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Pinning and creation of vortices in superconducting films by a magnetic dipole
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Interactions between vortices in planar superconducting films and a point magnetic dipole placed outside the
film, and the creation of vortices by the dipole, are studied in the London limit. The exact solution of London
equations for films of arbitrary thickness with a generic distribution of vortex lines, curved or straight, is
obtained by generalizing the results reported by the present author and Bragdt Rev. B51, 6370(2000 ]
for films without the dipole. From this solution the total energy of the vortex-dipole system is obtained as a
functional of the vortex distribution. The vortex configurations created by the dipole minimize the energy
functional. It is shown that the vortex-dipole interaction energy is given-oy- b¥®, wherem is the dipole
strength and"¢ is the magnetic field of the vortices at the dipole position, and that it can also be written in
terms of a magnetic pinning potential acting on the vortices. The properties of this potential are studied in
detail. Vortex configurations created by the dipole on films of thickness comparable to the penetration depth are
obtained by discretizing the exact London theory results on a cubic lattice and minimizing the energy func-
tional using a numerical algorithm based on simulated annealing. These configurations are found to consist, in
general, of curved vortex lines and vortex loops.
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[. INTRODUCTION Second, the total energy of the vortex-magnetic dipole sys-
tem is calculated as a functional of the vortex distribution.
The experimental study of artificial superconductor-The equilibrium vortex configurations generated by the mag-
ferromagnet systems has received a great deal of attentioretic dipole can then be obtained from the energy functional
lately. The magnetic, superconducting, and transport propeby minimizing it with respect to the vortex distribution.
ties of a great variety of such systems, mostly superconduct- The main new results reported in this paper are as fol-
ing films with arrays of magnetic dots or antidots placed inlows.
its vicinity, have been reported in the literatdfé.The main (i) The proof that the vortex-magnetic dipole interaction
interest in this type of system is to enhance and modify pinenergy is—m-b"?, wherem is the magnetic moment and
ning of vortices, and thereby increase the critical current an#"?° the magnetic field caused by the vortices at the dipole
stabilize new vortex phases. position, and that this energy can also be expressed in terms
From the theoretical point of view, these systems are alsof a magnetic pinning potential for vortex lines of any shape.
interesting because they alow theoretical predictions to be (ii) The exact expression for the energy of the vortex-
tested in detail experimentally, since the ferromagnetic strucdipole system as a functional of the vortex distribution.
tures responsible for vortex pinning are well characterized, (iii) Approximate vortex configurations generated by the
and can be changed in a controllable way over a wide rangdipole in films of finite thickness.
of parameters. The goal of theoretical work is to understand Earlier work on the above described model is restricted to
how the presence of the ferromagnet changes the equilibriuitthe calculation of the interaction between a magnetic dipole
and nonequilibrium behavior of vortices. and straight vortex lines. For a semi-infinite superconductor
The interaction between vortices and the ferromagnet rethis interaction was obtained by Coffegs —m-b"392. Thin
sults from the action of the inhomogeneous magnetic fieldilms were considered by Wei al,’ by Sask and Hwa! and
created by the ferromagnet in the superconductor. This intemore recently by Erdiret al® The authors of Refs. 6 and 7
action is expected not only to pin vortices placed in the filmfind that the interaction energy is alsem-b"?%, whereas
by an applied field, but also to create vortices, and even tthose of Ref. 8 obtain the interaction asm-b'3%2 plus an
destroy superconductivity in some regions of the sampleextra term. In Refs. 6, 8, and 9 the creation of vortices by the
The theoretical problem posed by these systems is rathelipole was investigated by minimizing the energy for simple
complex, since the equilibrium vortex states in the absenceonfigurations. Recently, Milesic, Yampolsky, and
of an applied field are nontrivial. The first problem that needsPeeter¥’ obtained the energy of interaction between straight
to be solved is to calculate the vortex-ferromagnet interacvortex lines and a point magnetic dipole for films of arbitrary
tion and to obtain the equilibrium vortex state resulting fromthicknesses. These authors find that the interaction energy
the competition between it and vortex-vortex interactions.consists of two terms: one ism-b"3%2 and the other is an
This paper solves this problem for a simple model consistingnteraction between the screening current generated by the
of a point magnetic dipole placed outside a planar supercordipole and the vortex. These authors also study the creation
ducting film of arbitrary thickness in the London limit. First, of vortices by the dipole by examining the interaction energy
the exact solutions of London equations for a film with aof several configurations of straight vortex lines.
given distribution of vortices, consisting of a generic ar- This paper goes beyond these earlier results by consider-
rangement of straight or curved vortex lines, is obtaineding the interaction between the magnetic dipole and vortex
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lines of any shape. This is necessary in films that are not too z
thin, because the vortex-magnetic dipole interaction is lim- 2d <.,
ited to a distance of the order of the penetration depth from : } Lv m

the film surface nearer to the dipole, whereas the vortex line g 0
energy grows with the film thickness. Thus, creation of d e
straight vortex lines in thick films is energetically disfavored. d -

To solve London equations for the vortex-dipole system
this paper starts from the results obtained by the present au- S
thor and Brandt for films of arbitrary thickness without the 2d ™
dipole. In Ref. 11 the magnetic field and energy of an arbi-
trary vortex distribution in the film are obtained by solving  F|G. 1. Superconducting film and magnetic dipofeat (o,
London equations by the method of images. Here these re=0z,). An example of vortex line¢full lines) and respective im-
sults are generalized to include the magnetic dipole. Sincgges(dashed lines
London equations are linear, the total field of the vortex-
dipole system is just the sum of the vortex field obtained inthe diversity of formulas for the vortex-dipole interaction
Ref. 11 with the field created by the magnetic dipole and thexnergy obtained by the earlier workers cited above, the en-
screening currents generated by it. From this result the totadrgy calculation in Sec. Il is carried out in detail. Two mod-
energy of the vortex-dipole system is obtained as the sum df|s for the magnetic dipole are considered: a small current
the vortex energy in the absence of the dipole, and th¢oop and a permanent dipole. In order to obtain the vortex-
vortex-dipole interaction energy m-b*®. The former, ob-  dipole interaction energy as m-b"® it is fundamental to
tained in Ref. 11, is a quadratic functional of the VorteXuse particu|ar properties of the solutions of London equa-
distribution, and is written here as the energy of interactionjons reported in Ref. 11. In order to make the contact with
between the vortices in the film. The VOfteX-dipOle interaC'Ref_ 11 easier, the present paper uses the same notation. The
tion energy is a linear functional of the vortex distribution, mathematical details of the calculations described in Sec. II
since in London theory the field"® is linear in the field  are given in Appendix A, and the relationship between the
sources. The functional coefficient of linearity is interpretedyortex-dipole interaction energy and the screening current is
as the magnetic pinning potential. The exact expression folemonstrated in Appendix B. In Sec. Il the results of Ref. 11
this potential is obtained here, and its dependence on thgre used to write the total energy of the vortex-magnetic
spatial coordinates and on the model parameters—magnetifipole system as a functional of the vortex distribution. First,
moment strength, position and orientation, film thicknessjn Sec. 11l A, the vortex energy in the absence of the dipole is
and temperature—is studied in detail. It is also shown hergyritten in terms of vortex-vortex interactions. Then, in Sec.
that the vortex-dipole interaction energy is C|OS€|y related tqqj B, the Vortex_magnetic d|po|e interaction energy is writ-
the screening current induced by the dipole: the changeten in terms of a magnetic pinning potential and the depen-
—m- 5b** due to a small deformation in the shape of thedence of this potential on the spatial coordinates and param-
vortex lines is equal to the negative of the work done byeters of the model are studied in detail. Applications of these
Lorentz force of the screening current during the deformaresults are discussed in Sec. IV. First, in Sec. IV A, simple
tion. vortex configurations are considered in order to illustrate the

