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Pinning and creation of vortices in superconducting films by a magnetic dipole

Gilson Carneiro*
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972, Rio de Janeiro-RJ, Brazil
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Interactions between vortices in planar superconducting films and a point magnetic dipole placed outside the
film, and the creation of vortices by the dipole, are studied in the London limit. The exact solution of London
equations for films of arbitrary thickness with a generic distribution of vortex lines, curved or straight, is
obtained by generalizing the results reported by the present author and Brandt@Phys. Rev. B61, 6370~2000!#
for films without the dipole. From this solution the total energy of the vortex-dipole system is obtained as a
functional of the vortex distribution. The vortex configurations created by the dipole minimize the energy
functional. It is shown that the vortex-dipole interaction energy is given by2m•bvac, wherem is the dipole
strength andbvac is the magnetic field of the vortices at the dipole position, and that it can also be written in
terms of a magnetic pinning potential acting on the vortices. The properties of this potential are studied in
detail. Vortex configurations created by the dipole on films of thickness comparable to the penetration depth are
obtained by discretizing the exact London theory results on a cubic lattice and minimizing the energy func-
tional using a numerical algorithm based on simulated annealing. These configurations are found to consist, in
general, of curved vortex lines and vortex loops.

DOI: 10.1103/PhysRevB.69.214504 PACS number~s!: 74.25.Ha, 74.25.Qt
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I. INTRODUCTION

The experimental study of artificial superconducto
ferromagnet systems has received a great deal of atten
lately. The magnetic, superconducting, and transport pro
ties of a great variety of such systems, mostly supercond
ing films with arrays of magnetic dots or antidots placed
its vicinity, have been reported in the literature.1–4 The main
interest in this type of system is to enhance and modify p
ning of vortices, and thereby increase the critical current
stabilize new vortex phases.

From the theoretical point of view, these systems are a
interesting because they alow theoretical predictions to
tested in detail experimentally, since the ferromagnetic str
tures responsible for vortex pinning are well characteriz
and can be changed in a controllable way over a wide ra
of parameters. The goal of theoretical work is to underst
how the presence of the ferromagnet changes the equilib
and nonequilibrium behavior of vortices.

The interaction between vortices and the ferromagnet
sults from the action of the inhomogeneous magnetic fi
created by the ferromagnet in the superconductor. This in
action is expected not only to pin vortices placed in the fi
by an applied field, but also to create vortices, and even
destroy superconductivity in some regions of the sam
The theoretical problem posed by these systems is ra
complex, since the equilibrium vortex states in the abse
of an applied field are nontrivial. The first problem that nee
to be solved is to calculate the vortex-ferromagnet inter
tion and to obtain the equilibrium vortex state resulting fro
the competition between it and vortex-vortex interactio
This paper solves this problem for a simple model consis
of a point magnetic dipole placed outside a planar superc
ducting film of arbitrary thickness in the London limit. Firs
the exact solutions of London equations for a film with
given distribution of vortices, consisting of a generic a
rangement of straight or curved vortex lines, is obtain
0163-1829/2004/69~21!/214504~14!/$22.50 69 2145
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Second, the total energy of the vortex-magnetic dipole s
tem is calculated as a functional of the vortex distributio
The equilibrium vortex configurations generated by the m
netic dipole can then be obtained from the energy functio
by minimizing it with respect to the vortex distribution.

The main new results reported in this paper are as
lows.

~i! The proof that the vortex-magnetic dipole interacti
energy is2m•bvac, wherem is the magnetic moment an
bvac the magnetic field caused by the vortices at the dip
position, and that this energy can also be expressed in te
of a magnetic pinning potential for vortex lines of any shap

~ii ! The exact expression for the energy of the vorte
dipole system as a functional of the vortex distribution.

~iii ! Approximate vortex configurations generated by t
dipole in films of finite thickness.

Earlier work on the above described model is restricted
the calculation of the interaction between a magnetic dip
and straight vortex lines. For a semi-infinite superconduc
this interaction was obtained by Coffey5 as2m•bvac/2. Thin
films were considered by Weiet al.,6 by Šašik and Hwa,7 and
more recently by Erdinet al.8 The authors of Refs. 6 and
find that the interaction energy is also2m•bvac, whereas
those of Ref. 8 obtain the interaction as2m•bvac/2 plus an
extra term. In Refs. 6, 8, and 9 the creation of vortices by
dipole was investigated by minimizing the energy for simp
configurations. Recently, Milosˇević, Yampolsky, and
Peeters10 obtained the energy of interaction between strai
vortex lines and a point magnetic dipole for films of arbitra
thicknesses. These authors find that the interaction en
consists of two terms: one is2m•bvac/2 and the other is an
interaction between the screening current generated by
dipole and the vortex. These authors also study the crea
of vortices by the dipole by examining the interaction ener
of several configurations of straight vortex lines.

This paper goes beyond these earlier results by consi
ing the interaction between the magnetic dipole and vor
©2004 The American Physical Society04-1



to
im
om
lin
o
d

em
t a

b
g
r

nc
x
i

th
ot

th

ex
io
c

n,

ed
f
t

ne
ss
e
t

ge
he
b
a

rg
y
e
tio
re

c-
ite
a

ni
g

d
cu
o
s
le
te
in

ac
em

o

n
en-
d-
ent
ex-

ua-
ith
. The
. II

the
t is
11
tic
st,
is
c.

it-
en-
am-
se

ple
the
r-
for
lier
s-
lly,

l to

,

m

GILSON CARNEIRO PHYSICAL REVIEW B69, 214504 ~2004!
lines of any shape. This is necessary in films that are not
thin, because the vortex-magnetic dipole interaction is l
ited to a distance of the order of the penetration depth fr
the film surface nearer to the dipole, whereas the vortex
energy grows with the film thickness. Thus, creation
straight vortex lines in thick films is energetically disfavore

To solve London equations for the vortex-dipole syst
this paper starts from the results obtained by the presen
thor and Brandt11 for films of arbitrary thickness without the
dipole. In Ref. 11 the magnetic field and energy of an ar
trary vortex distribution in the film are obtained by solvin
London equations by the method of images. Here these
sults are generalized to include the magnetic dipole. Si
London equations are linear, the total field of the vorte
dipole system is just the sum of the vortex field obtained
Ref. 11 with the field created by the magnetic dipole and
screening currents generated by it. From this result the t
energy of the vortex-dipole system is obtained as the sum
the vortex energy in the absence of the dipole, and
vortex-dipole interaction energy2m•bvac. The former, ob-
tained in Ref. 11, is a quadratic functional of the vort
distribution, and is written here as the energy of interact
between the vortices in the film. The vortex-dipole intera
tion energy is a linear functional of the vortex distributio
since in London theory the fieldbvac is linear in the field
sources. The functional coefficient of linearity is interpret
as the magnetic pinning potential. The exact expression
this potential is obtained here, and its dependence on
spatial coordinates and on the model parameters—mag
moment strength, position and orientation, film thickne
and temperature—is studied in detail. It is also shown h
that the vortex-dipole interaction energy is closely related
the screening current induced by the dipole: the chan
2m•dbvac due to a small deformation in the shape of t
vortex lines is equal to the negative of the work done
Lorentz force of the screening current during the deform
tion.

