 yields the conductance in Fig. 3(a). When x0kF@j0,
G j ,0 and impurity scattering is negligible as shown for
x0kF=50 becauseQ0 in Eq. (37) becomes almost zero. For
x0kF=2, 5, and 10,G j increases with decreasingE, which
indicates the enhancement of the impurity scattering around
E=0. The suppression of the conductance around the zero
bias is explained in terms of the drastic increase of the local
density of states with decreasingE as shown in Fig. 2(a).
Therefore the suppression of the zero-bias conductance hap-
pens irrespective ofx0kF andViN0. In addition, a nonmono-
tonic E dependence ofG j for x0kF=10 is a source of the
small conductance peak at the zero bias in Fig. 3(a). The
same small peak is also found in Fig. 3(b).

The widening of the ZBCP can be explained by the sign
change ofG j. WhenE.0.15EZEP in Fig. 4, G j for x0kF=10

becomes negative and impurities enhance the conductance.
As a consequence, the conductance peak becomes wider than
gs0d. The split of the ZBCP is a consequence of the interplay
between the suppression of the conductance around the zero
bias voltage and the widening of the ZBCP as shown in Figs.
3(a)–3(c). Therefore the sign change ofG j explains the split
of the ZBCP.

For Edip,E,EZEP, G j is almost a decreasing function of
E and is positive atE=Edip as shown in Fig. 4. It follows
from Eq. (47) that

G j ~ usu2hs1sI1 − I3d + 2I2s2j + hs1sI1 − I3d − 2I2s2j. s52d

Within our study,s1sI1− I3d tends to be much smaller than
2I2s2 for Edip,E,EZEP, which implies the importance of
the real part of the self-energys2 for the splitting. The sign
change ofG j happens when the impurity scattering is suffi-
ciently weak so that

usu2 = s1
2 + s2

2 , 1 s53d

is satisfied. WhenussE=Edipdu is a small value less than unity,
the effects of impurities are negligible and the conductance
almost remains unchanged from that in clean junctions. The
split also cannot be seen whenussE=EZEPdu is larger than
unity. An example is shown in Fig. 3(d), wherex0kF=12.0,
ViN0=0.1, andussE=EZEPdu is estimated to be 1.5. In this
case, the suppression of the zero-bias conductance dominates
over the widening of the ZBCP. As a result, the conductance
is always smaller than that in clean junctions and the ZBCP
remains in a single peak.

We should pay attention to the similarity in the shapes of
the conductance in the present theory and those in experi-
ments. Amazingly, the conductance structure in Fig. 3(a) is
very similar to that observed in the experiment.35 It is pos-
sible to find a very small conductance peak atV=0 in addi-
tion to the splitting peaks aroundV, ±1 mV in Fig. 2 of
Ref.35. The impurities away from the interface explain an-
other conductance shape in the experiment.8 The conduc-
tance structure in Fig. 2 of Ref. 8 is very similar to that in
Fig. 3(d). The present theory explains at least two typical
conductance shapes observed in the experiments.

As shown in Fig. 3, the magnitude of the impurity poten-
tial and the position of impurities are key factors for the
degree of splitting. In Fig. 5, the gray area indicates sets of
sViN0,x0kFd which satisfy Eq.(53) within Edip,E,EZEP.
The open circles denote sets of(sViN0,x0kFd, where we find
the split of the ZBCP in Eq.(51).

All the circles are inside the gray area. Although the
circles and the gray region do not perfectly coincide with
each other, they show qualitatively the same tendency. The
parameters used in Fig. 3 are indicated by filled squares.
Sinces at E=0 is proportional to the local density of states,
we also show theNssE=0,xd in Eq. (31). To satisfy Eq.(53),
impurities aroundx0,j0 should have sufficiently small scat-
tering potentials because the local density of states has large
values there. Thus the gray area appears for small impurity
potentials near the interface(i.e., x0&j0). The gray region
spreads to largerViN0 as the increase ofx0.j0 because the
local density of states becomes smaller. The results imply

FIG. 3. The conductance is plotted as a function of bias volt-
ages, wherez0=10 and ni =0.9. The parameters arex0kF=10,
ViN0=0.01 in (a), x0kF=2.0, ViN0=0.005 in (b), x0kF=26, ViN0

=0.1 in (c), andx0kF=12,ViN0=0.1 in (d). The broken lines denote
the conductance in clean junctions.