In the case of straight vortex lines the interaction energyformalism. Then, equilibrium vortex configurations gener-
—m-b", is found to be identical to that obtained by ated by the dipole are studied. The energy functional for
Milosevic et al’® Thus, with the exception of Ref. 5, the straight vortex lines is obtained and compared with earlier
earlier results mentioned above for the energy of interactiomesults in Sec. IV B 1. Minimization of the vortex-dipole sys-
between straight vortex lines and the magnetic dipole agregm energy functional is discussed in Sec. IV B 2. Finally,
with one another and with the one obtained here. the conclusions of this paper are stated in Sec. V.

Minimization of the vortex-dipole system energy func-
tional is not feasible in general because it involves infinite
many degrees of freedom which are required to describe ar-

bitrary configurations of curved vortex lines. Here the mini-  The film is assumed to be planar, with surfaces parallel to
mization is carried out apprOXimatEIy USing the fOllOWing each other and to tl"wy p|ane, and of thicknesd, occupy-
method. First, the exact London theory results are used tjg the region—d<z=<0. The superconductor is isotropic,
formulate a description of the vortex-dipole system on a Cugharacterized by the penetration depthThe magnetic di-
bic lattice. This description preserves the physics of Londomole m is placed above the film aty=(Xo,Yo,2o)
theory, and has the advantage that arbitrary configurations ot (r, - 7.>0) (Fig. 1.
vortex lines can be described by a finite number of variables. The magnetic field of the combined vortex-dipole system
Second, the vortex-dipole system energy functional is writtefig \yritten as
in terms of these variables and minimized numerically, using
simulated annealing techniques. (in)— pfilm L pin

This paper is organized as follows. In Sec. Il the exact b o™+ by (~d<2<0)
solutions of London equations for the vortex-dipole system
are obtained, and the total energy is calculated. In view of beW=b¥+ b (z<-d,z>0), 1)

P
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II. VORTEX-MAGNETIC DIPOLE INTERACTION
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i =wur), -—-d<z<0,
n V |
f v'(x,y,2)=—r (xy,—2), 0sz=d,
~ VY(X,y,2) = v, (XY, —2), 0<z<d, (6)
wherel stands for the vector component parallel to xhg
plane. An example is shown in Fig. 1. The magnetic field

inside the film is then
bfilm — bvi + bstray, (7)

whereb is the field produced by the vortex distribution and

its images, and is obtained by solving London equation, Eq.
where b ™ and b¥3° are, respectively, the vortex magnetic (4), in all space withy”(r) as the field source. The siray field
fields inside the film and in vacuum. The field& and bo:t inside the film,bS", is a solution of the homogeneous Lon-

. L o ' . don equation.
are the dipole magnetic fields inside the film and in vacuum, The magnetic field of the dipole inside the filio? , is a

respectively. The vortex fields were obtained in Ref. 11 by . i :
the method of images. According to it, any configuration ofS,OIUt'OQHQf the homogeneous London equation. Outside the
vortex lines in the film is characterized by a vectorial vortic- ilM: P’ is the sum of the magnetic dipole field in the ab-

ity distribution »(r) or its Fourier transform«(k) (Ref. 12 sence of the superconductor and the field of the screening
defined as current induced by the dipole. The boundary conditions are

the same as those for the vortex fields. The magnetic field of
_ the dipole is discussed in detail in Ref. 10.
v(k)zJ d3re ™ Ty(r). 2 The total energy of the vortex-dipole systdfs defined
as the sum of the kinetic energy of the supercurrent in the
For vortex lines with vanishing core diametetk) is given  film with magnetic energy inside and outside the film, can be
by a sum of line integrals along the vortices, written as

$4 da n-v = Integer

FIG. 2. Physical interpretation of the vectorial vorticity distribu-
tion. The normah is parallel tow(r).

Er=Ein+Eou €)

_ —ik-r;
”(k)_zj: fﬁ dlje™"™ . 3 where Ei, is the London energy of the supercurrent and of
the magnetic field inside the film, ari€l,; is the energy of

The physical meaning of the vectorial vorticity distribution is the vacuum magnetic field

that the flux ofw(r) through an area perpendicular to it is an )

integer whose absolute value is the number of flux quanta Emzf d8::fo dz[)\2|v><b(in)|2+|b(in)|2],

~d

o —d
J dz+f dz
0 —0o0

carried by the vortex line, and the sign is that of the magnetic
flux through the surface, as illustrated in Fig. 2.
Inside the film, the magnetic field"™(r) satisfies the d’r,
inhomogeneous London equation E ouy= f 87
—\2V2pIm 4 pfiMm = g, (4) Now, the coupling between the magnetic dipole and the
) i , o superconductor is considered for two particular models for
Outside the film, assuming vacuum, the magnetic fiBfd; o dipole: a small current loop and a point dipole.
can be derived from a scalar potential that satisfies the |, the case where the magnetic dipole is a small current
Laplace equation loop, the change in the total energy resulting from a small
vac 5 change in the vortex distributioAE;+ must be equal to the
b*™=-Vo, Ve=0. ) work done by the external source attached to the loop to keep

The boundary conditions at the surfaces between the supetrr]e current constant during the changé.,, that is

conductor and the vacuunz€£0 andz=—d) are that the SE1— 8By =0, (10)
perpendicular component of the current vanishes and that the

magnetic field is continuous. The method of images defines where

vortex distribution in all space{«<z<c), »"'(r), such 1

that the current generated by it satisfies the boundary condi- 5Eext:_f d3r oy a2, (12)
tions, and that it coincides with the prescribed vorticity in- c

side the film. In Ref. 11 it is shown that" consists of the wherej,,, is the current density in the loop, ad3¢, de-
vortex distribution» and its specular images at the film sur- fineq py sb¥a°= v x sa°2°, is the change in the vector poten-
faces. This gives a periodic vortex distribution in théirec-  {ia| of the b¥*° field. Expandingsa’@® aroundr, as

tion with period A. For the basic interval- d=sz=<d, »"'(r)

is given by 8a’3%(r)=6a’2%(rq) +(r—rp)- Véa’@(ry),

W2 (9)
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it is straightforward to show that Ill. VORTEX-MAGNETIC DIPOLE ENERGY
FUNCTIONAL
SBexi=m- 6b™(ro). (12 Here the results of Ref. 11 are used to express the total

