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We suppose that the doping of the two-dimensional(2D) hard-core(hc) boson system away from half-filling
may result in the formation of a multicenter topological inhomogeneity(defect), such as charge order(CO)
bubble domain(s) with Bose superfluid(BS) and extra bosons both localized in domain wall(s), or else in a
topological CO+BS phase separation rather than a uniform mixed CO+BS supersolid phase. Starting from the
classical model, we predict the properties of the respective quantum system. The long-wavelength behavior of
the system is believed to be reminiscent of that of granular superconductors, charge-density wave materials,
Wigner crystals, and multi-Skyrmion systems akin to the quantum Hall ferromagnetic state of a 2D electron
gas. To elucidate the role played by quantum effects and that of the lattice discreteness, we have addressed the
simplest nanoscopic counterpart of the bubble domain in the checkerboard CO phase of a 2D hc Bose-Hubbard
(BH) square lattice. It is shown that the relative magnitude and symmetry of a multicomponent order parameter
are mainly determined by the sign of the nearest-neighbor and next-nearest-neighbor transfer integrals. In
general, the topologically inhomogeneous phase of the hc-BH system away from the half-filling can exhibit the
signatures of thes, d, andp symmetries of the off-diagonal order.
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I. INTRODUCTION

The model of quantum lattice Bose gas has a long history
and has been suggested initially for conventional
superconductors,1 quantum crystals such as4He where su-
perfluidity coexists with a crystalline order.2,3 Afterwards,
the Bose-Hubbard(BH) model has been studied as a model
of the superconductor-insulator transition in materials with
local bosons, bipolarons, or preformed Cooper pairs.4,5 Two-
dimensional BH models have been addressed as relevant to
describe the superconducting films and Josephson junction
arrays. The most recent interest to the system of hard-core
bosons comes from the delightful results on Bose-Einstein
(BE) condensed atomic systems produced by trapping
bosonic neutral atoms in an optical lattice.6 The progress in
boson physics generates an especial interest around nonlinear
topological excitations(Skyrmions, vortices) which play an
increasingly significant role in physics.

One of the fundamental hotly debated problems in
bosonic physics concerns the evolution of the charge ordered
(CO) ground state of the two-dimensional(2D) hard-core
BH model (hc-BH) with a doping away from half-filling.
Numerous model studies steadily confirmed the emergence
of “supersolid” phases with simultaneous diagonal and off-
diagonal long-range order, while Penrose and Onsager7

showed as early as 1956 that supersolid phases do not occur.
The most recent quantum Monte Carlo(QMC)
simulations8–10 found two significant features of the 2D
Bose-Hubbard model with a screened Coulomb repulsion:
the absence of the supersolid phase at half-filling, and a
growing tendency to phase separationsCO+BSd upon dop-
ing away from half-filling. Moreover, Batrouni and Scalettar8

studied quantum phase transitions in the ground state of the
2D hard-core boson Hubbard Hamiltonian and have shown
numerically that, contrary to the generally held belief, the

most commonly discussed “checkerboard” supersolid is ther-
modynamically unstable and phase separates into solid and
superfluid phases. The physics of the CO+BS phase separa-
tion in the Bose-Hubbard model is associated with a rapid
increase of the energy of a homogeneous CO state with dop-
ing away from half-filling due to a large “pseudo-spin-flip”
energy cost. Hence, it appears to be energetically more fa-
vorable to “extract” extra bosons(holes) from the CO state
and arrange them into finite clusters with a relatively small
number of particles. Such a droplet scenario is believed to
minimize the long-range Coulomb repulsion. However, im-
mediately there arise several questions, such as can a simple
mean-field approximation(MFA) and classical continuum
model predict such a behavior? What is the detailed structure
of the CO+BS phase-separated state? What are the main
factors governing the essential low-energy and long-
wavelength physics? Is it possible to make use of simple toy
models? Are there analogies with the fermion Hubbard
model? The behavior of the latter under doping away from
half-filling is extensively studied in the last decade in the
stripe scenario which implies that doping may proceed
through the formation of stripes, or charged domain walls
being specific topological solitons in Néel antiferromagnets.
In particular, Emery and Kivelson11 argued that the phase
separation reflects a universal tendency of the correlated an-
tiferromagnet to expel the doped holes. White and
Scalapino12 showed that the pure 2Dt-J model, in the small-
J/ t regime, and with dopings nearx,0.1, has a striped
ground state. In general, the topological phase separation is
believed to be a generic property of the 2D fermion Hubbard
model.

In the paper we present a topological scenario of CO
+BS phase separation in the 2D hc-BH model with intersite
repulsion. The extra bosons/holes doped to a checkerboard
CO phase of the 2D boson system are believed to be con-
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fined in the ring-shaped domain wall of the Skyrmion-like
topological defect, which looks like a bubble domain in an
easy-axis antiferromagnet. This allows us to propose the
mechanism of 2D topological CO+BS phase separation
when the doping of the bare checkerboard CO phase results
in the formation of a multicenter topological defect, in which
the simplified pseudospin pattern looks like a system of
bubble CO domains with Bose superfluid confined in
charged ring-shaped domain walls.

The rest of the paper is organized as follows. In Sec. II we
give a short overview of the conventional hc-BH model in
the frame of a pseudospin formalism and MFA description.
In Sec. III we show that the doping in a 2D hc-BH system
can be accompanied by the formation of a topological defect
like a single or multicenter Skyrmion. We present the sce-
nario of the essential low-energy physics for the topologi-
cally doped hc-BH system. In Sec. IV we address a simple
model of a nanoscopic bubblelike domain in a checkerboard
CO phase for a discrete square lattice that allows us to dem-
onstrate the subtle microscopic structure of such a center
with a multicomponent order parameter.

