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We review electronic and magnetic properties of yttrium iron garnets, considered as a superlattice of quan-
tum dots of two different types. Those are the tetrahedral and octahedral iron-oxygen clusters characterized by
their respective localized energy levels with the orbital eigenstates, specified by the clusters’ respective point
symmetries. We discuss two-dot mechanisms of the superexchange coupling between spins, attached to the
orbital states, via thep-d tunneling, only (between clusters of different types), or via the p-d tunneling
combined with the next-nearest neighborp-p hopping (between clusters of the same type). The electronic
density of states of a superlattice of the clusters is found and analyzed both for pure and valence-
uncompensated garnet systems. A scheme of control of the superexchange coupling due to an external mag-
netic field, applied to the system is proposed.
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I. INTRODUCTION

Interesting experimental data indicate that in yttrium iron
garnets(YIG’s) with valence-uncompensated doping, such as
Ca:YIG, an application of the external magnetic field can
significantly influence both the magnetic properties and the
electric transport in the system.1–3 The theoretical analysis
presented in this paper is an attempt to propose a micro-
scopic model, which could explain the empirical data in
terms of the quantum dot approach. Quantum dots are ge-
neric systems for exploring the physics of small, coherent
quantum structures. Valence-uncompensated doping on yt-
trium sites induces either excess electrons(e.g., Si:YIG), or
compensating holes(e.g., Ca:YIG) in the system. Compen-
sating holes and/or electrons, when located in quantum-
confined structures such as iron-oxygen octahedrals and tet-
rahedrals, can influence the magnetic structure of the whole
system. Moreover, they can be transported between different
units. In our study, both the orbital and spin degrees of free-
dom are treated at the same footing. The crystal unit cell of
YIG is built from 12 tetrahedralsFeO4d and 8 octahedral
(FeO6) iron-oxygenp-d clusters.4,5 In pure YIG the ground
state(L=0,S= 5

2) of Fe3+ has all five orbital states occupied
by the electrons with mutually parallel spins. This specific
situation indicates why a concept of compensating holes, in-
duced by valence-uncompensated doping, can be useful in
interpretation of the electronic structure of the derivatives of
YIG. In the tetrahedral cluster, the central iron site is sur-
rounded by the four oxygen nearest neighbors, whereas the
octahedral cluster, apart from its central iron, consists of six
anion sites. In the undoped system the O2− ions have all their
six orbital and spin states occupied. In the case of the oxygen
ions again the concept of compensating holes seems to be
easy to interpret. The point symmetry group of the tetrahe-

dron isS4, and that of the octahedron isS6. The clusters of
either type can be labeled by their respective central iron
sites. The overall symmetry of the garnet is cubic and its
space symmetry group isOh

10. The p-d clusters of the same
type are separated from one another, whereas the nearest-
neighbor octahedron and tetrahedron share an oxygen corner.
It also has to be mentioned that 12 sites of a third(dodeca-
hedral) type are populated by three-valence yttrium ions with
the closed electronic shells. Since an interpretation of the
results concerning YIG, doped with calcium, is a priority in
this paper, it seems to be more convenient to express an
electronic structure of the system in terms of holes rather
than in terms of the electrons. The argument is that all the
available experimental information indicates that the electric
conductivity in Ca:YIG is of thep type.

Thus, the system consists of holes of two types: the
narrow-band 3d holes and 2p holes, which populate the an-
ion eigenstates. The simplest possible Hamiltonian, which
can be used as a point of departure to account for the mag-
netic and transport properties of YIG and its derivatives, is
an extended three-band Hubbard model:6,7

Ĥ = Ĥ3d + Ĥ2p + Ĥp-d + ĤZ, s1d

Ĥ3d = Ea o
i,a,m

n̂i,a,m + Da o
i,b,m

n̂i,b,m + Ed o
j ,b,m

n̂j ,b,m

+ Dd o
j ,a,m

n̂j ,a,m +
U

2 o
i,s,m

n̂i,s,mn̂i,s,−m, s2d

where
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Ĥ2p = Ep o
f,s,m

n̂f,s,m +
1

2 o
f,f8,s,s8,m

tf f8ss,s8dĉf,s,m
† ĉf8,s8,m

s3d

and

Ĥp-d = o
i,f

Vp-dsi, fdd̂i
†ĉf + H.c., s4d

where

n̂i,s,m = d̂i,s,m
† d̂i,s,m, n̂f,s,m = ĉf,s,m

† ĉf,s,m. s5d

The HamiltonianĤ3d describes the narrow-band 3d electron
states, in the localized limit, with the strongest on-site Hub-
bard repulsion between the opposite-spin statessm,−md
taken into account(the parameterU). Five orbital 3d states
are separated into thet2g triplet sbd andeeg doubletsad under
the influence of the largest cubic contribution to the crystal
field. The ground state of the 3d compensating hole in the
tetrahedral position is thet2g triplet (the energyEd), and in
the case of the octahedral site it is theeg doublet(the energy
Ea). The parametersDd and Da are the energy separation
between the cubic energy levels at the tetrahedral and octa-
hedral sites, respectively.

The indicesi , j label thea andd iron sites, respectively.
Of course, the summation overa, b, ands in the Hubbard
term runs over all the orbital states at all the iron sites. The

second term of the HamiltoniansĤ2pd concerns the 2p elec-
tron states. The 2p triplet t1u at the oxygen sites is not split in
the cubic crystal field. A possible direct intrasystemp-p hop-
ping to the next-nearest neighborsNNNd site8 is considered,
but the Hubbard on-site repulsion is neglected as small in
comparison with that at the iron ions.

