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Group expansions for impurities in superconductors
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A method is proposed for practical calculation of the effective interaction between impurity scatterers in
superconductors, based on algebraic properties of related Nambu matrices for Green functions. In particular,
we show that the density of states within taeave gap can have a nonzero contributionpossible either in
Born or in T-matrix approximatiop from nonmagnetic impurities with concentratior< 1, beginning from

~c® order.
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I. INTRODUCTION II. HAMILTONIAN AND GREEN FUNCTIONS

For description of electronic spectra in a SC system with
Impurity effects are at the center of interest in studies ofimpurities, it is convenient to use the formalism of Nambu
superconducting(SC) materials, especially of those with spinors: the row SpinOJJE:(aE,T ,a_ ) with Fermi opera-
high transition temperatur@¢iTSC). In the general theory of tors a, , and the respective column spingy, writing the
disordered systems with disorder due to diluted impurityHamiltonian in a spinor form
centers, the so-called group expandiGif) method was pro- 1
posed as most consistent for quasiparticle Green functiony; _ tog - _ = i(k=k")p, T\
(GP),* and it was also formulated for SC systefns. Hsc ; Yil&rst M) E € VeV
The GE's of different typegsee below are analogous to D
Fhe classical Ursell-Mayer group series in the thgory of NOM¢ includes the normal quasiparticle energy, the mean-
ideal gase$,where the particular termghe group integrals . _ . .~
include physical interactions in groups of the given numbef'€!d 9ap f””CE'O”Ak; the Pauli matrices; , and the pertur-
of particles. In the quantum theory of solids, GE includesPation matrixV=V, 5. The impurity (attractive perturba-
indirect interactiongdependent on the excitation energy ~ tion on random sitep with concentrationc=Z2,1/N<1 is
between the impurity centers, through the exchange by virdescribed by the Lifshitz paramete . , _
tual excitations from(admittedly renormalizedband spec- The energy spectrum of a Fermi system is described
trum, so that each term corresponds to summation of certaz%ro,ug_g the Fourier transformed two-time Green functions
infinite series of diagrams. These expansions were elaborat F's):
in detail for various kinds of normal quasiparticle spectra, 0
where they define the interplay between extended and local- {a| b>>8=iJ e =10 fa(t),b(0)})dt, 2
ized state$,however their usage in SC systems encounters -
considerable technical difficulties due to existence of anomawhere(- - -) is the quantum statistical average gnd-} is
lous GF's. the anticommutator of operators in Heisenberg representa-
The present paper is aimed on an efficient algorithm fottion. For the system, Eq.l), we define the X2 Nambu
resolving these difficulties. We develop a specific algebraignatrix of GF’s,
techniques to calculate Nambu matrices in various terms of R
GE for the exemplary case sfwave symmetry of SC order G ={((d ). 3
parameter, permitting to explore the impurity effects in this
case beyond the scope of Anderson theotdm particular,
we find that pair clusters of impuritigsecond term of GE

cgnnot produce f|n|te_z c_ontrlbutlon into the qua5|par_t|cle den'lndices and the quasimomentum indices gndices in this
sity of stategDOS) within thes-wave gap, alike the simplest 1 a¢ix.

effect of isolated impuritiegfirst GE term, but a nonzero In the absence of impurities, the explicit form of the ma-
cqntribution intp the.in—ggp DOS is already possible for thetrix, Eq. (3), turns intoék vy k,ég, where the nonper-
third GE term(impurity triples. These results allow also a turbed n-diagonal GF matrix

straightforward extension to tltewave symmetry, character-

istic for doped HTSC materialavhere the dopants not only

supply the charge carriers but also play the role of impurity GP= >
scatterers e~ Ej

The matrix elements in the expanded form of E}).are the
well-known Gor’kov normal and anomalous functichin
what follows, we distinguish between the Nambu indicls (

e+ gk;3+ Ak;l
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involves the SC quasiparticle energy= §k+A2 The rel-
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Continuing the sequence, we collect the terms with the

evant physical properties of SC state are suitably expressduitial function G, which result from(i) all multiple scatter-
in terms of these GF’s. For instance, the single-particle DOSNgs on the same sie and (i) such processes on the same

related to the electronic specific heat, is given by
_ > TrimG 5
P(S)—m 2 Trim Gy, )

whereG, =G, is them-diagonal GF.

Now we pass to calculation of GF's in SC systems at

finite concentratiort of impurity centers and analyze explicit
structure of corresponding GE's.