In the case of straight vortex lines the interaction ene
2m•bvac, is found to be identical to that obtained b
Milošević et al.10 Thus, with the exception of Ref. 5, th
earlier results mentioned above for the energy of interac
between straight vortex lines and the magnetic dipole ag
with one another and with the one obtained here.

Minimization of the vortex-dipole system energy fun
tional is not feasible in general because it involves infin
many degrees of freedom which are required to describe
bitrary configurations of curved vortex lines. Here the mi
mization is carried out approximately using the followin
method. First, the exact London theory results are use
formulate a description of the vortex-dipole system on a
bic lattice. This description preserves the physics of Lond
theory, and has the advantage that arbitrary configuration
vortex lines can be described by a finite number of variab
Second, the vortex-dipole system energy functional is writ
in terms of these variables and minimized numerically, us
simulated annealing techniques.

This paper is organized as follows. In Sec. II the ex
solutions of London equations for the vortex-dipole syst
are obtained, and the total energy is calculated. In view
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the diversity of formulas for the vortex-dipole interactio
energy obtained by the earlier workers cited above, the
ergy calculation in Sec. II is carried out in detail. Two mo
els for the magnetic dipole are considered: a small curr
loop and a permanent dipole. In order to obtain the vort
dipole interaction energy as2m•bvac it is fundamental to
use particular properties of the solutions of London eq
tions reported in Ref. 11. In order to make the contact w
Ref. 11 easier, the present paper uses the same notation
mathematical details of the calculations described in Sec
are given in Appendix A, and the relationship between
vortex-dipole interaction energy and the screening curren
demonstrated in Appendix B. In Sec. III the results of Ref.
are used to write the total energy of the vortex-magne
dipole system as a functional of the vortex distribution. Fir
in Sec. III A, the vortex energy in the absence of the dipole
written in terms of vortex-vortex interactions. Then, in Se
III B, the vortex-magnetic dipole interaction energy is wr
ten in terms of a magnetic pinning potential and the dep
dence of this potential on the spatial coordinates and par
eters of the model are studied in detail. Applications of the
results are discussed in Sec. IV. First, in Sec. IV A, sim
vortex configurations are considered in order to illustrate
formalism. Then, equilibrium vortex configurations gene
ated by the dipole are studied. The energy functional
straight vortex lines is obtained and compared with ear
results in Sec. IV B 1. Minimization of the vortex-dipole sy
tem energy functional is discussed in Sec. IV B 2. Fina
the conclusions of this paper are stated in Sec. V.

II. VORTEX-MAGNETIC DIPOLE INTERACTION

The film is assumed to be planar, with surfaces paralle
each other and to thex-y plane, and of thicknessd, occupy-
ing the region2d<z<0. The superconductor is isotropic
characterized by the penetration depthl. The magnetic di-
pole m is placed above the film atr05(x0 ,y0 ,z0)
[(r0' ,z0.0) ~Fig. 1!.

The magnetic field of the combined vortex-dipole syste
is written as

b(in)5bfilm1bm
in ~2d,z,0!

b(out)5bvac1bm
out ~z,2d,z.0!, ~1!

FIG. 1. Superconducting film and magnetic dipolem at (r0'

50,z0). An example of vortex lines~full lines! and respective im-
ages~dashed lines!.
4-2
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PINNING AND CREATION OF VORTICES IN . . . PHYSICAL REVIEW B69, 214504 ~2004!
where bfilm and bvac are, respectively, the vortex magnet
fields inside the film and in vacuum. The fieldsbm

in andbm
out

are the dipole magnetic fields inside the film and in vacuu
respectively. The vortex fields were obtained in Ref. 11
the method of images. According to it, any configuration
vortex lines in the film is characterized by a vectorial vort
ity distribution n(r ) or its Fourier transformn(k) ~Ref. 12!
defined as

n~k!5E d3re2 ik•rn~r !. ~2!

For vortex lines with vanishing core diameter,n(k) is given
by a sum of line integrals along the vortices,

n~k!5(
j

R dl je
2 ik•r j . ~3!

The physical meaning of the vectorial vorticity distribution
that the flux ofn(r ) through an area perpendicular to it is a
integer whose absolute value is the number of flux qua
carried by the vortex line, and the sign is that of the magn
flux through the surface, as illustrated in Fig. 2.

Inside the film, the magnetic fieldbfilm(r ) satisfies the
inhomogeneous London equation

2l2¹2bfilm1bfilm5f0n. ~4!

Outside the film, assuming vacuum, the magnetic field,bvac

can be derived from a scalar potential that satisfies
Laplace equation

bvac52“F, ¹2F50. ~5!

The boundary conditions at the surfaces between the su
conductor and the vacuum (z50 andz52d) are that the
perpendicular component of the current vanishes and tha
magnetic field is continuous. The method of images defin
vortex distribution in all space (2`,z,`), nvi(r ), such
that the current generated by it satisfies the boundary co
tions, and that it coincides with the prescribed vorticity i
side the film. In Ref. 11 it is shown thatnvi consists of the
vortex distributionn and its specular images at the film su
faces. This gives a periodic vortex distribution in thez direc-
tion with period 2d. For the basic interval2d<z<d, nvi(r )
is given by

FIG. 2. Physical interpretation of the vectorial vorticity distrib
tion. The normaln is parallel ton(r ).
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nvi~r !5n~r !, 2d<z<0,

n'
vi~x,y,z!52n'~x,y,2z!, 0<z<d,

nz
vi~x,y,z!5nz~x,y,2z!, 0<z<d, ~6!

where' stands for the vector component parallel to thex-y
plane. An example is shown in Fig. 1. The magnetic fie
inside the film is then

bfilm5bvi1bstray, ~7!

wherebvi is the field produced by the vortex distribution an
its images, and is obtained by solving London equation,
~4!, in all space withnvi(r ) as the field source. The stray fiel
inside the film,bstray, is a solution of the homogeneous Lon
don equation.

The magnetic field of the dipole inside the film,bm
in , is a

solution of the homogeneous London equation. Outside
film, bm

out is the sum of the magnetic dipole field in the a
sence of the superconductor and the field of the scree
current induced by the dipole. The boundary conditions
the same as those for the vortex fields. The magnetic fiel
the dipole is discussed in detail in Ref. 10.

The total energy of the vortex-dipole systemET defined
as the sum of the kinetic energy of the supercurrent in
film with magnetic energy inside and outside the film, can
written as

ET5Ein1Eout, ~8!

whereEin is the London energy of the supercurrent and
the magnetic field inside the film, andEout is the energy of
the vacuum magnetic field

Ein5E d2r'

8p E
2d

0

dz@l2u“3b(in)u21ub(in)u2#,

E(out)5E d2r'

8p F E
0

`

dz1E
2`

2d

dzG ub(out)u2. ~9!

Now, the coupling between the magnetic dipole and
superconductor is considered for two particular models
the dipole: a small current loop and a point dipole.

