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We propose a scheme to physically interface superconducting nanocircuits and quantum optics. We address
the transfer of quantum information between systems having different physical natures and defined in Hilbert
spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a
nonclassical state of an infinite dimensional system to a pair of superconducting charge qubits. This setup is
able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for
quantum information processing.
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I. INTRODUCTION

Control of the dynamics of a complex quantum system
requires a trade-off between tunability and protection against
noise. To this end one can be interested in processes where
some physical properties of a subsystem are reliably trans-
ferred onto the state of a second one(of perhaps different
nature) where information can be manipulated. The connec-
tion between the two subsystems is effectively realized via a
physicalinterface. An interface is a communication channel
used to connect the elements of a quantum register to per-
form quantum information processing or a physical mecha-
nism that gives full access to the system under investigation
and allows to manipulate it.

To investigate this problem, in this paper we describe the
coupling between a nanoelectronic circuit implementing a
pair of quantum bits and a two-mode electromagnetic field.
We discuss a mechanism for the transfer of entanglement
from a two-mode squeezed state to the pair of qubits. Here,
the information sheltered in the electromagnetic medium
may be manipulated, using just single-qubit operations, when
transferred to the solid-state subsystem. This may offer ad-
vantages with respect to integrability and scalability. In par-
ticular, we consider the field modes to interact with a pair of
(initially independent) superconducting quantum interference
devices(SQUIDs) that embody two charge qubits.1 Direct
experimental evidence of the use of these systems as control-
lable coherent two-level systems has already been
provided.4,5 We find that a nearly maximally entangled state
of two qubits can be tailored, with our interaction model, via
an effective process of transfer of quantum correlations. The
entanglementpouredinto the joint state of the qubits can be
regulated controlling the interaction times between qubits
and field modes. At the interaction time corresponding to the
maximum of the transferred entanglement, the qubits are in
an almost pure state that may be used for efficient quantum
information processing.

This work is organized as follows. In Sec. II we introduce
the system we consider and derive the effective model for the
coupling between a superconducting charge qubit and a field
mode. Section III is devoted to the study of the process of

transfer of quantum correlations from the two-mode field to
the qubits. The joint state of these latter, once the field modes
are traced out, turns out to be entangled. We quantify the
amount of entanglement between the qubits and find the cor-
responding degree of mixedness of the state. Finally, in Sec.
IV, we investigate about the variations in the amount of
transferred entanglement as the initial preparation of the qu-
bits is changed. We find that the transfer process is optimized
if the qubits are initially in their computational ground state.

II. THE HAMILTONIAN

A scheme of principle of the system we consider is
sketched in Fig. 1(a). In details, a pair of SQUIDs is exposed
to a two-mode correlated state of radiation. In order to cap-
ture the essence of this interaction, each field mode is mod-
eled as an LC circuit coupled to the corresponding SQUID
via the capacitanceCc, as shown in Fig. 1(b). The SQUIDs
can be individually addressed by gate voltagesVg whereas an
external magnetic fluxfext allows to change the Josephson
coupling EJsfextd (Ref. 1) and to modulate the interaction
among the subsystems.2,3 We first analyze a single SQUID
plus LC oscillator. We introduce the phase drop across the
SQUID swad and across the LC circuitswbd. The conjugated
variables are the excess charge on the SQUID islandsQad
and the charge on the oscillator’s capacitancesPbd. The
Hamiltonian describing the system is

H = HSQUID + Hem+ Hc =
sQa − CgVgd2

2C
− EJsfextdcosS2e

"
waD

+
Pb

2

2C2
+

wb
2

2Lo
+

PbsQa − CgVgd
C1

. s1d

where

C = D/sC0 + Ccd,

C1 = D/sCg + 2CJ0
+ Ccd, C2 = D/Cc,
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D = sCo + CcdsCg + 2CJ0
d + CcCo,

and

EJsfextd = 2EJ
0coss2efext/"d,

with EJ
0 the maximum Josephson energy. Here,CJ0

is the
single junction capacitance. The SQUID HamiltonianHSQUID
can be tuned byVg andfext. The field mode, described by the
oscillator Hem=Pb

2/2C2+wb
2/2Lo, has effective frequency

v=sLoC2d−1/2 which comes from the inductanceLo and the
total capacitanceC2 seen by the chargePb. The coupling
Hamiltonian Hc=PbsQa−CgVgd /C1 describes the Coulomb
interaction between the chargesQa andPb.