FIG. 4. The functionG jsEd is plotted as a function ofE for
severalx0kF at ViN0=0.01. The arrows indicateEdip. For x0kF=10,
Edip=0.001EZEP.
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that the strong impurities are not necessary for the split of the
ZBCP. It is evident that this phase diagram is valid in the
limit of high impurity density and the diagram would be
changed depending on the transmission probability of junc-
tions.

In Fig. 3, all impurities are aligned atxj =x0. In real junc-
tions, however, impurities may be distributed randomly near
the interface as shown in Fig. 1. The conductance in such
realistic junctions are shown in Fig. 6, where impurities are
distributed randomly in the range of 1,xjkF,LskF, ri
=NislF

2 /WLsd is the dimensionless area density of impurities
and z0=10. The conductance is calculated from the expres-
sion

GNS =
2e2

h
NcE

−`

`

dES ]fFDsE − eVd
]seVd

D 3 Fgs0d − ri
kFLs

p
kGlG ,

s54d

kGl =K 1

Ni
o
j=1

Ni

G jL , s55d

wherek…l represents the ensemble average. Since the con-
ductance in Eq.(45) is characterized by the number of im-
purities, a factorkFLs/p appears in Eq.(54). We choose
LskF=20 in Fig. 6 because we focus on the impurities near
the interface andj0kF,6.3. We consider low density strong
impurities in (a), whereViN0=0.1 andri =0.2. There is no
peak splitting in Fig. 6(a) because most impurities are out-
side of the gray region in Fig. 5. On the other hand, the
results in Fig. 6(b) show the split of the ZBCP atT=0, where
we consider high density weak impurities withViN0=0.02
and ri =0.6. This is because most impurities are inside the
gray region in Fig. 5. The splitting peaks merge into a single
peak under finite temperatures such asT=0.1EZEP. In Fig.
6(c), we show the temperature dependence of the zero-bias
conductance in Fig. 6(b). The results show the reentrant be-

havior of the zero-bias conductance, which was found in the
experiment.35 In Fig. 6(d), the peak positionsdeVd in (d) is
plotted as a function temperatures. SincedeV is about
0.15EZEP at T=0, peak splitting is washed out at high tem-
peratures such asT=0.11EZEP. High density impurities with
a weak random potential are responsible for the split of the
ZBCP in low transparent junctions.

Several experiments35,40show a sensitivity of the conduc-
tance peaks to external magnetic fields. Here we discuss the
conductance in the presence of magnetic fields. The effects
of magnetic fields are taken into account phenomenologi-
cally by using the Aharonov-Bohm-like phase shift72,73 of a
quasiparticle. Since the impurity scattering in magnetic fields
itself is a difficult problem to solve analytically, we neglect
the interplay between magnetic fields and impurity scatter-
ings. Within the phenomenological theory,73 effects of mag-
netic fields is considered by replacingE in Eq. (46) by E
+ uD0 cosg singufB as

gB
s0d =E

−p/2

p/2

dg
D0

2 cos7 g sin2 g

EB
2z0

4 + D0
2 cos6 g sin2 g

, s56d

EB = E + 2D0ucosg singufB, s57d

fB = 2p
Bj0

2

f0
tang = B0 tang, s58d

wheref0=2f"c/e and B0=1.0−3 corresponds toB=1 T. A
quasiparticle acquires the Aharonov-Bohm-like phase shift
fB while moving near the NS interface.73 In a previous pa-
per, we found that ZBCP in clean junctions remains a single
peak even in the strong magnetic fields73 as shown in Fig.
7(c), wherez0=10 andT=0.05EZEP. In Figs. 7(a) and 7(b),
we show the conductance in the presence of low density

FIG. 6. The conductance in the presence of impurities distrib-
uted randomly in the range of 1,xjkF,20, whereri is the dimen-
sionless area density of impurities near the interface. The conduc-
tance for low density strong impurities is shown in(a) with ViN0

=0.1 andri =0.2. The conductance for high density weak impurities
with ViN0=0.005 andri =0.6 are shown for several choices of tem-
peratures. The zero-bias conductance and the peak positions in(b)
are plotted as a function of temperatures in(c) and(d), respectively.