. . _ i energy of the vortex-dipole system as a functional of the
It turns out that this is the only vortex-dipole interaction term, o tex vectorial distribution.

in Eq. (10). Other possible contributions to the vortex-dipole
interaction would result from cross terms 8t containing
products of the vortex and dipole fields. It is shown in Ap-
pendix A that these terms vanish, so td&; is the same as It follows from Egs.(32)—(35 and(22)—(28) of Ref. 11
in the absence of the magnetic dipole. According to theséhat the vortex energf, is a quadratic functional of the
results 6E,,=—m-6b"3%r,) can be interpreted as the Vectorial vortex distribution, which can be written as

change in the energy of interaction between the vortices and
the dipole, Ev/(EO)\):J dzrlJ d2r!

E,m=—m-b**(ro). 13

A. Vortex-vortex interactions

0dz(odZ
SaNJg N
X[G (Ir,—ri[;z.2)w (r,,2)- v (r],Z)

The same vortex-magnetic dipole interaction energy is ob- +G,d|r =11 1;2,2 ) vr, ,2)vy(r] ,2)],
tained if the magnetic dipole is modeled by a permanent 17
point dipole. This model explores the well-known analogy
between magnetostatics and electrostatics in current free rethere ;= ¢y /(47\)? is the basic scale for energy/length.
gions of spacé® According to it,b%" can be derived from a The dimensionless function§, and G, describe, respec-
scalar potentiab%“tz — V&, that satisfies the Poisson equa- tively, the interactions between the components of the vor-
tion ticity perpendicular and parallel to tlreaxis: G, comes from

vortex-vortex and vortex-image interactions, wheréashas
V2D, =—4mm-VS(r—ry). (14 ©One contribution from vortex-vortex and vortex-image inter-
actions, denoted,, and another resulting from the energy of

In this case the problem is identical to that of an electricthe stray and vacuum fields, deno@d, that is,
Godr132,2")=Gy(r 1 ;2,2') +Gg (1, ;2,2"). (18

dipole in an external field. The vortex-magnetic dipole inter-
action energy comes from the crossed termEg, with

b2 b¥a as shown in Appendix A. This approach is the The functionsG, andg, are given by
same as that used in Refs. 6, 7, and 10. In this case the

vortex-magnetic dipole interaction energy is the work done ) d’k, ek -
to bring the dipole from infinity to its final position. Go1)(rL ;2,2 ):Tr}‘f (2m)2 — |®
To summarize, the total energy of the vortex-magnetic
dipole system can be written as e coshr(z—2')
sinhrd
Er=E,—m-b"®(ry)—3m-b/(ro), (15

coshr(z+2z' +d)
whereE, is the energy of the vortex distribution alone. The sinh7d

last term in Eq.(15) is the energy of the dipole alone in the — . L
) . . where 7= \/kf+)\ , and the plus(minus sign is for G,
presence of the superconductl,(ro) being the field of the G,). The first terms in the brackets in E4&9) come from

d|pole screening current a_t the _d|pole position. In this pape ulk vortex-vortex interactions, whereas the second and third
this term is a constant, sinaa is not allowed to change. . X ;
terms come from the interactions between the vortices and

From here on this term is dropped. their images. These two functions need a short-range cutoff

The vortex-dipole interaction energy, E¢L3), can be . ) . )
generalized to any distribution of permanent magnetic di-}ﬁt;\gﬁognﬁj ?ﬁ:gﬁl rdel\slﬁIrfci]r?nC;r%qmattr:zes¥&rtegn%6r\?—£cium
poles placed outside the film and described by the magnet*— 9 y

zationM. The result is lelds is given by

; (19

27 d%k, ek
3 vac, Os(r ;2,2)= =~ 2 - 2
E,u=— | d3M(r)-b"ar). (16) M) (2m)? k, 7(sinhrd)

X{f4[ coshr(z+d)coshr(z’' +d)

This expression is in agreement with a general formula of

classical electrodynamics that expresses the interaction en- + coshrzcoshrz' ]+ f,[ coshr(z+d)
ergy of a magnet in an external field in terms of the field that
would exist in the absence the magttetiere this field is
bvaq(r). (20)

X coshrz’ + coshrzcoshr(z' +d)]},
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where

. (k, +7)e™+(k, — e ™
l=

C=(k, —7)%e ™= (k +7)%e™ (21)

The functionsg, , G,, andg,, are invariant with respect to
the transformationg«—z’, and ¢,z')—(—z—d,—2z'—d).
They depend only od/\ and oné/\, where¢ is the vortex

core radius. For thin filmsd<\) the term inG, is absent in
Eq. (17), and G, reduces to Pearl’s resuft.

B. Magnetic pinning potential

The vortex-dipole interaction energy is a linear functional
of the vectorial vorticity distribution, which can be written as

0 dz
Enle)= [ &, [* L, 2001, 2, @2

PHYSICAL REVIEW B9, 214504 (2004
Assuming that the dipole is located in tlkez plane and

thatrg, =0, the pinning potential can be written as

m, dK(r,;zg,z) m
Uvm(rL 'Z)z(ﬁo;\ (920 - =

where ¢ is the angle between, and thex axis. Simple
analytical expressiond,,, exist in two limiting situations:
large distances and thin films. The behavior at large distances
follows from thek, — 0 limit in Eq. (25). The result is

U __g coshi(z+d)/\]
Um(rer)__ ™ Sln}.(d/)\)
m,  Zo\? m, ro A2
BoN (1247232 don 03P 2, 23
oM (r{+1zp) 0 (ri+zp)

(27)

whereU,, is the magnetic pinning potential. This result fol- This expression is valid fox/(r? +z2)>\ in films that are

lows from Eg.(13), and from the linear dependence of the
scalar potential for the vacuum fiel##, Eq. (5), on thez
component of the vorticity obtained in Ref. 11. Writidgas

0
d(r, ,z)=J dzrijiddz’vz(r’l ZOK(|r =] |;2,2),
(23

it follows from Eg. (13) that the magnetic pinning potential
is given by

Uym(ry,2)= -VoK(ro,—r.1:20,2). (24)

m
P\
The expression for the kerngl follows from Eqs.(23), (25),
(27), and(20) of Ref. 11. The result is

dsz_ eikLre_kLZO

K<|r|;zo,z)=—<4w>2xf

(2m)? k,
y (kJ_ + T)eT(Z-%—d)_(kL _ T)e_ 7(z+d)
C .