In the case where the magnetic dipole is a small curr
loop, the change in the total energy resulting from a sm
change in the vortex distributiondET must be equal to the
work done by the external source attached to the loop to k
the current constant during the change,dEext , that is

dET2dEext50, ~10!

where

dEext5
1

cE d3r jext•davac, ~11!

where jext is the current density in the loop, anddavac, de-
fined bydbvac5“3davac, is the change in the vector poten
tial of the bvac field. Expandingdavac aroundr0 as

davac~r !5davac~r0!1~r2r0!•“davac~r0!,
4-3



rm
le

p-

es
e
an

ob
en
gy
e

a-

tri
er

e
t

n

ti

e
e

pe
.

d
e

o
e

ha

otal
the

h.
-
or-

r-
of

hird
and
toff

m

GILSON CARNEIRO PHYSICAL REVIEW B69, 214504 ~2004!
it is straightforward to show that

dEext5m•dbvac~r0!. ~12!

It turns out that this is the only vortex-dipole interaction te
in Eq. ~10!. Other possible contributions to the vortex-dipo
interaction would result from cross terms indET containing
products of the vortex and dipole fields. It is shown in A
pendix A that these terms vanish, so thatdET is the same as
in the absence of the magnetic dipole. According to th
results dEvm[2m•dbvac(r0) can be interpreted as th
change in the energy of interaction between the vortices
the dipole,

Evm52m•bvac~r0!. ~13!

The same vortex-magnetic dipole interaction energy is
tained if the magnetic dipole is modeled by a perman
point dipole. This model explores the well-known analo
between magnetostatics and electrostatics in current fre
gions of space.13 According to it,bm

out can be derived from a
scalar potential,bm

out52“Fm that satisfies the Poisson equ
tion

¹2Fm524pm•“d~r2r0!. ~14!

In this case the problem is identical to that of an elec
dipole in an external field. The vortex-magnetic dipole int
action energy comes from the crossed term inEout with
bm

out
•bvac, as shown in Appendix A. This approach is th

same as that used in Refs. 6, 7, and 10. In this case
vortex-magnetic dipole interaction energy is the work do
to bring the dipole from infinity to its final position.

To summarize, the total energy of the vortex-magne
dipole system can be written as

ET5Ev2m•bvac~r0!2 1
2 m•bm8 ~r0!, ~15!

whereEv is the energy of the vortex distribution alone. Th
last term in Eq.~15! is the energy of the dipole alone in th
presence of the superconductor,bm8 (r0) being the field of the
dipole screening current at the dipole position. In this pa
this term is a constant, sincem is not allowed to change
From here on this term is dropped.

The vortex-dipole interaction energy, Eq.~13!, can be
generalized to any distribution of permanent magnetic
poles placed outside the film and described by the magn
zationM . The result is

EvM52E d3rM ~r !•bvac~r !. ~16!

This expression is in agreement with a general formula
classical electrodynamics that expresses the interaction
ergy of a magnet in an external field in terms of the field t
would exist in the absence the magnet.14 Here this field is
bvac(r ).
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III. VORTEX-MAGNETIC DIPOLE ENERGY
FUNCTIONAL

Here the results of Ref. 11 are used to express the t
energy of the vortex-dipole system as a functional of
vortex vectorial distribution.

A. Vortex-vortex interactions

It follows from Eqs.~32!–~35! and ~22!–~28! of Ref. 11
that the vortex energyEv is a quadratic functional of the
vectorial vortex distribution, which can be written as

Ev /~e0l!5E d2r'E d2r'8 E
2d

0 dz

l E
2d

0 dz8

l

3@G'~ ur'2r'8 u;z,z8!n'~r' ,z!•n'~r'8 ,z8!

1Gzs~ ur'2r'8 u;z,z8!nz~r' ,z!nz~r'8 ,z8!#,

~17!

wheree05f0 /(4pl)2 is the basic scale for energy/lengt
The dimensionless functionsG' and Gzs describe, respec
tively, the interactions between the components of the v
ticity perpendicular and parallel to thez axis:G' comes from
vortex-vortex and vortex-image interactions, whereasGzs has
one contribution from vortex-vortex and vortex-image inte
actions, denotedGz , and another resulting from the energy
the stray and vacuum fields, denotedGsv , that is,

Gzs~r' ;z,z8!5Gz~r' ;z,z8!1Gsv~r' ;z,z8!. ~18!

The functionsG' andGz are given by

Gz(')~r' ;z,z8!5plE d2k'

~2p!2

eik'•r'

t Fe2tuz2z8u

1
e2tdcosht~z2z8!

sinhtd

1~2 !
cosht~z1z81d!

sinhtd G , ~19!

where t5Ak'
2 1l22, and the plus~minus! sign is for Gz

(G'). The first terms in the brackets in Eqs.~19! come from
bulk vortex-vortex interactions, whereas the second and t
terms come from the interactions between the vortices
their images. These two functions need a short-range cu
to avoid unphysical divergencies at the vortex core.15 The
interaction function resulting from the stray and vacuu
fields is given by

Gsv~r' ;z,z8!52
2p

l E d2k'

~2p!2

eik'•r'

k't~sinhtd!2

3$ f 1@cosht~z1d!cosht~z81d!

1coshtzcoshtz8#1 f 2@cosht~z1d!

3coshtz81coshtzcosht~z81d!#%,

~20!
4-4
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where

f 15
~k'1t!etd1~k'2t!e2td

C ,

f 252
2k'

C ,

C5~k'2t!2e2td2~k'1t!2 etd. ~21!

The functionsG' , Gz , andGsv are invariant with respect to
the transformationsz↔z8, and (z,z8)→(2z2d,2z82d).
They depend only ond/l and onj/l, wherej is the vortex
core radius. For thin films (d!l) the term inG' is absent in
Eq. ~17!, andGzs reduces to Pearl’s result.16

B. Magnetic pinning potential

The vortex-dipole interaction energy is a linear function
of the vectorial vorticity distribution, which can be written a

Evm /~e0l!5E d2r'E
2d

0 dz

l
nz~r' ,z!Uvm~r' ,z!, ~22!

whereUvm is the magnetic pinning potential. This result fo
lows from Eq.~13!, and from the linear dependence of th
scalar potential for the vacuum fieldF, Eq. ~5!, on thez
component of the vorticity obtained in Ref. 11. WritingF as

F~r' ,z!5E d2r'8 E
2d

0

dz8nz~r 8' ,z8!K~ ur'2r'8 u;z,z8!,

~23!

it follows from Eq. ~13! that the magnetic pinning potentia
is given by

Uvm~r' ,z!5
m

f0l
•“0K~ ur0'2r'u;z0 ,z!. ~24!

The expression for the kernelK follows from Eqs.~23!, ~25!,
~27!, and~20! of Ref. 11. The result is

K~ ur u;z0 ,z!52~4p!2lE d2k'

~2p!2

eik'•re2k'z0

k'

3
~k'1t!et(z1d)2~k'2t!e2t(z1d)

C .

~25!