FIG. 5. A phase diagram for the split of the ZBCP. The gray area
indicates sets ofsViN0,x0kFd which satisfy Eq.(53). The open
circles denote sets ofsViN0,x0kFd, where we find the split of the
ZBCP in Eq.(51). The local density of state atE=0 in Fig. 2(b) is
also shown. The filled squares are parameters used for the conduc-
tance in Fig. 3.
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strong impurities and high density weak impurities, respec-
tively, whereVi and ri are same as those in Figs. 6(a) and
6(b), respectively. A temperature is fixed atT=0.05EZEP. In
contrast to clean junctions in Fig. 7(c), the ZBCP in disor-
dered junctions splits into two peaks under magnetic fields as
shown in Fig. 7(a). The results within the phenomenological
theory indicate that the sensitivity of the ZBCP to magnetic
fields depends on the degree of impurity scatterings. In the
insets, peak positionssdeVd are plotted with circles as a
function of magnetic fields. For high density weak impurities
in Fig. 7(b), we also found that the degree of peak splitting
increases with increasing magnetic fields. In the limit of the
strong fields,deV tends to saturate as shown in the inset.
These characteristic behavior are found in the experiment.35

Although we have explained the characteristic behavior of
the experimental conductance peaks under magnetic fields
well, the applicability of the phenomenological theory in the
presence of impurities is still unclear. This issue would be
addressed more clearly in an exact numerical simulation.

IV. DISCUSSION

In experiments, the split of the ZBCP has been reported in
overdoped high-Tc superconductors.38 The heavy carrier
doping may bring a number of defects or imperfections in
superconductors. It is evident that the impurity scattering is
unavoidable even in underdoped high-Tc superconductors.
The split of the ZBCP can be found in underdoped supercon-
ductors if they have bad sample quality. In the same way, the
split of the ZBCP would not be found even in overdoped
superconductors if their sample qualities are good enough.
The sample quality is a key factor for the spilt of the ZBCP.
This argument is consistent with an experiment,74 where the
potential disorder was artificially introduced to the NS junc-
tions by ion irradiation and washed out the ZBCP in the limit
of strong disorder.

In order to compare the theoretical results in this paper
with experiments, we may consider the impurity scattering in
normal metals. The total resistancesRd in the dirty normal-
metal/(110)-d-wave junction can be described simply byR
=RD+RNS,

75,76whereRD=1/GD is the resistance of the dirty
normal metal andGNS=1/RNS is the conductance discussed
in this paper. The equation indicates the absence of the prox-
imity effect in the dirty normal metal.77,78 The height of the
ZBCP can be reduced to reasonable values in the presence of
the impurity scattering in normal metals because the total
conductance is given by 1/sRD+RNSd. The degree of splitting
depends on parameters such as the potential of impurities
sVjd, the position of impuritiessxjd, and the transparency of
the junctionsTB,1/z0

2d. In particular,TB is the most impor-
tant parameter becauseEZEP=D0/z0

2,D0TB determines the
width of the ZBCP. As shown in Figs. 3 and 6, the degree of
splitting is roughly given by 0.1–0.4EZEP. Thus it is possible
to chooseTB to fit the degree of splitting with that found in
experiments. The amplitude of the pair potential is about
40 meV in typical high-Tc materials. The degree of splitting
is then estimated to be 0.4–1.6 meV forz0=3, which is al-
most consistent with that found in experiments, for instance,
2 meV.35 It is also necessary to consider electronic structures
of high-Tc materials for the quantitative agreement of the
splitting width in theories with those in experiments. Actu-
ally we have experienced in numerical simulations that the
peak splitting width seems to be larger when more realistic
electronic structures of high-Tc materials are taken into
account.50

In quasiclassical Green function theories, the conductance
is proportional to the density of states at the surface of su-
perconductors. We find that theE dependence of the density
of states at the interface in Eq.(33) is apparently different
from that of the conductance even in the clean junctions
shown in Eq. (46). We also find thatNssE,x=0d,N0

!NssE,x=j0d as shown in Fig. 2(b). The density of states
near the interface averaged overj0 in this paper may corre-
spond to the surface density of states in the quasiclassical
approximation, where the rapidly oscillating part of the wave
function is neglected and the smallest length scales is given
by j0. It is impossible to directly compare the present theory
with the quasiclassical Green function theories because the
position of impurities is a key parameter for the split of the
ZBCP in our theory.

The Abrikosov-Gor’kov (AG) theory79 is a useful ap-
proach to discuss the impurity scattering in superconductors.
The applicability of the AG theory is limited to the supercon-
ductivity in diffusive metals, where the mean free path is
much smaller than the size of the disordered region in super-
conductors. Here we briefly discuss the relation between the
AG theory and ours. Since the AG theory assumes the diffu-
sive transport regime, we define the mean free path of a
quasiparticle in the Born approximation

l = vFt, s59d

"