II. HARD-CORE BOSE-HUBBARD MODEL

A. Effective Hamiltonian and pseudospin formalism

The Hamiltonian of a hard-core Bose gas on a lattice can
be written in a standard form as follows:

HBG = − o
i. j

ti j P̂sBi
†Bj + Bj

†BidP̂ + o
i. j

VijNiNj − mo
i

Ni ,

s1d

where P̂ is the projection operator that removes the double
occupancy of any site,Ni =Bi

†Bi, andm is the chemical po-
tential determined from the condition of a fixed full number
of bosonsNl =oi=1

N kNil or concentrationn=Nl /NP f0,1g.
The tij denotes an effective transfer integral andVij is an
intersite interaction between the bosons. HereB†sBd are the
Pauli creation(annihilation) operators, which are commuting
Bose-like for different sitesfBi ,Bj

†g=0, if i Þ j , fBi ,Bi
†g=1

−2Ni, Ni =Bi
†Bi; N is a full number of sites. It is worth noting

that near half-fillingsn<1/2d one might introduce the renor-
malizationNi → sNi −1/2d, or neutralizing background, that
immediately provides the particle-hole symmetry.

The model of hard-core Bose gas with an intersite repul-
sion is equivalent to a system of spinss=1/2 exposed to an
external magnetic field in thez direction. For the system with
a neutralizing background we arrive at an effective pseu-
dospin Hamiltonian

HBG = o
i. j

Jij
xyssi

+sj
− + sj

+si
−d + o

i. j

Jij
zsi

zsj
z − mo

i

si
z, s2d

where Jij
xy=2tij , Jij

z =Vij , s−=s1/Î2dB, s+=−s1/Î2dB†, sz

=−s1/2d+Bi
†Bi, s±= 7 s1/Î2dssx± ısyd.

In a linear approximation the Hamiltonian for the cou-
pling with an electromagnetic field reads as follows:

V̂int = o
i, j

t̂i jSsF j − Fidfŝi 3 ŝjgz −
1

2
sF j − Fid2sŝi · ŝjdD ,

s3d

sF j − Fid = −
q

"c
E

Ri

R j

Asr ddr , s4d

whereA is the vector potential, and integration runs over the
line binding thei and j sites,

sŝi · ŝjd =
1

2
sB̂i

†B̂j + B̂iB̂j
†d, fŝi 3 ŝjgz =

i

2
sB̂i

†B̂j − B̂iB̂j
†d.

s5d

However, the pseudospins are assumed to lie in thexy plane.
Then the boson current density operator may represent a sum
of the paramagnetic

j psRid =
q

"
o

j

t̂i jRi jfŝi 3 ŝjgz s6d

and diamagnetic

j dsRid = −
q

2"
o

j

t̂i jRi jsF j − Fidsŝi · ŝjd s7d

terms, respectively.

B. Uniform phases: Mean-field approximation

Below we make use of a conventional two-sublattice
MFA approach. For the description of the pseudospin order-
ing to be more physically clear, one may introduce two vec-
tors, the ferromagnetic and antiferromagnetic ones,

m =
1

2s
sks1l + ks2ld; l =

1

2s
sks1l − ks2ld; m2 + l2 = 1,

where m · l=0. For theplane where these vectors lie, one
may introduce a two-parametric angular description:
mx=sin a cosb, mz=−sin a sin b, lx=cosa sin b, lz
=cosa cosb. The hard-core boson system in a two-
sublattice approximation is described by two diagonal order
parameterslz,mz and two complex off-diagonal order param-
etersm±= 7 s1/Î2dsmx± ımyd and l±= 7 s1/Î2dslx± ılyd. The
complex superfluid order parameterCsr d= uCsr duexps−ıwd is
determined by the in-plane components of the ferromagnetic

vector:Csr d=s1/2dksB̂1+B̂2dl=sm−=sm' exps−ıwd, m' be-
ing the length of the in-plane component of the ferromag-
netic vector. So, for a local condensate density we getns
=s2m'

2 . It is of interest to note that, in fact, all the conven-
tional uniformT=0 states with nonzeroCsr d imply a simul-
taneous long-range order both for modulusuCsr du and phase
w. The in-plane components of the antiferromagnetic vector
l± describe a staggered off-diagonal order. It is worth noting
that by default, one usually considers the negative sign of the
transfer integraltij , which implies the ferromagnetic in-plane
pseudospin ordering.

The model exhibits many fascinating quantum phases and
phase transitions. Early investigations predict atT=0, charge
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order (CO), Bose superfluid(BS), and mixedsCO+BSd su-
persolid uniform phases with an Ising-type melting transition
(CO-NO) and Kosterlitz-Thouless-type(BS-NO) phase tran-
sitions to a nonordered normal fluid(NO).13 The detailed
mean-field and spin-wave analysis of the uniform phases of
2D hc-BH model is given by Pich and Frey.14 The MFA
yields for the conventional uniform supersolid phase are4

sin2b = mz

ÎV − 2t
ÎV + 2t

, sin2 a = mz

ÎV + 2t
ÎV − 2t

with a constant chemical potentialm=4sÎsV2−4t2d. It should
be noted that the supersolid phase appears to be unstable
with regard to small perturbations in the Hamiltonian. The
mean-field energy per site of the uniform supersolid phase is
written as follows:

ESS= ECO + smmz = ECO + mSnB −
1

2
D ,

whereECO=−2Vs2. The cost of doping both for the CO and
CO+BS phase appears to be rather high as compared with an
easy-plane BS phase at half-filling, where the chemical po-
tential turns into zero.15

III. DOPING OF THE BH SYSTEM AWAY FROM
HALF-FILLING: CONTINUOUS LIMIT

A. Topological phase separation: Skyrmion-like
bubble domains

Magnetic analogy allows us to make unambiguous predic-
tions regarding the doping of the BH system away from half-
filling. Indeed, the boson/hole doping of the checkerboard
CO phase corresponds to the magnetization of an antiferro-
magnet in thez direction. In the uniform easy-axislz phase of
an anisotropic antiferromagnet the local spin-flip energy cost
is rather big. In other words, the energy cost for boson/hole
doping into the checkerboard CO phase appears to be big
due to a large contribution of boson-boson repulsion. How-
ever, the magnetization of the anisotropic antiferromagnet in
an easy-axis direction may proceed as a first order phase
transition with a “topological phase separation” due to the
existence of antiphase domains.16 The antiphase domain
walls provide the natural nucleation centers for a spin-flop
phase having enhanced magnetic susceptibility as compared
with small if any longitudinal susceptibility, thus providing
the advantage of the field energy. Namely, domain walls
would specify the inhomogeneous magnetization pattern for
such an anisotropic easy-axis antiferromagnet in a relatively
weak external magnetic field. As concerns the domain type
in a quasi-two-dimensional antiferromagnet, one should em-
phasize the specific role played by the cylindrical, or bubble,
domains which have finite energy and size. These topological
solitons have the vortexlike in-plane spin structure and are
often named “Skyrmions.” The classical, or Belavin-
Polyakov(BP) Skyrmion17 describes the solutions of a non-
linear s model with a classical isotropic 2D Heisenberg
Hamiltonian, and represents one of the generic toy model
spin textures. It is of primary importance to note that

Skyrmion-like bubble domains in easy-axis layered antifer-
romagnets were actually observed in the experiments per-
formed by Waldner,18 which were supported later by differ-
ent authors(see, e.g., Refs. 19 and 20). Although some
questions were not completely clarified and remain open un-
til now,21,22 the classical and quantum23,24 Skyrmion-like to-
pological defects are believed to be a genuine element of
essential physics both of ferro- and antiferromagnetic 2D
easy-axis systems.