Ill. GROUP EXPANSIONS FOR SELF-ENERGY

We derive GE's for the system defined by the Hamiltonian

equation(1), starting from the Dyson equation of motion for
a matrix GF:

l SO ’ A NS, A
= > e KIPENG o .
pk"

Gk =GRk — (6)

pair of sitesp andp’#p. Then summation irp of the (i)
terms gives rise to the first term of GE, and, if the pair
processes were neglected, it would coincide with the well-
known result of self-consistefftmatrix approximatiorf. The
second term of GE, obtained by summatiompjp’ # p of the

(ii) terms, contains certain interaction matri&a&vp gener-

ated by the multiply scattered functioﬁs(,,k, k' #k, etc.
(including their own renormalizationFor instance, the iter-

ated equation of motion for a functid®,» , with k”#k,k’
in the last term of Eq(7) will produce

S

km 7"

A " A

i(k”fk”’)p G Vka K

el (K'=k)p’

N

i(k"—k)-p
e N

G,.,VG

~0 & A
N K" k— GkHVGk

+ terms with G, and Gy

A routine consists in consecutive iterations of the same equa-

tions for the GF'’s in the “scattering” terms of Eq6) and

+ terms with G, (K”#K,k’ ,K"). (9)

separating systematically those already present in the previ-

ous iterations. Thus, for them-diagonal GFGk, we first
separate the scattering term with the funct®pitself from
those withG,, ,, k' #k:

A 1 ) NAA A
Gk:GE_ Nl 2 el(kik )pGEVGk/’k
k’.p
A PPN 1 : N A nA A
:G‘,z—ccsfzvek—N > ek KIENG,, . (7)
k' #k,p

Then for eaclék/,k, k’ #k we write down Eq(6) again and

single out the scattering terms wi, andékuk in its right-
hand side(rhs),

Gk’k___ >

k// !

i(k’ 7k”)pé2,\’\/éku’k

1
A0 A ' 20 A
_CGk,VGkr‘k—Nel(k k)ka;VGk

D

p*p
1

N

D' B0, U,

(k' — kM’ A0 &, A
el ~KIP'GL VG .
k"#k,k";p’

®)

Note that, among the terms wi,, the p’=p term [the

second in rhs of Eq8)] bears the phase factelt’ P, so

it is coherent to that already figured in the last sum in &y.
That is why this term is explicitly separated from other, in-
coherent onesze' '~k 'P" p’=p [but there will be no such
separation when doing first iteration of E¢) for the

mrnondiagonal GRS, . itself].

Consequently, we obtain the solution for ardiagonal GF
as

S (10

with the matrix GE for the renormalized self-energy matrix

Gr=GCx=[(G) -

2 1+CE (AO e ~ikn +A0n nO)(l AOn nO)_

4.

11)

Here T=—-V(1+GV)~! is the renormalizedT matrix,
and the indirect interactiofmediated by the quasiparticles
of host crystal between two impurities at lattice sites 0 and
n is described by the matrid,,=N"'Z, e "G, T,
with the sum in quasimomenta restricted due to the above
algorithm of separation. There are even more such
restrictions in each product of these matrices A, o
:N_szrikzkn;&k'krei(k,_k”)nékr-’[\-éku-’i—, and so on. This
seems to seriously hamper calculation of the st in

Eqg. (11) (not to say about higher GE terindHowever, the
difficulty is avoided, taking into account the identities for
first two terms of its expansioh,

> Agne = —Ag o+ > Agne
n+0 n

“ 1
__Ao,o+ﬁ > >

Nk’ #k

K -0nG, T

== Ao,o

and
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Presenting GF’s in the disordered system in the form of

go AO,nAn,OZ —A%,0+ ; AO,nAn,O GE’s generally leads to respective expansions for its observ-
able characteristics. For instance, the impurity perturbed
, 1 A aa DOS is expected in the fqrrp(s)=p0(s)+p1(s)+p2(s) .
A0 ot — > > el NG TG T +---, related to contributions of pure crystal, isolated im-
2 . . . .
N® kK eke purities, impurity pairs, etc.
~o However, usage of each type of GE, the renormalized
=—Aop

equation(12) or the nonrenormalized E@l4), is only justi-

due to the momentum independencd ahatrix, and the fact  fied if they are convergertat least, asymptotically Since
that the restrictions can be simply ignored in the higher prodthe matricesT andA are energy dependent, convergence of
ucts, such as each type of GE is restricted to certain energy ranges, and
these ranges are generally different. For a number of normal
Z A A A o-ikn systems with impurities, where GE’s are constructed of sca-
& on noAon€ lar functionsAy,,, it was shown that the renormalized GE
converges within the region of bandlike states, well charac-
terized by the wavevector, and the nonrenormalized GE does

_ _ A3 A A A —ikn

=~ Aot ; AonAnoAone within the region of localized statéslo get quantitative es-
timates of convergence and higher order contributions to

s 1 E 2 (K — K" +K" —K)n self-energy, operating with the matrix functioﬁ\g,n in Egs.