According to Eq.~22!, (e0l)Uvm is the energy of interaction
of a vortex element parallel to thez direction with the dipole.
Note that the vortex-dipole interaction energy, Eq.~22!, does
not depend on the component of the vorticity perpendicu
to thez direction,n' . However,nz andn' are not indepen-
dent, since vortex lines form closed loops or lines that be
and terminate at the film surfaces (“•n50). The magnetic
pinning potentialUvm depends only on the scaled variabl
d/l, z0 /l, and m/f0l. Sincel depends on the tempera
ture,Uvm is temperature dependent, as shown next.
21450
l
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Assuming that the dipole is located in thex-z plane and
that r0'50, the pinning potential can be written as

Uvm~r' ,z!5
mz

f0l

]K~r' ;z0 ,z!

]z0
2

mx

f0l
cosw

]K~r' ;z0 ,z!

]r'

,

~26!

where w is the angle betweenr' and thex axis. Simple
analytical expressionsUvm exist in two limiting situations:
large distances and thin films. The behavior at large distan
follows from thek'→0 limit in Eq. ~25!. The result is

Uvm~r' ,z!528p
cosh@~z1d!/l#

sinh~d/l!

3H mz

f0l

z0l2

~r'
2 1z0

2!3/2
2

mx

f0l
cosw

r'l2

~r'
2 1z0

2!3/2J .

~27!

This expression is valid forA(r'
2 1z0

2)@l in films that are
not too thin (d*l), and in thin films (d!l) for
A(r'

2 1z0
2)@L52l2/d. In thin films for A(r'

2 1z0
2)!L,

Uvm is given by

FIG. 3. Dependence of the magnetic pinning potential in
plane of the dipole on the coordinatesx and z for a film with
d5l.
4-5
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FIG. 4. Dependence of the magnetic pinnin
potential in the plane of the dipole for a film with
d5l on the coordinatex at z50 ~full line! and
z52d ~dashed line! for two values of the dipole
height z0. Left panel: mx50, mz5f0l. Right
panel:mx5f0l, mz50.
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Uvm~r' ,z!

524pH mz

f0

1

~r'
2 1z0

2!1/2
2

mx

f0

cosw

r'
F12

z0

~r'
2 1z0

2!1/2G J .

~28!

Note that for thin filmsUvm , Eq. ~28!, is independent of the
temperature, sincel drops out. For films of finite thickness
and at short distances,Uvm has to be calculated numericall
Some results forUvm in the plane of the dipole are shown
Figs. 3, 4, and 5. Form perpendicular to the film surface
(mx50), Uvm is invariant under rotations around thez axis,
so that the graphs in Figs. 4 and 5, left panels, represen
dependence ofUvm on r' . For m parallel to the film sur-
faces (mz50), the dependence ofUvm on r' in a plane
rotated byw around thez axis with respect to thex-z plane is
just that shown in Figs. 4 and 5, right panels, multiplied
cosw @Eq. ~26!#. These results show that the magnetic p
ning potential penetrates a distance;l into the film, and
that its range parallel to the film surfaces is a fewl. The
temperature dependence ofUvm , through d/l, z0 /l, and
m/f0l, is shown in Fig. 5. As the temperature increas
both the range and the absolute value ofUvm increase. The
temperature dependence of the vortex-dipole interaction
ergye0lUvm comes from that ofUvm , discussed above, an
from the energy scalee0l. However, what is of greater in
terest in this paper is the relative strength of the vort
dipole and vortex-vortex interaction energies. For this rea
both energies are scaled bye0l. The temperature depen
dence ofUvm should be compared to that ofG' andGz in the
vortex-vortex interaction energy, Eq.~17!, which comes
solely froml.
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IV. APPLICATIONS

This section is devoted to applications of the results
rived above. First, in order to illustrate the formalism of Se
III, the energies of simple vortex configurations are calc
lated. The configurations selected are of interest to the e
librium states of vortices induced by the magnetic dipo
obtained later in this section using a discrete version of L
don theory.

A. Simple vortex line configurations

First, vortex loops in the shape of a semicircle of radiusR
interacting with a point dipole located atr5(0,0,z0) and
polarized parallel to the film surfaces, as shown in Fig. 6,
considered. The vectorial vorticity distribution is given by

n~x,y,z!52S x̂1
du~x!

dx
ẑD d~y!d@z2u~x!#, ~29!

whereu(x) is the position of the vortex loop with respect
the x axis,

u~x!52AR22x2. ~30!

Substituting Eq.~29! in Eqs.~17!and~22! it follows that the
vortex loop self-energy is given by

Ev /~e0l!5E
2R

R dx

l E
2R

R dx8

l H G'@ ux2x8u;u~x!,u~x8!#

1
du~x!

dx

du~x8!

dx8
Gzs@ ux2x8u;u~x!,u~x8!#J ,

~31!
FIG. 5. Dependence of the
magnetic pinning potential in the
plane of the dipole, and atz50,
on the coordinatex for a film with
d52l(0) at different tempera-
tures, defined byl/l(0). Dipole
height z05l(0). Left panel: mx

50, mz5f0l(0). Right panel:
mx5f0l(0), mz50.
4-6
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and the vortex-dipole interaction energy is given by

Evm /~e0l!52E
2R

R dx

l

du~x!

dx
Uvm@x,0,u~x!#. ~32!

The energiesEv andEvm are calculated numerically as func
tions of R. The results are shown in Fig. 6. The loop se
energyEv increases almost linearly withR, except forR very
close tod. In this case it decreases withR due to the inter-
action between the vortex loop with its image at thez5
2d film surface. In the linear region the value of the loo
self-energy per unit length is;2e0, which is close to the
value in the bulk superconductor (e0ln l/j;2.3e0). The
vortex-dipole interaction energyEvm is negative, has a mini
mum at R51.2l, and is larger in absolute value than th
self-energy, so that the total energyET5Ev1Evm is negative
for all R. The latter depends on the particular value ofm
chosen here, sinceEvm is proportional tom. The total energy
has a minimum atR50.8l. This minimum corresponds to
the loop for which, ifR is slightly changed bydR, the cor-
responding changes in the self energydEv and in the vortex-
dipole interaction dEvm cancel out exactly, sincedET
5dEv1dEvm50. These results show that, even in t
simple case considered above, the vortex configuration
minimizes the energy is determined by a nontrivial proce

Now, pairs of tilted straight vortex lines, symmetric
about thez axis, and with vorticitiesq1 , q2, are considered
The pair interacts with a point dipole, located atr
5(0,0,z0), and polarized parallel or perpendicular to the fi
surfaces. The vorticities are chosen asq15q251 for perpen-
dicular polarization, andq152q2521 for parallel polar-
ization, as shown in Fig. 7. The vectorial vorticity distrib
tion is given by

FIG. 6. Semicircular vortex loop of radiusR interacting with a
point dipole parallel to the film surfaces~left panel!, and loop en-
ergy vsR for d52l, z050.5l, m52.5f0l ~right panel!.