The magnetic analogy seems to be a little bit naive; how-
ever, it catches the essential physics of doping the hc-BH
system. As regards the checkerboard CO phase of such a
system, namely, a finite energy Skyrmion-like bubble
domain25 seems to be the most preferable candidate for the
domain with the antiphase domain wall providing the natural
reservoir for extra bosons. The classical description of non-
linear excitations in the hc-BH model includes the Skyrmi-
onic solution givenV=2t. 25 The Skyrmion spin texture con-
sists of a vortexlike arrangement of the in-plane components
of the ferromagneticm vector with the lz component re-
versed in the center of the Skyrmion and gradually increases
to match the homogeneous background at infinity. The sim-
plest spin distribution within the classical Skyrmion is given
as follows:

mx = m' cossw + w0d, my = m' sinsw + w0d,

m' =
2rl

r2 + l2, lz =
r2 − l2

r2 + l2 , s8d

wherew0 is a global phase[Us1d order parameter] andl is
the Skyrmion radius. The Skyrmion spin texture describes
the coexistence and competition of the staggered charge or-
der parameterlz and the BS order parameterm' (see Fig. 1)
that reflects a complex spatial interplay of potential and ki-
netic energies. The Skyrmion looks like a bubble domain in
an easy-axis magnet. It should be noted that the domain wall
in such a bubble domain somehow created in the checker-
board CO phase of the 2D hc-BH system represents an ef-
fective ring-shaped reservoir both for the Bose superfluid
and the extra boson/hole. Indeed, the soliton energy depends
quadratically on the numberDn of bosons bound in the do-
main wall,25 similar to that of the homogeneous BS phase.15

In other words, one might say this about a zero value of the
effective boson/hole chemical potential for the CO bubble
domain configuration, provided it was a ground state. The
numerical calculations performed in the classical continuous
model26 show that the doped bosons appear to be trapped
inside the bubble domain wall. The spatial distribution of the
doped boson/hole densitys~mzd in the charged Skyrmion is
shown schematically in Fig. 1(c).

Skyrmions are characterized by the magnitude and sign of
its topological charge, by its size(radius), and by the global
orientation of the spin. The scale invariance of the classical
BP Skyrmionic solution reflects this, in that its energy does
not depend on the radius and global phase. An interesting
example of topological inhomogeneity is provided by a mul-
ticenter BP Skyrmion,17 in which energy does not depend on
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the position of the centers. The latter are believed to be ad-
dressed as an additional degree of freedom, or positional
order parameter.

In the continuous model, the classical BP Skyrmion is a
topological excitation and cannot dissipate. However, the
classical static Skyrmion is unstable with regard to an exter-
nal field or anisotropic interactions, both of the easy-plane
and easy-axis types. Small easy-axis anisotropy or an exter-
nal field are sufficient to shrink the Skyrmion to a nano-
scopic size when the magnetic lengthl0,

l0 = fÎs2V/td2 − sm/td2 − 4g−1/2,

is of the order of several lattice parameters, and the continu-
ous approximation fails to correctly describe the excitations.
Nonetheless, Abanov and Pokrovsky27 have shown that the
easy-axis anisotropy together with the fourth-order exchange
term can stabilize the Skyrmion with radiusR~Îl0.

B. Topological phase separation: Skyrmion lattices
and the low-energy physics of the BH model

away from half-filling

A Skyrmionic scenario in the hc-BH model allows us to
make several important predictions. Away from half-filling
one may anticipate the nucleation of a topological defect in
the unconventional form of the multicenter Skyrmion-like
object with ring-shaped Bose superfluid regions positioned in
an antiphase domain wall, separating the CO core and the
CO outside of the single Skyrmion. The specific spatial sepa-
ration of BS and CO order parameters that avoid each other
reflects the competition of kinetic and potential energy. Such

a topologicalsCO+BSd phase separation is believed to pro-
vide a minimization of the total energy as compared with its
uniform supersolid counterpart. Thus, the parent checker-
board CO phase may gradually lose its stability under boson/
hole doping, while a topological self-organized texture is be-
lieved to become stable. The most probable possibility is that
every domain wall accumulates a single boson, or boson
hole. Then, the number of centers in a multicenter Skyrmion
nucleated with doping has to be equal to the number of
bosons/holes. In such a case, we anticipate the near-linear
dependence of the total BS volume fraction on the doping.
Generally speaking, one may assume the scenario where the
nucleation of a multicenter Skyrmion occurs spontaneously
with no doping. In such a case we should anticipate the ex-
istence of a neutral multicenter Skyrmion-like object with an
equal number of positively and negatively charged single
Skyrmions. However, in practice, namely the boson/hole
doping is likely to be a physically clear driving force for a
nucleation of a single, or multicenter Skyrmion-like self-
organized collective mode in the form of a multicenter
charged topological defect which may be(not strictly cor-
rectly) referred to as a multi-Skyrmion system akin to the
quantum Hall ferromagnetic state of a two-dimensional elec-
tron gas.28 In such a case, we may characterize an individual
Skyrmion by its position(i.e., the center of Skyrmionic tex-
ture), its size(i.e., the radius of domain wall), and the orien-
tation of the in-plane components of pseudospin[Us1d de-
gree of freedom]. An isolated Skyrmion is described by the
inhomogeneous distribution of the CO parameter, or stag-
gered boson densitylz, the order parametermz characterizing
the deviation from the half-filling, and them' that corre-
sponds only to the modulus of the superfluid order param-
eter.