t
= 2pr̄iN0Vi

2, s60d

FIG. 7. The conductance under external magnetic fields for low
density strong impurities withViN0=0.1 andri =0.2 are shown in
(a), where T is fixed at 0.05EZEP. Those for high density weak
impurities with ViN0=0.005 andri =0.6 are shown in(b). In the
insets, peak positions are plotted as a function of magnetic fields.
The conductance of clean junctions is shown in(c).
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r̄i = Ni/WLs, s61d

where we considerW3Ls disordered region on two-
dimensional superconductor as in Fig. 6. The impurity den-
sity r̄i can be replaced by the dimensionless impurity density
ri =s2p /kFd2r̄i. The ratio of the mean free path and the co-
herence length is given by

l

j0
=

D0

mF

p

risN0Vid2 . s62d

In this paper,l /j0 is larger than unity even in the limit of
ri =1 because we assumeD0/mF=0.1 andN0Vi ,0.1. On the
other hand, the dirty limit is defined by the relationl /j0
!1. When we chooseLs to be a few coherence length as
shown in Fig. 6, whereLs,3j0, we find that l /Ls is still
larger than unity. The disordered region is not in the diffusive
regime but in the quasiballistic regime because the diffusive
regime is characterized by the relationl /Ls!1. Thus it is
basically impossible to apply the Abrikosov-Gor’kov theory
to the model in this paper. The scattering theory68 used in
this paper is a suitable analytic method to discuss the con-
ductance of such NS junctions. Although the impurity scat-
tering near the interface is very weak in normal states, it
drastically affects the conductance below the critical tem-
perature. Impurities located at the resonant states seriously
suppress the degree of the resonance even if their potentials
are weak. In the AG theory, the real part of the self-energy is
usually neglected. In our theory, this approximation corre-
sponds to an equations2=0. Howevers2 plays an important
role in the peak splitting. When we omits2, I2 and I3 must
also be zero, which leads to positiveG j and no splitting irre-
spective ofViN0 andxjkF.

We show that the impurity scattering causes the splitting
of the ZBCP. The conclusion, however, does not deny the
possibility of the BTRSS. In a previous paper,33 we assume
s+ id symmetry near the NS interface and numerically study
the tunneling conductance. The results show that the split of
the ZBCP is insensitive to the potential disorder. Thus peak
splitting would always be expected in low transparent
junctions31 if the BTRSS appears at the NS interface. At
present, we have only limited information on the BTRSS
within the mean-field theories. To understand the nature of
the BTRSS beyond mean-field theory, we have to analyze the
electronic structure of high-Tc superconductors based on mi-
croscopic models and make clear effects of the surface, the
electron correlation, and the random potentials on the super-
conducting state. This is an important problem for the future.

Since the formation of the ZES is a universal phenom-
enon in superconductors with unconventional pairing sym-
metries, the ZES is also expected at a surface of spin-triplet
superconductors.80 It would be interesting to study the effects
of impurities on transport properties in spin-triplet supercon-
ductor junctions.46,78,81–94

V. CONCLUSION

We have discussed effects of impurity scatterings on the
conductance in normal-metals/d-wave superconductor junc-
tions. The conductance is calculated from the Andreev and

normal reflection coefficients which are estimated by using
the single-site approximation. We consider impurities near
the junction interface on the superconductor side. The
strength of the impurity scattering strongly depends on the
transparency of the junction, the position of impurities, and
the energy of a quasiparticle because the ZES’s are formed at
the NS interface. We conclude that the impurity scattering
causes the split of the zero-bias conductance peak. The re-
sults are consistent with previous numerical simulations. We
have also shown that characteristic behaviors of the conduc-
tance spectra at finite temperatures and under external mag-
netic fields qualitatively agree with those reported in experi-
ments.

APPENDIX A: TRANSMISSION AND REFLECTION
COEFFICIENTS

In the clean NS junctions, the transmission and the reflec-
tion coefficients can be calculated from the appropriate
boundary condition of the wave function. The calculated re-
sults are shown below:

rNN
he sld =

k̄l
2

Jl

Dl

2
e−iw, sA1d

rNN
ee sld =

− iz0sk̄l − iz0d
Jl

E, sA2d

tSN
eesld =

k̄lsk̄l − iz0d
Jl

Eule
−iw/2, sA3d

tSN
hesld =

iz0k̄l

Jl
Evle

−iw/2, sA4d

rNN
eh sld =

− k̄l
2

Jl

Dl

2
eiw, sA5d

rNN
hh sld =

iz0sk̄l + iz0d
Jl

E, sA6d

tSN
hhsld =

k̄lsk̄l + iz0d
Jl

Eule
iw/2, sA7d

tSN
ehsld =

iz0k̄l

Jl
Evle

iw/2, sA8d

rSS
hesld =

k̄l
2 + 2z0

2

Jl

Dl

2
, sA9d

rSS
eesld =

− iz0sk̄l − iz0d
Jl

Vl , sA10d

tNS
eesld =

k̄lsk̄l − iz0d
Jl

Vlule
iw/2, sA11d
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tNS
hesld =