- AO ot E e e (12) and(14), a special technique is necessary that we con-

struct below.
X ék!-,l\-ékﬂ-’l\-ékm-,l\-
IV. ALGEBRAIC TECHNIQUES FOR NAMBU MATRICES
= AO o+ 2 G TG TGk sir T, Let us explicitly calculate the elements of above defined
"k GE’s for the simpless-wave symmetry of the SC gap func-

Et|on A (k)=A. The unperturbed local GF matrix is obtained

etc. Thus we arrive at the final form for the renormalized G
as an expansion in Pauli matrices:

Si=cl|1-chAyg-cAfgre 3 (AS,e"+AG,) G= (e +A71)00~0a7a, (19
n#
where
X(1=AZ) 1+, (12
| Gole) = ——a
N A - O™ 5 A2_ .2
whereAg,=Gp,T and the renormalized local GF matrices 2VAT-e

Gop=N"13,e""G, andG=G, are already free from re- defines the swave DOS in pure crystal, po(e)
strictions. The two terms, next to unity in the brackets in Eq.= (2/7)Imgg(e) (with the Fermi DOSpg of normal quasi-
(12), correspond to the excluded double occupancy of theparticleg, and the electron-hole asymmetry factor,

same site by impurities, the sumir# 0 describes the aver-

aged contribution of all possible impurity pairs, and the 1 & 1 &
dropped terms are for triples and more of impurities. ga(e)= N ; E2_82~ N ; EWPF’
An alternative routine for Eq(6) consists in its iteration K K
for all the termsGy  and summing the contributionsGy,  is almost constant and real for relevant energ@SﬁAz-.
like the first term in rhs of Eq(6). This finally leads to the ~ Then we readily calculate the nonrenormaliZechatrix
solution of form .
0_ 2 v - e—Am 16
G =G0+ 65060, 3 R A e
with the nonrenormalized self-energy matrix with the dimensionless perturbation parameter
A A « . « ~ \%
2R=cT0 1+ [AS e+ (A, 71— (A% p= o PE
n#0 ’ ’ ' 2 1_V|_gg
Since the denominator-v? in Eq. (16) cannot be zero, the
T (14) quasiparticle localization on a single impurity center in the

considereds-wave superconductor turns impossibl#. the
and the respective elemens’=—V(1+G%) !, A3, self-energy is approximated by the first term of GE,
=GJ,T°% G§,=N"13,e""GP and G°=GJ . ~cT?, then Eq.(16) used in Eq(13) and in Eq.(5) leads to
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the same DO%$(¢&) [that is,p;(e)=0] with the same gap This formula permits us to reduce an arbitrary polynomial of
valueA as in pure crystal. This justifies Anderson’s theotem AOn matrices to a singléVl matrix whose arguments are
within T-matrix approximation for as-wave SC with point-  polynomials of 7, functions. The next important property

like impurity perturbauons._ . . . of M matrices is that the determinant
However, even if there is no in-gap poles in the single-

impurity T-matrix term, they can appear in the following Y —(1—a)2+b2
terms of GE, that would describe localized states on impurity defl-M(ab)]=(1-a)"+b @9
clusters® Thus, the pair contribution, can be zero only if the components ae1 andb=0 si-

5 multaneously.

_¢ A 03-0r A0 A0 2
p2&)= 1 k%o TrIm G T Agpcoskn+ (Ao, V. IMPURITY CLUSTERS AND IN-GAP DENSITY OF
R o STATES
X[1—(A3,)?] *Gl7s, (17)
' The above developed techniques permit us to quantify the
should only follow from the poles c[fl—(Agyn)Z]*l, since  effects of impurity clusters in quasiparticle spectrum. Thus,
the matrix/:\gn(s) is real ate?< A2, we conclude that the necessary condition for the pair contri-

In fact, the long distance asymptotics of this matfat bution, Eq.(17),

n=>a) is, A0 12 ~ o o .
de[l_(AO,n) ]=def1- M(fo‘nCOS 2pp, a:’ro,nSln 2¢,)]1=0
50 eT3—iAT, (26)
Aon~~Fon(e)| COSent Az zon¢enl 18 only possible ifp,=7q, q=1,2, ..., andF5,=1. But,

since the exponential facter "/":< 1 in Eqgs.(19) and(20),
where ¢,=kgn|+ & and the particular forms for the scalar this requires that