The third term of the HamiltoniansĤp-dd, i.e., the 2p-3d
tunneling between the oxygen and iron orbital states, ac-
counts for a possible intersystem communication.Vp-dsi , fd
are two-site tunneling integrals. The indicesi and f denote
both the sites and the appropriate orbital and spin states lo-
calized at the sites. The Hamiltonian is extended by the stan-

dard Zeeman termĤZ [see Eq.(16)].
With an external magnetic field applied to the system we

can control both its magnetic interactions and the electric
transport.9,10 Different orientations of the applied field with
respect to the crystal axes can play a crucial role in the pro-
cess due to the orbital contribution to the magnetic moment
of the particles.

The on-site exchange(Hund) interaction is omitted in the
Hamiltonian (1) for the following two reasons: first, what
really matters most in our analysis is the Hubbard repulsion
between carriers on the same orbital and opposite spin states
at the same site since the symmetry enables us to specify
precisely the single-hole orbital states. Second, the Hund
term can be perturbatively included.11 It determines anS
=5/2 state of the 3d electrons and it is taken into account by
assuming the Hund rule.

In order to apply the model to the YIG derivatives with
electric conductivity of bothn and p types, one should

express the extended Hubbard model in terms of the 3d and
2p states, and in the specific case assume the right order of
the cubic doublet(eg) and triplet(t2g) at the octahedral and
tetrahedral iron sites. Of course, the relative energy positions
of the 3d and 2p states, i.e., the parameters,Ed, Ea, andEp,
must be also changed accordingly.

In the first step of our procedure, this Hamiltonian is pro-
jected separately onto the tetrahedron and octahedron, ne-
glecting both thep-p hopping and, also, the occurrence of
the mutual oxygen corner between each pair of the nearest-
neighbor sNNd tetrahedral and octahedral clusters. The
group-theoretical analysis provides information on all the
symmetry-permitted hybridizing 3d and 2p states,8 which
can then be used as proper initial states in the perturbation
procedure, with thep-d tunneling term considered as a per-
turbation. Finally, a four-dimensional Hilbert subspace is ob-
tained, whose basis consists of two 3d and 2p orbital states
with nonzero matrix elements of thep-d hybridization be-
tween them, and two spin states attached to either of them.12

In the next step, the interclusterp-d hybridization that results
from the occurrence of the mutual oxygen corner of the near-
est tetrahedral and octahedral clusters is taken into account
together with the directp-p hopping, which gives rise to the
motion of the carrier.

Both types of the motion, i.e., that between clusters of the
same symmetry, mediated by thep-d tunneling combined
with thep-p hopping, as well as that between tetrahedral and
octahedral clusters, mediated solely by thep-d hybridization,
result in broadening of the single-hole energy levels, which
are attached to each of the 20 iron-oxygen clusters of the
crystal unit cell.

As might have been expected, the Hubbard on-site repul-
sive interaction between holes with the same orbital states
and opposite spins finally results in the occurrence of the
magnetic superexchange interactions between the clusters,
and further it determines a type of the magnetic order of the
whole system.

The problem of superexchange will be discussed, in great
detail, for the orbital ground states in terms of the difference
in energies, corresponding to the parallel(spin triplet) and
antiparallel (spin singlet) mutual orientations of the spins,
attached to the respective orbital ground states of thep-d
clusters.10 The outlined procedure serves also as a starting
point in a calculation of the cluster electronic density of
states.

The paper is organized as follows. In Sec. II, the energy
levels and their respective eigenstates, labeled by the irreduc-
ible representations of the respective symmetry groups, are
thoroughly discussed. Also, the question of the hole localiza-
tion on either the iron or oxygen sites of the cluster is ana-
lyzed on the basis of the wave functions of the cluster’s
orbital eigenstates. In Sec. III, magnetic superexchange inter-
actions between two clusters of different types are introduced
and analyzed with special emphasis put on the question of
spin factorization of the respectivep-d and p-p transition
matrices. The magnitude of the superexchange integral be-
tween the iron-oxygen clusters is analyzed as a function of
the tunneling parameter. Moreover, the influence of an exter-
nal magnetic field on the inter-cluster exchange mechanism
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is studied,13–15which shows how the exchange coupling can
be controlled experimentally. For valence-uncompensated
doping, extra holes are induced, and consequently the ex-
change mechanisms need to be reanalyzed.

Section IV deals with a diagonalization of both thep-d
andp-p spin-factorized transition matrices for the whole su-
percrystal unit cell consisting of 20 iron-oxygen clusters. Fi-
nally, the electronic density of statessEDOSd is obtained.
Within the framework of the proposed quantum dot model, a
connection between the model parameters and magnetic
properties of the system is discussed with the indication for
the antiferrimagnetic ground state, which is in agreement
with the experimental results.

II. SINGLE-HOLE ENERGY LEVELS AND EIGENSTATES
OF THE p-d QUANTUM DOTS

In the first step of the procedure described above, the
truncated Hubbard Hamiltonian, is projected onto a single
iron-oxygen cluster of either type. It turns out that, due to the
presence of the on-site Coulomb repulsion, the matrix of the
projected Hamiltonian is naturally factorized with respect to
the spin. For clusters of both types, the orbital wave func-
tions are assumed in the LCMO-like(linear combinations of
molecular orbitals) form, i.e., as linear combinations of the
single-particle 3d and 2p states, with their coefficients deter-
mined in a diagonalization procedure with thep-d tunneling
as a perturbation. Within the framework of the group theory,
we can precisely determine the original proper symmetry-
permitted single-hole states.8 For obvious physical reasons,
those are linear combinations of these 3d and 2p states,
which guarantee nonvanishingp-d tunneling. For the sake of
further discussion, it seems to be important to remember that
they must be eigenstates of these irreducible representations
of the respective point symmetry groups, whose Cartesian
product, if the point groups are extended to the space group
of the crystal, can induce one of the transitive irreducible
representations(irreps) of the space symmetry groupOh

10.
For the octahedral cluster, all the Cartesian products are
equal to the irreducible representationau

S6. The cubic doublet
eg

Oh is not actually split as the two irreps of the groupS6,
which label the 3d wave functions obtained from the doublet,
are mutually complex conjugate. Those areeg

S6 and seg
S6d*,

respectively. The cubic triplett2g
Oh is split into a singlet, la-

beled by the irreducible representationag
S6, and the doublet

labeled again byeg
S6 and its complex conjugate. Eigenstates

both at the iron center of the cluster and at each of its oxygen
sites can be obtained by the well-known projection proce-
dure. The eigenstate of all the octahedral oxygen sitesuPasndl
is given by a linear combination of the single-holen states,
wheren is eu

S6, seu
S6d* , andau

S6, respectively, at each site with
half of the states having the opposite sign of their phase
factors.