− iz0k̄l

Jl
Vlvle

−iw/2, sA12d

rSS
ehsld =

− sk̄l
2 + 2z0

2d
Jl

Dl

2
, sA13d

rSS
hhsld =

iz0sk̄l + iz0d
Jl

Vl , sA14d

tNS
hhsld =

k̄lsk̄l + iz0d
Jl

Vlule
−iw/2, sA15d

tNS
ehsld =

− iz0k̄l

Jl
Vlvle

iw/2, sA16d

Jl = Ez0
2 + k̄l

2SE + Vl

2
D . sA17d

For instance,tNS
he sld is the transmission coefficients from the

electron branch in a superconductor to the hole branch in a
normal metal. In the above coefficients, we use the relation
ql

±=kl
± .kl for simplicity. The conclusions in this paper re-

main unchanged in this approximation.

APPENDIX B: GREEN FUNCTIONS

The real space retarded Green function in clean junctions can be calculated by using the transmission and the reflection
coefficients in Appendix A. Forx,x8,0, the Green function from a normal metal to a normal metal is

Ĝ0
NNsr,r8d = − i

pN0

W o
ky

sld
eiky

sldsy−y8d 3 F 1

q+HS1 0

0 0
Deiql

+ux−x8u + S0 0

1 0
Deiql

−xe−iql
+x8rNN

he sld + S1 0

0 0
De−iql

+sx+x8drNN
ee sldJ

+
1

q−HS0 0

0 1
De−iql

−ux−x8u + S0 1

0 0
De−iql

+xeiql
−x8rNN

eh sld + S0 0

0 1
Deiql

−sx+x8drNN
hh sldJG , sB1d

N0 =
m

p"2 . sB2d

For x.x8.0, the Green function from a superconductor to a superconductor is

Ĝ0
SSsr,r8d = − i

pN0

W o
ky

sld
eiky

sldsy−y8d E

Vl
F̂F 1

k+HS ul
2 ulvl

ulvl vl
2 Deikl

+ux−x8u + S− ulvl vl
2

ul
2 − ulvl

De−ikl
−x+ikl

+x8rSS
hesld

+ S ul
2 − ulvl

ulvl − vl
2 Deikl

+sx+x8drSS
eesldJ +

1

k−HS vl
2 − ulvl

− ulvl ul
2 De−ikl

−ux−x8u + Sulvl ul
2

vl
2 ulvl

Deikl
+x−ikl

−x8rSS
ehsld

+ S− vl
2 − ulvl

ulvl ul
2 De−ikl

−sx+x8drSS
hhsldJGF̂*, sB3d

F̂ = Seisw/2d 0

0 e−isw/2d D , sB4d

wherew is the phase of a superconductor. Forx.0.x8, the Green function from a normal metal to a superconductor is

Ĝ0
SNsr,r8d = − i

pN0

W o
ky

sld
eiky

sldsy−y8d 3 F̂F 1

q+HSul 0

vl 0
Deikl

+x−iql
+x8tSN

eesld + S− vl 0

ul 0
De−ikl

−x−iql
+x8tSN

hesldJ
+

1

q−HS0 − vl

0 ul
De−ikl

−x+iq−x8tSN
hhsld + S0 ul

0 vl
Deikl

+x+iql
−x8tSN

ehsldJG . sB5d

For x,0,x8, the Green function from a superconductor to a normal metal is

Ĝ0
NSsr,r8d = − i

pN0

W o
ky

sld
eiky

sldsy−y8d E

Vl
3 F 1

k+HSul − vl

0 0
De−iql

+x+ikl
+x8tNS

eesld + S0 0

ul − vl
Deiq−lx+ikl

+x8tNS
hesldJ

+
1

k−HS0 0

vl ul
Deiql

−x−ikl
−x8tNS

hhsld + Svl ul

0 0
De−iql

+x−ikl
−x8tNS

ehsldJGF̂*. sB6d

Y. ASANO, Y. TANAKA, AND S. KASHIWAYA PHYSICAL REVIEW B 69, 214509(2004)

214509-10



*Electronic address: asano@eng.hokudai.ac.jp
1C. R. Hu, Phys. Rev. Lett.72, 1526(1994).
2S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys.63, 1641(2000).
3Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett.74, 3451(1995).
4S. Kashiwaya, Y. Tanaka, M. Koyanagi, H. Takashima, and K.