It seems likely that for a light doping, any doped particle
(boson/holes) results in a nucleation of a new single-
Skyrmion state, hence its density changes gradually with par-
ticle doping. Therefore, as long as the separation between
Skyrmionic centers is sufficiently large so that the inter-
Skyrmion interaction is negligible, the energy of the system
per particle remains almost constant. This means that the
chemical potential of a boson or hole remains unchanged
with doping and hence apparently remains fixed.

The multi-Skyrmionic system, in contrast with the uni-
form ones, can form the structures with an inhomogeneous
long-range ordering of the modulus of the superfluid order
parameter, accompanied by the nonordered global phases of
single Skyrmions. Such a situation resembles, in part, that of
granular superconductivity.

In the long-wavelength limit, the off-diagonal ordering
can be described by an effective Hamiltonian in terms of the
Us1d (phase) degree of freedom associated with each Skyr-
mion. Such a Hamiltonian contains a repulsive, long-range
Coulomb part and a short-range contribution related to the
phase degree of freedom. The latter term can be written out
in the standard form for theXY model of a so-called Joseph-
son coupling

HJ = − o
ki,jl

Jij cosswi − w jd, s9d

where wi, w j are global phases for Skyrmions centered at
points i and j , respectively,Jij is the Josephson coupling

FIG. 1. The order parameters distribution in the Skyrmion:(a)
The radial distribution of the staggered charge order parameterlz;
(b) the radial distribution of the modulus of the superfluid order
parameterm'; (c) the radial distribution of the charge densitymz

for the charged Skyrmion;(d) the orientation of the superfluid order
parameterm' given two values of the phase order parameter
w0:w0=0,p /2, respectively. Rings in all the pictures correspond to
the Skyrmion (bubble domain) wall, the dashed circle being its
center.
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parameter. Namely, the Josephson coupling gives rise to the
long-range ordering of the phase of the superfluid order pa-
rameter in a multicenter Skyrmion. Such a Hamiltonian rep-
resents a starting point for the analysis of disordered super-
conductors, granular superconductivity, and an insulator-
superconductor transition with anki , jl array of
superconducting islands with phaseswi, w j. Calculating the
phase-dependent part of Skyrmion-Skyrmion interaction,
Timm et al.29 arrived at anegativesign of Jij that favors
antiparallel alignment of theUs1d pseudospins. In other
words, two Skyrmions are believed to form a peculiar Jo-
sephsonp microjunction. There are a number of interesting
implications that follow directly from this result:30 the spon-
taneous breaking of time-reversal symmetry with nonzero
supercurrents and magnetic fluxes in the ground state, the
long-time tails in the dynamics of the system, the unconven-
tional Aharonov-Bohm periodhc/4e, and negative magne-
toresistence.

To account for Coulomb interaction and to allow for
quantum corrections, we should introduce into the effective
Hamiltonian the charging energy30

Hch = −
1

2
q2o

i,j
nisC−1di jnj ,

whereni is a boson number operator for bosons bound in the
ith Skyrmion; it is quantum-mechanically conjugated to
w :ni =−i ] /]wi, sC−1di j stands for the capacitance matrix,q
for bosonic charge.

The classical ground-state energy of the Skyrmion lattice
for all reasonable two-dimensional lattice structures was
minimized by Timm et al. taking the Us1d order into
account.29 Besides the expected triangular lattice with frus-
trated antiferromagneticUs1d order and the square lattice
with NéelUs1d order, the authors have also obtained ground-
state energies for all 2D Bravais lattices. Such a system ap-
pears to reveal a tremendously rich quantum-critical struc-
ture. In the absence of disorder, theT=0 phase diagram of
the multi-Skyrmion system implies either triangular or
square crystalline arrangements(Skyrmion, or bubble crys-
tal) with a possible melting transition to a Skyrmion(bubble)
liquid (see Fig. 2). The melting of the Skyrmion lattice is
successfully described by applying the Berezinsky-
Kosterlitz-Thouless(BKT) theory to dislocations and discli-
nations of the lattice and it proceeds in two steps. The first
implies the transition to a liquid-crystal phase with short-
range translational order, the second does the transition to
isotropic liquid. Disorder pins the Skyrmion lattice and also
causes the crystalline order to have a finite correlation
length. For such a system, provided the Skyrmion positions
are fixed at all temperatures, the long-wavelength physics
would be described by anXY model with an expectable BKT
transition and a gaplessXY spin-wave mode.

The classical phase diagram of the Skyrmion lattice is
quite rich. Depending on the relation between Coulomb and
Josephson coupling and density one may arrive at different
lattice structures with continuous or first-order phase transi-
tions. As regards the superfluid properties, the Skyrmionic
system reveals unconventional behavior with two critical

temperaturesTBSø t andTcøJ, TBS being the temperature of
the ordering of the modulus andTc,TBS, that of the phase of
order parameterC. The low-temperature physics in Skyr-
mion crystals is governed by an interplay of two BKT tran-
sitions, for theUs1d phase and for positional degrees of free-
dom, respectively.29 Dislocations in most Skyrmion lattice
types lead to a mismatch in theUs1d degree of freedom,
which makes the dislocations bind fractional vortices and
lead to a coupling of translational and phase excitations.
Both BKT temperatures either coincide(square lattice) or the
melting one is higher(triangular lattice).29 Quantum fluctua-
tions can substantially affect these results. Quantum melting
can destroyUs1d order at sufficiently low densities, where
the Josephson coupling becomes exponentially small. A simi-
lar situation is expected to take place in the vicinity of struc-
tural transitions in a Skyrmion crystal. With the increasing of
the Skyrmion density, the quantum effects result in a signifi-
cant lowering of the melting temperature as compared with
classical square-root dependence. The resulting melting tem-
perature can reveal an oscillating behavior as a function of
particle density with zeros at the critical(magic) densities
associated with structural phase transitions.

In terms of our model, the positional order corresponds to
an incommensurate charge density wave, while theUs1d or-
der does so to a superconductivity. In other words, we arrive
at a subtle interplay between two orders. The superconduct-
ing state evolves from a charge order withTCøTm, whereTm
is the temperature of a melting transition that could be
termed as a temperature of the opening of the insulating gap
(pseudogap?).

