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Group expansions for impurities in superconductors
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A method is proposed for practical calculation of the effective interaction between impurity scatterers in
superconductors, based on algebraic properties of related Nambu matrices for Green functions. In particular,
we show that the density of states within thes-wave gap can have a nonzero contribution~impossible either in
Born or in T-matrix approximation! from nonmagnetic impurities with concentrationc!1, beginning from
;c3 order.
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I. INTRODUCTION

Impurity effects are at the center of interest in studies
superconducting~SC! materials, especially of those wit
high transition temperature~HTSC!. In the general theory o
disordered systems with disorder due to diluted impu
centers, the so-called group expansion~GE! method was pro-
posed as most consistent for quasiparticle Green func
~GF!,1 and it was also formulated for SC systems.2

The GE’s of different types~see below! are analogous to
the classical Ursell-Mayer group series in the theory of n
ideal gases,3 where the particular terms~the group integrals!
include physical interactions in groups of the given num
of particles. In the quantum theory of solids, GE includ
indirect interactions~dependent on the excitation energy«)
between the impurity centers, through the exchange by
tual excitations from~admittedly renormalized! band spec-
trum, so that each term corresponds to summation of cer
infinite series of diagrams. These expansions were elabor
in detail for various kinds of normal quasiparticle spect
where they define the interplay between extended and lo
ized states,4 however their usage in SC systems encoun
considerable technical difficulties due to existence of ano
lous GF’s.

The present paper is aimed on an efficient algorithm
resolving these difficulties. We develop a specific algebr
techniques to calculate Nambu matrices in various term
GE for the exemplary case ofs-wave symmetry of SC orde
parameter, permitting to explore the impurity effects in th
case beyond the scope of Anderson theorem.5 In particular,
we find that pair clusters of impurities~second term of GE!
cannot produce finite contribution into the quasiparticle d
sity of states~DOS! within thes-wave gap, alike the simples
effect of isolated impurities~first GE term!, but a nonzero
contribution into the in-gap DOS is already possible for t
third GE term~impurity triples!. These results allow also
straightforward extension to thed-wave symmetry, character
istic for doped HTSC materials~where the dopants not onl
supply the charge carriers but also play the role of impu
scatterers!.
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II. HAMILTONIAN AND GREEN FUNCTIONS

For description of electronic spectra in a SC system w
impurities, it is convenient to use the formalism of Nam
spinors: the row spinorck

†5(ak,↑
† ,a2k,↓) with Fermi opera-

tors ak,s and the respective column spinorck , writing the
Hamiltonian in a spinor form

Hsc5(
k Fck

†~jkt̂31Dkt̂1!ck2
1

N (
p,k8

ei (k2k8)pck8
† V̂ckG .

~1!

It includes the normal quasiparticle energyjk , the mean-
field gap functionDk , the Pauli matricest̂ j , and the pertur-
bation matrixV̂5VLt̂3. The impurity ~attractive! perturba-
tion on random sitesp with concentrationc5(p1/N!1 is
described by the Lifshitz parameterVL .

The energy spectrum of a Fermi system is describ
through the Fourier transformed two-time Green functio
~GF’s!:6

^^aub&&«5 i E
2`

0

ei («2 i0)t^$a~ t !,b~0!%&dt, ~2!

where^•••& is the quantum statistical average and$•••% is
the anticommutator of operators in Heisenberg represe
tion. For the system, Eq.~1!, we define the 232 Nambu
matrix of GF’s,

Ĝk,k85^^ckuck8
† &&. ~3!

The matrix elements in the expanded form of Eq.~3! are the
well-known Gor’kov normal and anomalous functions.7 In
what follows, we distinguish between the Nambu indicesN
indices! and the quasimomentum indices (m indices! in this
matrix.

In the absence of impurities, the explicit form of the m
trix, Eq. ~3!, turns intoĜk,k8→dk,k8Ĝk

0 , where the nonper-
turbed (m-diagonal! GF matrix

Ĝk
05

«1jkt̂31Dkt̂1

«22Ek
2

~4!
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involves the SC quasiparticle energyEk5Ajk
21Dk

2. The rel-
evant physical properties of SC state are suitably expre
in terms of these GF’s. For instance, the single-particle DO
related to the electronic specific heat, is given by

r~«!5
1

pN (
k

Tr Im Ĝk, ~5!

whereĜk[Ĝk,k is them-diagonal GF.
Now we pass to calculation of GF’s in SC systems

finite concentrationc of impurity centers and analyze explic
structure of corresponding GE’s.

III. GROUP EXPANSIONS FOR SELF-ENERGY

We derive GE’s for the system defined by the Hamilton
equation~1!, starting from the Dyson equation of motion fo
a matrix GF:

Ĝk,k85Ĝk
0dk,k82

1

N (
p,k9

ei (k92k8)pĜk
0V̂Ĝk9,k8 . ~6!