Kajimura, Phys. Rev. B51, 1350(1995).
5L. Alff, H. Takashima, S. Kashiwaya, N. Terada, H. Ihara, Y.

Tanaka, M. Koyanagi, and K. Kajimura, Phys. Rev. B55,
R14 757(1997).

6W. Wang, M. Yamazaki, K. Lee, and I. Iguchi, Phys. Rev. B60,
4272 (1999).

7J. Y. T. Wei, N.-C. Yeh, D. F. Garrigus, and M. Strasik, Phys. Rev.
Lett. 81, 2542(1998).

8I. Iguchi, W. Wang, M. Yamazaki, Y. Tanaka, and S. Kashiwaya,
Phys. Rev. B62, R6131(2000).

9J. Geerk, X. X. Xi, and G. Linker, Z. Phys. B: Condens. Matter
73, 329 (1988).

10Z. Q. Mao, M. M. Rosario, K. D. Nelson, K. Wu, I. G. Deac, P.
Schiffer, Y. Liu, T. He, K. A. Regan, and R. J. Cava, Phys. Rev.
B 67, 094502(2003).

11Y. S. Barash, H. Burkhardt, and D. Rainer, Phys. Rev. Lett.77,
4070 (1996).

12Y. Tanaka and S. Kashiwaya, Phys. Rev. B53, R11 957(1996).
13Y. Tanaka and S. Kashiwaya, Phys. Rev. B56, 892 (1997).
14Y. Tanaka and S. Kashiwaya, Phys. Rev. B58, R2948(1998).
15Y. Tanaka and S. Kashiwaya, J. Phys. Soc. Jpn.68, 3485(1999);

69, 1152(2000).
16Y. Asano, Phys. Rev. B64, 224515(2001).
17H. Arie, Y. Yasuda, H. Kobayashi, I. Iguchi, Y. Tanaka, and S.

Kashiwaya, Phys. Rev. B62, 11 864(2000).
18E. Il’ichev, V. Zakosarenko, R. P. IJsselsteijn, V. Schultze, H.-G.

Mayer, H. E. Hoenig, H. Hilgenkamp, and J. Mannhart, Phys.
Rev. Lett. 81, 894 (1998).

19E. Il’ichev, M. Grajcar, R. Hlubina, R. P. IJsselsteijn, H. E. Hoe-
nig, H.-G. Mayer, A. Golubov, M. H. S. Amin, A. M. Zagoskin,
A. N. Omelyanchouk, and M. Yu. Kupriyanov, Phys. Rev. Lett.
86, 5369(2001).

20S. Shirai, H. Tsuchiura, Y. Asano, Y. Tanaka, J. Inoue, Y. Tanuma,
and S. Kashiwaya, J. Phys. Soc. Jpn.72, 2299(2003).

21G. Testa, A. Monaco, E. Esosito, E. Sarelli, D.-J. Kang, E. J.
Tarte, S. H. Mennema, and M. G. Blamire, cond-mat/0310727
(unpublished).

22A. F. Andreev, Zh. Eksp. Teor. Fiz.46, 1823(1964) [Sov. Phys.
JETP 19, 1228(1964)].

23M. Fogelström, D. Rainer, and J. A. Sauls, Phys. Rev. Lett.79,
281 (1997); D. Rainer, H. Burkhardt, M. Fogelström, and J. A.
Sauls, J. Phys. Chem. Solids59, 2040(1998).

24Y. Tanaka, H. Tsuchiura, Y. Tanuma, and S. Kashiwaya, J. Phys.
Soc. Jpn.71, 271 (2002).

25Y. Tanaka, H. Itoh, H. Tsuchiura, Y. Tanuma, J. Inoue, and S.
Kashiwya, J. Phys. Soc. Jpn.71, 2005(2002).

26Y. Tanaka, Y. Tanuma, K. Kuroki, and S. Kashiwaya, J. Phys.
Soc. Jpn.71, 2102(2002).

27S. Kashiwaya, Y. Tanaka, M. Koyanagi, and K. Kjimura, J. Phys.
Chem. Solids56, 1721(1995).

28M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn.64, 4867(1995).
29Y. Tanuma, Y. Tanaka, M. Ogata, and S. Kashiwaya, J. Phys. Soc.

Jpn. 67, 1118(1998).
30Y. Tanuma, Y. Tanaka, M. Ogata, and S. Kashiwaya, Phys. Rev. B

60, 9817(1999).