The normal modes of a dilute Skyrmion system(multi-
center Skyrmion) include the pseudospin waves propagating
in between the Skyrmions, the positional fluctuations, or
phonon modes of the Skyrmions, which are gapless in a pure
system, but gapped when the lattice is pinned, and, finally,
fluctuations in the Skyrmionic in-plane orientation and size.
The latter two types of fluctuation are intimitely connected,
since thez component of the spin and the orientation are
conjugate coordinates because of commutation relations of
quantum angular momentum operators. So, rotating a Skyr-

FIG. 2. Bubble textures for the bubble liquid and bubble crystal.
The arrows show the global phase order parameter. The left-hand
side panel shows a snapshot of the bubble texture in liquid state
with nonordered global phase. The right-hand-side panel illustrates
the triangular bubble crystal state with a “ferromagnetically” or-
dered global phase. Rings in all the pictures correspond to the
bubble domain wall.
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mion changes its size. The orientational fluctuations of the
multi-Skyrmion system are governed by the gaplessXY
model.28 The relevant model description is most familiar as
an effective theory of the Josephson junction array. An im-
portant feature of the model is that it displays a quantum-
critical point.

The low-energy collective excitations of Skyrmion liquid
includes a usual longitudinal acoustic phonon branch. The
liquid crystal phases differ from the isotropic liquid in that
they have massive topological excitations, i.e., the disclina-
tions. One should note that the liquids do not support trans-
verse modes, these could survive in a liquid state only as
overdamped modes. Therefore, it is reasonable to assume
that solidification of the Skyrmion lattice would be accom-
panied by a stabilization of transverse modes with its sharp-
ening below the melting transition. In other words, an insta-
bility of transverse phonon modes signals the onset of
melting. A generic property of the positionally ordered Skyr-
mion configuration is the sliding mode, which is usually
pinned by the disorder. The depinning of sliding mode(s) can
be detected in a low-frequency and low-temperature optical
response.

C. Implications for the “doping-temperature” phase diagram
of a hc-BH model

Our speculations with regard to the topological phase
separation and long-wavelength physics of the 2D hc-BH
model are summarized in a qualitativeDn-T sDnb=nb−0.5d
phase diagram in Fig. 3. First of all, the phase diagram im-
plies a scenario in which the topological phase separation
state evolves with minimal doping, though it is worth noting
that the ideal checkerboard CO phase cannot be a nominal
Dnb=0 limit of any topologically phase-separated phase.

Despite the qualitative character of the phase diagram we
took into account some quantitative results of quantum
Monte Carlo calculations for the 2D hc-BH model with
nearest-neighbor Coulomb repulsion.8,10 First, it concerns the

doping range of the additive, or near-linear concentration
behavior of the Bose-condensate densityrs and the CO
structure factorSsqd. The superfluid density increases ap-
proximately linearly with the doping except for the most
overdoped pointDnb<0.1, where it turns down again. Diag-
onal long-range charge order is characterized by the equal
time structure factor at the ordering vectorq,

Ssqd =
1

N
o

l
eiq·lknsj ,tdnsj + l,tdl. s10d

In the presence of long-range order,Ssqd will diverge with
the system sizeSsqd~L2 for a given ordering momentumQ,
which characterizes the ordered phase. For the checkerboard
order Q=sp ,pd. In the concentration rangeDnb=0.0–0.1,
where both quantities vary linearly withDnb,

8 we may ap-
proximate the topological defect to be a system ofDN
=NDnb interacting single-charged Skyrmions. It should be
noted that both the CO and BS order parameters coexist in a
rather narrow doping concentration interval:Dnbø0.11. Be-
yond this “overdoping” region we deal with an inhomoge-
neous boson liquid whose pseudospin picture implies a
strongly frustrated singlet-triplet system that resembles the
spin glass, and may be termed as a dynamical “singlet-
triplet” pseudospin glass. Such a system can be characterized
by a dynamical short-range diagonal and off-diagonal order-
ing with a wide distribution of respective correlation lengths
and relaxation rates. Interestingly, in the frame of a continu-
ous model this phase is still described to be a strongly cor-
related multicenter topological defect. However, such a
model obviously fails to describe the real system where the
intercenter spacing is comparable with the lattice parameter.

The temperature evolution of the hc-BH system with large
intersite boson repulsion implies that the highest critical tem-
peratureTCOsDnd separates the high-temperature nonordered
(NO) phase(boson liquid) and a low-temperature quasi-CO
phase with a disordered system of Skyrmions. The next criti-
cal temperatureTTPSsDndø t points to the first-order phase

FIG. 3. The low-temperature part of the schematicalDn-T phase diagram for the hc-BH model with topological phase separation. The
gradual Skyrmionic solidifications evolves from the isotropic Skyrmion(bubble) liquid phase, the Skyrmion liquid-crystal phase, the
incommensurate Skyrmion crystal phase, andUs1d ordering, or the superfluid phase, restricted by the temperatures of the proper BKT
transitions. The right-hand-side panel differs by the assumed structural phase transition in the bubble lattice at a magic doping such as
Dnb=1/16.
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transition with a formation of the inhomogeneous Bose con-
densate in a single Skyrmion with the vortexlike texture of
the quasilocal order parameterm'. In other words, it is a
temperature of the topological CO+BS phase separation
(TPS). In frames of our scenario such a TPS state emerges
with a minimal doping, andTTPSsDnbd is likely to be nearly
constant in a linear doping regimesDnb=0.0−0.1d. The low-
temperature part of the phase diagram, which is schemati-
cally shown in Fig. 3, describes the gradual Skyrmionic so-
lidification and may include the isotropic Skyrmion(bubble)
liquid phase, the Skyrmion liquid-crystal phase, the incom-
mensurate Skyrmion crystal phase, andUs1d ordering, or
superfluid phase, restricted by the temperatures of the proper
BKT transitions. For a small deviation from the half-filling
(“underdoping”) the temperatures of bubble crystallization/
melting seemingly obey the square root concentration law
Tm~ÎDnb with a strongly developed quantum melting effect
when approaching an “overdoped” regime or concentrations
limiting the linear regime. The superfluid phase in Fig. 3 is
arbitrarily chosen to lie inside the Skyrmion solid phase. One
should emphasize the specific role played by quantum fluc-
tuations: these lead to the melting of the bubble crystal at
high densities and orientational disordering29,31at low densi-
ties. Both effects are of primary importance in the overdoped
and the heavily underdoped regions of the phase diagram,
respectively. Moreover, the quantum melting effect may
strongly affect the phase diagram near the “magic” doping
level, where the Skyrmion lattice undergoes the structural
phase transition. For illustration, in the right-hand-side panel
in Fig. 3 we present the possible phase diagram for a hc-BH
system with a quantum melting effect near the “magic” dop-
ing levelDnb=1/16. In all cases, the critical doping level for
the superfluid formation is determined by the magnitude of
the Josephson coupling constant. It is worth noting that the
bubble crystallization is accompanied by different
(pseudo)gap effects.