FIG. 7. Pairs of tilted straight vortex lines, symmetrical abo
thez axis, interacting with a point dipole. Dipole polarized perpe
dicular to the film surfaces in~a! and parallel in~b!.
21450
at
.

n~x,y,z!5q1S ẑ1
du1~z!

dz
x̂D d~y!d@z2u1~z!#

1q2S ẑ1
du2~z!

dz
x̂D d~y!d@z2u2~z!#, ~33!

whereu1(z), u2(z) are the positions of the vortex lines wit
respect to thez axis, given by

u1~z!5x02ztanu

u2~z!52u1~z!, ~34!

where tanu5(xd2x0)/d. Substituting Eq.~33! in Eq. ~17! it
follows that the vortex loop self-energy is given by

Ev /~e0l!52E
2d

0 dz

l E
2d

0 dz8

l
$†~ tanu!2G'@ uu1~z!

2u1~z8!u;z,z8#1Gzs@ uu1~z!2u1~z8!u;z,z8#‡

1†2q1q2~ tanu!2G'@ uu1~z!1u1~z8!u;z,z8#

1q1q2Gzs@ u u1~z!1u1~z8!u;z,z8#‡%. ~35!

The first and second square brackets on the right-hand
of Eq. ~35! correspond, respectively, to the self-energy of t
lines and to the energy of interaction between them. T
vortex-dipole interaction energy is obtained by substitut
Eq. ~33! in Eq. ~22!,

Evm /~e0l!5E
2d

0 dz

l
†q1Uvm@u1~z!,0,z#

1q2 Uvm@2u1~z!,0,z#‡. ~36!

The energiesEv andEvm are calculated numerically as func
tions of xd , for fixed x0, and for d52l, z050.5l, m
52.5f0l. For perpendicular polarizationx0 is taken asx0
50.2l. For parallel polarization the value ofx0 is chosen to
coincide with the maximum ofUvm at z50, namely x0
50.6l. The most significant result of this calculation is th
for both polarizations the total energyET5Ev1Evm is mini-
mized when the vortex lines are tilted away from each ot
(xd.x0). For perpendicular~parallel! polarization the mini-
mum occurs atxd50.5l (xd51.2l).

The reason for this behavior is that in the case of perp
dicular ~parallel! polarization the repulsion between the vo
tex lines is stronger~weaker! than the vortex-dipole interac
tion. This is shown in detail in Fig. 8. For perpendicul
polarization @Fig. 8~a!#, Ev decreases asxd increases, be-
cause the vortex lines repel each other, andEvm increases as
xd increases, because each vortex line lowers the en
when it is closer tox50, whereUvm is minimum ~see Fig.
4!. The minimum ofET5Ev1Evm at xd50.5.x0 shows
that vortex-vortex repulsion is stronger than vortex attract
by the dipole. For parallel polarization@Fig. 8~b!#, the behav-
iors of Ev andEvm are the opposite of those for perpendic
lar polarization:Ev increases asxd increases, because th
vortex and antivortex attract each other, andEvm decreases
asxd increases. This behavior ofEvm results because, in th
range shown in Fig. 8~b!, the vortex and antivortex lines ar

t
-

4-7



s

e

GILSON CARNEIRO PHYSICAL REVIEW B69, 214504 ~2004!
FIG. 8. Energies of the vortex line pair
shown in Fig. 7, for d52l, z050.5l, m
52.5f0l. Dipole polarized perpendicular to th
film surfaces in~a! and parallel in~b!. In ~a! x0

50.2l and in ~b! x050.6l.
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able to better sample the regions ofUvm(x,z) that lower their
energy of interaction with the dipole. The minimum ofET
5Ev1Evm at xd51.2l.x0 shows that the vortex-dipole in
teraction is stronger than the vortex antivortex attraction.
course, the above described results depend on the parti
values chosen for the parametersd, z0, andm.

B. Equilibrium vortex states

In order to obtain the equilibrium states in the absence
an applied magnetic field it is necessary to minimize
energyET Eq. ~15!, with respect to the vectorial vorticity
distribution n. The only restriction is that“•n50, which
means that the vortex lines must form closed loops or li
that begin and terminate at the film surfaces. The tempera
dependentET , discussed above, is, as well known, the Lo
don limit of the Ginzburg-Landau free energy, and is a me
field approximation for the free energy of the vortex-dipo
system.17 Thus, the vortex configurations obtained by min
mizing ET are the thermodynamic equilibrium ones in th
mean-field approximation. This neglects vortex fluctuatio
which is justified only for low-Tc superconductors in the
region of validity of London theory. In this case the equili
rium states thus obtained are good approximations to the
ones.

The equilibrium state, in the absence of an externally
plied field, will contain vortices if there is a configuration o
vortex lines for whichET5Ev1Evm is minimum and nega-
tive. Minima with ET.0 are metastable, since for the film
without vorticesEv5Evm50. Minima with ET,0 can oc-
cur if there are configurations of vortex lines for whichEvm
is sufficiently negative to overcome the positive defin
vortex-vortex interaction energyEv . The simple vortex con-
figurations discussed in Sec. IV A illustrate this.

The problem of calculating of the equilibrium vortex co
figurations created by the dipole by the method descri
above is analogous the textbook example of calculating
distributions of straight vortex lines in a bulk cylindrica
sample under an axial external fieldH. In the latter case the
equilibrium vortex state is obtained by minimizing the to
energy~per unit length! with respect to the distribution o
straight vortex lines, which is described by the vortic
distribution nz(r ). The total energy~per unit length! is the
sum of the vortex-vortex interaction energy with th
2HBA/4p (B5 magnetic induction,A5cylinder cross-
section area! term, which is responsible for the creation
21450
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straight vortex lines. This term can also be written
2HBA/4p52*d2r (Hf0/4p)nz(r ). The equilibrium con-
figurations of straight vortex lines in the sample are det
mined solely by the energy minimization. In the case of t
film-dipole system, the vortex-dipole interaction energ
given by Eq.~22!, is, as far as vortex creation is concerne
formally similar to a ‘‘2HBA/4p ’’ term, since it is also
linear in nz . Thus,
24pe0lUvm /f0 plays the role of an inhomogeneous a
plied field along thez direction. The equilibrium vortex dis-
tribution is, as discussed earlier, determined solely by
total-energy minimization~subjected to“•n50). However,
it must be stressed that the above mentioned analog
purely formal, in the sense that the quantity24pe0lUvm /
f0 is not simply related to the ‘‘applied field,’’ which is the
dipole field. The relationship between the vortex-dipole
teraction energy and the magnetic field created by the dip
is that mentioned in Sec. I, and proved in Appendix
Namely: the changedEvm due to a small change in the vec
torial vorticity distribution is equal to the negative of th
work done by Lorentz force of the dipole screening curre
during the deformation. The same relationship is valid for
cylindrical geometry discussed above: the term2HBA/4p
is the negative work~per unit length! done by the Lorentz
force of the screening current generated by the applied fi
H to bring BA/f0 straight vortex lines from the surface o
the cylinder to a position deep in the interior.