(29

According to Eq(22), (egh)U,, is the energy of interaction
of a vortex element parallel to ttedirection with the dipole.
Note that the vortex-dipole interaction energy, E2p), does

not depend on the component of the vorticity perpendicular

to thez direction, », . However,v, andv, are not indepen-

dent, since vortex lines form closed loops or lines that begin

and terminate at the film surface¥ (»=0). The magnetic
pinning potentialu,, depends only on the scaled variables

not too thin @=A), and in thin films @<\) for

\/(rl2+zoz)>A=2)\2/d. In thin films for \/(rl2+zoz)<A,

U,m is given by

m, =0; m,/ggA = 1.0

FIG. 3. Dependence of the magnetic pinning potential in the

d/N, zo/N, andm/@ph. Sincel depends on the tempera- plane of the dipole on the coordinat&sand z for a film with

ture, U, is temperature dependent, as shown next.

d=A\.
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z,/2=0.25

FIG. 4. Dependence of the magnetic pinning

potential in the plane of the dipole for a film with
0 oI d=\ on the coordinate at z=0 (full line) and
""""""" y z=—d (dashed lingfor two values of the dipole
height z,. Left panel:m,=0, m,= ¢o\. Right
panel:m,= ¢oA, m,=0.

5 25 0 25 5 -5 0 5
Uyn(T, »2) IV. APPLICATIONS
m 1 m. cos . This section is devoted to applications of the results de-
=4 2 ——— IR, 5 02 . rived above. First, in order to illustrate the formalism of Sec.
bo (r2+2z5)Y2 ¢o T (r2+z5)%? lll, the energies of simple vortex configurations are calcu-

lated. The configurations selected are of interest to the equi-
librium states of vortices induced by the magnetic dipole,

obtained later in this section using a discrete version of Lon-
don theory.

(28)

Note that for thin filmsU,,,, Eq.(28), is independent of the
temperature, sinck drops out. For films of finite thickness,
and at short distanceb,,,, has to be calculated numerically. _ . . .
Some results fotJ,, in the plane of the dipole are shown in A. Simple vortex line configurations

Figs. 3, 4, and 5. Fom perpendicular to the film surfaces  First, vortex loops in the shape of a semicircle of radius
(m,=0), U, is invariant under rotations around ta@xis, interacting with a point dipole located at=(0,0z,) and

so that the graphs in Figs. 4 and 5, left panels, represent thsolarized parallel to the film surfaces, as shown in Fig. 6, are
dependence o), onr, . Form parallel to the film sur-  considered. The vectorial vorticity distribution is given by
faces fn,=0), the dependence df,,, onr, in a plane

rotated bye around thez axis with respect to the-z plane is [~ du(x).

just that shown in Figs. 4 and 5, right panels, multiplied by v(X.y,2)= = | X+ dx 2 a(y)dlz—u(x)], (29
cosep [Eq. (26)]. These results show that the magnetic pin- ) . .

ning potential penetrates a distance\ into the film, and mge):zli%) Is the position of the vortex loop with respect to

that its range parallel to the film surfaces is a fawThe
temperature dependence 0f,, throughd/\, z5/\, and —_ P22

m/¢o\, is shown in Fig. 5. As the temperature increases u(x) R (30
both the range and the absolute valuelgf, increase. The Substituting Eq(29) in Egs.(17)and(22) it follows that the
temperature dependence of the vortex-dipole interaction ervortex loop self-energy is given by

ergy epAU,,, comes from that ol ,,,, discussed above, and
from the energy scaleyh. However, what is of greater in-
terest in this paper is the relative strength of the vortex-

R dx (R dX’ , ,
et | 5" S Gtk x 60,0001
“RMNJ R\
dipole and vortex-vortex interaction energies. For this reason

both energies are scaled kyg\. The temperature depen- du(x) du(x")

dence ofU,,, should be compared to that f andg, in the * —ax o God [x=x"[;u(x),u(x") 1,
vortex-vortex interaction energy, Ed17), which comes X

solely from\. (31

FIG. 5. Dependence of the
magnetic pinning potential in the
plane of the dipole, and a&=0,
on the coordinate for a film with
d=2\A(0) at different tempera-

A/2(0)=1.0: full

b o ] AN(0)=1.0: full tur_es, defined by\/)\(O) Dipole
M/1(0)=4.0: dash 3/%(0)=4.0: dash height zo=X(0). Left panel: m,
-10p MA(0)=10.0: dot+ AA(0)=10.0: dot =0, m,=¢oA(0). Right panel:

m,= ¢oA(0), m,=0.
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z =10 EV\
Z, -‘m %
L 5
104_11, X i
>

u(x)l

TR

FIG. 6. Semicircular vortex loop of radil® interacting with a
point dipole parallel to the film surfacéeft pane), and loop en-
ergy vsR for d=2\, z;=0.5\, m=2.5¢¢\ (right panel.

05 1 15 R/ 2

and the vortex-dipole interaction energy is given by

Upm[X,0U(x)].

Eym/ (€M)= — f " dxdut (32

RN dXx

The energieg, andE,,, are calculated numerically as func-
tions of R. The results are shown in Fig. 6. The loop self-
energyE, increases almost linearly witR, except forR very
close tod. In this case it decreases wikhdue to the inter-
action between the vortex loop with its image at thve
—d film surface. In the linear region the value of the loop
self-energy per unit length is-2€,, which is close to the
value in the bulk superconductorefln \/é~2.3¢p). The
vortex-dipole interaction enerdy, ., is negative, has a mini-
mum atR=1.2\, and is larger in absolute value than the
self-energy, so that the total enefgy=E, + E,, is negative
for all R. The latter depends on the particular valuenof
chosen here, sindg,,, is proportional tan. The total energy
has a minimum aRkR=0.8\. This minimum corresponds to
the loop for which, ifR is slightly changed byR, the cor-
responding changes in the self enefly, and in the vortex-
dipole interaction 6E,,, cancel out exactly, sinceSEs

=0E,+ 6E,,=0. These results show that, even in the
simple case considered above, the vortex configuration that
minimizes the energy is determined by a nontrivial processg

Now, pairs of tilted straight vortex lines, symmetrical
about thez axis, and with vorticities);, q,, are considered.
The pair interacts with a point dipole, located at
=(0,07p), and polarized parallel or perpendicular to the film
surfaces. The vorticities are chosergas-q,=1 for perpen-
dicular polarization, andj;=—q,=—1 for parallel polar-
ization, as shown in Fig. 7. The vectorial vorticity distribu-
tion is given by

O G0V L.
X0 0 X0 X X0 0 X0 X

‘St | el
uy(z) | uy(z) uy(z) | u;(2z)