Our interpretation of the phase transition atTTPS differs
from that in Ref. 10. This temperature is governed by the
magnitude of the transfer integral, and believed to be a tem-
perature of the emergence of the nonzero magnitude of the
modulus of the superconducting order parameter rather than
a critical temperature for an insulator to a superconductor
transition as it is stated in Ref. 10. This conclusion seems to
be a result of finite size effects and boundary conditions in
QMC calculations, despite the authors’ use of the most effi-
cient QMC strategy. Such problems seem to be typical for a
finite-size simulation of many phase transitions. In addition,
we should note that MC calculations need a substantial in-
crease in lattice size to reproduce quantitatively the long-
wavelength physics because the size of the Skyrmion and the
Skyrmion lattice parameter appear to be new characteristic
lengths.

A close inspection of the phase diagram in Fig. 3, where
TcøTm,TTPS, does not provide optimistic expectations with
regard to the high-temperature superconductivity in 2D
hc-BH systems, even if the magnitude of the local boson
transfer integral were as large ast<1000 K. Nevertheless,
the attractively large temperaturesTTPS of the topological
phase separation, with the emergence of a nonzero local con-
densate density, engender different reasonable speculations
with regard to its practical realization.

IV. TOPOLOGICAL PHASE SEPARATION
IN DISCRETE LATTICES

Making use of the mean-field approximation together
with simplified classical continuous models can hardly pro-
vide the quantitative description of a quantum lattice boson
system. Both quantum effects and the discreteness of the
Skyrmion texture can result in substantial deviations from
the predictions of a classical model. The continuous model is
relevant for discrete lattices only if we deal with long-
wavelength inhomogeneities when their size is much bigger
than the lattice spacing. In the discrete lattice the very notion
of topological excitation seems to be inconsistent. At the
same time, the discreteness of the lattice itself does not pro-
hibit it from considering the nanoscale(pseudo)spin textures
whose topology and spin arrangement is that of a
Skyrmion.32 Naturally, the typical continuous models fail to
describe properly such short-wavelength nanoscopic inho-
mogeneities. Hereafter, we discuss a simple model which
seems to catch the main effects of discreteness and quantiza-
tion.

A. Nanoscopic bubble domain in a checkerboard CO phase

What is the lattice counterpart of the small Skyrmion-like
bubble domain? Figure 4 presents the schematic view of the
smallest Skyrmion-like bubble domain in a checkerboard CO
phase for a 2D square lattice with an effective size of four
lattice spacings. The domain wall is believed to include as a
minimum eight sites forming a ring-shaped system of four
dimers each composed of two sites. There are two types of
such domains which differ by a rotation of ±p /2. The for-

FIG. 4. Illustration for a Skyrmion-like bubble domain in a
checkerboard CO phase with an eight-site ring-shaped domain wall.
The four dimers within the domain wall are marked by I–IV. Sche-
matically shown are nearest- and next-nearest-neighbor domains,
which do not overlap with the central domain. It is worth noting
that there are eight additional domains with strong nearest-neighbor
interdimer coupling with the central domain. The centers of all 12
nearest-neighbor domains which do not overlap with the central
domain are marked by crosses.
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mation of such a center seems not to require a high energy.
Indeed, the simple estimate of a change in potential energy,
DV<4 VNN−6 VNNN, points to a near cancelation of nearest-
neighbor (NN) and next-nearest-neighbor(NNN) contribu-
tions. The remarkable feature of the domain is in a rather
small magnitude both of scalar potential and electric field
inside the eight-site domain wall(see Fig. 4). The flip energy
for the dimer dipole moment is estimated to bedV<VNN
−2 VNNN, compared with that for a bare checkerboard CO
phasesdV0<3 VNN−4 VNNNd that implies rather subtle com-
petition between NN and NNN couplings. However, the dif-
ferencesdV0−dVd=2sVNN−VNNNd is believed to be always
positive and large. In other words, the flip energy for the
dimer dipole may be relatively small. Respective dipole fluc-
tuations would result in an effective screening of electrostatic
repulsion energy, thus providing the stabilization of a
bubblelike defect. An important additional mechanism of the
domain stabilization in the hc-BH systems with local bosons
composed from electron pairs may arise from the electron
and lattice polarization effects.33,34 As is well known, the
respective energies are comparable in value with the intersite
Coulomb interaction. Probably, namely both these effects
might strongly contribute to the domain stabilization energy.
On the other hand, the bubble geometry implies the forma-
tion of the electrostatic potential well inside the domain wall
both for positive and negative charges. It means that the
doping into a domain wall stabilizes the domain configura-
tion. Such a doping may be energy costless, while the energy
cost of the pseudospin flip in a checkerboard CO phase is
rather high:DV<4 VNN−4 VNNN, if the neutralizing back-
ground is taken into account.

B. Pseudospin formalism in a two-center dimer

Taking into account the kinetic energy(quantum tunnel-
ing) only inside the eight-site domain wall, we shall consider
it as a quantum system in an external electrostatic potential
field, assuming a rigid checkerboard CO ordering overall be-
yond the domain wall. Further, taking into account the rea-
sonable relation:utNNu@ utNNNu, we shall consider the domain
wall to be a system of four dimers, or pairs of nearest-
neighboring sites forming a quantum cluster. We anticipate
that the model, though being simplified, would be very in-
structive in analyzing the role played both by quantum and
discreteness effects.