A routine consists in consecutive iterations of the same eq
tions for the GF’s in the ‘‘scattering’’ terms of Eq.~6! and
separating systematically those already present in the p
ous iterations.1 Thus, for them-diagonal GFĜk , we first
separate the scattering term with the functionĜk itself from
those withĜk8,k , k8Þk:

Ĝk5Ĝk
02

1

N (
k8,p

ei (k2k8)pĜk
0V̂Ĝk8,k

5Ĝk
02cĜk

0V̂Ĝk2
1

N (
k8Þk,p

ei (k2k8)pĜk
0V̂Ĝk8,k . ~7!

Then for eachĜk8,k , k8Þk we write down Eq.~6! again and
single out the scattering terms withĜk andĜk8,k in its right-
hand side~rhs!,

Ĝk8,k52
1

N (
k9,p8

ei (k82k9)pĜk8
0 V̂Ĝk9,k

52cĜk8
0 V̂Ĝk8,k2

1

N
ei (k82k)pĜk8

0 V̂Ĝk

2
1

N (
p8Åp

ei (k82k)p8Ĝk8
0 V̂Ĝk

2
1

N (
k9Þk,k8;p8

ei (k82k9)p8Ĝk8
0 V̂Ĝk9,k . ~8!

Note that, among the terms withĜk , the p85p term @the
second in rhs of Eq.~8!# bears the phase factorei (k82k)p, so
it is coherent to that already figured in the last sum in Eq.~7!.
That is why this term is explicitly separated from other, i
coherent ones,}ei (k82k)•p8, p8Þp @but there will be no such
separation when doing first iteration of Eq.~6! for the
m-nondiagonal GFĜk9,k itself#.
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Continuing the sequence, we collect the terms with
initial function Ĝk which result from~i! all multiple scatter-
ings on the same sitep and ~ii ! such processes on the sam
pair of sitesp and p8Þp. Then summation inp of the ~i!
terms gives rise to the first term of GE, and, if the p
processes were neglected, it would coincide with the w
known result of self-consistentT-matrix approximation.8 The
second term of GE, obtained by summation inp,p8Þp of the
~ii ! terms, contains certain interaction matricesÂp8,p gener-
ated by the multiply scattered functionsĜk8,k , k8Þk, etc.
~including their own renormalization!. For instance, the iter-
ated equation of motion for a functionĜk9,k with k9Þk,k8
in the last term of Eq.~7! will produce

Ĝk9,k52
1

N (
k-,p9

ei (k92k-)p9Ĝk9
0 V̂Ĝk-,k

52
ei (k92k)•p

N
Ĝk9

0 V̂Ĝk2
ei (k92k)p8

N
Ĝk9

0 V̂Ĝk

1 terms with Ĝk8,k and Ĝk9,k

1 terms with Ĝk-,k ~k-Þk,k8,k9!. ~9!

Consequently, we obtain the solution for anm-diagonal GF
as

Ĝk5Ĝk,k5@~Ĝk
0!212Ŝk#21, ~10!

with the matrix GE for the renormalized self-energy matr

Ŝk5cT̂F11c(
nÞ0

~Â0,ne
2 ikn1Â0,nÂn,0!~12Â0,nÂn,0!

21

1•••G . ~11!

Here T̂52V̂(11ĜV̂)21 is the renormalizedT matrix,
and the indirect interaction~mediated by the quasiparticle
of host crystal! between two impurities at lattice sites 0 an
n is described by the matrixÂ0,n5N21(k8Þke

ik8nĜk8T̂,
with the sum in quasimomenta restricted due to the ab
algorithm of separation. There are even more su
restrictions in each product of these matrices:Â0,nÂn,0

5N22(k8Þk(k9Þk,k8e
i (k82k9)nĜk8T̂Ĝk9T̂, and so on. This

seems to seriously hamper calculation of the sum(nÞ0 in
Eq. ~11! ~not to say about higher GE terms!. However, the
difficulty is avoided, taking into account the identities fo
first two terms of its expansion,1

(
nÞ0

Â0,ne
2 ikn52Â0,01(

n
Â0,ne

2 ikn

52Â0,01
1

N (
n

(
k8Þk

ei (k82k)nĜk8T̂

52Â0,0

and
8-2
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(
nÞ0

Â0,nÂn,052Â0,0
2 1(

n
Â0,nÂn,0

52Â0,0
2 1

1

N2 (
n

(
k8,k9Þk8

ei (k82k9)nĜk8T̂Ĝk9T̂

52Â0,0
2 ,

due to the momentum independence ofT matrix, and the fact
that the restrictions can be simply ignored in the higher pr
ucts, such as

(
nÞ0

Â0,nÂn,0Â0,ne
2 ikn

52Â0,0
3 1(

n
Â0,nÂn,0Â0,ne

2 ikn

52Â0,0
3 1

1

N3 (
n

(
k8,k9Þk8

ei (k82k91k-2k)n

3Ĝk8T̂Ĝk9T̂Ĝk-T̂

52Â0,0
3 1

1

N2 (
k8,k9

Ĝk8T̂Ĝk9T̂Ĝk2k81k9T̂,

etc. Thus we arrive at the final form for the renormalized G

Ŝk5cT̂F12cÂ0,02cÂ0,0
2 1c(

nÞ0
~Â0,n

3 e2 ikn1Â0,n
4 !