In the case of the tetrahedron, the ground-state cubic trip-
let t2g is split into theb3d

S4 singlet and the doublet whose states
are labeled by the complex representatione3d

S4 and its conju-
gate, respectively. The excited cubic doublet is split into the
a3d

S4 andb3d
S4 singlets. The 2p t1u triplet states are split intob2p

S4

singlet and the doublet, which corresponds to the irrreducible
representatione2p

S4 and its complex conjugate. Again, as in the
case of the octahedron, both the 3d and 2p states are ob-
tained by using the projection procedure. Likewise, the ap-
propriate Cartesian products of the 3d and 2p states are equal
either to the irreducible representationbS4 or to the irreduc-
ible representationeS4. Analogous to the previous case, the
oxygen wave function of each tetrahedronuPdl is a linear
combination of the four single-siteb2p

S4, or e2p
S4 states with half

of the sites having the opposite phase factor to that of the
others.

After some simple algebra, from each 232 submatrix
corresponding either to the spinmsad or m8sdd, two eigenen-
ergiesE1l andE3l sl =a,dd are obtained with their respective
eigenstates. The eigenenergies are given in the following
form:

E1s3d
l = 1/2sEl + Epd 7 1/2ÎsEp − Eld2 + 4g l

2Vp-d
2 sld, s6d

where both the on-site energiesEl as well as the coefficients
gl are determined by the relevant irreducible representations
of the symmetry group. In the same diagonalization proce-
dure four corresponding eigenstates are determined with con-
tributions of the appropriate 3d state determined by the co-
efficients c1l

s1d and c1l
s3d, whereas the contributions of the

oxygen statesuPll are determined byc3l
s1d and c3l

s3d sl =a,dd,
respectively. The coefficient can be also expressed in a stan-
dard simple form:

c1l
s1d = c3l

s3d = cossll /2d s7d

and

c3l
s1d = − c1l

s3d = sinsll /2d, s8d

where

tanslld = 2g l
2Vl

2/sEl − Epd. s9d

The second 232 submatrix of the Hamiltonian, which cor-
responds to the opposite value of the spin, i.e., −ms for an
octahedral clustersad and −ms8 for a tetrahedral cluster(d),
also gives two eigenenergies for either cluster:E2l and
E4l sl =a,dd:

E2s4d
l = 1/2sEl + U + Epd 7 1/2ÎsU − Ep + Eld2 + 4g l

2Vp-d
2 sld.

s10d

Again, the 3d contribution to the eigenstates are deter-
mined by the coefficients,c2l

s2d andc2l
s4d, whereas the 2p con-

tributions are given byc4l
s2d and c4l

s4d for the clusters of both
types:

c2l
s2d = c4l

s4d = cossll /2d s11d

and

c4l
s2d = − c2l

s4d = sinsll /2d, s12d

where

tanslld = 2g l
2Vl

2/sU + El − Epd. s13d
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The eight energies are expressed in terms of the model pa-
rameters, which are the cubic crystal-field ground-state ener-
gies of the single-hole 3d localized at the octahedralsEad and
tetrahedralsEdd iron site, respectively. For certain represen-
tations, the ground-state energies must be shifted by the en-
ergy distance between the cubic doublet and triplet at the
octahedralsDad, and tetrahedralsDdd iron sites, respectively.
The on-site Coulomb repulsion parametersUd, energy of the
2p single hole localized at the oxygen sitesEpd, and energy
cost of the transfer between iron sites and their oxygen near-
est neighbors, i.e.,Ep−Ea and Ep−Ed, appear also in the
formulas for the single-particle energies. Since we have de-
cided to discuss the problem in terms of holes rather than
electrons, we haveeg doublet as a ground state of the 3d
holes on a octahedral iron site, andt2g triplet on a tetrahedral.
The energy levelEa is lower thanEd.

All possible two-site tunneling parameters are reduced to
two basic ones, which are those between the 2p atomic states
and the appropriate 3d sx2,y2,z2d atomic statessVad and the
appropriate 3d sxy,yz,zxd atomic statessVdd. The original
basic tunneling parameters are then modified due to the bro-
ken symmetry of thep-d clusters.

In Fig. 1, all the lowest and first excited energy levels of
the octahedralp-d cluster, corresponding to the possible Car-
tesian products of the 3d and 2p states, are presented as
functions of the tunneling parameter. Among the lowest and
first excited levels, there is one orbital singlet and two orbital
doublets. As seen, in spite of the reduction of the overall
cubic symmetry, the orbital doublet is still a ground state for
a large range of thep-d tunneling. The doublet consists of
two mutually conjugate linear combinations of theeg

S6 and
seu

S6d* eigenstates. It is the only line in Fig. 1 that begins at
the energy equal toEa. The excited twin function(with
opposite spin) is also indicated in the diagram. Like the
other excited eigenstates, withV=0, its energy tends toEp.
For larger (and rather unrealistic) values of the tunneling

parameter, there is a crossing of the ground energy levels,
and the lowest-lying appears to be a singlet linear combina-
tion of the ag

S6 and au
S6 eigenstates. The remaining orbital

doublet consists of a linear combination of the irreducible
representationseg

S6 and eu
S6, and their complex conjugates.