Let us first address a simple two-site, or a dimer, system.
The effective pseudospin Hamiltonian for such a cluster, or a
single dimer Hamiltonian, can be written as follows:

Ĥd = − tNNFSsS+ 1d −
3

2
G + DŜz

z − hS Ŝz − hT T̂z, s11d

where Ŝ= ŝ1+ ŝ2 is the total pseudospin momentum,T̂ = ŝ1
− ŝ2 is an operator that changes pseudospin multiplicity,D
=s1/2dVNN+ tNN, hS=m, hT=s1/2dsVNN−VNNNd. The first two
terms in this effective pseudospin Hamiltonian describe the
intradimer interactions, while the last two describe its cou-
pling with the off-domain-wall surroundings. It is worth not-
ing that the conditionhS=m means that the effective mag-
netic field produced by these surroundings turns into a zero

that provides the particle-hole symmetry of the dimer phys-
ics, in particular, for the domain wall doping. Actually, we

arrive at an effective singlet-triplet model.35 Both Ŝ and T̂
operators have a rather simple physical sense: the former
corresponds to the total “quantum” charge of the dimer,
while the latter does to the total “quantum” dipole moment.

Strictly speaking, the diagonal order parameterskŜzl andkT̂zl
describe the charge and dipole density, while the off-diagonal

order parameterskŜ±l and kT̂±l describe the corresponding
phase ordering. It is of primary importance to note that these
order parameters are not independent because the respective
operators obey the kinematic constraint,

Ŝ2 + T̂2 = 3; sŜ · T̂d = 0,

which stemmed from a simple spin algebra. It should be

noted that there are two operators:T̂ =s1−s2 and Ĵ=fs1

3s2g that change the pseudospin multiplicity with their ma-
trices being symmetric and antisymmetric, respectively,

k00uTzu10l = k10uTzu00l = 1,

k00uJzu10l = − k10uJzu00l = i .

The Hamiltonian(11) points to the competition ofS and T
orders in the ring-shaped domain wall.

Figure 5 shows a step-by-step formation of the energy
spectrum of such a two-site cluster, or dimer. The arrows
mark the dipole-allowed transitions that could be revealed in
optical spectra. The tunnel statesu00l and u10l describing

FIG. 5. The step-by-step formation of the dimer energy spec-
trum given different signs of the NN transfer integral. The arrows
mark the dipole-allowed transitions(see text for details).
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purely “half-filled” dimer states are mixed due to the electric
field with the mixing level governed by the ratiouhT/2tNNu. If
uhTu@2utNNu, we arrive at classical Néel-like “up-and-down”
dimer state.

Hereafter, to describe our singlet-triplet quantum pseu-
dospin system we start with trial functions

c = c0c00 + o
j

saj + ibjdc j , s12d

where the spin functionsu1Ml in Cartesian basis are used:
cz= u10l andcx,y,su11l± u1−1ld /Î2. The conventional spin
operator is represented on this basis by a simple matrix

kciuSjuckl = − i«i jk ,

and for the order parameters one easily obtains

kŜl = − 2fa 3 bg, khŜiŜjjl = 2sdi j − aiaj − bibjd s13d

given the normalization constraintuc0u2+a2+b2=1. Thus, for
the case of the spin-1 system, the order parameters are deter-
mined by two classical vectors[two real components of one
complex vectorc=a+ ib from Eq.(12)]. The two vectors are
coupled, so the minimal number of dynamic variables de-
scribing theS=1 spin system appears to be equal to 4. For
the dimer as the singlet-triplet center we have additional un-
conventionalT,J-order parameters. For the respective aver-
ages we can easily obtain

kT̂l = c0
*c + c0c

* ; kĴl = isc0
*c − c0c

*d.

Given the real value of thec0 parameter we arrive at a simple

form: kT̂l=2c0a, andkĴl=−2c0b.

C. Pseudospin formalism and MFA description
of the domain wall

Now we may proceed with the interdimer coupling in the
domain wall. Introducing the symmetrized superpositions of
SandT vectors, we can write the pseudospin Hamiltonian of
the interdimer interaction as follows:

Ĥdd =
1

2
tNNNhS2sa1gd − S2sb1gd + fSseudTseudg + T2sb2gd

− T2sb2g8 dj +
1

2
sVNNN− tNNNdhSz

2sa1gd − Sz
2sb1gd

+ fSzseudTzseudg + Tz
2sb2gd − Tz

2sb2g8 dj, s14d

where

Ssa1gd = sSI + SII + SIII + SIVd,

Ssb1gd = sSI − SII + SIII − SIVd,

Sseuxd = sSI + SII − SIII − SIVd,

Sseuyd = s− SI + SII + SIII − SIVd,

Tsb2gd = sT I + T II − T III − T IVd,

Tsb2g8 d = sT I − T II − T III + T IVd,

Tseuxd = sT I + T II + T III + T IVd,

Tseuyd = sT I − T II + T III − T IVd

(see Fig. 6). The chemical potentialm for the system of four
dimers in a domain wall is determined now by the condition
oi=1

4 kSi
zl=0, ±1 for the undoped and the singly doped(boson/

hole) domain wall, respectively.
The respective mean values we can address as order pa-

rameters that describe the subtle structure of a domain wall
with regard to the diagonal order,kSzsa1gdl specifies the full
charge,kSzseudl andkTzseudl do the electric dipole moments,
kSzsb1gdl the component of the quadrupole momentum, and
one might introduce the higher order multipole moments.
With regard to the off-diagonal order we should, in general,
proceed with the three types(a1g,eu,b1g, or s,p,d) of the S
order, and three types[eu,b2gsb2g8 d, or p,d] of the T order,
which can be defined as follows:

kŜ−sgdl = rg
Seiwg, kT̂−sgdl = rg

Teifg. s15d

It is noteworthy to mention the kinematic constraint that
couples different order parameters. In the absence of an ex-
ternal magnetic field, the energy does not depend on theb
vector, it is restricted only to lie in thexy plane. In other
words, we deal with the uncertainty of theJ order parameter.