The spatial symmetry ofUvm plays an important role on
the nature of equilibrium vortex configurations. For instan
in the case of a dipole parallel to the film surfaces, the to
vorticity is zero, whereas for a dipole perpendicular to t
film surfaces the total vorticity along thez direction may not
be zero, as will be shown in Sec. IV B 2. Is has been claim
by some authors that a dipole perpendicular to the film s
face can only create vortex configurations with zero to
vorticity.7,10,18 The justification given by these authors fo
this claim is that the flux of the dipole magnetic field throu
the film is zero. According to the results obtained here,
flux of the dipole through the sample enters nowhere in
calculation of the equilibrium vortex configurations.

According to the discussion in Sec. III, the equilibriu
states obtained in the mean-field approximation depend o
on the scaled parametersd/l, z0 /l, andm/f0l, which de-
pend on the temperature throughl. The equilibrium states
do not depend on the energy scalee0l, because only
ET /e0l has to be minimized, since bothEv and Evm are
4-8
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PINNING AND CREATION OF VORTICES IN . . . PHYSICAL REVIEW B69, 214504 ~2004!
equally scaled. For a given film and magnetic dipoled, z0,
andm are fixed, but the parametersd/l, z0 /l, andm/f0l
change with temperature, leading to nontrivial changes in
equilibrium state, as discussed in Sec. IV B 2.

The problem of minimizingET with respect to the vortex
distribution is, in general, a formidable task. The simpl
case is that of straight vortex lines perpendicular to the fi
surfaces, where the functional dependence ofET on the vor-
tex distribution can be described by a finite number of
grees of freedom, as discussed in Sec. IV B 1. For films
finite thickness the vortex lines are not in general straig
and ET depends on infinite many degrees of freedom
quired to describe arbitrary configurations of curved vor
lines. The minimization ofET can only be carried out ap
proximately, by reducing the degrees of freedom to a disc
set. A method to do this is discussed in Sec. IV B 2.

1. Straight vortex lines

Here it is assumed here that the vortex lines in the film
straight and perpendicular to the film surfaces. In this c
n'50 andnz is given by

nz~r' ,z!5(
( i )

qid~r'2Ri !, ~37!

where qi50,61,62, . . . is thevorticity of the i th vortex
line andRi its position in thex-y plane. The energy is then

ET /~e0l!5H (
( i , j )

qi qjUvv~ uRi2Rj u!1(
( i )

qiUvm
line~Ri !J ,

~38!

where

Uvv~ uRi2Rj u!5E
2d

0 dz

l E
2d

0 dz8

l
Gzs~ uRi2Rj u;z,z8!,

~39!

and

UVMS
line ~Ri !5E

2d

0 adz

l
UVMS~Ri ,z!. ~40!

The interaction energy of a vortex line pair (RiÞRj ) is
2(e0l)Uvv(uRi2Rj u), and (e0l)Uvv(0) is the vortex line
self-energy. The vortex-vortex interaction energyUvv is dis-
cussed in detail in Ref. 11.

The interaction energy of the vortex line with the ma
netic dipole is (e0l)Uvm

line(Ri). The expression forUvm
line is

obtained from Eqs.~24!, ~25!, and~40! as

Uvm
line~R!52~4p!2E d2k'

~2p!2 S mx

f0l
ikx2

mz

f0l
k'D

3e2 ik'•Re2k'z0

3
~k'1t!etd1~k'2t!e2td22k'

Ck't
. ~41!

It is straightforward to show that this expression is identi
to that obtained in Ref. 10. It can be shown, using the res
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of Appendix B, thatUvm
line(R) can also be written as the neg

tive of the work done by the Lorentz force of the dipo
screening current to bring the vortex line from a position
from the dipole toR. In Ref. 10 the vortex-dipole interactio
energy is written as the sum of minus one-half of the Lore
force work with2m•bvac/2.

The total energyET , Eq. ~38!, is a functional of the vor-
ticities (qi) and positions (Ri) of the vortex lines. In order to
obtain the equilibrium vortex configurations,ET has to be
minimized with respect to these variables. The minimizat
involves only a finite number of variables, and can be carr
out numerically with modest computational resources. T
minimization will be discussed elsewhere.

The equilibrium vortex configurations created by t
magnetic dipole will consist of straight vortex lines only fo
thin films (d!l). For thick filmsd@l, the self-energy and
the vortex-vortex interaction energy grow with the thickne
of the film d, whereas the vortex-dipole interaction ener
does not, sinceUvm is limited to region of depthl from the
film surface closest to the dipole.

2. Lattice London model

In this section an approximate method to obtain equil
rium vortex configurations induced by the magnetic dipole
presented. It is based on a discretization of the vortex
grees of freedom called lattice London model. This mo
was introduced several years ago to study vortex fluctuat
in high-Tc superconductors.19 In the present context the lat
tice London model is useful because it requires only a fin
number of degrees of freedom to describe curved vortex
configurations, and because it preserves the essential p
cal ingredients of the vortex-dipole system in the Lond
limit.

The vortex distribution in the lattice London model
represented by integer variable placed on three-dimensi
mesh with cubic unit cell of sidea;j, and subjected to
periodic boundary conditions. At each lattice site there
three integersnm50,61,62, . . . , one foreach spatial direc-
tion m5x,y,z. From the configuration of the variablesnm at
each lattice site, the configuration of vortex lines follow b
associating arrows with thenm , as shown in Fig. 9~a!. Es-
sentially, the lattice London model restricts the vorticityn to
point in one of thex,y,z directions, andnm represents the
flux of n through the face of the cubic unit cell perpendicu
to them direction @Fig. 9~a!#. For bulk and semi-infinite su-
perconductors the lattice London model is an exact discr
zation of London theory on a cubic lattice, as shown in R
19. For the problem under consideration here, the lat
London model is an approximation. It consists in replaci
the film by a cubic mesh of lattice constanta;j, where the
vortices are defined as discussed above. The cubic me
subjected to periodic boundary conditions in thex and y
directions. For the sake of simplicity, in what follows it
assumed that the vortex lines generated by the dipole ar
the plane of the dipole. This reduces the search for vor
line configurations to two dimensions (x-z plane!, so that
ny50. This assumption is justified for the equilibrium vorte
configurations discussed here. The vortex-dipole system
4-9
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ergy functional is obtained from the one derived above
the continuum London model as described next. The vor
vortex interaction energy is taken as

Ev /~e0l!5S a

l D 2

(
i , j

$nx~xi ,zi !nx~xj ,zj !

3G'~ uxi2xj u;zi ,zj !nz~xi ,zi !nz~xj ,zj !

3Gzs~ uxi2xj u;zi ,zj !%, ~42!

and the vortex-dipole interaction energy as

FIG. 9. ~a! Graphical representation of integer vorticities at la
tice pointr . ~b!Vortex loops and vortex lines used in the numeric
minimization method to generate vortex configurations.
21450
r
x-

Evm /~e0l!5
a

l (
i

nz~xi ,zi !Yvm~xi ,zi !. ~43!