This doublet, however, is expressed in terms of the original
t2g
Oh cubic functions. Both the orbital singlet and the doublet at

V=0, reach the point ofEa+Da, i.e., that of the cubic triplet.
The appropriate excited doublet(with opposite spin) is also
presented in Fig. 1. The on-site repulsion parameterU, is
fixed.

In Fig. 2, the lowest and first excited energy levels of the
p-d tetrahedral cluster are presented as a function of the tun-
neling parameter. In this case, for the whole range of the
tunneling parameter, a highly degenerate energy level is ob-
tained as a ground state of the cluster. Those are actually
three doublets, consisting of mutually conjugate functions,
and their degeneracy is accidental. The first doublet is a lin-
ear combination ofe3d

S4 with e2p
S4, and its complex conjugate;

the second isb3d
S4 combined withb2p

S4, and the complex con-
jugate. The third doublet is represented by mutually conju-
gate linear combinations ofb3d

S4 and e2p
S4. The energy of the

three doublets originates at the energyEd. The corresponding
energy eigenlevel with the opposite spin is given in the dia-
gram as well. The remaining energy levels, originating from
the cubic doublet, i.e., at the pointEd+Dd, are the orbital
singlet sa3d

S4 ,b2p
S4d and two doubletssa3d

S4 ,e2p
S4d and sb3d

S4 ,e2p
S4d

with their respective conjugate combinations. Again, all the
opposite-spin energy levels begin atE=Ep.

In order to compare thea andd results with each other, in
Fig. 3 two complete sets of the four energy eigenvalues,
which include the respective ground states of the tetrahedral
and octahedral clusters, are shown. For the tetrahedral
cluster, each of the four energy levels correspond to its
three orbital doublets, whereas for the octahedral cluster the
eigenstates are the single orbital doublets. The energies are

FIG. 1. The lowest-lying and first excited energy levels of the
octahedral(a) cluster as a function of thep-d hybridization param-
eter, V. Solid lines show the orbital doublets, mutually conjugate
linear combinations ofseg

S6d* andeu
S6; dotted lines show the orbital

singlets, linear combinations ofag
S6 andau

S6; dashed lines show the
orbital doublets, mutually conjugate linear combinations ofeg

S6 and
eu

S6. Values of the relevant model parameters are given inside the
figure.

FIG. 2. The lowest-lying and first excited energy levels of the
tetrahedral(d) cluster as a function of thep-d hybridization param-
eter,V. Dotted lines show the orbital sextet, all the mutually con-
jugate linear combinations ofb3d

S4 with e2p
S4 ande3d

S4 with e2p
S4; dashed-

dotted lines show the orbital singlets, linear combinations ofa3d
S4

with b2p
S4; dashed lines show the orbital doublets, mutually conjugate

linear combinations ofb3d
S4 with e2p

S4; solid lines show the orbital
doublets, mutually conjugate linear combinations ofa3d

S4 with e2p
S4.

Values of the model parameters are given inside the figure.
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given as functions of the tunneling parameters. For the sake
of simplicity, we assumed the tunneling parameters to be
equal to each other, i.e.,Va=Vd=V. The Hubbard parameter,
U, is fixed. The actual values of the microscopic parameters
are the same as those given in Figs. 1 and 2.

Localization probabilities either at the iron, or at the sur-
rounding oxygen sites, for different eigenstates of the same
Hilbert subspace, are determined as modulo-squared coeffi-
cients of the appropriate contributions to the respective
eigenfunctions. For instance, the localization probability at
the iron site in the ground and its opposite-spin excited en-
ergy level are determined as follows:

P1l
Fe = uc1l

1 u2 s14d

and

P2l
Fe = uc2l

2 u2, s15d

wherel =a,d. The probabilities are analyzed as functions of
the tunneling parameter,V, and further, also, as those of a
varying external magnetic field, since we believe that, by
application of an external magnetic field, an external control
of the system can be maintained. As might have been ex-
pected, for the lowest-lying eigenstate, the probability of lo-
calization at the iron site exceeds that at the surrounding
oxygens. In the states with the spin orientation opposite to
that of the ground energy level, there is a larger probability
that the hole and/or electron gets localized at the surrounding
oxygens. It holds for both types of clusters. In pure YIG,
only the lowest of each set of the four energy levels is occu-
pied, and the hole remains at the iron site. In calcium-doped
YIG, for instance, a compensating hole, which must have its
spin opposite to those of the holes already present at the
cluster, will occupy the oxygens. However, there is a finite
probability that it can get localized at the iron, forming a
Fe4+, which has been earlier suggested in the literature.

Let us now analyze the probability of the occupation of
the iron sites in the lowest-lying and first excited eigenstates

for both the octahedral and tetrahedral clusters with respect
to the tunneling parameter,V, without as well as with an
external magnetic field. The result can be changed by an
application of the field, which has the tendency to lower the
probability of localization at iron sites, increasing thereby a
possibility of localization at the oxygens. We have decided
not to display the occupation probabilities at the oxygen
sites, since they represent a mirrorlike reflection of those for
the iron, however, with the reversed order of the respective
eigenstates. The probability of localization is bigger at an
octahedral rather than at a tetrahedral iron site. It means that
there is a possibility either of formation of a Fe4+ octahedral
iron ion or the compensating hole will get localized at the
oxygen sites hybridizing with the tetrahedral iron states. The
results, used as an illustration in Fig. 4, correspond to the
two lowest-lying eigenstates of each of the twoa andd sets
given earlier in Fig. 3.