3~12Â0,n
2 !211•••G , ~12!

where Â0,n5Ĝ0,nT̂ and the renormalized local GF matrice
Ĝ0,n5N21(ke

iknĜk and Ĝ5Ĝ0,0 are already free from re
strictions. The two terms, next to unity in the brackets in E
~12!, correspond to the excluded double occupancy of
same site by impurities, the sum innÞ0 describes the aver
aged contribution of all possible impurity pairs, and t
dropped terms are for triples and more of impurities.

An alternative routine for Eq.~6! consists in its iteration
for all the termsĜk9,k and summing the contributions}Ĝk

0 ,
like the first term in rhs of Eq.~6!. This finally leads to the
solution of form

Ĝk5Ĝk
01Ĝk

0Ŝk
0Ĝk

0 , ~13!

with the nonrenormalized self-energy matrix

Ŝk
05cT̂0H 11c(

nÞ0
@Â0,n

0 e2 ikn1~Â0,n
0 !2#@12~Â0,n

0 !2#21

1•••J , ~14!

and the respective elementsT̂052V̂(11Ĝ0V̂)21, Â0,n
0

5Ĝ0,n
0 T̂0, Ĝ0,n

0 5N21(ke
iknĜk

0 andĜ05Ĝ0,0
0 .
21450
-
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Presenting GF’s in the disordered system in the form
GE’s generally leads to respective expansions for its obs
able characteristics. For instance, the impurity perturb
DOS is expected in the formr(«)5r0(«)1r1(«)1r2(«)
1•••, related to contributions of pure crystal, isolated im
purities, impurity pairs, etc.

However, usage of each type of GE, the renormaliz
equation~12! or the nonrenormalized Eq.~14!, is only justi-
fied if they are convergent~at least, asymptotically!. Since
the matricesT̂ and Â are energy dependent, convergence
each type of GE is restricted to certain energy ranges,
these ranges are generally different. For a number of nor
systems with impurities, where GE’s are constructed of s
lar functionsA0,n , it was shown that the renormalized G
converges within the region of bandlike states, well char
terized by the wavevector, and the nonrenormalized GE d
within the region of localized states.4 To get quantitative es-
timates of convergence and higher order contributions
self-energy, operating with the matrix functionsÂ0,n in Eqs.
~12! and ~14!, a special technique is necessary that we c
struct below.

IV. ALGEBRAIC TECHNIQUES FOR NAMBU MATRICES

Let us explicitly calculate the elements of above defin
GE’s for the simplests-wave symmetry of the SC gap func
tion: Ds(k)5D. The unperturbed local GF matrix is obtaine
as an expansion in Pauli matrices:

Ĝ052~«1Dt̂1!g02g3t̂3 , ~15!

where

g0~«!5
prF

2AD22«2
,

defines the s-wave DOS in pure crystal, r0(«)
5(2/p)Img0(«) ~with the Fermi DOSrF of normal quasi-
particles!, and the electron-hole asymmetry factor,

g3~«!5
1

N (
k

jk

Ek
22«2

'
1

N (
k

jk

Ek
2
;rF ,

is almost constant and real for relevant energies,«2;D2.
Then we readily calculate the nonrenormalizedT matrix

T̂05
2

prF

v

11v2 S t̂31v
«2Dt̂1

AD22«2D , ~16!

with the dimensionless perturbation parameter

v5
p

2

VLrF

12VLg3
.

Since the denominator 11v2 in Eq. ~16! cannot be zero, the
quasiparticle localization on a single impurity center in t
considereds-wave superconductor turns impossible.2 If the

self-energy is approximated by the first term of GE,Ŝk

'cT̂0, then Eq.~16! used in Eq.~13! and in Eq.~5! leads to
8-3
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the same DOSr0(«) @that is,r1(«)[0] with the same gap
valueD as in pure crystal. This justifies Anderson’s theore5

within T-matrix approximation for ans-wave SC with point-
like impurity perturbations.

However, even if there is no in-gap poles in the sing
impurity T-matrix term, they can appear in the followin
terms of GE, that would describe localized states on impu
clusters.4 Thus, the pair contribution,

r2~«!5
c2

pN (
k,nÞ0

Tr Im Ĝk
0T̂0@Â0,n

0 coskn1~Â0,n
0 !2#

3@12~Â0,n
0 !2#21Ĝk

0t̂3 , ~17!

should only follow from the poles of@12(Â0,n
0 )2#21, since

the matrixÂ0,n
0 («) is real at«2,D2.