The functionsG' and Gzs and Yvm are obtained fromG' ,
Gsv , andUvm , respectively, by making the latter ones pe
odic in the lattice along thex andy directions. This consists
in substitutingk'5(kx , ky) in Eqs. ~19!, ~20!, and ~25! by
k5@2a21sin(kxa/2),2a21sin(kya/2)#, and by replacing the
integrals overk' in the same equations by sums over t
reciprocal lattice of the cubic mesh. This procedure is ju
fied by the exact results of Ref. 19.

To minimize the functionalET5Ev1Evm , Eqs.~42! and
~43!, with respect tonx andnz simulated annealing is used
together with the following procedure to generate the vor
line configurations.19 First, it is attempted to add vorte
loops at every lattice site: square loops at sites not on
film surfaces and open loops at surface sites. Second,
attempted to add straight vortex lines, perpendicular to
film surfaces at every positionxi . This is illustrated in
Fig. 9~b!.

The numerical minimization ofET is carried out for a few
parameter values witha/l50.1. The results are shown i
Figs. 10 and 11. These figures can also be viewed as re
senting the evolution of the equilibrium vortex configur
tions for the film withd53.0l(0), atT50, with increasing
temperature. The values of the scaled parametersd/l, z0 /l,
andm/f0l are chosen so that the sequence of panels co
sponds temperatures such thatl/l(0)51, 3/2, 3,6. Note
that in this case the mesh parameter in Figs. 10 and 1a

l

a
o
t

FIG. 10. Equilibrium vortex
configurations generated by
magnetic dipole perpendicular t
the film surfaces, and located a
(x50,y50,z5z0). ~a! d53l, z0

51.2l, mz55.25f0l; ~b! d
52l, z050.8l, mz53.5f0l; ~c!
d5l, z050.4l, mz51.75f0l;
~d! d50.5l, z050.2l, mz

50.625f0l.
4-10
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FIG. 11. Equilibrium vortex configurations
generated by a magnetic dipole parallel to t
film surfaces, and located at (x50 y50,z5z0).
~a! d53l, z051.2l, mx57.5f0l; ~b! d52l,
z050.8l, mx55f0l; ~c! d5l, z050.4l, mx

52.5f0l; ~d! d50.5l, z050.2l, mx

51.25f0l.
le

ex

or
ul
ol
at
th
.
th
-
e
B
ed

e

-

n
-
f

t t
d
u

ar
i

ll

ite
g.

ing
3

of
the

re
is
t
is

n-
an-
nsi-
rds
of

on-
s
not
ex
han
ne.

e,
e
d,
x-
of

n-
-
the
ys-
he
m perpendicular to the film surfaces. The equilibrium
vortex configurations consist of vortex lines with a sing
flux quantum, that is,unxu5unzu51 along the lines, and with
nz of the same sign asmz ~positive in Fig. 10!. The vortex
lines are curved, except for the thinner film withd50.5l.
The curvature results from the competition between vort
vortex and vortex-dipole interactions. Closer to thez50 sur-
face the vortex-dipole interaction dominates, pulling the v
tex lines towards the dipole, and keeping them perpendic
to the film surfaces. Deeper inside the film the vortex-dip
interaction weakens and vortex-vortex repulsion separ
the vortex lines apart. This is similar to what happens in
case of tilted straight vortex lines discussed in Sec. IV A

The creation of equilibrium vortex configurations wi
nonzero vorticity along thez direction found here is, as dis
cussed in Sec. IV B, a consequence of the spatial depend
of the vortex-dipole interaction energy obtained in Sec. III
However, creation of net vorticity only occurs for an isolat
dipole. For dipole arrays, the net vorticity alongz must van-
ish, even if the dipoles are far apart, due to the long rang
vortex-vortex interaction in films.16,20 The reason is that if a
finite positive~or negative! nz exists, the vortex-vortex inter
action energyEv , given by Eq.~17!, scales likeL3 (L5film
linear dimensions in thex-y plane, L@L), since
Gzs(r ;z,z8)→1/r for r @L and *d2r 8*d2r ur2r 8u21;L3.
The vortex-dipole interaction energy, Eq.~22!, on the other
hand, scales asL2 and, for a largeL, cannot overcome the
vortex-vortex interaction energy to stabilize the vortex co
figuration with nonzero vorticity. The only vortex configura
tions that can be created by the dipole array are those
which Ev scales asL2. One possibility is anz that oscillates
between positive and negative values, in such a way tha
long-distance 1/r vortex-vortex interaction from positive an
negative vortices cancel each other out. One example of s
a configuration was obtained in the London limit for a squ
lattice of magnetic dots above a thin superconducting film
Ref. 9. It consists of a vortex antivortex pair per unit ce
with the vortex located under the dipole.

m parallel to the film surfaces. The vortex configurations
consist of half loops and pairs of vortex lines with oppos
vorticity, both with a single flux quantum, as shown in Fi
21450
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11. These configurations reflect the properties of the pinn
potential form parallel to the film surfaces shown in Figs.
and 4. For instance, in the case of the half loop ford
53.0l, the resulting curve places the negative~positive! nz
in regions of positive~negative! pinning. This is similar to
the semicircular loop discussed in Sec. IV A. In the case
vortex lines, the nearly straight curve follows, essentially
pinning potential maxima for negativenz and the minima for
positivenz . Note that the lines with opposite vorticities a
further apart at the bottom of the film than at the top. This
similar to result obtained in Sec. IV A for two tilted straigh
lines, and is an indication that the vortex-dipole interaction
stronger than the attraction between the lines.

The results of Fig. 11 also indicate how the vortices pe
etrate the film with increasing temperature, that is, the tr
sition from the Meissner state to the mixed state. The tra
tion is continuous. Half loops penetrate and grow towa
the interior of the film, eventually separating in two lines
apposite vorticities.

In the results discussed above the equilibrium vortex c
figurations contain only vortex lines with unit vorticity. Thi
is also found to be true for many other parameter values
reported here. However, within London theory, two vort
elements of unit vorticity separated by a distance less t
2j cannot be distinguished from a doubly quantized o
This occurs in Fig. 10 ford5l and in Fig. 11 ford5l and
d50.5l, in the immediate vicinity of thez50 film surface.

The equilibrium vortex configurations described abov
for both orientations ofm, are not expected to change if th
restriction that they are in the plane of the dipole is lifte
since there would be no gain in the vortex-vortex or vorte
dipole interaction energies if some vortex lines were out
the x-z plane.

V. CONCLUSION

In conclusion then, this paper solves exactly in the Lo
don limit the problem of vortices in a film of arbitrary thick
ness interacting with a point magnetic dipole outside
film, and obtains from these solutions the vortex-dipole s
tem energy as a functional of the vortex distribution. T
4-11
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GILSON CARNEIRO PHYSICAL REVIEW B69, 214504 ~2004!
energy functional depends on the temperature through
penetration depth, and represents a mean-field approxima
to the free-energy of the vortex-dipole system, which is mi
mum for equilibrium vortex configurations generated by t
dipole in this mean-field approximation. The vortex config
rations thus obtained are good approximations to the
equilibrium ones for lowTc superconductors in the region o
validity of London theory. The results reported here can
generalized to any distribution of permanent magnetic m
ments placed outside the film. The numerical method to
tain equilibrium vortex configurations presented here is
general validity, and can be applied to three dimensions
to other distributions of dipoles.