From two possible contributions to the magnetic moment,
the spin is already considered, by taking into account the
Hubbard term in the Hamiltonian(2). This is an occurrence
of the orbital contribution, which explains the splitting of the
eigenenergy levels. The Hubbard Hamiltonian projected onto
the p-d clusters is extended by the standard Zeeman term:

ĤZ = − mBBW ·o
i

sLŴ i + 2SŴ id, s16d

whereLŴ i and SŴ i denote the orbital angular momentum and
spin operators of thep-d cluster i, respectively. Both in the
cases of the octahedron and tetrahedron, we restrict our dis-
cussion to the effect of the field applied along one of the
principal axes of the bulk system, i.e., thek111l axis, which
is identical with the orientation of one of the main axes of
the octahedron, but not of the tetrahedron.

The influence of the magnetic field on the four energy
levels of the octahedral clustersad, already given in Fig. 3, is
presented graphically in Fig. 5. As the field gets stronger,

FIG. 3. All four energy levels of the sets with the respective
ground states of the octahedral(dashed lines) and tetrahedral(solid
lines) clusters, respectively, versus thep-d hybridization parameter,
V. The remaining model parameters take the following values:U
=8 eV, Ea=−1.5 eV,Ed=−0.44 eV,Ep=2.5 eV.

FIG. 4. Probability of localization at the iron sites for the
lowest-lying and corresponding opposite-spin energy levels of the
octahedral and tetrahedral clusters, respectively, vs thep-d hybrid-
ization parameter,V, with sB=0.5 eVd and withoutsB=0d the ex-
ternal magnetic field.
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crossings of the middle-lying energy levels occur, which can
imply both a flip of the spins attached to the appropriate
orbital eigenstates and an appropriate change of the hole/
electron localization.

As mentioned before, in the case of the tetrahedron, the
orbital degeneracy of the ground energy level is much higher.
It turns out that the field lifts completely the sixfold degen-
eracy. Three of the four sets of the resultant energies versus
the applied field are presented in Fig. 6. Again, crossings of
the middle-lying energy levels occur, suggesting a change of
the spin orientation accompanied by the appropriate change
of the localization. As follows from this discussion, the prob-
ability of localization in pure YIG is dominant at the iron
sites, which means that the iron contribution also dominates
in the p-d hybridized wave function, and, consequently, the
high orbital degeneracy is only virtual. It becomes really
important, however, when the system is doped and extra
holes or electrons are introduced. Compensating particles oc-
cupy the opposite-spin hybridized eigenstates with larger
probability of localization at the oxygen sites, and the higher
orbital degeneracy.

The probability of localization for the central iron sites,
defined like that in Fig. 4, is shown as a function of the
magnetic field for a selected fixed value of the tunneling
parameterV, in Fig. 7. Again, the occupation probabilities
for the oxygen sites do not need to be shown explicitly. With
increasing strength of the field, the localization at the central
iron sites decreases, which means that it gets larger at the
oxygens. Thus, due to the applied field, there is a finite prob-
ability that the particle will be moved and its spin state al-
ternated.

III. PAIRS OF THE OCTAHEDRAL AND TETRAHEDRAL
p-d CLUSTERS

In order to get more insight into the electronic structure of
the transition metal oxides of this specific type, within the
framework of the cluster model,15,16 let us start the analysis
with a mixed pair of thep-d clusters. For the sake of sim-
plicity, each cluster is considered as a quantum dot with a
selected set of the four orbital states, attached to it, forming a
basis of its Hilbert orbital subspace. As mentioned before,
each pair of the nearest clusters belonging to the different
sublattices share a common oxygen site that enables their
mutual communication via thep-d tunneling only. The selec-
tion of the cluster orbital states for further discussion has
been done on the basis of magnitude of thep-d tunneling
matrix elements between thea andd clusters as well as on
their response to the magnetic field. The diagonalization of
the projectedp-d tunneling Hamiltonian is performed for
these selected sets of the respective single-hole eigenstates.
Two cases need to be considered:

(i) The clusters have the same spin orientation in their
respective ground states(ferromagnetic order or spin triplet).

(ii ) The clusters have opposite spins in their respective
ground states(antiferromagnetic order or spin singlet).

In each case, different off-diagonal transition matrix ele-
ments of thep-d Hamiltonian are obtained. As an example,
two of the possible 16 matrix elements are presented below
in an explicit form:

FIG. 5. Effect of the external magnetic field, applied along the
k111l axis on the doublet eigenvalues of the octahedral cluster. The
eigenstates are the same as those given in Fig. 3. The solid and
dashed lines show both eigenenergies of each doublet. Values of the
relevant model parameters are given inside the figure.

FIG. 6. Effect of the external magnetic field, applied along the
k111l axis, on three of the set of the four eigenvalues of the tetra-
hedral cluster. The eigenstates are the same as those in Fig. 3. Val-
ues of the relevant model parameters are indicated inside the figure.

FIG. 7. Probability of localization at the iron sites for lowest-
lying (the upper curves) and the corresponding opposite-spin(the
lower curves) energy levels of the octahedral(the solid lines) and
tetrahedral(the dashed lines) clusters, respectively, vs strength of
the applied magnetic field. Again, values of the model parameters
are given inside in the figure.
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(i) for ferromagnetic order