X4 Xd -X4 Xd

FIG. 7. Pairs of tilted straight vortex lines, symmetrical about
the z axis, interacting with a point dipole. Dipole polarized perpen-
dicular to the film surfaces ife) and parallel in(b).
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~ duy(z).
V(XY,2) =0y z+ — X) a(y)d[z—uy(2)]
~ duy(z).
0| 2+ —, x)5<y>a[z—u2(z>], (33

whereu4(z), u,(z) are the positions of the vortex lines with
respect to the axis, given by

u1(z) =Xo— ztané

Uz(2)=—U4(2), (34)

where tam= (xq4—Xp)/d. Substituting Eq(33) in Eq. (17) it
follows that the vortex loop self-energy is given by

0dz(odz
EU/(607\):2fﬁdyfidT{[(tana)zgi[|U1(Z)

—uy(2")];2,2' 1+ G, d Jui(2) —uy(2")];2,2' 1]
+[—0102(tand)?G, [|uy(2) +uy(2')];2,2']

+01020,4 | ui(2) +uy(2')];2,2' 11} (39

The first and second square brackets on the right-hand side
of Eq. (35) correspond, respectively, to the self-energy of the
lines and to the energy of interaction between them. The
vortex-dipole interaction energy is obtained by substituting
Eqg. (33) in Eq. (22),

0

dz
Eoml(eoh) = | 10Ul t(2),07]

+02Uym[ —U1(2),02]]. (36)

The energie&, andE,,, are calculated numerically as func-
tions of xy4, for fixed Xy, and for d=2\, z;=0.5\, m
=2.5¢p\. For perpendicular polarizatioxy is taken asxq
=0.2\. For parallel polarization the value &f, is chosen to
coincide with the maximum oU,,, at z=0, namelyx,
0.6\. The most significant result of this calculation is that
both polarizations the total ener@t=E, +E,, is mini-
mized when the vortex lines are tilted away from each other
(Xg>Xg). For perpendiculatparalle) polarization the mini-
mum occurs aky= 0.5\ (xg=1.2\).

The reason for this behavior is that in the case of perpen-
dicular (paralle) polarization the repulsion between the vor-
tex lines is strongefweakei than the vortex-dipole interac-
tion. This is shown in detail in Fig. 8. For perpendicular
polarization[Fig. 8@)], E, decreases agy increases, be-
cause the vortex lines repel each other, Bpgl increases as
Xq increases, because each vortex line lowers the energy
when it is closer to«=0, whereU,, is minimum (see Fig.

4). The minimum ofE;=E,+E,,, at x4=0.5>X, shows
that vortex-vortex repulsion is stronger than vortex attraction
by the dipole. For parallel polarizatidfig. 8b)], the behav-
iors of E, andE,,, are the opposite of those for perpendicu-
lar polarization:E, increases axy increases, because the
vortex and antivortex attract each other, dfg, decreases
asXxgy increases. This behavior &, results because, in the
range shown in Fig. ®), the vortex and antivortex lines are
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20 EV\ 10 EV\
< 2 . .
&f’o wo5 FIG. 8. Energies of the vortex line pairs
o E 0 shown in Fig. 7, ford=2\, z;=0.5\, m

20 E 5 E =2.5¢o\. Dipole polarized perpendicular to the

T\ 10-&,/ film surfaces in(a) and parallel in(b). In (a) X,
) E =0.2\ and in(b) x,=0.6\.

“0 B, -15&_ 0

- 20

5% 02 04 06, 508 0 1 20

d d

able to better sample the regionslbf,(x,z) that lower their ~ straight vortex lines. This term can also be written as
energy of interaction with the dipole. The minimum Bf —HBA/4m=— [d?r(H ¢ol4m) v,(r). The equilibrium con-

=E,+E,m atxg=1.2\> X, shows that the vortex-dipole in- figurations of straight vortex lines in the sample are deter-
teraction is stronger than the vortex antivortex attraction. Ofmined solely by the energy minimization. In the case of the
course, the above described results depend on the particullim-dipole system, the vortex-dipole interaction energy,

values chosen for the parametersz,, andm. given by Eq.(22), is, as far as vortex creation is concerned,
formally similar to a “—HBA/4=" term, since it is also
linear in v,. Thus,

B. Equilibrium vortex states —47eg\U,m/ ¢y plays the role of an inhomogeneous ap-

In order to obtain the equilibrium states in the absence oplied field along thez direction. The equilibrium vortex dis-
an applied magnetic field it is necessary to minimize thetribution is, as discussed earlier, determined solely by the
energyE; Eq. (15), with respect to the vectorial vorticity total-energy minimizatiorisubjected tdv - »=0). However,
distribution ». The only restriction is tha¥V -»=0, which it must be stressed that the above mentioned analogy is
means that the vortex lines must form closed loops or linepurely formal, in the sense that the quantitydmegh U,/
that begin and terminate at the film surfaces. The temperaturé, is not simply related to the “applied field,” which is the
dependenE;, discussed above, is, as well known, the Lon-dipole field. The relationship between the vortex-dipole in-
don limit of the Ginzburg-Landau free energy, and is a meanteraction energy and the magnetic field created by the dipole
field approximation for the free energy of the vortex-dipoleis that mentioned in Sec. I, and proved in Appendix B.
systemt’ Thus, the vortex configurations obtained by mini- Namely: the changéE,, due to a small change in the vec-
mizing E; are the thermodynamic equilibrium ones in this torial vorticity distribution is equal to the negative of the
mean-field approximation. This neglects vortex fluctuationswork done by Lorentz force of the dipole screening current
which is justified only for lowT. superconductors in the during the deformation. The same relationship is valid for the
region of validity of London theory. In this case the equilib- cylindrical geometry discussed above: the terrti BA/4mr
rium states thus obtained are good approximations to the true the negative workper unit length done by the Lorentz
ones. force of the screening current generated by the applied field

The equilibrium state, in the absence of an externally apH to bring BA/ ¢, straight vortex lines from the surface of
plied field, will contain vortices if there is a configuration of the cylinder to a position deep in the interior.
vortex lines for whichE;=E, + E,, is minimum and nega- The spatial symmetry of),, plays an important role on
tive. Minima with E+>0 are metastable, since for the film the nature of equilibrium vortex configurations. For instance,
without vorticesg,=E,,,=0. Minima with E;<<0 can oc- in the case of a dipole parallel to the film surfaces, the total
cur if there are configurations of vortex lines for whigl,,,  vorticity is zero, whereas for a dipole perpendicular to the
is sufficiently negative to overcome the positive definitefilm surfaces the total vorticity along thedirection may not
vortex-vortex interaction enerdy, . The simple vortex con- be zero, as will be shown in Sec. IV B 2. Is has been claimed
figurations discussed in Sec. IV A illustrate this. by some authors that a dipole perpendicular to the film sur-