We assume large charging energy,e2/2C@EJsfextd, and
low temperaturesT!e2/2C. In this regime the SQUID can
be described by the statesumls sm=0,1d representingm Coo-

per pairs in excess in the island, and implements a charge
Josephson qubit.1 Typical values ofCJ0

.10−15 F and Cg

.10−17 F guaranteee2/2C,1 K@EJ
0,100 mK. In this

system, the main sources of decoherence are noise of elec-
trostatic origin, voltage fluctuations of the circuit1,6 or stray
polarization due to charged impurities located close to the
device.7 If we setCgVg=e, u0ls and u1ls have the same elec-
trostatic energy and the SQUID is not affected, at first order,

by this charge noise.2,5 At this working point, ĤSQUID
= 1/2EJsfextdŝz,s with a computational basishu+l , u−ljs,
where u± ls=s1/Î2dsu1l± u0lds are eigenstates ofŝz,s, the
z-Pauli matrix, splitted byEJ/",10 GHz. We introduce the

operators â and â† sfâ,â†g=1d via P̂b=s"vC2/2d1/2sâ
+ â†d ,ŵb= is" /2vC2d1/2sâ− â†d and we get Hem="vsâ†â
+1/2d. Taking C2.1 pF andLo.10 nH, achievable by
present day technology, we havev.10 GHz. The coupling
between the SQUID and the field mode can be tuned on and
off resonance by modulating the energy splitting of the qubit
via fext. If EJsfextd /" is set to be much different fromv, the
coupling is effectively turned off and the qubit evolves inde-
pendently from the field mode. On the other hand, for the

quasiresonant conditionEJsfextd."v, we useQ̂a=2eŝx,s,
with ŝx,s=su+lsk−u+ u−lsk+ud the x-Pauli matrix, so that

Ĥc = "Vfsâŝ+,s + â†ŝ−,sd + sâ†ŝ+,s + âŝ−,sdg, s2d

whereV=eÎ2vC2/"C1
2 is the Rabi frequency of the interac-

tion andŝ+,s=ŝ−,s
† = u+lsk−u. The Hamiltonian Eq.(2) is fre-

quently found in quantum optics problems. The first and sec-
ond term preserve the total number of excitations in the
system and allow for the restriction of the computational
basis to hu−,nl , u+,n−1ljs,em, where unlem is an n-photon
Fock state.8 The other(counter-rotating) terms induce leak-
age from this subspace. They can be neglected in the rotating
wave approximation. This can be used whenV
!v ,EJsfextd /", achieved if we takeCc.10−17 F (weakly
coupled subsystems) so that C1.10−11 F and V
.0.1 GHz. In this regime, the eigenstates of the SQUID
plus field mode system are entangled states forming a series
of doublets splitted by"VÎn. It is worth stressing that, at the
working point Vg=e/Cg, intradoublet transitions are
forbidden.2 The system is thus protected, to a certain extent,
from decoherence.

III. TRANSFER OF ENTANGLEMENT TO THE QUBITS

We now consider both the SQUIDs of our system and
describe their interaction with a two-mode nonclassical state
of radiation. We consider the two-mode squeezed state8

uSsrdlab=on=0
` hnsrdun,nlab, wherer is the squeezing param-

eter and hnsrd=stanhrdn/coshr. This is a quantum-
correlated state of modesa andb and the above expression is
the Schmidt representation of their joint state. The entangle-
ment between the modes is a function ofr. Squeezed micro-
waves can be generatedoff-line using Josephson parametric
oscillators in nondegenerate configurations9 and then used
for our protocol. The SQUIDs can be integrated in the
waveguides used for the transmission of the signal,9 with the

FIG. 1. (Color online) (a) Setup for an entanglement transfer
process via the interface between quantum correlated field modes
and a pair of charge qubits. Each SQUID is threaded by an external
magnetic flux to modulateEJsfextd. (b) Equivalent circuit for the
single SQUID capacitively coupled to a single field mode, modeled
as a LC oscillator.
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gate-plates orthogonal to the direction of propagation of the
fields. Quality factors,104 for a superconducting transmis-
sion line are within the state of the art. Forv,10 GHz, this
gives photon lifetimes,1 msec, allowing for a coherent dy-
namics. The SQUIDs are prepared in a pure separable state
r12s0d=r1s0d ^ r2s0d. The interaction between each SQUID
and a field mode is driven by the corotating part of Eq.(2).
The joint time-evolution operator is the tensorial product