A13
ad = sA31

dad* = c1a
s1dc3d

s3daVa + Î2c3a
s1dc1d

s3da*Vd, s17d

(i) for antiferromagnetic order

A12
ad = sA21

dad* = c1a
s1dc4d

s2daVa + Î2c3a
s1dc2d

s2da*Vd. s18d

The coefficienta can be expressed as follows:

a = s1/4ds1 +Î3ds− 1 + id. s19d

After some simple algebra, two different sets of the two-
cluster single-particle energy levels with their respective
eigenstates are found. Within the framework of this ap-
proach, pure YIG differs from its derivatives in the number
of holes per quantum dot. In pure YIG, the population is one
hole per cluster, which means that two of eight two-cluster
energy levels are occupied. The total ground-state energy of
the two-cluster system is therefore a sum of the two lowest-
lying single-hole energy levels. As might have been
expected,10,11 in pure YIG, the spin-singlet ground-state en-
ergy level lies below the spin-triplet one for a wide range of
values of the tunneling parameter,V, which means that a pair
consisting of the octahedral and tetrahedral clusters favors
mutually opposite directions of spins in their respective or-
bital ground states. Thus, the ground state of the two clusters
must be a spin singletsS=0d. Information on the difference
between the ferromagnetic and antiferromagnetic two-cluster
energyDad enables us to estimate superexchange integrals at
T=0 K as functions of the microscopic model
parameters.17–19 The conclusion is based on a well-known
supposition that in the absence of the external magnetic field,
this energy difference is simply equal to the superexchange
integralJad between two spinsS=1/2,attached to the orbital
ground states of the clusters:

Jad = Ef − Eaf, s20d

whereEf andEaf stand for the ferromagnetic and antiferro-
magnetic energies of the two-cluster system, respectively.
The results in Fig. 8 show the superexchange integralJad for
pure (the solid line) and doped(the dotted line) system as a
function of thep-d hybridization parameterV. With the mag-
netic field applied to the system, the spin triplet-singlet en-
ergy difference as a function ofV is presented for pure(the
dashed line) and doped(the dashed-dotted line) systems. The
Hubbard repulsion parameter is fixed. In Fig. 9, the spin
triplet-singlet difference in energyDad is given as a function
of the applied magnetic field, for a fixed value of the hybrid-
ization parameter, and with the same, as previously, values of
U=8 eV, Ea=−1.5 eV,Ed=−0.44 eV, andEp=2.5 eV.

In the undoped system the superexchange integralJad is
positive, as expected, with the external magnetic field equal
to zero. The corresponding triplet-singlet energy difference
Dad changes its sign, however, at some finite magnetic field,
and on the whole, it displays a particularly complexV de-
pendence resulting from possible crossings of the second and
third energy levels of the both clusters(cf. Figs. 5 and 6). To
obtain the result with a weaker external magnetic field we
should take into account the molecular field.

Valence-uncompensated doping induces extra holes or ex-
tra electrons in the system. Within the framework of this
model in Ca:YIG the third relevant hole is located at the
same pair of two hybridizing clusters, so the third of the set
of the eight eigenstates of the pair must be occupied. And,
using Eq.(8), with the energies defined as sums of the three
lowest-lying single-hole energy levels, we obtain the super-
exchange coupling integral between the pair of the spins,
attached to the respective orbital ground states of the clus-
ters. It turns out(Fig. 8) that rather parallel than antiparallel
mutual orientation of the spins in the orbital ground states is
favored, which means that an extra hole can change the sign
of the superexchange interaction. Magnetic properties of the
system are then influenced in two ways: not only directly by
reducing the resultant spin, but also by changing the mag-
netic interactions.

In our analysis, an influence of the strong molecular mag-
netic field is omitted so our conclusions concerning the ex-

FIG. 8. The superexchange integralJad between spins attached
to the ground orbital eigenstates of thea and d clusters vs the
hybridization parameterV, without the external magnetic fieldB,
for pure (the solid line) and doped(the dotted curve) system. And,
the spin triplet-singlet energy differenceDad with the external mag-
netic fieldB=0.2 eV again for pure(the dashed curve) and doped
(the dotted-dashed curve) system. The relevant model parameters
take the following values:U=8 eV, Ea=−1.5 eV, Ed=−0.44 eV,
andEp=2.5 eV.

FIG. 9. The spin triplet-singlet difference in energyDad vs the
applied magnetic field for an undoped system. Values of the rel-
evant model parameters areU=8 eV, Ea=−1.5 eV,Ed=−0.44 eV,
andEp=2.5 eV.
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ternal magnetic field effects can provide only a gross quali-
tative result.

Within the framework of the present approach, the super-
exchange interaction Hamiltonian consists of the contribu-
tions, corresponding to the interactions between particular
pairs of spins. It can be expressed in the following simple
form:

Ĥex= o
ab

Jsa,bdSWa ·SWb, s21d

where the summation runs over all the relevant orbital eigen-

states of the respective quantum dots, andSWasbd denote the
S=1/2 spins attached to the orbital states. Therefore, what
we estimate from Eq.(8) is the particular contribution to the
interaction, i.e., the integralJsa ,bd with a andb being the
ground orbital eigenstates of the respective clusters.

The problem becomes more complicated for two hybrid-
izing clusters of the same type. The octahedral clusters share
no oxygen sites. And the same is true about the tetrahedral
clusters. Therefore a possible intrasublattice communication,
involving clusters of one type, may occur via a combination
of the p-d with p-p tunneling. Some simple space-symmetry
analysis clearly proves that only the directp-p hopping to the
next-nearest oxygen neighbors is important as it brings the
hole to the nearest cluster of the same sublattice.4 And, it is
the case for both types of the clusters. The directp-p tunnel-
ing Hamiltonian is projected onto a space of the eight hy-
bridized eigenstates of two clusters of the same type. Again,
like in the previous case one has to consider the spin degrees
of freedom. Two cases are distinguished from each other:

(i) Both clusters have same spins attached to their respec-
tive ground energy levels(ferromagnetic order or spin trip-
let).

(ii ) The clusters have spins of the mutually opposite ori-
entation attached to their ground energy levels(antiferro-
magnetic order or spin singlet).

In either case, a different set of off-diagonal matrix ele-
ments corresponding to possible transitions between the clus-
ters is obtained. Since no spin-orbit coupling is considered,
every transition between the clusters occurs with spin con-
servation.