In fact, the long distance asymptotics of this matrix~at
n@a) is,

Â0,n
0 '2F0,n~«!S coswn1

«t̂32 iDt̂2

AD22«2
sinwnD , ~18!

wherewn5kFunu1d and the particular forms for the scala
‘‘ envelop’’ function F0,n(«) and the phase shiftd depend on
the system dimensionality:

F0,n~«!5
v

A11v2

A2e2unu/r «

ApkFunu
, cotd5

12v
11v

, ~19!

for two dimensional~2D!, and

F0,n~«!5
v

A11v2

e2unu/r «

kFunu
, cotd51/v, ~20!

for three dimensional~3D!, with the energy dependent deca
length r «5a2kF /(prFAD22«2).

The following analysis is essentially simplified, introdu
ing matrices of the structure:

M̂ ~a,b!5a1b
«t̂32 iDt̂2

AD22«2
, ~21!

which form a closed algebra with the product rule for thea,b
components:

M̂ ~a,b!M̂ ~a8,b8!5M̂ ~aa82bb8,ab81ba8!. ~22!

In this notation, the interaction matrices, Eq.~18!, are pre-
sented as

Â0,n
0 'F0,nM̂ ~coswn ,sinwn!, ~23!

and then Eq.~22! implies an important formula for thei
arbitrary product

)
i 51

q

Â0,ni
5S )

i 51

q

F0,ni D M̂ S cos(
i 51

q

wni
,sin(

i 51

q

wni D .

~24!
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This formula permits us to reduce an arbitrary polynomial
Â0,n matrices to a singleM̂ matrix whose arguments ar
polynomials ofF0,n functions. The next important propert
of M̂ matrices is that the determinant

det@12M̂ ~a,b!#5~12a!21b2 ~25!

can be zero only if the components area51 andb50 si-
multaneously.

V. IMPURITY CLUSTERS AND IN-GAP DENSITY OF
STATES

The above developed techniques permit us to quantify
effects of impurity clusters in quasiparticle spectrum. Th
we conclude that the necessary condition for the pair con
bution, Eq.~17!,

det@12~Â0,n
0 !2#5det@12M̂ ~F0,n

2 cos 2wn ,F0,n
2 sin 2wn!#50

~26!

is only possible ifwn5pq, q51, 2, . . . , andF0,n
2 51. But,

since the exponential factore2unu/r «,1 in Eqs.~19! and~20!,
this requires that

2

p S v2

11v2D .pq2arctanS 11v
12v D ,

for 2D, or

v2

11v2
.pq2arctanv,

for 3D, which cannot be fulfilled at anyv andq>1. Hence
there is no contribution to DOS within thes-wave gap from
impurity pairs @r2(«)[0#, the same as from the single
impurity T matrix, Eq.~16!.

FIG. 1. An example of simultaneous solution of the two con
tions,an,n851 andbn,n850, necessary for impurity triples to con
tribute into the in-gap DOS of a planar SC system. Inset: the cho
geometry of equilateral triangle 0,n,n8.
8-4
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But for the next, triple term of GE, which contains th
inverse of the matrix~see, e.g., Ref. 9!,

122Â0,n
0 Â0,n8

0 Ân,n8
0

2~Â0,n
0 !22~Â0,n8

0
!22~Ân,n8

0
!2

512M̂ ~an,n8 ,bn,n8!, ~27!

the conditions by Eq.~25!,

an,n852F0,nF0,n8Fn,n8cos~wn1wn81wn2n8!1F0,n
2 cos 2wn

1F0,n8
2 cos 2wn81Fn,n8

2 cos 2wn2n851,

bn,n852F0,nF0,n8Fn,n8sin~wn1wn81wn2n8!1F0,n
2 sin 2wn

1F0,n8
2 sin 2wn81Fn,n8

2 sin 2wn2n850, ~28!

are already possible. The easiest localization of cours
expected at the very edge of the gap:«2→D2, where
e2unu/r «→1. Then, e.g., forv'1.728, it is achieved with
unu5un8u5un2n8u'0.566kF

21 ~Fig. 1! and, for close values
of v, it can be kept by small adjustments of the distanc
Close to such a pole, we can use the effective variables in
configuration space of triangles 0,n,n8,

r 5A~12an,n8!
21bn,n8

2 , u5arctanbn,n8 /~12an,n8!,

and a certainz, independent ofr , u, arriving at the genera
form for r3(«) as an integral

r3~«!5c3 ImE F~r ,u,z!

r
dr du dz

52pc3E F~0,u,z!du dz.
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