Ûstd=Ûa1std ^ Ûb2std where, in the single-qubit basishu−l ,

u+lja, the unitary operatorÛa1std is given by10

Ûa1std =1 cossVÎâ†âtd − iâ†sinsVÎââ†td
Îââ†

− iâ
sinsVÎâ†âtd

Îâ†â
cossVÎââ†td 2 . s3d

An analogous expression can be written forÛb2std. However,
the reduced state of the SQUIDs,r12std, is in general insepa-
rable because the joint evolution with the field modes could
have transferred quantum correlations to the qubits. To give a
complete picture of the dynamics of the qubits, we derive the
operator-sum representation of the SQUIDs evolution

$sr12d :r12s0d→r12std=omK̂mr12s0dK̂m
†, with $ the superop-

erator that takes the density matrixr12s0d to r12std andhK̂mj
the set of Kraus operators corresponding toÛstd. Each Kraus
operator projects the state of the SQUIDs into a pure state. If
there are two or more terms involved in this representation,
the initially pure state evolves into a mixed state. We have

r12std = TrabhÛstdr12s0d ^ rabs0dÛ†stdj

= o
m,p=0

` So
n=0

`

hnsrdabkm,puÛstdun,nlabDr12s0d

3So
l=0

`

hlsrdabkl,l uÛ†stdum,plabD . s4d

Calculating the matrix elements ofÛstd over the Fock states
of the field modes, a set of five Kraus operators is found. If
the initial state of the two SQUIDs is specified, a simplifica-
tion is possible and the number of Kraus operators is re-
duced. We assumer12s0d= u−,−l12k−,−u, that can be prepared
using standard techniques.1 We get the effective representa-

tion r12std=om=1
3 om=0

` K̂m
mu−,−l12k−,−uK̂m

m†, where

K̂1
m = hmcos2sVÎmtdu− ,− l12k− ,− u − hm+1

3sin2sVÎm+ 1tdu+ , +l12k− ,− u,

K̂2
m = hmcossVÎmtdsinsVÎmtdu− , +l12k− ,− u,

K̂3
m = hmcossVÎmtdsinsVÎmtdu+ ,− l12k− ,− u. s5d

K̂1
m is responsible for zero and two-photon processes that

leave the two field modes with the same number of photons.

K̂2
m andK̂3

m describe single-photon processes in which one of
the SQUIDs absorbs an incoming photon. Using Eqs.(5), the
density matrix of the SQUIDs, in the ordered basis
hu−,−l , u−,+l , u+,−l , u+,+lj12, takes the form

r12sr,td =1
Asr,td 0 0 − Dsr,td

0 Bsr,td 0 0

0 0 Bsr,td 0

− Dsr,td 0 0 Csr,td
2 , s6d

where

Asr,td = o
n,0

`

xnnsrdcos4sVÎntd,

Bsr,td = o
n,0

`

xnnsrdsin2sVÎntdcos2sVÎntd,

Dsr,td = o
n,0

`

xnn+1srdsin2sVÎn + 1tdcos2sVÎntd,

Csr,td = 1 − 2Bsr,td − Asr,td. s7d

Here,xnmsrd=hnsrdhmsrd. To quantify the entanglement be-
tween the qubits, we choose the negativity of partial trans-
position (NPT). NPT is a necessary and sufficient condition
for entanglement of any bipartite qubit state.11 The corre-
sponding entanglement measure is defined asENPT=
−2l−sr ,td, wherel−sr ,td is the unique negative eigenvalue
of the two-qubit partially transposed density matrix11 r12

T2 (the
transposition is with respect to qubit 2). In our case, just
l−sr ,td=Bsr ,td−Dsr ,td can be negative for some value ofr
and t and it is used to compute the entanglement.ENPT is
shown in Fig. 2 as a function of the degree of squeezingr
and the rescaled interaction timet=Vt. It turns out thatENPT
never becomes negative and only asymptotically goes to zero
as r is increased. Once the interaction starts, the entangle-
ment is transferred to the qubits,collapsingand reviving as
the interaction time increases. The maximum of the trans-