31Y. Tanuma, Y. Tanaka, and S. Kashiwaya, Phys. Rev. B64,
214519(2001).

32I. Lubimova and G. Koren, cond-mat/0306030(unpublished).
33N. Kitaura, H. Itoh, Y. Asano, Y. Tanaka, J. Inoue, Y. Tanuma,

and S. Kashiwaya, J. Phys. Soc. Jpn.72, 1718(2003).
34R. B. Laughlin, Phys. Rev. Lett.80, 5188(1998).
35M. Covington, M. Aprili, E. Paraoanu, L. H. Greene, F. Xu, J.

Zhu, and C. A. Mirkin, Phys. Rev. Lett.79, 277 (1997).
36A. Biswas, P. Fournier, M. M. Qazilbash, V. N. Smolyaninova, H.

Balci, and R. L. Greene, Phys. Rev. Lett.88, 207004(2002).
37Y. Dagan and G. Deutscher, Phys. Rev. Lett.87, 177004(2001).
38A. Sharoni, O. Millo, A. Kohen, Y. Dagan, R. Beck, G. Deut-

scher, and G. Koren, Phys. Rev. B65, 134526(2002).
39A. Kohen, G. Leibovitch, and G. Deutscher, Phys. Rev. Lett.90,

207005(2003).
40L. H. Greene, P. Hentges, H. Aubin, M. Aprili, E. Badica, M.

Covington, M. M. Pafford, G. Westwood, W. G. Klempere, S.
Jian, and D. G. Hinks, Physica C387, 162 (2003).

41M. Aprili, E. Badica, and L. H. Greene, Phys. Rev. Lett.83, 4630
(1999).

42R. Krupke and G. Deutscher, Phys. Rev. Lett.83, 4634(1999).
43J. W. Ekin, Y. Xu, S. Mao, T. Venkatesan, D. W. Face, M. Eddy,

and S. A. Wolf, Phys. Rev. B56, 13 746(1997).
44A. Sawa, S. Kashiwaya, H. Obara, H. Yamasaki, M. Koyanagi, Y.

Tanaka, and N. Yoshida, Physica C339, 107 (2000).
45H. Aubin, L. H. Greene, S. Jian, and D. G. Hinks, Phys. Rev. Lett.

89, 177001(2002).
46T. Hirai, Y. Tanaka, N. Yoshida, Y. Asano, J. Inoue, and S. Kashi-

waya, Phys. Rev. B67, 174501(2003).
47N. Yoshida, Y. Asano, H. Itoh, Y. Tanaka, and J. Inoue, J. Phys.

Soc. Jpn.72, 895 (2003).
48Y. Asano and Y. Tanaka, Phys. Rev. B65, 064522(2002).
49Y. Asano, Phys. Rev. B63, 052512(2001).
50Y. Asano and Y. Tanaka,Toward the Controllable Quantum State,

edited by H. Takayanagi and J. Nitta(World Scientific, Sin-
gapore, 2003), p. 185.

51Y. S. Barash, A. A. Svidzinsky, and H. Burkhardt, Phys. Rev. B
55, 15 282(1997).

52A. A. Golubov and M. Y. Kupriyanov, Pis’ma Zh. Eksp. Teor.
Fiz. 69, 242 (1999) [JETP Lett. 69, 262 (1999)]; 67, 478
(1998) [67, 501 (1998)].

53A. Poenicke, Yu.S. Barash, C. Bruder, and V. Istyukov, Phys.
Rev. B 59, 7102(1999).

54K. Yamada, Y. Nagato, S. Higashitani, and K. Nagai, J. Phys. Soc.
Jpn. 65, 1540(1996).

55Y. Tanaka, Y. Tanuma, and S. Kashiwaya, Phys. Rev. B64,
054510(2001).

56T. Lück, U. Eckern, and A. Shelankov, Phys. Rev. B63, 064510
(2001).

57G. Eilenberger, Z. Phys.214, 195 (1968).
58A. I. Larkin and Yu. N. Ovchinikov, Zh. Eksp. Teor. Fiz.55,

2262 (1986) [Sov. Phys. JETP28, 1200(1968)].
59A. V. Zaitsev, Zh. Eksp. Teor. Fiz.86, 1742 (1984) [Sov. Phys.

JETP 59, 1015(1984)].
60A. L. Schelankov, J. Low Temp. Phys.60, 29 (1985).
61C. Bruder, Phys. Rev. B41, 4017(1990).
62P. A. Lee and D. S. Fisher, Phys. Rev. Lett.47, 882 (1981).
63G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515(1982).
64Y. Takane and H. Ebisawa, J. Phys. Soc. Jpn.61, 1685(1992).