As an example, both for thea-a andd-d pair, two of the
16 possible off-diagonal matrix elements of the tunneling
Hamiltonian are given below in an explicit form:

(i) ferromagnetic order(spin triplet)

A13
aasddd = basddc3asdd

s1d c3asdd
s3d , s22d

(ii ) antiferromagnetic order(spin singlet)

A12
aasddd = basddc3asdd

s1d c4asdd
s2d , s23d

where

ba = 2bd = 1/2t2. s24d

It is reflected in the formulas that transitions between the
hybridizing clusters result from the directp-p tunneling be-
tween the oxygen sites that are mutual second neighbors, and

thust2 is the NNN tunneling integral between the 2p atomic
states. The coefficientscasdd’s determine the oxygen contri-
bution to the respective hybridized 3d−2p single-particle
cluster state. The numerical coefficients inb are found in the
group-theoretical projection procedure.4

As before, in the case of the mixed pair of thea and d
clusters, both pure YIG(Ref. 16) and its derivatives obtained
by valence-uncompensated doping are discussed. Again,
with respect to pure YIG, they differ in a number of the holes
and/or electrons per cluster. The superexchange integralsJaa
andJdd, respectively, are found from Eq.(20) with appropri-
ately defined ground-state energy levels. For the same range
of the microscopic parameters, values for the exchange inte-
grals are much smaller than those obtained for the magnetic
interaction between mixed, i.e., tetrahedral-octahedral pairs.
And, they clearly indicate that the antiparallel mutual orien-
tation of the ground-state spins is favored. The numerical
results are shown in Figs. 10(for the pure system) and 11
(the doped system). The superexchange integralsJaa andJdd
are presented as functions of thep-p NNN tunneling param-
eter, t2, with the fixed values of the Hubbard parameter,U,
and thep-d hybridization parameterV.

Again valence-uncompensated doping changes the sign of
the magnetic interactions in favor of the mutual parallel ori-
entation of the relevant spins. All the estimations of the su-
perexchange interactions in YIG, such as a comparison of
inelastic neutron scattering data with the spin-wave spectra
(see Ref. 15 for detail) remain in mutual agreement with
respect to the sign and magnitude of the intersublattice su-
perexchange interaction. In almost all of the well-known pa-
pers on YIG, the same value ofJad is found (see: Refs. 16
and 17 and the references therein). Within the framework of
the model proposed here, the inter-sublattice interaction is
the only one whose origin is consistent with that of the
Anderson superexchange. With respect to the actual magni-
tude ofJad, however, it seems rather obvious that we derive

FIG. 10. The exchange integralsJaa (the solid line) andJdd (the
dashed line) between spins, attached to the orbital ground states of
the NN octahedral and tetrahedral clusters, respectively, vs thep
-p tunneling parametert2, for the pure system and without the ex-
ternal magnetic field. Values of the system parameters:U=8 eV,
Ea=−1.5 eV,Ed=−0.44 eV,Ep=2.5 eV.
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only one contribution to the resultant exchange parameter
between the twop-d clusters[Eq. (20)], versus the total one,
which is estimated from the spin-wave spectra. In this model,
the intrasublattice magnetic interactions are mediated both
by the p-d hybridization and by the NNNp-p tunneling. In
spite of its alternating-spin origin, in the pure system the
interactions favor the antiparallel spin orientation, and their
respective magnitude is much smaller than that of the inter-
sublattice interaction, which also remains in agreement with
the results obtained from the experimental data.

IV. THE ELECTRONIC DENSITY OF STATES
OF THE SUPERLATTICE

Within the framework of the present approach, the crystal
of YIG can be regarded as a cubic superlattice of octahedral
and tetrahedral quantum dots with a set of the specific orbital
and spin eigenstates attached to each of them, forming its
Hilbert space. Thus a crystal unit cell of YIG consists of 8
octahedral and 12 tetrahedral inequivalent quantum dots.
They can be labeled by their respective central iron ions. The
simplest way of estimating their size is a comparison of the
iron asdd-to-oxygen distance with half of the lattice constant
(a/2). As the iron-oxygen distances are almost identical, the
ratio is approximately of the same order, i.e., 6 per a quan-
tum dot.

Communication between the nearest quantum dots of the
same type is mediated by thep-d hybridization combined
with next-neighborp-p hopping, whereas the intersublattice
transfer can be mediated solely by thep-d hybridization be-
cause of the common oxygen site thea andd clusters share
with each other. It is interesting that as the simple space-
symmetry analysis shows, with respect to thep-p hopping, 8
octahedral quantum dots split spontaneously into four one-
dimensional chains along the threefold crystal axesk111l.8

The reason is that the space symmetry permits each octahe-
dral cluster to exchange holes and/or electrons with only two
of its six nearest neighbors. It suggests also an occurrence of
the strong anisotropy, both of the transport and magnetic
properties. In the case of the clusters of the tetrahedral type
no such restrictions are imposed by symmetry.

In order to find the electronic density of states we have to
diagonalize the spatial Fourier transform of the Hubbard
Hamiltonian (1) projected onto the crystal unit cell of YIG
with a set of the single-hole eigenstates attached to each of
the hybridizing clusters. The off-diagonal matrix elements
can only be determined after having assumed a mutual spin
orientation in all the clusters.

For the sake of clarity, this procedure can be considerably
simplified by considering only a contribution to the elec-
tronic density of states, coming from the orbital ground state
of each cluster. It means that each quantum dot is character-
ized by its four-dimensional spin-orbital Hilbert space, and,
of course by its position in the crystal unit cell. There is an
additional argument for considering only this specific contri-
bution to the density of states. The first excited energy level
lies above the Fermi level and plays a crucial role in the
charge and spin transport.

As mentioned above, in the case of pure YIG one hole per
quantum dot is assumed. It means that 20 eigenstates are
occupied and the Fermi level is identical with the highest of
them. Within the framework of this approach, different
valence-uncompensated derivatives of YIG differ from one
another in the number of electrons or holes per quantum dot.
The extra holes in the Ca-doped system gives rise to a shift
of the Fermi level to the right toward higher energies.