The London limit used in this paper is expected to bre
down for large values of the magnetic dipole, because
inhomogeneous magnetic field created by it destroys su
conductivity locally in the film. Roughly speaking, Londo
theory is valid as long as the maximum field of the dipole
the film surface nearer to it is less than the upper criti
field, that is, m/z0

3,f0 /(2pj2) or m/(f0l)
,(z0 /l)3(l/j)2/2p. One indication of this breakdown i
the appearance in the equilibrium vortex configurations
vortex lines separated by distances<2j. In the equilibrium
vortex configurations shown in Figs. 10 and 11 this occ
for m perpendicular to the film surfaces in the film withd
5l, and form parallel to the film surfaces in the films wit
d5l andd50.5l. In both cases the values ofm are found
to be in agreement with the condition stated above. N
however that only in the immediate vicinity of the film su
face the vortex lines separation is<2j. Deeper inside the
film the vortex lines are separated by distances larger t
2j. This can be interpreted as indicating that the regio
where the vortex lines separation is<2j are normal, and
that in the regions where the separation is larger than 2j the
vortex configurations obtained in the London limit are re
sonable estimates. In the case of bulk superconductors
films under applied magnetic fields, the interpretation alo
similar lines of London theory results for the vortex config
rations generated by the field lead to a reasonable first-o
approximation to the vortex phase diagram. The same is
lieved to be true here. The London theory results descri
in this paper, and their generalization to distributions of
poles, can be applied beyond their strict limits of validity
give a first-order approximation to vortex behavior in the
systems.
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APPENDIX A: MATHEMATICAL DETAILS

Here some details of the derivations in Sec. II are giv
First it is shown that all cross terms inET vanish.

When Eqs.~1! are substituted in Eq.~8! there are severa
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cross terms containing two distinct fields. Here it is sho
that these terms vanish. The first step is to show that th
are no cross terms inEin with bvi and any homogeneou
solution of London equation, denoted asbh. This term is

Ec5E d2r'

4p E
2d

0

dz@l2
“3bvi

•“3bh1bvi
•bh#. ~A1!

Using the identity

“3bvi
•“3bh5“•@bvi3~“3bh!#1bvi

•@“3~“3bh!#,
~A2!

and the fact thatbh satisfies the homogeneous London equ
tion, Ec can be written as

Ec5l2E d2r'

4p
ẑ•@bvi3~“3bh!#u2d

0 . ~A3!

As shown in Ref. 11,bvi at the film surfacesz50, 2d points
in the z direction, so that the vector product in the integra
has noz component, andEc50. This argument eliminates
the cross terms withbvi andbstray, and withbvi andbm

in . One
cross term is left inEin with the fieldsbstray and bm

in . It is
shown next that in the case of a small current loop this te
is canceled out by the cross term withbvac andbm

out in Eout.
Denoting these terms byEin c and Eout c, respectively, it
follows that

Ein c5E d2r'

4p E
2d

0

dz@l2
“3bstray

•“3bm
in1bstray

•bm
in#,

~A4!

Eout c5E d2r'

4p F E
0

`

dz1E
2`

2d

dzGbvac
•bm

out. ~A5!

Using arguments similar to those leading to Eq.~A3!, Ein c
can be written as

Ein c5
l2

4pE d2r'ẑ•@bstray3~“3bm
in!#u2d

0 . ~A6!

From London equation“3bm
in5am

in/l2 (bm
in5“3am

in), so
that

Ein c5
1

4pE d2r'ẑ•@am
in3bstray#u2d

0 . ~A7!

It is possible to write Eout c in a similar form, using
“3bm

vac50. After an integration by parts of Eq.~A5! the
result is

Eout c52
1

4pE d2r'ẑ•@am
out3bvac#u2d

0 . ~A8!

It follows from the continuity of the fields and vector pote
tials at the film surfaces thatEin c1Eout c50.

In the case of a permanent magnetic dipole there is on
partial cancellation, andEin c1Eout c52m•bvac(r0), as
shown next. The energyEout c is written in terms of scalar
potentials using the identities
4-12
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bvac
•bm

out5“F•“Fm5“•~F“Fm!2F¹2Fm

5“•~F“Fm!124pFm•“d~r2r0!.

Substituting in Eq.~A5! results

Eout c52m•bvac~r0!2
1

4pE d2r'F@ ẑ•bm
out#2d

0 . ~A9!

The second term in Eq.~A9! cancels outEin c . This can be
shown starting from Eq.~A6!, and using Eq.~22! of Ref. 11
for bstray, the homogeneous London equation forbm

in , and
continuity of the fields at the film surfaces.

APPENDIX B: WORK DONE BY THE LORENTZ FORCE

Here it is shown that the change in the vortex-dipole
teraction energydEvm , Eq. ~13!, equals the negative of th
work done on the vortex lines by the Lorentz force of t
screening current induced by the magnetic dipole.

Consider the vortex line running from one film surface
the other shown in Fig. 12. The equation describing this l
is

r ~z!5zẑ1u~z!. ~B1!

The contribution of this line to the vorticity is

n~k!5E
2d

0

dzF ẑ1
du~z!

dz Ge2 i [k'•u(z)1kzz] . ~B2!

It is convenient here to work with Fourier transform in th
x-y plane only. For the vorticity it is

n~k' ,z!5F ẑ1
du~z!

dz Ge2 ik'•u(z). ~B3!
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If the vortex line undergoes a small deformation, defined
du(z), the change in the vorticity to first order is

dn~k' ,z!5H @2 ik'•du~z!# ẑ1
d du~z!

dz J eik'•u(z).

~B4!

The corresponding change in the vortex-dipole interact
energy is

dEvm /e0l5E d2k'

~2p!2E2d

0 dz

l
dnz~k' ,z!Uvm~2k' ,z!.

~B5!

When the vortex line is deformed bydu(z), the Lorentz
force of the screening current induced by the magnetic dip
j sc5c/4p“3bm

in does the work

dWL5
f0

c E d2k'

~2p!2E2d

0

dz j sc~k' ,z!

3F ẑ1
du~z!

dz G•du~z!e2 ik'•u(z). ~B6!

The screening current is perpendicular to thez direction, and
is given by~Ref. 10!

j sc~k' ,z!5
c

l2
~ ik'3 ẑ!~ im'•k'1mzk'!e2k'z0

3
~k'1t!et(z1d)2~k'2t!e2t(z1d)

Ck'

,

~B7!

because both the screening current anddu(z) are parallel to
the film surfaces, the term withdu(z)/dz in Eqs.~B6! van-
ishes. Substituting Eq.~B7! in Eq. ~B6!, and using the ex-
pression forUvm obtained in Sec. III B, it follows that
dEvm52dWL . This result can also be demonstrated f
vortex lines that cannot be described by Eqs.~B1!, such as
loops and lines with humps.
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