The problem of calculating of the equilibrium vortex con- face can only create vortex configurations with zero total
figurations created by the dipole by the method describedtorticity.”%¢ The justification given by these authors for
above is analogous the textbook example of calculating théhis claim is that the flux of the dipole magnetic field through
distributions of straight vortex lines in a bulk cylindrical the film is zero. According to the results obtained here, the
sample under an axial external fiettl In the latter case the flux of the dipole through the sample enters nowhere in the
equilibrium vortex state is obtained by minimizing the total calculation of the equilibrium vortex configurations.
energy (per unit length with respect to the distribution of According to the discussion in Sec. lll, the equilibrium
straight vortex lines, which is described by the vorticity states obtained in the mean-field approximation depend only
distribution v,(r). The total energyper unit length is the  on the scaled parameteads\, zo/\, andm/ ¢\, which de-
sum of the vortex-vortex interaction energy with the pend on the temperature through The equilibrium states
—HBA/4w (B= magnetic induction, A=cylinder cross- do not depend on the energy scadg\, because only
section areaterm, which is responsible for the creation of E+/egh has to be minimized, since bots, and E,, are

214504-8



PINNING AND CREATION OF VORTICES IN . .. PHYSICAL REVIEW B59, 214504 (2004

equally scaled. For a given film and magnetic dipdle,,  of Appendix B, that"(R) can also be written as the nega-
andm are fixed, but the parametett$h, zo/N, andm/¢oN  tive of the work done by the Lorentz force of the dipole
change with temperature, leading to nontrivial changes in thgcreening current to bring the vortex line from a position far
equilibrium state, as discussed in Sec. IV B 2. from the dipole taR. In Ref. 10 the vortex-dipole interaction
The problem of minimizindg=r with respect to the vortex energy is written as the sum of minus one-half of the Lorentz
distribution is, in general, a formidable task. The simplestgrce work with — m- b¥a%2.
case is that of straight vortex lines perpendicular to the film The total energ¥E+, Eq.(39), is a functional of the vor-
surfaces, where the functional dependenc&pbn the vor- tjcities (q;) and positionsR;) of the vortex lines. In order to
tex distribution can be .described- by a finite numbel’_of de'obtain the equ“ibrium vortex ConfigurationEﬂ_ has to be
grees of freedom, as discussed in Sec. IV B 1. For films ofinimized with respect to these variables. The minimization
finite thickness the vortex lines are not in general straightjnyolves only a finite number of variables, and can be carried

and Ey depends on infinite many degrees of freedom reqyt numerically with modest computational resources. This
quired to describe arbitrary configurations of curved vortexminimization will be discussed elsewhere.

lines. The minimization o can only be carried out ap-  The equilibrium vortex configurations created by the
proximately, by reducing the degrees of freedom to a discretgagnetic dipole will consist of straight vortex lines only for
set. A method to do this is discussed in Sec. IV B 2. thin films (d<\). For thick filmsd>\, the self-energy and
, , the vortex-vortex interaction energy grow with the thickness
1. Straight vortex lines of the film d, whereas the vortex-dipole interaction energy

Here it is assumed here that the vortex lines in the film argloes not, sinc& ,,, is limited to region of depttx from the
straight and perpendicular to the film surfaces. In this casélm surface closest to the dipole.
v, =0 andv, is given by
2. Lattice London model

vAr,2)= . qio(r. —Ri), (37 In this section an approximate method to obtain equilib-
_ o _ rium vortex configurations induced by the magnetic dipole is
whereq;=0,£1,=2, ... is thevorticity of the ith vortex  presented. It is based on a discretization of the vortex de-

line andR; its position in thex-y plane. The energy is then grees of freedom called lattice London model. This model
was introduced several years ago to study vortex fluctuations
ET/(GO)\):[ z a QJUUU(|Ri—Rj|)+2 quE'}}e(Ri) , in high-T. supercon_ductor%“’. In the present context the Ia_lt-_
i 0] tice London model is useful because it requires only a finite
(39 number of degrees of freedom to describe curved vortex line
configurations, and because it preserves the essential physi-
cal ingredients of the vortex-dipole system in the London
0dz(fodz limit.
va(|Ri_Rj|):f Tj ngs(|Ri—Rj|;Z,Z'), The vortex distribution in the lattice London model is
- - (39) represented by integer variable placed on three-dimensional
mesh with cubic unit cell of sidea~¢, and subjected to
and periodic boundary conditions. At each lattice site there are
three integers ,=0,+1,+2, ..., one foreach spatial direc-
adz tion 2 =x,y,z. From the configuration of the variabl
—UynsRi,2). (40) ion n=x,y,z. From the configuration of the variables at
A each lattice site, the configuration of vortex lines follow by
associating arrows with the,,, as shown in Fig. @). Es-
sentially, the lattice London model restricts the vortiaityo
point in one of thex,y,z directions, anch, represents the
flux of » through the face of the cubic unit cell perpendicular
to the u direction[Fig. 9a)]. For bulk and semi-infinite su-
perconductors the lattice London model is an exact discreti-
zation of London theory on a cubic lattice, as shown in Ref.
19. For the problem under consideration here, the lattice

where

0

UaR)- |
The interaction energy of a vortex line paiR#R;) is
2(eoM)U,,(IRi—R;[), and (\)U,,(0) is the vortex line
self-energy. The vortex-vortex interaction enetdy, is dis-
cussed in detail in Ref. 11.

The interaction energy of the vortex line with the mag-
netic dipole is €\)U'(R;). The expression fot)'"® is
obtained from Eqs(24), (25), and(40) as

42K m m London model is an approximation. It consists in replacing
ume(R)=—(47)2 = X ik, ——=k the film by a cubic mesh of lattice constant ¢, where the
vm ™ 2 )\ X )\ 2l . . . . .
(27) ®o bo vortices are defined as discussed above. The cubic mesh is

subjected to periodic boundary conditions in theand y
directions. For the sake of simplicity, in what follows it is
(k, + 7)e™+(k, —r)e” -2k, assumed that the vortex lines generated by the dipole are in
Ok 7 (42 the plane of the dipole. This reduces the search for vortex
L line configurations to two dimensionx-¢ plane, so that
It is straightforward to show that this expression is identicaln,=0. This assumption is justified for the equilibrium vortex
to that obtained in Ref. 10. It can be shown, using the resultsonfigurations discussed here. The vortex-dipole system en-

w e~ ki ‘Ra—k 70
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Bl (M) = 5 S 106,2)Yym(X, 2). (49

The functionsI’, andI',sandY ,,, are obtained frong, ,
Gs,» andU,,, respectively, by making the latter ones peri-
odic in the lattice along th& andy directions. This consists
in substitutingk, = (ky, ky) in Egs.(19), (20), and (25) by
K=[2a*15in(kxa/2),2aflsin(kya/2)], and by replacing the
integrals overk, in the same equations by sums over the
reciprocal lattice of the cubic mesh. This procedure is justi-
fied by the exact results of Ref. 19.