FIG. 2. (Color online) ENPT vs t=Vt andr. Iff ENPT.0, there is
entanglement between the superconducting qubits. A local maxi-
mum ENPT

max.0.87 is achieved forr̃ =0.86 andt̃.3p /2.
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ferred entanglement isENPT
max=0.87, obtained fort̃.3p /2 and

r̃ =0.86. As long as correlations are present between the two
modes, entanglement is set in the state of the qubits. Further-
more, we have checked that mixedness of the state of radia-
tion due to imperfections in the generation process(squeez-
ing thermofields instead of vacuum, for example) does not
affect the entanglement transfer.ENPT is not a monotone
function of r as can be seen in Fig. 3(a). It is known that the
correlations inuSsrdlab approach those of the maximally en-
tangled Einstein-Podolski-Rosen(EPR) state whenr →`.12

Increasing r, the contribution by higher photon-number
terms in the squeezed state becomes more relevant. The in-
teraction of each qubit with the elements of this distribution
of Fock states results in induced Rabi floppings(character-
ized by frequenciesVÎn) that mutually interfere, spoiling
the degree of entanglement between the SQUIDs. This
shows that a perfectly correlated state defined in an infinite
dimensional Hilbert space can not be mapped onto a maxi-
mally entangled state of two qubits. On theother hand, the
discreteness of this distribution induces the entanglement to
collapse and revive as time goes by. This analysis is con-
firmed by considering the entanglement of formation(EoF).
This entanglement measure quantifies the resources, in terms
of number of uEPRl singlets, needed to create a given en-
tangled state using only classically coordinated local
operations.13 For a bipartite system, EoF can be calculated
as14 EoFsr12d=−x log2x−s1−xdlog2s1−xd, where x=f1
+Î1−C2sr12dg /2 andCsr12d=maxh0,a1−a2−a3−a4j is the
concurrence.14 Here,haij si =1, . . . ,4d are the square roots of
the eigenvalues(in nonincreasing order) of the non-
Hermitian operatorr̄12=r12ssy ^ sydr12

* ssy ^ syd. In this ex-
pression,sy is the y-Pauli matrix andr12

* is the complex
conjugate ofr12, in the computational basis. Despiter̄12 is
non-Hermitian, eachai is real and non-negative.14

For a pure state of two qubits, EoF is a monotonous func-
tion of NPT sinceENPT is equivalent to the concurrence. In
Fig. 3 the two entanglement measures are compared, as func-
tions of bothr and t. From the behavior of EoF, we argue
that almost one EPR singlet is required to preparer12sr̃ , t̃d. A
further analysis of r12sr̃ , t̃d shows that uBsr̃ , t̃du
! uAsr̃ , t̃du , uCsr̃ , t̃du , uDsr̃ , t̃du. If, in zero-order approxima-
tion, we neglectBsr̃ , t̃d in r12sr̃ , t̃d, we get a density matrix
close to that of the pure, nonmaximally entangled state
sÎAsr ,tdu−−l−ÎCsr ,tdu++ld12. In general, Dsr ,td
ÞÎAsr ,tdCsr ,td, so that the state is mixed. The degree of
mixedness in thispurified version of r12sr ,td is quantified
using the linearized entropy Slfrssr ,tdg=4/3h1

−Trfr12
2 sr ,tdgj, that ranges from 0(pure states) to 1 (maxi-

mally mixed ones). We getSlfr12sr̃ , t̃dg.0.01 showing that,
for these parameters, the two SQUIDs are in a nearly pure
state. This result is interesting: it has been proved, for ex-
ample, that a bipartite mixed state becomes useless for quan-
tum teleportation whenever its linearized entropy exceeds 1
−(2/fNsN+1dg), with N the dimension of each subsystem.15

For qubits, the threshold is 2/3@Slfr12sr̃ , t̃dg and the state of
the entangled SQUIDs could be used, in general, as a quan-
tum channel in efficient protocols for distributed quantum
computation. We have calculated the purity of the state when
Bsr̃ , t̃d is included, finding the same order of magnitude of
the previous result.