“ envelog function Fy,(e) and the phase shi#i depend on

the system dimensionality: 2/ 2 14v
— 5| >mq—arctan —|,
v \/§e7|n|/r8 1—p T\ 1+v 1-v
Fon(e)= Vi+v? Jakdn| COt5:1-1—0’ (19 for 2D, or
for two dimensional2D), and 02
5> mq—arctan,
v e Inlir, 1+v

cotd=1f, 20 for 3D, which cannot be fulfilled at any andg=1. Hence

Fonle)= 07 el
there is no contribution to DOS within trewave gap from
for three dimensional3D), with the energy dependent decay impurity pairs [p,(¢)=0], the same as from the single-
lengthr ,=a%ke/(mpeAZ—€?). impurity T matrix, Eq.(16).
The following analysis is essentially simplified, introduc-

ing matrices of the structure: 0,08
i(ab)—atb AT 21
(al ) =a \/Kz_—sz ) ( ) 0.04
which form a closed algebra with the product rule for ¢éhb
components: 0.00
M(a,b)M(a’,b’)=M(aa’ —bb’,ab’ +ba’). (22
-0.04]
In this notation, the interaction matrices, EG8), are pre-
sented as
. R -0.08
A= FonM(cosen,siney), (23

and then Eq.(22) implies an important formula for their
arbitrary product

FIG. 1. An example of simultaneous solution of the two condi-

q q q q
H Ao n_=(H ]-"On_) M ( COSE gon_,sinE on |- tions, a, ,»=1 andb, ,»=0, necessary for impurity triples to con-
i=1 i=1 i=1 ! =1 tribute into the in-gap DOS of a planar SC system. Inset: the chosen
(24 geometry of equilateral triangler@n’.

214508-4



GROUP EXPANSIONS FOR.. .. P¥BICAL REVIEW B 69, 214508 (2004

But for the next, triple term of GE, which contains the Here the functionF(r,8,z)=2(a, 4cos8+b,sin6)J(r,6,2)
inverse of the matrixsee, e.g., Ref.)9 contains theM-algebra coefficients, 4, b, , for a certain

matrix numerator in the triple GE terfsee its explicit form

_oA0 A0 A0 A0 \2_ /A0 2_ /a0 2
1=2R0A0nAnn = (Aon) "= (Agp) "= (An o) in Ref. 9 and the Jacobiad(r, #,z) of transition fromn,n’

—1-M(a b, ) 27) to the effective variables. Apart from technical details of cal-
RILRLENS culation, this contribution~c3pg can be routinely obtained.
the conditions by Eq(25), It should be noted however that the above approach uses

the asymptotical form, Eq18), of interaction functions, so it

ann =2FonFon Fnn COL @nt @ni+ @n_n) + Fo,,COS 20, is only justified if the resulting poles, like that in Fig. 1, are

+J’C§Vn,cos 2‘Pn’+fﬁynrcosz@n—n':11 related to long distances>a. _Th|s is easily achieved if
ake<1 for the host crystal, as is the case for HTSC systems,
br = 2FonFon FnSIN @n+ @ns + ¢n—nr)+f§,n3in 20, but hardly _fo_r commors-wave superconductors. In the latter
case, the finite in-gap DOS should result more probably from
+f§vn,sin 2¢n,+fﬁ’n,sin 20, =0, (28 high enough terms of GE. Another important aspect is the

analysis of convergency of matrix GE’s, Eq&2) and (14),

ﬁermitting to distinguish between band-like and localized

e 1M1 Then, e.q., fow~1.728, it is achieved with spectrum areas in the nonuniform SC system. This can be

|n|—|n’|—|.n—n’|,~0.5.66<’1 (Fié 2 :';md for close values realized, using the above estimates for the nonrenormalized
—_ - ~VU. F . y . A~ A~ R . .

of v, it can be kept by small adjustments of the distancesfunCt'onSAg,n andT? as approximations for the renormalized

Close to such a pole, we can use the effective variables in thenesAy, andT in the region of band-like states>A.

are already possible. The easiest localization of course i
expected at the very edge of the gagP—A?, where

configuration space of trianglesnQn’, A similar algebraic techniques can be also developed for
the d-wave SC systems, related in that case to the impurity
r=y(1—a, )2+ bﬁ,n/, o=arctanb, , /(1—an ), resonance states. In this situation, the higher DOS correc-
and a certairz, independent of, 6, arriving at the general 10"SP2,... 10 nONZeropo+ py within the gap can be not so
form for ps(e) as an integral pronounced as for the.zero-backgr'ound case-whve sys-
pP3
tem. Nevertheless the important criteria for GE convergence
F(r,6,2) can be obtained, permitting a more consistent validation of
pa(s)=c® ImJ ———dr dé dz T-matrix approximation and demarcation between band-like
and localized states, compared to the recently suggested
:2wc3f F(0.6.2)d0 dz. g:}?ecrlron.l%ased on the phenomenological loffe-Regel
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