To minimize the functionaEr=E,+E,,, Eqs.(42) and
(43), with respect ta, andn, simulated annealing is used ,
together with the following procedure to generate the vortex

_ FIG_. 9. (a) Graphical representation .of integer yorticities at _Iat- line Conﬁguration§_9 First, it is attempted to add vortex
tice pointr. (b)Vortex loops and vortex lines used in the numerical loops at every lattice site: square loops at sites not on the

minimization method to generate vortex configurations.

film surfaces and open loops at surface sites. Second, it is
attempted to add straight vortex lines, perpendicular to the

ergy functional is obtained from the one derived above forfiim surfaces at every position;. This is illustrated in
the continuum London model as described next. The vortexgig. 9b).

vortex interaction energy is taken as

E,/(€\)=

a2
X) % {nu(Xi Z)nk(x},2))

XTI (%= X152 ,z)nAXi ,Z)NL(X ,Z))

szs(|xi_xj|;zi Z)}

and the vortex-dipole interaction energy as

(42

The numerical minimization dEy is carried out for a few
parameter values wita/\=0.1. The results are shown in
Figs. 10 and 11. These figures can also be viewed as repre-
senting the evolution of the equilibrium vortex configura-
tions for the film withd=3.0\(0), atT=0, with increasing
temperature. The values of the scaled paramellerszy/\,
andm/ ¢\ are chosen so that the sequence of panels corre-
sponds temperatures such thaf\(0)=1, 3/2, 3,6. Note
that in this case the mesh parameter in Figs. 10 andall,
~ ¢, also changes witf, since¢ is temperature dependent.

FIG. 10. Equilibrium vortex
configurations generated by a
magnetic dipole perpendicular to
the film surfaces, and located at

(x=0y=0,z=2y). (8 d=3A\, 2,
=12\, m,=525po\; (b) d
=2\, 25=0.8\, m,=3.5¢¢\; (C)

d=\, zp=0.4\, m,=1.75p¢\;

d d) d=05\, z,=0.2», m,
) —0.625p0\.

-2
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FIG. 11. Equilibrium vortex configurations

generated by a magnetic dipole parallel to the
film surfaces, and located ax€0y=0,z=2p).
(@ d=3\, zp=1.2\, m,=7.5¢g\; (b) d=2A,
Zo=0.8\, m,=5¢o\; (c) d=\, z;=0.4\, m,
=25¢po\; (d) d=0.5\, z;=02A, my
=1.25¢0\.

It
e

m perpendicular to the film surface§he equilibrium  11. These configurations reflect the properties of the pinning
vortex configurations consist of vortex lines with a single potential form parallel to the film surfaces shown in Figs. 3
flux quantum, that is)n,|=|n,|=1 along the lines, and with and 4. For instance, in the case of the half loop ¢br
n, of the same sign as, (positive in Fig. 10. The vortex =3.0n, the resulting curve places the negatipesitive) n,
lines are curved, except for the thinner film with=0.5\.  in regions of positive(negative pinning. This is similar to
The curvature results from the competition between vortexthe semicircular loop discussed in Sec. IV A. In the case of
vortex and vortex-dipole interactions. Closer to #3e0 sur- ~ Vortex lines, the nearly straight curve follows, essentially the
face the vortex-dipole interaction dominates, pulling the vor-pinning potential maxima for negativg and the minima for
tex lines towards the dipole, and keeping them perpendicula@OSitive n,. Note that the lines with opposite vorticities are
to the film surfaces. Deeper inside the film the vortex-dipolefurther apart at the bottom of the film than at the top. This is
interaction weakens and vortex-vortex repulsion separate$imilar to result obtained in Sec. IV A for two tilted straight
the vortex lines apart. This is similar to what happens in thdines, and is an indication that the vortex-dipole interaction is
case of tilted straight vortex lines discussed in Sec. IV A. stronger than the attraction between the lines.

The creation of equilibrium vortex configurations with ~ The results of Fig. 11 also indicate how the vortices pen-
nonzero vorticity along the direction found here is, as dis- etrate the film with increasing temperature, that is, the tran-
cussed in Sec. IV B, a consequence of the spatial dependengion from the Meissner state to the mixed state. The transi-
of the vortex-dipole interaction energy obtained in Sec. lll B.tion is continuous. Half loops penetrate and grow towards
However, creation of net vorticity only occurs for an isolatedthe interior of the film, eventually separating in two lines of
dipole. For dipole arrays, the net vorticity alomgnust van-  apposite vorticities.
ish, even if the dipoles are far apart, due to the long range of In the results discussed above the equilibrium vortex con-
vortex-vortex interaction in film&&2°The reason is that if a figurations contain only vortex lines with unit vorticity. This
finite positive(or negative v, exists, the vortex-vortex inter- is also found to be true for many other parameter values not
action energyE, , given by Eq.(17), scales likeL® (L=film reported here. However, within London theory, two vortex
linear dimensions in thex-y plane, L>A), since €lements of unit vorticity separated by a distance less than
G,{r;2,2')—1Ir for r>A and fd’r’fd?r|r—r'| 1~L5. 2¢ cannot be distinguished from a doubly quantized one.
The vortex-dipole interaction energy, E@2), on the other ~ This occurs in Fig. 10 fod=A\ and in Fig. 11 ford=\ and
hand, scales ak? and, for a large, cannot overcome the d=0.5\, in the immediate vicinity of the=0 film surface.
vortex-vortex interaction energy to stabilize the vortex con- The equilibrium vortex configurations described above,
figuration with nonzero vorticity. The only vortex configura- for both orientations of, are not expected to change if the
tions that can be created by the dipole array are those fdestriction that they are in the plane of the dipole is lifted,
which E, scales a4.2. One possibility is a, that oscillates ~ since there would be no gain in the vortex-vortex or vortex-
between positive and negative values, in such a way that thépole interaction energies if some vortex lines were out of
long-distance 1/vortex-vortex interaction from positive and the x-z plane.
negative vortices cancel each other out. One example of such
a configuration was obtained in the London limit for a square
lattice of magnetic dots above a thin superconducting film in
Ref. 9. It consists of a vortex antivortex pair per unit cell, In conclusion then, this paper solves exactly in the Lon-
with the vortex located under the dipole. don limit the problem of vortices in a film of arbitrary thick-

m parallel to the film surfacesThe vortex configurations ness interacting with a point magnetic dipole outside the
consist of half loops and pairs of vortex lines with oppositefilm, and obtains from these solutions the vortex-dipole sys-
vorticity, both with a single flux quantum, as shown in Fig. tem energy as a functional of the vortex distribution. The