IV. AVERAGE ENTANGLEMENT AND OPTIMAL
PREPARATION

We now consider the average value of the transferred en-
tanglement as the preparation of the initial state of the
SQUIDs is varied. This allows us to investigate about the
dynamics of the superconducting qubits once different
separable states asscosau−l+eiwsin au+ld1 ^ scosbu−l
+eicsin bu+ld2 are considered. For simplicity, we takew
=c=0 and we useENPT to calculate the average value of the
entanglement. The evolution of the SQUIDs involves the
complete set of Kraus operators. However, the density matrix
r12sr ,td, averaged over an uniform distribution fora ,b, still
keeps the form in Eq.(6) but with more complicated matrix
elements. The results are shown in Fig. 4(a). The amount of
transferred entanglement is reduced and the peak att= t̃, r
= r̃ is shrunk to.0.4. This can be understood considering the
behavior ofENPT for u+,+l12 as initial state. In this case,ENPT
remains negative for a wide range of values ofr and t and
has a small positive bump forr .0.6 andt.1.7 (that corre-
sponds to the first peak in Fig. 2). This suggests thatu−,
−l12 plays a privileged role in the process of entanglement
transfer. To support this idea, we look for the optimal prepa-
ration of the SQUIDs.

We assumea ,b!1 and, after some lengthy calculations,
we find the explicit expression for the qubits density matrix

FIG. 3. (Color online) Comparison between EoF(dashed line)
and ENPT (solid line). In (a) we plot the behavior of the two en-
tanglement measures against the squeezing parameterr. We have
takent=3p /2. In (b), the entanglement functions are plotted vst,
for r =0.86.

FIG. 4. (Color online) (a) Transferred entanglement averaged
over the possible preparations of the SQUIDs. The maximum en-
tanglement is reduced with respect to the case ofu−,−l12. This is
due to the contribution fromu+,+l12, that is separable for wide
ranges oft and r and spoils the average entanglement.(b) The
amount of entanglement between the qubits as a function of the
preparation of the initial states whenr = r̃ and t= t̃. The stateu−,
−l12, obtained fora=b=0, corresponds to the maximum of the
transferred entanglement.
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r12sr,td . 1
a bb + ad bd + ab − c

bb + ad a8 0 af − bd

ab + bd 0 a8 bf − ad

− c af − bd bf − ad a9
2 ,

s8d

with

a = o
n,0

`

xnnsrdcos4sÎntd,

a8 = o
n,0

`

xnnsrdcos2sÎntdsin2sÎntd,

b = o
n,0

`

xnnsrdcos3sÎntdcossÎn + 1td,

c = o
n,0

`

xnn+1srdcos2sÎntdsin2sÎn + 1td,

d = o
n,0

`

xnn+1srdcossÎn + 1tdcossÎntdsin2sÎn + 1td,

f = o
n,0

`

xnnsrdcossÎntdcossÎn + 1tdsin2sÎntd, s9d

anda9=1−a−2a8. This time, it is hard to obtain an analytic
expression for the eigenvalues ofr12

T2. However, some insight
can be gained by specifying the values of bothr and t. In
Fig. 4(b) we plotENPT versusa andb for r = r̃ andt= t̃. The
transferred entanglement has a maximum equal to 0.87 for
a=b=0 and slowly decays. This could be important, experi-
mentally, because small errors in the preparation of the initial
state do not dramatically spoil the amount of entanglement

transferred to the qubits. The same qualitative behavior is
found for other values ofr andt. Thus, the initial preparation
u−,−l12 provides the maximum achievable entanglement
transfer. The entanglement of the SQUIDs, after the interac-
tion, can be revealed by detecting the populationBsr ,td and
the coherenceDsr ,td of the density matrix using local reso-
nant pulses on the SQUIDs, along the same lines depicted in
Ref. 16.

V. CONCLUSIONS

We have proposed a physical interface between quantum
optics and a solid-state system based on resonant effective
interactions between field modes and charge qubits. Our
study is directed to the design of efficient interaction models
to couple elements of a device for quantum information pro-
cessing embodied by physical systems having different na-
ture. We have explicitly examined the problem of the transfer
of entanglement between such subsystems. When a quantum-
correlated state of light is considered, entanglement-transfer
from the fields to the qubits can be efficiently tailored con-
trolling the interaction times between fields and qubits. We
have characterized the state of the qubits in terms of en-
tanglement and purity, finding that the ground state of the
qubits is the initial preparation that guarantees the optimal
entanglement transfer. The process we describe in this paper
turns out to be a reliable mechanism for the engineering of
the entanglement between two solid-state qubits. Our scheme
is thus able to combine two key requirements of a device for
distributed quantum information: the long-haul transmission
of information typical of a photonic channel and the manipu-
lability of a qubit subsystem.
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