SPLIT OF ZERO-BIAS CONDUCTANCE PEAK IN… PHYSICAL REVIEW B 69, 214509(2004)

214509-11



65P. G. deGennes,Superconductivity of Metals and Alloys(Ben-
jamin, New York, 1966).

66Y. Tanaka, T. Asai, N. Yoshida, J. Inoue, and S. Kashiwaya, Phys.
Rev. B 61, R11 902(2000).

67S. Nonoyama, A. Nakamura, Y. Aoyagi, T. Sugano, and A. Okiji,
Phys. Rev. B47, 2423(1993).

68Y. Asano and G. E. W. Bauer, Phys. Rev. B54, 11 602(1996);
54, 9972(E) (1997).

69Y. Tanuma, Y. Tanaka, M. Yamashiro, and S. Kashiwaya, Phys.
Rev. B 57, 7997(1998).

70Y. Tanaka and S. Kashiwaya, Phys. Rev. B53, 9371(1996).
71M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn.64, 1703(1995).
72Y. Asano, Phys. Rev. B61, 1732(2000); Y. Asano and T. Kato, J.

Phys. Soc. Jpn.69, 1125(2000); Y. Asano and T. Yuito, Phys.
Rev. B 62, 7477(2000).

73Y. Asano, Y. Tanaka, and S. Kashiwaya, Phys. Rev. B69, 134501
(2004).

74M. Aprili, M. Covington, E. Paraoanu, B. Niedermeier, and L. H.
Greene, Phys. Rev. B57, R8139(1998).

75Y. Tanaka, Yu. Nazarov, and S. Kashiwaya, Phys. Rev. Lett.90,
167003(2003).

76H. Kashiwaya, I. Kurosawa, S. Kashiwaya, A. Sawa, and Y.
Tanaka, Phys. Rev. B68, 054527(2003).

77Y. Asano, Phys. Rev. B64, 014511(2001).
78Y. Asano, J. Phys. Soc. Jpn.71, 905 (2002).
79A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii,Quan-

tum Field Theoretical Methods in Statistical Physics(Pergamon
Press, London, 1963).

80L. J. Buchholtz and G. Zwicknagl, Phys. Rev. B23, 5788(1981).
81M. Yamashiro, Y. Tanaka, and S. Kashiwaya, Phys. Rev. B56,

7847 (1997).
82M. Yamashiro, Y. Tanaka, Y. Tanuma, and S. Kashiwaya, J. Phys.

Soc. Jpn.67, 3224(1998).
83M. Yamashiro, Y. Tanaka, N. Yoshida, and S. Kashiwaya, J. Phys.

Soc. Jpn.68, 2019(1999).
84Y. Asano, Y. Tanaka, Y. Matsuda, and S. Kashiwaya, Phys. Rev. B

68, 184506(2003).
85N. Yoshida, Y. Tanaka, J. Inoue, and S. Kashiwaya, J. Phys. Soc.

Jpn. 68, 1071(1999).
86T. Hirai, N. Yoshida, Y. Tanaka, J. Inoue, and S. Kashiwaya, J.

Phys. Soc. Jpn.70, 1885(2001).
87Y. Tanuma, K. Kuroki, Y. Tanaka, and S. Kashiwaya, Phys. Rev.

B 64, 214510(2001).
88Y. Tanuma, K. Kuroki, Y. Tanaka, R. Arita, S. Kashiwaya, and H.

Aoki, Phys. Rev. B65, 064522(2002).
89Y. Tanaka, T. Hirai, K. Kusakabe, and S. Kashiwaya, Phys. Rev.

B 60, 6308(1999).
90C. Honerkamp and M. Sigrist, J. Low Temp. Phys.111, 898

(1998); Prog. Theor. Phys.100, 53 (1998).
91N. Stefanakis, Phys. Rev. B64, 224502(2001); J. Phys.: Con-

dens. Matter13, 3643(2001).
92K. Sengupta, I. Žutić, H.-J. Kwon, V. M. Yakovenko, and S. Das

Sarma, Phys. Rev. B63, 144531(2001).
93Y. Asano and K. Katabuchi, J. Phys. Soc. Jpn.71, 1974(2002).
94Y. Asano, Y. Tanaka, M. Sigrist, and S. Kashiwaya, Phys. Rev. B

67, 184505(2003).

Y. ASANO, Y. TANAKA, AND S. KASHIWAYA PHYSICAL REVIEW B 69, 214509(2004)

214509-12