The mean-field domain-wall ground state corresponds to
the coexistentSsa1gd ,Tsb2gd modes given the negative sign
of the transfer integraltNNN or Ssb1gd ,Tsb2g8 d modes given
the positive sign of the transfer integraltNNN. The relation
between theS- andT-mode weight is specified by the rela-
tionship between the NN transfer integraltNN and electric
field hT. If we assumehT=0, then giventNN.0, the dimers
have a purelyS=1 ground state, and we arrive atS-type
off-diagonal order. In contrast, giventNN,0, we arrive atT
type off-diagonal order. In general, neglecting theST-mixing
term leads to two independent phase order parameters. Gen-
erally speaking, the interference dipole-dipoleSTterm would
result in ST mixing accompanied by the constraint on the
phase order parameters with an appearance of a noncollinear-
ity effect. Thus, we arrive at the conclusion that the symme-

FIG. 6. Pseudospin orientation in different symmetry superposi-
tions for theS and T order. Only the in-plane pseudospin compo-
nents are shown.
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try of the order parameter distribution in the domain wall
would be specified only by the sign of the transfer integral.
In addition, we see that the problem of the order parameter
associated with our bubble domain is much more compli-
cated than in a conventional BCS-like approach36 due to its
multicomponent nature. Moreover, we deal with a system
with different symmetries of low-lying excited states and
competing order parameters, which implies their possible
ambiguous manifestation in either properties. The low-
symmetry crystalline electric fields or crystal distortions
would result in a mixing of the order parameters with differ-
ent symmetry. The bubble domain(Fig. 4) yields a simple
and instructive toy model to describe such effects.

It is worth noting that the flux quantization effects for the
bubble domain, in particular the localizing effect of the mag-
netic field on the moving bosons, are expected to be ob-
served only for rather large fields. Indeed, nanoscopic atomic
systems such as a square plaquette with a size of around
10 Å, require a field ofH<102 T for a half-flux quantum per
plaquette.

Above we are concerned with a simple one-center topo-
logical defect. However, in general one has to make use of a
more complicated topological excitation like a multicenter
BP Skyrmion.17 The question arises as to whether such an
entity may be described as a system of weakly coupled indi-
vidual one-center defects. In practice, it seems to be a rather
reasonable approach only for a slight deviation from half-
filling, when the mean separation between doped particles is
much larger than the effective domain size. The bubble do-
main may be called well isolated only if its environment
does not contain another domain(s) which could be involved
in a “dangerous” nearest-neighbor interdimer coupling. Each
domain in Fig. 4 hasz=12 of such neighbors. Hence the
concentration of well-isolated domains can be written as fol-
lows: P0sxd=xs1−xdz, wherez is a number of “dangerous”
neighbors, andx=Dnb is the boson concentration. TheP0sxd
maximum is reached atx0=1/sz+1d. In our casex0=1/13, or
<0.077. With increasing doping, the deviation ofP0sxd from
the linear law rises. On the other hand, knowing the effective
domain areaSd<9a2 we can roughly estimate the limiting
concentration of the single-domain model description to be
xmax<1/9 or 0.11. The interdomain coupling includes both
long-rangeSSand short-rangeTT terms. We should empha-
size a strong anisotropy of this coupling. For nearest neigh-
bors along the[1,0] and [0,1] directions, the short-range
(dipole-dipole) TT coupling would result in an effective sup-
pression of the mainS ordering(see Fig. 4), in contrast with
the f11g direction.

Thus, we may conclude that the above-mentioned simple
continuous model for Josephson junction arrays should be
strongly modified to describe the multidomain configurations
in 2D quantum hc-BH lattices, both with regard to the subtle
internal domain structure, the competition of different order
parameter, and the anisotropy of Josephson coupling.

V. CONCLUSIONS

The boson/hole doping of the hard-core boson system
away from half-filling is assumed to be a driving force for

the nucleation of a multicenter Skyrmion-like self-organized
collective mode that resembles a system of CO bubble do-
mains with a Bose superfluid and extra bosons both confined
in domain walls. Such a topological CO+BS phase separa-
tion, rather than a uniform mixed CO+BS supersolid phase
is believed to describe the evolution of the hc-BH model
away from half-filling. Starting from the classical model we
predict the properties of the respective quantum system. In
our scenario we may anticipate, for the hc-BH model, the
emergence of an inhomogeneous BS condensate for super-
high temperaturesTTPSø t, and three-dimensional supercon-
ductivity for rather high temperaturesTcøJ, t. The system
is believed to reveal many properties typical for granular
superconductors, CDW materials, Wigner crystals, and
multi-Skyrmion systems akin to the quantum Hall ferromag-
netic state of a 2D electron gas. Topological inhomogeneity
is believed to be a generic property of 2D hard-core boson
systems away from half-filling. Such a behavior represents a
boson counterpart of the so-called topological doping which
is a general feature of Mott insulators or 2D fermion Hub-
bard models.11

Despite all shortcomings, the MFA and the continuous
approximation are expected to provide a physically clear
semiquantitative picture of rather complex transformations
taking place in a bare CO system with doping, and can be
instructive as a starting point to analyze possible scenarios.
First of all, the MFA analysis allows us to consider the an-
tiphase domain wall in the CO phase to be a very efficient
ring-shaped potential well for the localization of a single
extra boson(hole), thus forming a type of topological defect
with a single-charged domain wall. Such a defect can be
addressed as a charged Skyrmion-like quasiparticle whose
energy can be approximated by its classical value for the CO
bubble domain. It is of great importance to note that the
domain wall simultaneously represents a ring-shaped reser-
voir for Bose superfluid.

Unfortunately, we have no experience dealing with mul-
ticenter Skyrmions with regard to structure, energetics, and
stability. It should be noted that such a texture, with strongly
polarizable centers, is believed to provide an effective
screening of long-range boson-boson repulsion, thus result-
ing in an additional self-stabilization. Nucleation of the to-
pological phase is likely to proceed in the way that is typical
for the first-order phase transitions.

The role played by quantum effects and lattice discrete-
ness has been illustrated as the simplest nanoscopic counter-
part of the bubble domain in a checkerboard CO phase of the
2D hc-BH square lattice. It is shown that the relative magni-
tude and symmetry of the multicomponent order parameter
are mainly determined by the sign of the NN and NNN trans-
fer integrals. The topologically inhomogeneous phase of the
hc-BH system away from the half-filling can exhibit the sig-
natures both of thes, d, andp symmetry of the off-diagonal
order. The model allows us to study the subtle microscopic
details of the order parameter distribution, including its sym-
metry in a real, rather than momentum, space, though the
problem of the structure and stability of nanoscale domain
configurations remains to be solved. The present paper estab-
lishes only the framework for analyzing the subtleties of the
phase separation in a lattice hc-BH model away from half-
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filling. Much work remains to be done both in macroscopic
and microscopic approaches.
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