In the real crystal, 5 electrons are located at each cluster;
however, we focus our attention on the one playing a crucial
role in the determination of the magnetic and electric prop-
erties of the crystal. Consequently a diagonalization of the
80380 Hamiltonian matrix must be performed. All the di-
agonal matrix elements are simply equal to one of the appro-
priate four eigenenergies of the iron-oxygen clusters[see Eqs
(5) and (6)]. The off-diagonal matrix elements take the fol-
lowing form:

HsqWdi,k = fsqWdi,k expsiqW · rWi,kd, s25d

whererWi,k=rWi −rWk and bothrWi andrWk are the position vectors of
the iron ions in the superlattice unit cell. The indicesi andk
in the formula denote also the appropriate orbital states of
the clusters.

The off-diagonal matrix elements fall into two categories:
if i and k denote the clusters of different symmetry, i.e.,a
andd, respectively, then the matrix elementf i,k is determined
by thep-d hybridization. Its specific form depends upon the
orbital eigenstates of the respective clusters[cf. Eqs. (16)
and(17)]. If the matrix element is between the clusters of the
same type, then the functionfsqWdi,k results from the NNNp
-p tunneling. Again, its specific form is dependent on the
orbital states[see Eqs.(21) and (22)]. The off-diagonal ma-
trix elements are nonzero provided that the spins attached to
the respective orbital states are equal to each other. It means
that the final form of the Hamiltonian can only be found if a
mutual magnetic orientation of the quantum dots is assumed.
Since we analyze also an influence of the external magnetic
field, it seems to be sensible to select just the two magnetic
structures.20,21 Those are collinear ferromagnetic order of all
spins attached to the orbital ground states of the clusters, and
collinear antiferrimagnetic order in which all spins of the
clusters of one type are aligned in one direction and opposite
to those of the clusters of the other type. In either case, a
different form of the projected Hamiltonian is obtained.

The electronic density of statesDsEd can be expressed as
follows:

DsEd = o
Ei

Ai dsE − Eid, s26d

where the summation in the formula runs over all the eigen-
values of the projected HamiltoniansEid. For each contribu-
tion to the density of states, the summation is also performed
over the wave vectorqW along thesGXRGd loop in the simple
cubic Brillouin zone, i.e., fromG=s0,0,0d to X=s0,p ,0d,
farther toR=sp ,p ,pd and finally back to the point of depar-
ture. The density of states is analyzed with respect to micro-
scopic model parameters. Numerical results are shown in
Figs. 12 and 13, where the curves represent EDOS both for
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ferro- and antiferromagnetic mutual orientation of the
ground-state spins of thea and d quantum dots. The effect
depends upon the external magnetic field applied to the sys-
tem (Fig. 13). The specific orientation of the external mag-
netic field, i.e., along thek111l axis, serves merely as an
illustration. The problem was studied on a broader scale,
showing that the system is anisotropic, which may be ex-
plained as a result of the orbital contribution to the magnetic
moment of each quantum dot[see Eq.(15)].

V. CONCLUSIONS

In conclusion we have proposed and analyzed a micro-
scopic model of yttrium iron garnets with excess holes or
electrons, induced to the system, by valence-uncompensated
doping. The system is considered as a superlattice consisting
of two types of thep-d quantum dots with different sets of
the localized eigenvalues and their respective orbital eigen-

states. Both the energies of the octahedral and tetrahedral
dots as well as localization of the holes and/or electrons ei-
ther at the central iron or the surrounding oxygen sites can be
controlled by an application of the external magnetic field.
The magnetic moment of each quantum dot consists of the
spin and orbital contributions and the external control of the
situation can be maintained due to the standard Zeeman
term.

Mutual communication between the dots of different
types occurs via thep-d hybridization, whereas the transfer
of the holes and/or electrons between the homogeneous dots
is mediated by thep-d hybridization combined with thep
-p tunneling to the next-nearest oxygen neighbors. The su-
perexchange interaction between spins attached to the
ground orbital states of the different clusters, estimated as a
difference in the spin triplet and singlet energies, turns out to
be antiferromagnetic, i.e., it favors antiparallel mutual orien-
tation of the spins. The most remarkable feature of the cou-
pling, however, is the change of its sign, which occurs at
some finite value of the external magnetic field. The ex-
change coupling between spins, attached to the ground or-
bital eigenstates of the homogeneous dots, estimated in the
same way, is mediated by thep-d hybridization combined
with thep-p tunneling. It turns out to be antiferromagnetic as
well, which is compatible with the empirical data. The ratios
of the intra- and intersublattice interactions remain in agree-
ment with the experimental results.

Within the framework of this model, the electronic den-
sity of states is also found. It is characterized by the sharp
peaks corresponding to the eigenstates of the crystal unit
cell, consisting of 40 quantum dots. The spins of the quan-
tum dots can be controlled through their orbital degrees of
freedom, by an application of the external magnetic field.
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FIG. 11. The exchange integralsJaa (the solid line) andJdd (the
dotted line) between spins attached to the orbital ground states of
the NN tetrahedral clusters, respectively, vs thep-p tunneling pa-
rametert2, in the doped-system, without the magnetic field. Values
of the microscopic parameters are like those in Fig. 10.

FIG. 12. The EDOS of YIG with an antiferromagnetic(the
dashed line) and ferromagnetic(the solid line) mutual orientation of
the ground-state spins of the nearest-neighbora andd clusters, for
V=0.5 eV, t2=0.25 eV.

FIG. 13. The EDOS of YIG with mutually antiparallel(dashed
line) and parallel(solid line) spins of the orbital ground states of the
a and d clusters in the external magnetic field(B=0.5 eV and the
same values ofV and t2 like those in Fig. 12).
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