V. CONCLUSION

214504-11



GILSON CARNEIRO PHYSICAL REVIEW B69, 214504 (2004

energy functional depends on the temperature through theross terms containing two distinct fields. Here it is shown
penetration depth, and represents a mean-field approximatighat these terms vanish. The first step is to show that there
to the free-energy of the vortex-dipole system, which is mini-are no cross terms if;, with b and any homogeneous
mum for equilibrium vortex configurations generated by thesolution of London equation, denoted las This term is
dipole in this mean-field approximation. The vortex configu-
rations thus obtained are good approximations to the true
equilibrium ones for lowT ; superconductors in the region of
validity of London theory. The results reported here can be ) )
generalized to any distribution of permanent magnetic moYsing the identity
ments placed outside the film. The numerical method to ob- ; i i
tain equilibrium vortex configurations presented here is of V><b"'-V><bh=V-[b"'x(V><bh)]+b"'~[V><(V><bh)A,2
general validity, and can be applied to three dimensions and (A2)
to other distributions of dipoles. and the fact thab" satisfies the homogeneous London equa-
The London limit used in this paper is expected to breakion, E; can be written as
down for large values of the magnetic dipole, because the
inhomogeneous magnetic field created by it destroys super-
conductivity locally in the film. Roughly speaking, London
theory is valid as long as the maximum field of the dipole at

the film surface nearer to it is less than the upper criticafS Shown in Ref. 11b" at the film surfaceg=0, —d points

field that s m/zg<¢0/(277§2) or  m/(do\) in the z direction, so that the vector product in the integrand
<(20/\)3(\/€)%/27. One indication of this breakdown is Nas N0z component, and,=0. This argument eliminates

the appearance in the equilibrium vortex configurations of!'® Cross terms witb™ anqbsnay' and wnf:b"' andbi'rr;. One
vortex lines separated by distance@é. In the equilibrium ~ CrOSS term is left irEj, with the fieldsb®™ and by, It is
vortex configurations shown in Figs. 10 and 11 this occurshown next that in the case of a small current loop this term
for m perpendicular to the film surfaces in the film with IS canceled out by the cross term whtf® and by in Ey:.

=\, and form parallel to the film surfaces in the films with Denoting these terms b¥;, . and Eq ¢, respectively, it
d=X\ andd=0.5\. In both cases the values ofare found follows that

to be in agreement with the condition stated above. Note, 42 (o

however that only in the immediate vicinity of the film sur- g :J rif dZ[ A2V X bSaY. ¥ x hin 4 pstray. pin]

face the vortex lines separation $s2¢. Deeper inside the ne 47 ) _q m m

2
— dry (o 2 Vi hy pVi. ph
E. yp dZ AV XDb"-VXb"+b"-b"]. (Al)
—d

d’r, .
Ec:)\ZJ 4—;2-[bV'><(V><bh)]|cid. (A3)

film the vortex lines are separated by distances larger than (A4)
2¢. This can be interpreted as indicating that the regions 5

where the vortex lines separation $s2¢ are normal, and E = J’ dr, fwdz+ f_ddz bYc. pot . (AS)
that in the regions where the separation is larger th&th2 out ¢ 47 | Jo —w m -

vortex configurations obtained in the London limit are rea- o )

sonable estimates. In the case of bulk superconductors at¢sing arguments similar to those leading to E&3), Ej,
films under applied magnetic fields, the interpretation along-@n be written as

similar lines of London theory results for the vortex configu- \2

rations.gen.erated by the field lead tc_) a reasonable first—_order E;, C:_J dzrﬁ- [ DS (V X bm)]lgd_ (A6)
approximation to the vortex phase diagram. The same is be- 4

lieved to be true here. The London theory results describe . N inim 2 sein in

in this paper, and their generalization to distributions of di_irotm London equatiorV X bn=an/\" (by=V xay), so
poles, can be applied beyond their strict limits of validity to a

give a first-order approximation to vortex behavior in these

1 "
systems. Ein CZEJ d?r, z- [N x bS] |° . (A7)
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It follows from the continuity of the fields and vector poten-
tials at the film surfaces th&;, .+ E,, ~0.
In the case of a permanent magnetic dipole there is only a
Here some details of the derivations in Sec. Il are givenpartial cancellation, andg;, .+ Egy = —m-b"¥(ry), as
First it is shown that all cross terms By vanish. shown next. The energl,, . is written in terms of scalar
When Eqs(1) are substituted in E(8) there are several potentials using the identities

APPENDIX A: MATHEMATICAL DETAILS
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0 X If the vortex line undergoes a small deformation, defined by
du(z), the change in the vorticity to first order is
i . déu(z) »
. vk, ,2)={[—ik, -du(z)]z+ e'kiu@,

(B4)

FIG. 12. Full line: generic vortex line defined lyz). Dashed

line: vortex line after deformatiou(z). The corresponding change in the vortex-dipole interaction

energy is
vac, |,0ut__ P VD =V.-(DVD.)—D Zq)
bbb '=VP . VO =V . (VD ) -DdV-D, G2, (0 dz
=V (PVD,)+—47dm-VS(r—ry). 5Evm/fo>\=f (ZW)zf_dyévz(kL,z)UUm(—kL,z)-
Substituting in Eq(A5) results (B5)

B vac 1 ) A out0 When the vortex line is deformed byu(z), the Lorentz
Eout = —mM-b"(ro) — Ef dr ®[z-byZg. (A9)  force of the screening current induced by the magnetic dipole
. ) j3°=cl4mV X by does the work
The second term in EqA9) cancels oug;, .. This can be
shown starting from EqA6), and using Eq(22) of Ref. 11

2
for b the homogeneous London equation fgf, and &NL:@f d“k, fo 425k, .2)
continuity of the fields at the film surfaces. cJ (2m)?)-d
APPENDIX B: WORK DONE BY THE LORENTZ FORCE x|z _dl;(z) . Su(z)e kU@, (B6)
z

Here it is shown that the change in the vortex-dipole in-
teraction energyE,,, Eqg. (13), equals the negative of the The screening current is perpendicular to tdirection, and
work done on the vortex lines by the Lorentz force of theis given by(Ref. 10
screening current induced by the magnetic dipole.
Consider the vortex line running from one film surface to c
?ge other shown in Fig. 12. The equation describing this line ik, ,2)= F(ikl Xz)(im, -k, +m,k, )e k%

-~ 7(z+d —7(z+d
r(z)=zz+u(z). (B1) X(ki“LT)e( '~ (k —m)e "9
_— - S Ck, '
The contribution of this line to the vorticity is
(B7)
0 Z dU(Z) —i[k, -u(z)+k,z]
V(k)zf ddZ zt— e . (B2)  pecause both the screening current an¢z) are parallel to

the film surfaces, the term wittlu(z)/dz in Eqgs.(B6) van-

It is convenient here to work with Fourier transform in the ishes. Substituting EqB7) in Eq. (B6), and using the ex-
x-y plane only. For the vorticity it is pression forU,, obtained in Sec. IlI B, it follows that
OE,m=—6W,_. This result can also be demonstrated for

~ du(z)| . . .
wk, ,2)=|2+ ek, () (B3) vortex lines that cannot be described by E@l), such as
dz loops and lines with humps.
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